
LAPACK Working Note 94A User's Guide to the BLACS v1.0 �Jack J. Dongarra, y R. Clint Whaley zJune 7, 1995AbstractThe BLACS (Basic Linear Algebra Communication Subprograms) project is an on-going investigation whose purpose is to create a linear algebra oriented message passinginterface that is implemented e�ciently and uniformly across a large range of distributedmemory platforms.The length of time required to implement e�cient distributed memory algorithmsmakes it impractical to rewrite programs for every new parallel machine. The BLACSexist in order to make linear algebra applications both easier to program and moreportable.It is for this reason that the BLACS are used as the communication layer for theScaLAPACK project, which involves implementing the LAPACK library on distributedmemory MIMD machines.This report describes the library which has arisen from this project.
�This work was supported in part by DARPA and ARO under contract number DAAL03-91-C-0047,and in part by the National Science Foundation Science and Technology Center Cooperative Agreement No.CCR-8809615.yDept. of Computer Sciences, Univ. of TN, Knoxville, TN 37996, and Mathematical Sciences Section,ORNL, Oak Ridge, TN 37831, dongarra@cs.utk.eduzDept. of Computer Sciences, Univ. of TN, Knoxville, TN 37996, rwhaley@cs.utk.edui

Contents1 Introduction 12 Availability of the BLACS Software 23 BLACS Concepts and Features 33.1 Array-based Communication : 33.2 Process Grid and Scoped Operations : 43.3 Contexts : 53.4 ID-less Communication : 63.5 Blocking Levels : 74 Naming Conventions 85 Point To Point Communication 95.1 Semantics : 95.2 Syntax : 105.2.1 Point to Point Sends : 105.2.2 Point to Point Receives : 115.3 Example : 126 Broadcasts 126.1 Semantics : 126.2 Syntax : 126.2.1 Broadcast/send : 136.2.2 Broadcast/receive : 146.3 Example : 156.4 Topologies : 157 Combines 167.1 Semantics : 167.2 Syntax : 177.3 Example : 187.4 Topologies : 198 Support Routines 198.1 Initialization : 198.1.1 BLACS PINFO : 198.1.2 BLACS SETUP : 208.1.3 BLACS GRIDINIT : 208.1.4 BLACS GRIDMAP : 218.2 Destruction : 238.2.1 BLACS FREEBUFF : 238.2.2 BLACS GRIDEXIT : 238.2.3 BLACS ABORT : 24ii

8.2.4 BLACS EXIT : 248.3 Informational and Miscellaneous : 248.3.1 BLACS GRIDINFO : 248.3.2 BLACS PNUM : 258.3.3 BLACS PCOORD : 258.3.4 BLACS BARRIER : 268.4 General purpose : 268.4.1 BLACS GET : 268.4.2 BLACS SET : 278.5 Uno�cial routines : 288.5.1 SETPVMTIDS : 298.5.2 DCPUTIME : 298.5.3 DWALLTIME : 298.5.4 KSENDID : 308.5.5 KRECVID : 308.5.6 KBSID : 308.5.7 KBRID : 31REFERENCES 32A C Interface to the BLACS 34A.1 Support Routines : 34A.1.1 Initialization : 34A.1.2 Destruction : 34A.1.3 Informational and Miscellaneous : 34A.1.4 Uno�cial : 35A.2 Point to Point : 35A.3 Broadcasts : 35A.4 Combines : 35B Degrees of Blocking 36B.1 Non-blocking communication : 36B.2 Locally-blocking : 37B.3 Globally-blocking : 38C BLACS Error Handling 39C.1 BLACS Warning and Error Messages : 40C.1.1 Examples : 40C.2 System Error Messages : 41C.2.1 Examples : 41D Broadcast Topologies 42D.1 Broadcast Ring Topologies : 43D.2 Broadcast Tree Topologies : 46iii

E Combine Topologies 50E.1 General Tree Gather : 50E.2 Bidirectional Exchange : 50F Example Program 53List of Tables1 Presently supported message passing layers : : : : : : : : : : : : : : : : : : 22 Scopes provided by a 2D process grid : 43 Values and meanings of the communication routines' name positions : : : : 84 Values and meanings of combine routines' name positions : : : : : : : : : : 95 Pre�x to type declaration mapping : 106 Pre�x to C type declaration mapping : 347 Broadcast topology highlights : 43List of Figures1 8 processes mapped to a 2 x 4 process grid. : : : : : : : : : : : : : : : : : : 42 After �rst step of LU factorization : 53 Increasing ring broadcast : 444 Decreasing ring broadcast : 445 Split ring broadcast : 456 Multiring broadcast with Nr = 3 : 457 Hypercube broadcast, nearest node �rst. : 488 General tree broadcast with Nb = 1 : 489 General tree broadcast with Nb = 2 : 4910 General tree broadcast with Nb = 3 : 4911 General tree gather with Nb = 1 : 5112 General tree gather with Nb = 4 : 5113 Bidirectional exchange : 52
iv

1 IntroductionThe BLACS (Basic Linear Algebra Communication Subprograms) [7, 9, 15] is a packagethat attempts to provide the same ease of use and portability for distributed memory linearalgebra communication that the BLAS [5, 6, 14] provide for linear algebra computation.The concept of concentrating the most used computation into a kernel of highly opti-mized routines, such as the BLAS, has proven itself in work on LAPACK [2, 1]. LAPACK(Linear Algebra PACKage) provides linear algebra routines for sequential and shared mem-ory machines.When the ScaLAPACK [8, 4] project (which involves porting LAPACK to distributedmemory parallel machines) was begun, it rapidly became evident that a similar kernel forcommunication would be required. Out of this need the BLACS arose.With these two kernels in place, software for dense linear algebra on MIMD platformscan consist of calls to the BLAS for computation and calls to the BLACS for communication.Since both packages will have been optimized for that particular platform, good performanceshould be achieved with relatively little e�ort. Also, since both packages will be availableon a wide variety of machines, code modi�cations required to change platforms should beminimal.There are various packages designed to provide a message passing interface that remainsunchanged across multiple platforms, including PICL [12], PVM [11] and more recently,MPI [10]. These packages are general libraries, however, and thus their interfaces are notas easily usable for linear algebra applications as we would like.In contrast, since the audience of the BLACS is known, the interface and methodsof using the routines can be specialized (and thus simpli�ed). For example, the BLACSare written at a level where the manipulation of the matrices involved in linear algebracomputations is both natural and convenient.The goals of the BLACS project include:� Ease of programming Wherever possible, the BLACS will simplify message passing inorder to reduce programming errors.� Ease of use The interface to the BLACS will be at such a level as to be easily usableby linear algebra programmers.� Portability The BLACS must supply an interface which can be supported across awide range of parallel computers, including parallel machines built from heterogeneousprocessors.The �rst section of this report discusses downloading and availability issues. The follow-ing section familiarizes the reader with some of the more important concepts and featuresof the BLACS. We then discus the four main categories of BLACS routines. The �rst cate-gory consists of point to point message passing. Next, broadcasts, which take data from oneprocess and send it to many processes, are examined. Then, combines are discussed. Com-bines take data distributed over processes, and combine the data in some way to producea result (at present, data can be combined by summation or absolute value maximizationor minimization). Finally, we discuss the support routines, which perform many diverse1

functions, often not directly related to communication (for example, returning a processID).The appendices discuss the C interface to the BLACS, error handling, broadcast andcombine topologies, as well as providing further description of the blocking levels outlinedin Section 3.5.This user's guide is supplemented by the BLACS web page. The URL ishttp://www.netlib.org/blacs/Blacs.html. This on-line document gives detailed ex-amples, as well as providing reference, downloading options, installation instructions, andtroubleshooting. If problems still remain after reading this guide and consulting the mosaicpage, questions should be mailed to blacs@cs.utk.edu.2 Availability of the BLACS SoftwareThe BLACS source code and documentation is available through netlib. Netlib is a softwaredistribution service set up on the Internet that contains a wide range of computer software.Software can be retrieved from netlib by ftp, http, xnetlib ??, or email.At present, four di�erent BLACS implementations are available from netlib. Each ofthese four BLACS implementations is based on a di�erent message passing layer. Thesemessage passing layers and the machines they are normally supported on are shown inTable 1.In addition to the BLACS versions available on netlib ??, several vendors (e.g. Cray,IBM and Meiko) are presently producing optimized versions for their machines.MESSAGEPASSING MACHINESLAYERCMMD Thinking Machine's CM-5MPL IBM's SP series (SP1 and SP2)NX Intel's supercomputer series (iPSC2, iPSC/860, DELTA and PARAGON).PVM Most UNIX systems.Table 1: Presently supported message passing layersUsing a world wide web browser such as mosaic or netscape, the BLACS homepage canbe accessed at URL http://www.netlib.org/blacs/Blacs.html. The BLACS homepagecontains reference to the routines, examples, installation instructions, troubleshooting, anddownloading options.The BLACS �les may be obtained via anonymous ftp to netlib.org. Look in thedirectory blacs. The �le index describes the �les available in this directory.Xnetlib is a X-Window interface that allows a user to browse or query netlib for availablesoftware and to automatically transfer the selected software to the user's computer. To getxnetlib, send email to netlib@netlib.org with the message send xnetlib.shar fromxnetlib or anonymous ftp from cs.utk.edu, in the directory pub/xnetlib.Finally, the BLACS may be obtained by email. To receive downloading instructions anda list of available �les, send email to netlib@netlib.org with the message send index2

from blacs.3 BLACS Concepts and FeaturesIn general, this paper refers to the basic unit of execution as a process. A process is a threadof execution which minimally includes a stack, registers, and memory. Multiple processesmay share a processor. The term processor refers to the actual hardware.In the BLACS, each process is treated as if it were a processor: the process must exist forthe lifetime of the BLACS run, and its execution should only e�ect other processes' executionthrough the use of message passing calls. With this in mind, we use the term process inall sections of this paper except those dealing with timings. When discussing timings, wespecify processors as our unit of execution, since speedup will be largely determined byactual hardware resources.3.1 Array-based CommunicationMany communication packages can be classi�ed as having operations based on one dimen-sional arrays, which are the machine representation for linear algebra's vector class. Inprogramming linear algebra problems, however, it is more natural to express all operationsin terms of two dimensional matrices. Vectors and scalars are, of course, simply subclassesof matrices. On computers, a linear algebra matrix is represented by a two dimensionalarray (2D array), and therefore the BLACS operate on 2D arrays.The BLACS recognize the two most common classes of matrices for dense linear algebra.The �rst of these classes consists of general rectangular matrices, which in machine storageare 2D arrays consisting of M rows and N columns, with a leading dimension, LDA, thatdetermines the distance between two successive elements of a matrix row in memory (theBLACS assume column-major storage of arrays).The second class of matrices recognized by the BLACS are trapezoidal matrices. Trape-zoidal arrays are de�ned by M, N, and LDA, as above, but they also have the parametersUPLO, which indicates whether the matrix is upper or lower trapezoidal, and DIAG, whichdetermines if the diagonal of the matrix need be communicated. Triangular matrices are asubclass of trapezoidal, so these matrices are also handled by the BLACS.The shape of the trapezoid to be sent is determined by M, N, and UPLO:UPLO M � N M > N`U' n mn�m + 1@@ n mm � n + 1@@`L' m nn�m + 1@@ m n m � n + 1@@3

The packing of arrays (if required) so that they may be sent e�ciently is handled in-ternally by the BLACS, allowing the user to concentrate on the logical matrix, rather thanhow the data is organized in the machine's memory.3.2 Process Grid and Scoped OperationsThe Np processes involved in a parallel task or group are often presented to the user asa linear array of process IDs, labeled 0; 1; : : : ; Np � 1. For reasons described below, it isoften more convenient to map this 1-D array of Np processes into a logical two dimensionalprocess mesh, or grid. This grid will have P process rows and Q process columns, whereP � Q = Ng � Np. A process can now be referenced by its coordinates within the grid(indicated by the notation fp; qg, where 0 � p < P , and 0 � q < Q), rather than a singlenumber. An example of such a mapping is shown in Figure 1.0 1 2 301 0 1 2 34 5 6 7Figure 1: 8 processes mapped to a 2 x 4 process grid.An operation which involves more than just a sender and a receiver is called a scopedoperation. All processes that participate in a scoped operation are said to be within theoperation's scope.On a system using a linear array of processes, the only natural scope is all processes.Using a 2D grid, we have 3 natural scopes, as shown in Table 2.SCOPE MEANINGRow All processes in a process row participate.Column All processes in a process column participate.All All processes in the process grid participate.Table 2: Scopes provided by a 2D process gridThese groupings of processes are of particular interest to the linear algebra programmer,since distributed data decompositions of a 2D array (a linear algebra matrix) tend to followthis process mapping. For instance, all of a distributed matrix row can be found on aprocess row, etc.Viewing the rows/columns of the process grid as essentially autonomous subsystemsprovides the programmer with additional levels of parallelism. Of course, how independentthese rows and columns actually are will depend upon the underlying hardware. For in-stance, if the grid's processors are connected via ethernet, we can see that the only gainwill be in ease of programming. Speed is unlikely to increase, since if one processor is com-municating, no others can. If this is the case, process rows or columns will not be able to4

perform di�erent distributed tasks at the same time, and therefore a 1D process grid usuallyyields the best performance. Fortunately, most modern parallel interconnection networksare at least as rich as a 2D grid, so that the additional levels of parallelism inherent in a2D process grid can be successfully exploited.The LU factorization (used to solve a systems of linear equations) can be used to illus-trate the usefulness of the process grid. Figure 2 shows the basic steps of a right-lookingLU factorization as they a�ect the matrix's elements. The �rst action in the algorithm isto form the panel of L as shown. A process column will cooperate to do this. This processcolumn will then broadcast its portion of L along process rows. A process row will use thisinformation and cooperate to form U . U is then broadcast within process columns, and allprocesses will use the values of L and U to �nd ~A.@@L U~AFigure 2: After �rst step of LU factorizationThis very sketchy description of LU is analyzed much more completely in [8], whichincludes an examination of scalability and the advantages of using 2D process grids.A more detailed understanding of the logical process grid will be obtained as we discussthe various BLACS routines later in the paper.3.3 ContextsIn the BLACS, each logical process grid (hereafter referred to simply as the grid) is en-closed in a context. A context may be thought of as a message passing universe. Thismeans that a grid can safely communicate even if other (possibly overlapping) grids arealso communicating.In most respects, we can use the terms `grid' and `context' interchangeably. For example,we may say \perform operation in context X" or \in grid X". The slight di�erence here isthat the user may de�ne two exactly identical grids (say, two 1x3 process grids, both ofwhich use processes 0, 1, and 2), but each will be wrapped in its own context, so thatthey are distinct in operation, even though they are indistinguishable from a process gridstandpoint.Contexts are used so that individual routines using the BLACS can, when required,safely operate without worrying if the user is running other distributed codes on the samemachine.Another example of the use of context might be to de�ne a normal 2D process gridwithin which most computation takes place. However, in certain portions of the code itmay be more convenient to access the processes as a 1D grid, and at certain other times we5

may wish, for instance, to share information among nearest neighbors. We will thereforewant each process to have access to three contexts: the 2D grid, the 1D grid, and a smallgrid which contains the process and its nearest neighbors.Therefore, we see that context allows us to:� Create arbitrary groups of processes,� Create an indeterminate number of overlapping and/or disjoint grids,� Isolate each process grid so that grids do not interfere with each other.In the BLACS, there are two grid creation routines (BLACS GRIDINIT and BLACS GRIDMAP)which create a process grid and its enclosing context. These routines return context han-dles, which are simple integers, assigned by the BLACS to identify the context. SubsequentBLACS routines will be passed these handles, which allow the BLACS to determine fromwhich context/grid a routine is being called. The user should never actually manipulatethese handles; they are opaque data objects which are only meaningful for the BLACSroutines.A de�ned context consumes resources. It is therefore advisable to release contextswhen they are no longer needed. This is done via the routine BLACS GRIDEXIT. When theentire BLACS system is shut down (via a call to BLACS EXIT), all outstanding contexts areautomatically freed.3.4 ID-less CommunicationOne of the features that sets the BLACS apart from other message passing layers is that theuser does not need to specify message IDs, (abbreviated msgid). A msgid (also referred to asa message type or tag) is usually an integer which allows a receiving process to distinguishbetween incoming messages. The generation of these IDs can become problematic. Acommon mistake is to use a constant msgid within a loop, so that if one process takeslonger than others to �nish the loop, it may wind up receiving data from the next iterationas this iteration's data. This is just the most obvious way such msgid problems can happen.The same result can occur whenever non-unique IDs are used in any two sections of codenot separated by an explicit barrier. These kinds of programming mistakes can lead tonon-deterministic code which will �nish correctly some of the time, give wrong results someof the time, and at other times simply crash.Many parallel projects are too large for one person/team to write. This means thatmsgids must be coordinated between all routines and all writers of the package. If anotherroutine is added at a later date, care must be taken to ensure that the new routine's IDsdo not con
ict with any other routine's.Therefore, to add to the programmability of the BLACS, it was decided that the BLACSwould internally generate the required msgids. These generated IDs had to have certainproperties. First, it must never be the case that unrelated messages with the same destina-tion would get the same ID. Second, in order to maintain performance, the ID generatingalgorithm had to use only local information: o�-processor memory access could not be al-lowed. Further, it is necessary to allow the BLACS to be used in conjunction with other6

communication platforms. An example that occurs regularly is linking a BLACS package(for example, ScaLAPACK) with a machine speci�c package.These goals were achieved by placing two restrictions on communication, and allowingthe user to optionally specify the BLACS msgid range. The �rst restriction on communi-cation is that a receiving process must know the process grid coordinates of the sendingprocess. Second, communication between two processes is strictly ordered. This means thatif f0, 0g sends two messages to f0, 1g, then f0, 1g must receive them in the same order thatthey were sent.Finally, in order for the BLACS to coexist with other communication packages, theBLACS allow the user the option of specifying what range of msgids the BLACS can use.In this case, it is the user's responsibility to ensure that the BLACS msgid range is notused in the code which utilizes the other communication package. If the user wishes toset the BLACS msgid range, he may do so by a call to the support routine BLACS SET.Note that if the BLACS in use are written on top of a message passing system whichnatively supports the context concept (for instance, MPI), passing a unique system contextfor the BLACS to use will ensure BLACS communication will not interfere with othercommunication packages. In this case, setting msgid range will not be required.3.5 Blocking LevelsAn understanding of the level of blocking is required in order to safely use any communicationpackage. A communication operation has various resources tied to it, the main such resourcebeing the user's bu�er. Since the bu�er is the main resource BLACS users will be concernedwith, in the following discussion we will refer only to the user's bu�er, instead of using themore general term \resources".The blocking level of a routine tells the user what correspondence, if any, there is betweenthe return from a routine, and the availability of the bu�er. For example, if the user postsa receive, he needs to know when the data he is receiving has actually been stored in thebu�er.In this paper, we de�ne three levels of blocking: non-blocking, locally-blocking, andglobally-blocking. These levels are brie
y previewed below. Appendix B provides a shortsection explaining each of these levels in greater detail.� Non-blocking communication: the return from the communication routine implies onlythat the message request has been posted. It is then the user's responsibility to probeand thus determine when the operation has completed.� Locally-blocking communication: May be applied only to send operations, not receives.The return from the send implies that the bu�er is available for re-use. It is furtherspeci�ed that the send will complete regardless of whether the corresponding receiveis posted.� Globally-blocking communication: The return from the operation implies that thebu�er is available for re-use. The operation may not complete unless the complementof the operation is called (e.g., a send may not complete if the corresponding receiveis not posted). 7

The BLACS provide globally-blocking point to point receive, broadcasts, and combines.The BLACS point to point send is locally-blocking. Appendix B provides the reasoningbehind these choices for the BLACS blocking levels.4 Naming ConventionsThis section gives the naming conventions for each of the four BLACS routine classi�cations(point to point communication, broadcast, combine and support). Point to point, broadcastand combine are all typed routines, i.e., there is a separate routine for each data type.Point to Point and Broadcast Routines The names of the communication routinesfollow the template vXXYY2D, where the letter in the v position indicates the data type beingsent, XX is replaced to indicate the shape of the matrix, and the YY positions are used toindicate the type of communication to perform. This is shown in Table 3.vXXYY2Dv MEANINGI Integer data is to be communicated.S Single precision real data is to be communicated.D Double precision real data is to be communicated.C Single precision complex data is to be communicated.Z Double precision complex data is to be communicated.XX MEANINGGE The data to be communicated is stored in a generalrectangular matrix.TR The data to be communicated is stored in atrapezoidal matrix.YY MEANINGSD Send. One process sends to another.RV Receive. One process receives from another.BS Broadcast/send. A process begins the broadcast ofdata within a scope.BR Broadcast/recv. A process receives and participatesin the broadcast of data within a scope.Table 3: Values and meanings of the communication routines' name positionsCombines The general form of the names for combines is vGZZZ2D, where v is the same asshown in Table 3. The position ZZZ indicates what type of operation should be performed8

when sending the data. The operations presently supported are shown on Table 4.vGZZZ2DZZZ MEANINGAMX Entries of result matrix will have the value of the greatestabsolute value found in that position.AMN Entries of result matrix will have the value of the smallestabsolute value found in that position.SUM Entries of result matrix will have the summation of that position.Table 4: Values and meanings of combine routines' name positionsSupport Routines The support routines serve many diverse functions, and thus they donot have a great degree of standardization. All o�cial BLACS support routines (i.e., thosethat are guaranteed by the standard to exist) have the form BLACS <name>.5 Point To Point Communication5.1 SemanticsPoint to point communication requires two complementary operations. The send operationproduces a message, which is then consumed by the receive operation. The BLACS sendis de�ned to be locally-blocking, and the receive is globally-blocking (see appendix B fordetails on blocking).In addition, the BLACS specify that point to point messages between two given processeswill be strictly ordered. Therefore, if process 0 sends three messages (label them A, B, andC) to process 1, process 1 must receive A before it can receive B, and message C can bereceived only after both A and B. The main reason for this restriction is that it allows forthe computation of message identi�ers, as is discussed in Section 3.4.It should be noted, however, that messages from di�erent processes are not ordered.Therefore, if processes 0; : : : ; 3 send messages A; : : : ; D, respectively, to process 4, process4 may receive these messages in any order that is convenient.
9

5.2 SyntaxAs mentioned in Section 4, these routines are type dependent, indicated here by the pre�xv. The matrix type operated on by these routines will therefore vary with v, as shown inTable 5. v Data operated on is TYPE declarationI integer INTEGERS single precision real REALD double precision real DOUBLE PRECISIONC single precision complex COMPLEXZ double precision complex DOUBLE COMPLEXTable 5: Pre�x to type declaration mappingWith this in mind, the calling sequences and parameter declarations for these routinesare given in the following sections. Note that output parameters are underlined. All otherparameters will be input, and thus unchanged on exit from the routine.5.2.1 Point to Point SendsvGESD2D(ICONTXT, M, N, A, LDA, RDEST, CDEST)vTRSD2D(ICONTXT, UPLO, DIAG, M, N, A, LDA, RDEST, CDEST)Parameters:ICONTXT (input) INTEGERThe BLACS context handle.UPLO (input) CHARACTER*1Indicates whether the matrix is upper (UPLO = 'U') or lower (UPLO ='L') trapezoidal.DIAG (input) CHARACTER*1Indicates whether the diagonal of the matrix is unit diagonal (DIAG= 'U'), and thus need not be communicated, or otherwise (DIAG ='N').M (input) INTEGERThe number of matrix rows to be sent.N (input) INTEGERThe number of matrix columns to be sent.A (input) TYPE array of dimension (LDA, N)A pointer to the beginning of the (sub)array to be sent.10

LDA (input) INTEGERThe leading dimension of the matrix A, i.e., the distance between twosuccessive elements in a matrix row.RDEST (input) INTEGERProcess row coordinate of the destination process.CDEST (input) INTEGERProcess column coordinate of the destination process.5.2.2 Point to Point ReceivesvGERV2D(ICONTXT, M, N, A, LDA, RSRC, CSRC)vTRRV2D(ICONTXT, UPLO, DIAG, M, N, A, LDA, RSRC, CSRC)Parameters:ICONTXT (input) INTEGERThe BLACS context handle.UPLO (input) CHARACTER*1Indicates whether the matrix is upper (UPLO = 'U') or lower (UPLO ='L') trapezoidal.DIAG (input) CHARACTER*1Indicates whether the diagonal of the matrix is unit diagonal (DIAG= 'U'), and thus need not be communicated, or otherwise (DIAG ='N').M (input) INTEGERThe number of matrix rows to be received.N (input) INTEGERThe number of matrix columns to be received.A (output) TYPE array (LDA, N)A pointer to the beginning of the (sub)array to be received.LDA (input) INTEGERThe leading dimension of the matrix A, i.e., the distance between twosuccessive elements in a matrix row.RSRC (input) INTEGERProcess row coordinate of the source of the message.CSRC (input) INTEGERProcess column coordinate of the source of the message.11

5.3 ExampleFor a simple example of using BLACS point to point message passing, we show code whichhas two processes swap their copies of a 5 element double precision vector X.CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)IF (MYPROW.EQ.0 .AND. MYPCOL.EQ.0) THENCALL DGESD2D(ICONTXT, 5, 1, X, 5, 1, 0)CALL DGERV2D(ICONTXT, 5, 1, X, 5, 1, 0)ELSE IF (MYPROW.EQ.1 .AND. MYPCOL.EQ.0) THENCALL DGESD2D(ICONTXT, 5, 1, X, 5, 0, 0)CALL DGERV2D(ICONTXT, 5, 1, X, 5, 0, 0)END IF6 Broadcasts6.1 SemanticsA broadcast sends data possessed by one process to all processes within a scope. Broadcast,much like point to point communication, has two complementary operations. The processthat owns the data to be broadcast issues a broadcast/send. All processes within the samescope must then issue the complementary broadcast/receive.The BLACS de�ne that both broadcast/send and broadcast/receive are globally-blocking(see appendix B for details). This has several important implications. The �rst is thatscoped operations (broadcasts or combines) must be strictly ordered, i.e., all processeswithin a scope must agree on the order of calls to separate scoped operations. This con-straint falls in line with that already in place for the computation of message IDs, and ispresent in point to point communication as well.A less obvious result is that scoped operations with SCOPE = 'ALL' must be orderedwith respect to any other scoped operation. This means that if there are two broadcasts tobe done, one along a column, and one involving the entire process grid, all processes withinthe process column issuing the column broadcast must agree on which broadcast will beperformed �rst.6.2 SyntaxAs with point to point communication, these routines vary with the data type, and Table 5shows the mapping between the type pre�x (indicated below by v) and the data typedeclaration. As before, output parameters are underlined. All other parameters will beinput, and thus unchanged on exit from the routine. With these points in mind, the callingsequences and parameter declarations for these routines are given in the following sections.12

6.2.1 Broadcast/sendvGEBS2D(ICONTXT, SCOPE, TOP, M, N, A, LDA)vTRBS2D(ICONTXT, SCOPE, TOP, UPLO, DIAG, M, N, A, LDA)Parameters:ICONTXT (input) INTEGERThe BLACS context handle.SCOPE (input) CHARACTER*1Scope of processes to participate in operation. Limited to 'ROW','COLUMN', or 'ALL'. See Section 3.2 for additional details.TOP (input) CHARACTER*1Network topology to be emulated during communication. Topologiespresently supported are discussed in Section 6.4.UPLO (input) CHARACTER*1Indicates whether the matrix is upper (UPLO = 'U') or lower (UPLO ='L') trapezoidal.DIAG (input) CHARACTER*1Indicates whether the diagonal of the matrix is unit diagonal (DIAG= 'U'), and thus need not be communicated, or otherwise (DIAG ='N').M (input) INTEGERThe number of matrix rows to be broadcast.N (input) INTEGERThe number of matrix columns to be broadcast.A (input) TYPE array (LDA, N)A pointer to the beginning of the (sub)array to be broadcast.LDA (input) INTEGERThe leading dimension of the matrix A, i.e., the distance between twosuccessive elements in a matrix row.
13

6.2.2 Broadcast/receivevGEBR2D(ICONTXT, SCOPE, TOP, M, N, A, LDA,RSRC, CSRC)vTRBR2D(ICONTXT, SCOPE, TOP, UPLO, DIAG, M, N, A, LDA,RSRC, CSRC)Parameters:ICONTXT (input) INTEGERThe BLACS context handle.SCOPE (input) CHARACTER*1Scope of processes to participate in operation. Limited to 'ROW','COLUMN', or 'ALL'. See Section 3.2 for additional details.TOP (input) CHARACTER*1Network topology to be emulated during communication. Topologiespresently supported are discussed in Section 6.4.UPLO (input) CHARACTER*1Indicates whether the matrix is upper (UPLO = 'U') or lower (UPLO ='L') trapezoidal.DIAG (input) CHARACTER*1Indicates whether the diagonal of the matrix is unit diagonal (DIAG= 'U'), and thus need not be communicated, or otherwise (DIAG ='N').M (input) INTEGERThe number of matrix rows to be broadcast.N (input) INTEGERThe number of matrix columns to be broadcast.A (output) TYPE array (LDA, N)A pointer to the beginning of the (sub)array to be received/broadcast.LDA (input) INTEGERThe leading dimension of the matrix A, i.e., the distance between twosuccessive elements in a matrix row.RSRC (input) INTEGERProcess row coordinate of the source of the broadcast.CSRC (input) INTEGERProcess column coordinate of the source of the broadcast.14

6.3 ExampleAs described above, the parameters M, N, and LDA dictate the shape of the array being com-municated. All processes participating in a given send operation or its receive complementmust have the same amount of array space available (i.e. M * N must be the same). How-ever, it is not necessary that they all receive the data in the same way (this holds true forpoint to point communication, as well). An example should help illustrate this principle:Process f0,2g has a double precision matrix B, with a total size of 500 x 200. All theother processes in its process column require �ve rows and seven columns of this matrixstarting at the matrix position (9,4). It is not necessary for all participating processes toreceive the matrix in the same way. For instance, process f1,2g might want to receivethe information into a work vector, WORK, while the other processes in the process columnreceive the the broadcast into their copy of B. This could be accomplished as follows:CALL BLACS_GRIDINIT(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)** If I participate in the broadcast* IF (MYPCOL .EQ. 2) THEN** If I'm the source of the broadcast* IF (MYPROW .EQ. 0) THENCALL DGEBS2D(ICONTXT, 'COLUMN', ' ', 5, 7, B(9,4), 500)** If I want to receive into work* ELSE IF (MYPROW .EQ. 1) THENCALL DGEBR2D(ICONTXT, 'COLUMN, ' ', 5, 7, WORK, 5, 0, 2)** If I want to receive into B* ELSECALL DGEBR2D(ICONTXT, 'COLUMN', ' ', 5, 7, B(9,4), 500, 0, 2)END IFNOTE: All versions of the BLACS except PVM allow the user to vary M and N, as longas M * N is the same across all processes. However, in PVM the data must be unpacked inthe same manner that it is packed. Therefore, the shape of the matrix being communicatedshould be changed only by varying LDA.6.4 TopologiesThe topology parameter determines how the messages involved in a distributed operationare sent. The use of the topology concept allows the user to exploit the following fact: evenif the time to perform a distributed operation cannot be reduced, which processors bear the15

brunt of the cost of the operation can be varied. Topology also allows for the building ofcommunication pipelines, as discussed below.There are two main classes of topologies within the BLACS:� Pipelining topologies (ring-based)� Non-pipelining topologies (tree-based)In a pipelining topology, the �rst operation synchronizes the processors so that subse-quent operations will be cheap. Therefore, if the user is aware that several broadcasts willbe performed with no interleaved synchronization, pipelining topologies should be consid-ered. Further, the BLACS pipelining topologies are all based on rings, which means thatpipelines can be maintained if the algorithm
ows across processors in an orderly way. Forexample, if the sender of row broadcasts starts out as the �rst process column, and then isthe second, etc., an increasing ring pipeline will be maintained. If the program
ow is inthe opposite direction, it may be possible to set up a decreasing ring pipeline. A pipelinefor increasing direction can be obtained by setting TOP = 'INCREASING RING'; a pipelinefor codes
owing across the processors in the opposite way can be obtained by setting TOP= 'DECREASING RING'.The BLACS' pipelining topologies are usually much slower than non-pipelining topolo-gies if only one operation is performed. Pipelining topologies are used to minimize the costof several related operations. Therefore, if the broadcast does not pipeline, the user willprobably wish to utilize the topology which minimizes the time spent in only one broad-cast. The BLACS provide a default topology which attempts to do this, which is invokedby setting TOP = ' '.One of the three topologies above will probably satisfy most users. However, there aremany other BLACS topologies within the two main classes. In the pipelining category, theuser may use a split ring (TOP = 'SPLIT RING') or a multiring (TOP = 'Multiring'), forinstance. There are also several types of tree-based topologies. Appendix D provides fulldetails on the available topologies.7 Combines7.1 SemanticsIn a combine operation, each participating process contributes data which is combined withother processes' data to produce a result. This result can be left on a particular process(called the destination process), or on all participating processes. If the result is left ononly one process, we refer to the operation as a leave-on-one combine, and if the result isgiven to all participating processes we reference it as a leave-on-all combine.At present, three kinds of combines are supported. They are element-wise summation,element-wise absolute value maximization, and element-wise absolute value minimization ofgeneral rectangular arrays. Note that a combine operation combines data between processes.By de�nition, then, a combine performed across a scope of only one process does not changethe input data. This is why we specify that the operations are element-wise. Element-wiseindicates that each element of the input array will be combined with the corresponding16

element from all other processes' arrays to produce the result. Thus, a 4� 2 array of inputsproduces a 4 � 2 answer array. If the element-wise operation concept is still unclear, theexamples section should provide further clari�cation.The maximization and minimization operations may require further explanation. Whenthe max/min comparison is being performed, absolute value is used. Therefore, �5 and5 are equivalent. However, the returned value is unchanged; i.e. it is not the absolutevalue, but instead is the signed value. Therefore, if we performed a BLACS absolute valuemaximum combine on the numbers �5; 3; 1;�8, the result would be �8.The BLACS combines are globally-blocking (see appendix B for details).7.2 SyntaxAs with point to point communication, these routines vary with the data type, and Table 5shows the mapping between the type pre�x (indicated below by v) and the data typedeclaration. As before, output parameters are underlined. All other parameters will beinput, and thus unchanged on exit from the routine. With these points in mind, the callingsequences and parameter declarations for these routines are given in the following sections.vGSUM2D(ICONTXT, SCOPE, TOP, M, N, A, LDA, RDEST, CDEST)vGAMX2D(ICONTXT, SCOPE, TOP, M, N, A, LDA, RA, CA,RCFLAG, RDEST, CDEST)vGAMN2D(ICONTXT, SCOPE, TOP, M, N, A, LDA, RA, CA,RCFLAG, RDEST, CDEST)Parameters:ICONTXT (input) INTEGERThe BLACS context handle.SCOPE (input) CHARACTER*1Scope of processes to participate in operation. Limited to 'ROW','COLUMN', or 'ALL'. See Section 3.2 for additional details.TOP (input) CHARACTER*1Network topology to be emulated during communication. Topologiespresently supported are discussed in Section 7.4.M (input) INTEGERThe number of matrix rows to be combined.N (input) INTEGERThe number of matrix columns to be combined.A (input/output) TYPE array (LDA, N)A pointer to the beginning of the (sub)array to be combined.LDA (input) INTEGERThe leading dimension of the matrix A, i.e., the distance between twosuccessive elements in a matrix row.17

RA (output) INTEGER array (RCFLAG, N)If RCFLAG = -1, this array will not be referenced, and need notexist. Otherwise it is an integer array (of size at least RCFLAG xN) indicating the row index of the process that provided the maxi-mum/minimum. If the calling process is not selected to receive theresult, this array will contain intermediate (useless) results.CA (output) INTEGER array (RCFLAG, N)If RCFLAG = -1, this array will not be referenced, and need not ex-ist. Otherwise it is an integer array (of size at least RCFLAG x N)indicating the column index of the process that provided the maxi-mum/minimum. If the calling process is not selected to receive theresult, this array will contain intermediate (useless) results.RCFLAG (input) INTEGERIf RCFLAG = -1, then the arrays RA and CA are not referenced andneed not exist. Otherwise, RCFLAG indicates the leading dimensionof these arrays, and so must be � M.RDEST (input) INTEGERThe process row coordinate of the process who should receive the re-sult. If RDEST or CDEST = -1, all processes within the indicatedscope receive the answer.CDEST (input) INTEGERThe process column coordinate of the process who should receive theresult. If RDEST or CDEST = -1, all processes within the indicatedscope receive the answer.7.3 ExampleAn example should demonstrate how these routines are used. Assume we have a 2 x 4process grid (as shown in Figure 1). Process f1,3g needs the maximum of the matrix B (ofsize 4 x 4) over all processes. All processes would make the following call:CALL DGMAX2D(ICONTXT, 'ALL', ' ', 4, 4, B, 4, RA, CA, 4, 1, 3)Upon completion, process f1,3g would have three matrices that contain information on themaximize function. The matrix B is still of size 4 x 4. Element (1,2) of B would containthe element with the largest absolute value found on any process at matrix location (1,2).RA(1,2) would indicate what process row that maximum was found on, while CA(1,2) wouldtell which process column it was found on.As another example, assume that process row 1 requires the minimum of the doubleprecision scalar DMIN, and there is no need to know what process possessed the min. Thecode would then be:IF (MYPROW .EQ. 1) THEN 18

CALL DGAMN2D(ICONTXT, 'ROW', ' ', 1, 1, DMIN, 1, I, I, -1, -1, -1)END IF7.4 TopologiesIn broadcasts, the BLACS provide both pipelining and non-pipelining topologies. At themoment, the BLACS provide no pipelining combine topologies. Therefore, the user isencouraged to use the default topology (TOP = ' ') when calling a combine operation.The default TOP option will attempt to use the topology which will minimize the cost ofone call to a combine operation.Appendix E provides detailed descriptions of presently supported topologies.8 Support RoutinesThere are a number of routines which do not deal directly with communication that arenonetheless required for programming in a parallel environment. The BLACS label theseroutines as support routines. We break these support routines into rough categories, andthese are discussed in turn below.8.1 InitializationThese routines deal with grid/context creation, and processing before the grid/context hasbeen de�ned.8.1.1 BLACS PINFOBLACS PINFO(MYPNUM, NPROCS)MYPNUM (output) INTEGERAn integer between 0 and (NPROCS - 1) which uniquely identi�eseach process.NPROCS (output) INTEGERThe number of processes available for BLACS use.This routine is used when some initial system information is required before the BLACS areset up. On all platforms except PVM, NPROCS is the actual number of processes availablefor use (i.e. NPROWS * NPCOLS � NPROCS). In PVM, the virtual machine may not havebeen set up before this call, and therefore no parallel machine exists. In this case, NPROCSwill be returned as less than one. If a process has been spawned via the keyboard, it willreceive MYPNUM of 0, and all other processes will get MYPNUM of -1. This allows theuser to distinguish between processes, so that only one reads in data, etc. Only after thevirtual machine has been set up (via a call to BLACS SETUP or SETPVMTIDS) will thisroutine return the correct values for MYPNUM and NPROCS.19

8.1.2 BLACS SETUPBLACS SETUP(MYPNUM, NPROCS)MYPNUM (output) INTEGERAn integer between 0 and (NPROCS - 1) which uniquely identi�eseach process.NPROCS (input/output) INTEGEROn the process spawned from the keyboard (rather than from pvmspawn),this parameter is input, and indicates the number of processes to cre-ate when building the virtual machine. For all other processes, it willbe output.This routine only accomplishes meaningful work in the PVM BLACS. On all other plat-forms, it is functionally equivalent to BLACS PINFO. The BLACS assume a static system:you start with a given number of processes, and that is all you will ever have. PVM suppliesa dynamic system, allowing processes to be added to the system on the
y. BLACS SETUPis used to actually allocate the virtual machine and spawn processes. It reads in a �le calledblacs setup.dat, whose �rst line must be the name of your executable. The second lineis optional, but if it exists, it should be a PVM spawn
ag. Legal values at this time are0 (PvmTaskDefault), 4 (PvmTaskDebug), 8 (PvmTaskTrace), and 12 (PvmTaskDebug +PvmTaskTrace). The primary reason for this line is to allow the user to easily turn on ando� PVM debugging. Additional lines, if any, specify what machines should be added tothe current con�guration before spawning NPROCS-1 processes to the machines in a roundrobin fashion. NPROCS is input on the process which has no PVM parent (i.e. MYP-NUM=0), and both parameters are output for all processes. Therefore, on PVM systems,the call to BLACS PINFO informs you that the virtual machine has not been set up, anda call to BLACS SETUP then sets up the machine and returns the real values for MYP-NUM and NPROCS. Note that if the �le blacs setup.dat does not exist, the BLACS willprompt the user for the executable name, and processes will be spawned to the currentPVM con�guration.8.1.3 BLACS GRIDINITBLACS GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)ICONTXT (input/output) INTEGEROn input, an integer handle indicating the system context to be usedin creating the BLACS context. The user may obtain a default systemcontext via a call to BLACS GET. On output, the integer handle tothe created BLACS context.ORDER (input) CHARACTER*1Indicates how to map processes to BLACS grid. Choices are:`R' : Use row-major natural ordering.20

`C' : Use column-major natural ordering.ELSE : Use row-major natural ordering.NPROW (input) INTEGERIndicates how many process rows the process grid should contain.NPCOL (input) INTEGERIndicates how many process columns the process grid should contain.All BLACS codes must call this routine, or its companion routine BLACS GRIDMAP. Theseroutines take the available processes, and assign, or map, them into a BLACS process grid.In other words, they establish how the BLACS coordinate system will map into the nativemachine's process numbering system. Each BLACS grid is contained in a context (its ownmessage passing universe), so that it does not interfere with distributed operations whichoccur within other grids/contexts. These grid creation routines may be called repeatedlyin order to de�ne additional contexts/grids.The creation of a grid requires input from all processes which are de�ned to be in it.It is therefore a globally-blocking (sometimes called syncronous) operation (see appendix Bfor details on blocking) which means that processes belonging to more than one grid willhave to agree on which grid formation will be serviced �rst.These grid creation routines set up various internals for the BLACS, and so one of themmust be called before any calls are made to the non-initialization BLACS.Note that these routines map already-existing processes to a grid: the processes are notcreated dynamically. On most parallel machines, the processes will be actual processors(hardware), and they are \created" when the user runs his executable. When using thePVM BLACS, if the virtual machine has not been set up yet, the routine BLACS SETUPshould be used to create the virtual machine. If the PVM user wishes to use a virtualmachine already set up using explicit PVM calls, the routine SETPVMTIDS should beused instead of BLACS SETUP.This routine creates a simple NPROW x NPCOL process grid. This process gridwill use the �rst NPROW * NPCOL processes, and assign them to the grid in a row-or column-major natural ordering. If these process-to-grid mappings are unacceptable,BLACS GRIDINIT's more complex companion routine BLACS GRIDMAP must be calledinstead.8.1.4 BLACS GRIDMAPBLACS GRIDMAP(ICONTXT, USERMAP, LDUMAP, NPROW,NPCOL)ICONTXT (input/output) INTEGEROn input, an integer handle indicating the system context to be usedin creating the BLACS context. The user may obtain a default systemcontext via a call to BLACS GET. On output, the integer handle tothe created BLACS context.21

USERMAP (input) INTEGER array, dimension (LDUMAP, NPCOL)Input array indicating the process-to-grid mapping.LDUMAP (input) INTEGERThe leading dimension of the 2D array USERMAP.NPROW (input) INTEGERIndicates how many process rows the process grid should contain.NPCOL (input) INTEGERIndicates how many process columns the process grid should contain.All BLACS codes must call this routine, or its companion routine BLACS GRIDMAP. Theseroutines take the available processes, and assign, or map, them into a BLACS process grid.In other words, they establish how the BLACS coordinate system will map into the nativemachine's process numbering system. Each BLACS grid is contained in a context (its ownmessage passing universe), so that it does not interfere with distributed operations whichoccur within other grids/contexts. These grid creation routines may be called repeatedlyin order to de�ne additional contexts/grids.The creation of a grid requires input from all processes which are de�ned to be in it.It is therefore a globally-blocking operation (see appendix B for details on blocking) whichmeans that processes belonging to more than one grid will have to agree on which gridformation will be serviced �rst.These grid creation routines set up various internals for the BLACS, and so one of themmust be called before any calls are made to the non-initialization BLACS.Note that these routines map already-existing processes to a grid: the processes are notcreated dynamically. On most parallel machines, the processes will be actual processors(hardware), and they are \created" when the user runs his executable. When using thePVM BLACS, if the virtual machine has not been set up yet, the routine BLACS SETUPshould be used to create the virtual machine. If the PVM user wishes to use a virtualmachine already set up using explicit PVM calls, the routine SETPVMTIDS should beused instead of BLACS SETUP.This routine allows the user to map processes to the process grid in an arbitrary manner.USERMAP(i,j) holds the process number of the process to be placed in fi, jg of the processgrid. On most distributed systems, this process number will simply by a machine de�nednumber between 0 : : : NPROCS-1. For PVM these node numbers will be the PVM TIDS(Task IDs). BLACS GRIDMAP is not for the inexperienced user { BLACS GRIDINIT ismuch simpler. BLACS GRIDINIT simply performs a GRIDMAP where the �rst NPROW* NPCOL processes are mapped into the current grid in a row- or column-major naturalordering. BLACS GRIDMAP allows the experienced user to take advantage of the proces-sors' actual network (i.e. he can map nodes that are physically connected to be neighborsin the BLACS grid, etc.). BLACS GRIDMAP also opens the way for multigridding: theuser can separate his nodes into arbitrary grids, join them together at some later date, andthen re-split them into new grids. BLACS GRIDMAP also provides the ability to makearbitrary grids or subgrids (e.g., a \nearest neighbor" grid), which can greatly facilitate22

operations among groups of processes which do not fall on a row or column of the mainprocess grid.8.2 DestructionThese routines destroy grids, free resources, etc.8.2.1 BLACS FREEBUFFBLACS FREEBUFF(ICONTXT, WAIT)ICONTXT (input) INTEGERInteger handle indicating the BLACS context.WAIT (input) INTEGERWhether to wait on non-blocking operations:IF (WAIT .EQ. 0) THENDo not wait on operations, free only unused bu�ers.ELSEIf necessary, wait in order to free all bu�ers.END IFThe BLACS have at least one internal bu�er that is used for packing messages (the numberof internal bu�ers varies, depending on which BLACS you are using). On systems wherememory is tight, keeping this bu�er(s) around may become expensive. Calling this routinewill release the BLACS bu�er(s). However, the next call to a communication routine whichrequires packing will cause the bu�er to be reallocated.The parameter WAIT determines whether the BLACS should wait for any non-blockingoperations to complete or not. If WAIT = 0, the BLACS will free any bu�ers that canbe freed without waiting. If WAIT is not 0, the BLACS will free all internal bu�ers,possibly causing the call to block while the BLACS wait for internal non-blocking operationscomplete.8.2.2 BLACS GRIDEXITBLACS GRIDEXIT(ICONTXT)ICONTXT (input) INTEGERInteger handle indicating the BLACS context to be freed.Contexts consume resources, and therefore the user should release them when they are nolonger needed. BLACS GRIDEXIT frees a context. After the freeing of a context, thecontext no longer exists, and its handle may be re-issued by the BLACS if a new context isde�ned. 23

8.2.3 BLACS ABORTBLACS ABORT(ICONTXT, ERRORNUM)ICONTXT (input) INTEGERInteger handle indicating the BLACS context which is aborting therun.ERRORNUM (input) INTEGERUser de�ned integer error number.When a catastrophic error occurs, the user may need to abort all processes. BLACS ABORTexists for this reason. Note that both parameters are input, but that BLACS ABORT usesthem only in printing out the error message. The context handle passed in may be anything(i.e., it need not be a valid context handle). This routine kills all BLACS processes, notjust those con�ned to a particular context.8.2.4 BLACS EXITBLACS EXIT(CONTINUE)CONTINUE (input) INTEGERIf CONTINUE is non-zero, it is assumed that the user will continueusing the machine after the BLACS are done. Otherwise, it is assumedthat no message passing will be done after the BLACS EXIT call.This routine should be called when a process has �nished all use of the BLACS. It frees allBLACS contexts and releases all memory the BLACS have allocated. CONTINUE indicateswhether the user will be using the underlying communication platform after the BLACSare �nished. This information is most important for the PVM BLACS. If CONTINUE isset to 0, then pvm exit will be called; otherwise, it will not. If the user sets CONTINUEnot equal to 0, he is indicating that he will be calling explicit PVM send/recvs after theBLACS are done, so that the process cannot tell the virtual machine that it is done. It thenbecomes the user's responsibility to make sure his code calls pvm exit. PVM users shouldeither call BLACS EXIT or explicitly call pvm exit to avoid PVM problems.8.3 Informational and MiscellaneousThese routines return information involving the process grid. Also included here is thebarrier routine.8.3.1 BLACS GRIDINFOBLACS GRIDINFO(ICONTXT, NPROW, NPCOL MYPROW,MYPCOL) 24

ICONTXT (input) INTEGERInteger handle indicating the BLACS context to be queried.NPROW (output) INTEGEROn output, the number of process rows in ICONTXT's process grid.NPCOL (output) INTEGEROn output, the number of process columns in ICONTXT's processgrid.MYPROW (output) INTEGEROn output, the calling process's row coordinate in the process grid.MYPCOL (output) INTEGEROn output, the calling process's column coordinate in the process grid.Returns information about the process grid contained in the context whose handle is ICON-TXT. If the context handle is invalid, all quantities are returned as -1.8.3.2 BLACS PNUMINTEGER FUNCTION BLACS PNUM(ICONTXT, PROW, PCOL)ICONTXT (input) Integer handle indicating the BLACS context to be queried.PROW (input) INTEGERThe row coordinate of the process whose system process number is tobe determined.PCOL (input) INTEGERThe column coordinate of the process whose system process numberis to be determined.This function returns the system process number (i.e., a task ID for PVM users) of theprocess at fPROW, PCOLg in the process grid.8.3.3 BLACS PCOORDBLACS PCOORD(ICONTXT, PNUM, PROW, PCOL)ICONTXT (input) INTEGERInteger handle indicating the BLACS context.PNUM (input) INTEGERThe process number whose coordinates are to be determined. This isthe process number of the underlying machine (e.g., it will be a TIDfor PVM). 25

PROW (output) INTEGEROn output, the row coordinate of process PNUM in the BLACS grid.PCOL (output) INTEGEROn output, the column coordinate of process PNUM in the BLACSgrid.Given the system process number (i.e., a task ID for PVM users), returns the row andcolumn coordinates in the BLACS' process grid.8.3.4 BLACS BARRIERBLACS BARRIER(ICONTXT, SCOPE)ICONTXT (input) INTEGERInteger handle indicating the BLACS context.SCOPE (input) CHARACTER*1Indicates whether a process row (SCOPE='R'), column ('C'), or entiregrid ('A') will participate in barrier.This routines holds up execution of all processes within the indicated scope until they haveall called the routine.8.4 General purposeThe BLACS have two general purpose routines. They are BLACS SET and BLACS GET. Be-cause they may be called before a grid is created, they are often lumped in with the ini-tialization routines. These routines are used to set and obtain information about variousBLACS internals. Some of these internals control general BLACS behavior, and are thusnot linked to a particular context. These internals will ignore the parameter ICONTXT, whichexists so that internals which are tied to a particular context may be operated on.8.4.1 BLACS GETBLACS GET(ICONTXT, WHAT, VAL)ICONTXT (input) INTEGEROn WHATs that are tied to a particular context, this is the integerhandle indicating the BLACS context to query. Otherwise, it is ig-nored.WHAT (input) INTEGERWhat BLACS internal information should be returned in VAL. Presentoptions are: 26

WHAT Returned in VAL0 Handle indicating default system context1 The BLACS message ID range2 The BLACS debug level10 Handle indicating the system context used to de�ne theBLACS context whose handle is ICONTXT11 Number of rings multiring topology is presently using12 Number of branches general tree topology is presently usingVAL (output) INTEGER ARRAY of variable dimensionThe value to which the BLACS internal is presently set. The dimensionof VAL is (2) if the message ID range is being returned. For all otherqueries it is (1).This routine returns the values the BLACS are using for internal defaults. Some values aretied to a BLACS context, and some are more general. The most common use is in retrievinga default system context for input into BLACS GRIDINIT or BLACS GRIDMAP. Somesystems, such as MPI, supply their own version of context (in MPI, this corresponds toa communicator). For those users who mix system code with BLACS code, we thereforeneed to be able to form a BLACS context in reference to a system context. Thus, thegrid creation routines take a system context as input. If you wish to have strictly portablecode, you may use BLACS GET to retrieve a default system context which will include allavailable processes.Also not tied to a particular BLACS context are the message ID range and the debuglevel the BLACS were compiled with. For these three values of WHAT, the parameterICONTXT is not referenced.The other choices of WHAT are all tied to a particular BLACS context, so the parameterICONTXT must be a valid BLACS context handle.8.4.2 BLACS SETBLACS SET(ICONTXT, WHAT, VAL)ICONTXT (input) INTEGEROn WHATs that are tied to a particular context, this is the integerhandle indicating the BLACS context. Otherwise, it is ignored.WHAT (input) INTEGERWhat BLACS internal(s) should be set to VAL. Present options are:WHAT VAL determines1 The BLACS message ID range11 Number of rings for multiring topology to use12 Number of branches for general tree topology to use27

VAL (input) INTEGER ARRAY of variable dimensionThe value(s) to set internals to. Its speci�c meaning is dependent onWHAT, as discussed below. Note that for WHAT = 1, the dimensionof VAL is (2). Otherwise, it is (1).Sets BLACS internal defaults. The action taken is dependent upon WHAT, as follows:1. Setting the BLACS message ID rangeIf the user wishes to mix the BLACS with other message-passing packages, he mayrestrict the BLACS to a certain message ID range, which he ensures is not used bythe non-BLACS routines. The message ID range must be set before the �rst callto BLACS GRIDMAP or BLACS GRIDINIT. Subsequent calls will have no e�ect.Because the message ID range is not tied to a particular context, the parameterICONTXT is ignored, and VAL is de�ned as:VAL (input) INTEGER array of dimension (2)VAL(1): The smallest message ID (also called message type ormessage tag) the BLACS should use.VAL(2): The largest message ID (also called message type ormessage tag) the BLACS should use.12. Set number of rings for TOP = 'M' (multiring broadcast)This quantity is tied to a context, thus ICONTXT is used, and VAL is de�ned as:VAL(1): The number of rings for multiring topology to use. Valid values are areall nonzero numbers, where negative numbers correspond to decreasing rings, andpositive numbers indicate increasing rings. Note that you cannot have more ringsthan there are processes in the operation, so if Np is the number of processes in theoperation, then jVAL(1)j > Np � 1, results in a fully connected topology (i.e., thenumber of rings will be set to Np � 1).13. Set number of branches for TOP = 'T' (general tree broadcast/generaltree gather)This quantity is tied to a context, thus ICONTXT is used, and VAL is de�ned as:VAL(1): The number of branches for general tree topology to use. Valid values are:VAL(1) > 0. Note that you cannot have more branches than there are processes in theoperation, so ifNp is the number of processes in the operation, then jVAL(1)j > Np�1,results in a fully connected topology (i.e., the number of branches will be set toNp�1).8.5 Uno�cial routinesThese routines are not part of the BLACS standard, and thus not guaranteed to be inevery BLACS implementation. Most of these routines have valid uses, but it is di�cultto defend adding them to a message-passing standard. SETPVMTIDS is system speci�c,and so obviously would not �t into the standard. The timing routines are quite useful,as they allow for system-independent timing, but timing does not have a great deal to do28

with message passing. Finally, as a service to the user, we allow him to access the BLACS'message ID computation routines. For the user mixing primitive (i.e. system-speci�c)message passing with the BLACS, these routines may be convenient. None of these things�t into a message passing standard, and so they are provided by the present BLACS asuno�cial service routines.8.5.1 SETPVMTIDSSETPVMTIDS(NTASKS, TIDS)NTASKS (input) INTEGERThe number of PVM tasks the user has spawned.TIDS (input) INTEGER array of dimension (NTASKS)This array contains the list of the NTASKS PVM task IDS which willparticipate in the BLACS.SETPVMTIDS, as its name implies, is a PVM speci�c routine. SETPVMTIDS is theadvanced PVM user's BLACS SETUP. BLACS SETUP may be too restrictive for someonewho is using PVM outside the BLACS. For example, they may want to start the mainprocess (process 0,0) via a call to pvm spawn, rather than starting it from the keyboard asBLACS SETUP requires. SETPVMTIDS requires two parameters from the user. The �rstis the total number of processes (or tasks) that any BLACS grid will use. Remember thatthe BLACS is a static system: if you have P processes at the beginning of its execution,you must have those same P processes when the BLACS �nish execution. Therefore, theuser must set NTASKS to be the largest number of processes he will ever use.The second argument required by SETPVMTIDS is a list of TIDS in an integer arrayof at least length NTASKS. All processes require these inputs. This means that in order touse SETPVMTIDS, the PVM user should spawn all of his processes, keeping their TIDSin an integer array, then send that array to all participating processes, and �nally havethem all call SETPVMTIDS. At this point, he has performed the actions inherent in aBLACS SETUP call, and he may then proceed to use the BLACS as usual (can makecalls to BLACS PINFO, and then to BLACS GRIDINIT or BLACS GRIDMAP, and thenproceed with the normal BLACS code).8.5.2 DCPUTIMEDOUBLE PRECISION FUNCTION DCPUTIME()This routine returns time (in seconds) elapsed since an arbitrary starting point. We roughlyde�ne CPU time to be the time the processor spends actually executing user code. If CPUtime is not available on a given system, -1.0 is returned.8.5.3 DWALLTIMEDOUBLE PRECISION FUNCTION DWALLTIME()This routine returns time (in seconds) elapsed since an arbitrary starting point. Here we29

loosely de�ne WALL time to be the time you would �gure if you looked at the clock on yourwall, began the operation, and then subtracted it from the time your clock showed at theend of the operation. If WALL time is not available on a given system, -1.0 is returned.8.5.4 KSENDIDINTEGER FUNCTION KSENDID(ICONTXT, RDEST, CDEST)ICONTXT (input) INTEGERInteger handle indicating the BLACS context.RDEST (input) INTEGERThe row destination of the message that needs an ID.CDEST (input) INTEGERThe column destination of the message that needs an ID.Returns a BLACS message ID the user may safely use in primitive send calls.8.5.5 KRECVIDINTEGER FUNCTION KRECVID(ICONTXT, RSRC, CSRC)ICONTXT (input) INTEGERInteger handle indicating the BLACS context.RSRC (input) INTEGERThe row source of the message that needs an ID.CSRC (input) INTEGERThe column source of the message that needs an ID.Returns a BLACS message ID the user may safely use in primitive receive calls.8.5.6 KBSIDINTEGER FUNCTION KBSID(ICONTXT, SCOPE)ICONTXT (input) INTEGERInteger handle indicating the BLACS context.SCOPE (input) CHARACTER*1Indicates whether a process row (SCOPE='R'), column ('C'), or entiregrid ('A') will participate broadcast.Returns a BLACS message ID the user may safely use in for the source (destination) of aprimitive broadcast (combine). 30

8.5.7 KBRIDINTEGER FUNCTION KBRID(ICONTXT, SCOPE, RSRC, CSRC)ICONTXT (input) INTEGERInteger handle indicating the BLACS context.SCOPE (input) CHARACTER*1Indicates whether a process row (SCOPE='R'), column ('C'), or entiregrid ('A') will participate broadcast.RSRC (input) INTEGERThe row source of the broadcast message that needs an ID.CSRC (input) INTEGERThe column source of the broadcast message that needs an ID.Returns a BLACS message ID the user may safely use for the destination (contributor) ofa primitive broadcast (combine).

31

References[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. \LAPACK Users'Guide, Second Edition". SIAM, Philadelphia, PA, 1995.[2] E. Anderson, Z. Bai, C. Bischof, J.W. Demmel, J. J. Dongarra, J. Du Croz, A. Green-baum, S. Hammarling, A. McKenney, and A. McKenney. LAPACK: A portable linearalgebra library for high-performance computers. Technical Report UT CS-90-105, LA-PACK Working Note #20, University of Tennessee, 1990.[3] M. Barnett, R. Little�eld, D. Payne, and R. A. van de Geijn. Global combine onmesh architectures with wormhole routing. In 7th International Parallel ProcessingSymposium, 1993.[4] J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C. Whaley.The Design and Implementation of the ScaLAPACK LU, QR, and Cholesky Factoriza-tion Routines. To appear in Scienti�c Programming, 1994. Also available as Universityof Tennessee LAPACK Working Note #80, UT CS-94-246, 1994.[5] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. \A Set of Level 3 Basic LinearAlgebra Subprograms". ACM Transactions on Mathematical Software, 16(1):1{17,1990.[6] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. \Algorithm 656: An extendedSet of Basic Linear Algebra Subprograms: Model Implementation and Test Programs".ACM Transactions on Mathematical Software, 14(1):18{32, 1988.[7] J. Dongarra and R. van de Geijn. \Two dimensional Basic Linear Algebra Communi-cation Subprograms". Technical Report UT CS-91-138, LAPACK Working Note #37,University of Tennessee, 1991.[8] J. Dongarra, R. van de Geijn, and D. Walker. \A Look at Scalable Dense LinearAlgebra Librairies". Technical Report UT CS-92-155, LAPACK Working Note #43,University of Tennessee, 1992.[9] Jack J. Dongarra, Robert A. van de Geijn, and R. Clint Whaley. Two dimensionalbasic linear algebra communication subprograms. In Jack J. Dongarra and BernardTourancheau, editors, Environments and Tools for Parallel Scienti�c Computing, pages31{40. Elsevier Science Publishers B.V., 1993.[10] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard . In-ternational Journal of Supercomputer Applications and High Performance Comput-ing, 8(3/4), 1994. Special issue on MPI. Also available electronically, the url isftp://www.netlib.org/mpi/mpi-report.ps.[11] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.PVM: A Users' Guide and Tutorial for Networked Parallel Computing. MIT Press,1994. The book is available electronically, the url is ftp://www.netlib.org/pvm3/book/pvm-book.ps. 32

[12] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. \a users' guide to PICL: aportable instrumented communication library". Technical Report ORNL/TM-11130,Oak Ridge National Laboratory, 1990.[13] Ching-Tien Ho and S. Lennart Johnsson. Distributed routing algorithms for broad-casting and personalized communication in hypercubes. In Proceedings of the 1986International Conference on Parallel Processing. IEEE Press, 1986.[14] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. \Basic Linear Algebra Subprogramsfor Fortran Usage". ACM Transactions on Mathematical Software, 5(3):308{323, 1979.[15] R. C. Whaley. \Basic Linear Algebra Communication Subprograms: Analysis andImplementation Across Multiple Parallel Architectures". Technical Report UT CS-94-234, LAPACK Working Note #73, University of Tennessee, 1994.

33

A C Interface to the BLACS2is Data operated on is TYPE isi integer ints single precision real
oatd double precision real doublec single precision complex
oatz double precision complex doubleTable 6: Pre�x to C type declaration mappingThroughout this guide we have been presenting the Fortran 77 interface to the BLACS. TheBLACS also have a C interface. In order to avoid name-space con
icts, all C BLACS haveC prepended to them (thus DGEBS2D becomes Cdgebs2d, for instance). The only otherdi�erence is that C allows the user to pass parameters by value or by address, and the Cinterface takes advantage of this capability. The names and uses of the parameters remainthe same. In particular, the user should note that the C interface BLACS still require thearrays passed in to use column-major storage.The calling sequences and parameter declarations of the C BLACS are presented below.Here we use the 2 to represent the type pre�x. Table 6 provides the mapping from the typepre�x to the TYPE declaration. This information, coupled with the routine descriptionsgiven in the body of this report, should allow the C programmer to use the BLACS.A.1 Support RoutinesA.1.1 Initializationvoid Cblacs pinfo (int *mypnum, int *nprocs)void Cblacs setup (int *mypnum, int *nprocs)void Cblacs get (int icontxt, int what, int *val)void Cblacs set (int icontxt, int what, int *val)void Cblacs gridinit (int *icontxt, char *order, int nprow, int npcol)void Cblacs gridmap(int *icontxt, int *pmap, int ldpmap, int nprow, int npcol)A.1.2 Destructionvoid Cblacs freebu� (int icontxt, int wait)void Cblacs gridexit (int icontxt)void Cblacs abort (int icontxt, int errornum)void Cblacs exit (int done
ag)A.1.3 Informational and Miscellaneousvoid Cblacs gridinfo (int icontxt, int *nprow, int *npcol, int *myprow, int *mypcol)int Cblacs pnum (int icontxt, int prow, int pcol)34

void Cblacs pcoord (int icontxt, int pnum, int *prow, int *pcol)void Cblacs barrier (icontxt, char *scope)A.1.4 Uno�cialvoid Csetpvmtids(int ntasks, int *tids)double Cdcputime ()double Cdwalltime ()int Cksendid (int icontxt, int rdest, int cdest)int Ckrecvid (int icontxt, int rsrc, int csrc)int Ckbsid (int icontxt, char *scope)int Ckbrid (int icontxt, char *scope, int rsrc, int csrc)A.2 Point to Pointvoid C2gesd2d(int icontxt, int m, int n, TYPE *A, int lda, int rdest, int cdest)void C2gerv2d(int icontxt, int m, int n, TYPE *A, int lda, int rsrc, int csrc)void C2trsd2d(int icontxt, char *uplo, char *diag, int m, int n, TYPE *A, int lda, int rdest,int cdest)void C2trrv2d (int icontxt, char *uplo, char *diag, int int n, TYPE *A, int lda, int rsrc,int csrc)A.3 Broadcastsvoid C2gebs2d(int icontxt, char *scope, char *top, int m, int n, TYPE *A, int lda)void C2gebr2d(int icontxt, char *scope, char *top, int m, int n, TYPE *A, int lda, int rsrc,int csrc)void C2trbs2d(int icontxt, char *scope, char *top, char *uplo, char *diag, int m, int n,TYPE *A, int lda)void C2trbr2d(int icontxt, char *uplo, char *diag, int m, int n, TYPE *A, int lda, int rsrc,int csrc)A.4 Combinesvoid C2gsum2d(int icontxt, char *scope, char *top, int m, int n, TYPE *A, int lda,int rdest, int cdest)void C2gamx2d(int icontxt, char *scope, char *top, int m, int n, TYPE *A, int lda,int *RA, int *CA, int RC
ag, int rdest, int cdest)void C2gamn2d(int icontxt, char *scope, char *top, int m, int n, TYPE *A, int lda,int *RA, int *CA, int RC
ag, int rdest, int cdest)35

B Degrees of BlockingThis appendix provides further discussion of the blocking levels introduced in Section 3.5,and the reasons behind the choices for the BLACS blocking levels. The blocking levels ofthe BLACS communication routines are:� vXXSD2D (XX = GE, or TR) : Locally-blocking.� vXXRV2D (XX = GE, or TR) : Globally-blocking.� vXXBS2D (XX = GE, or TR) : Globally-blocking.� vXXBR2D (XX = GE, or TR) : Globally-blocking.� vGZZZ2D (ZZZ = SUM, AMX or AMN) : Globally-blocking.B.1 Non-blocking communicationThe BLACS do not provide the user with any non-blocking routines. An understanding ofthis type of communication should still be helpful to the user, however. Therefore, we shallbrie
y discuss non-blocking communication, and why the BLACS do not explicitly providethis capability.As previously mentioned, after a non-blocking communication has been posted, the usermust probe to determine when the operation has completed. This allows the user to beginan operation, and then do unrelated work until the operation completes (which is deter-mined by the aforementioned probing). In some relatively restricted conditions, this canlead to fairly large performance gains. However, we have found the use of non-blockingcommunication to be highly error-prone, often leading to non-deterministic or overly com-plex code. Because of the di�culty in correctly using non-blocking communication, theBLACS, which try to provide an easy-to-program interface, do not explicitly support it.However, whenever it yields increased performance or functionality, the BLACS may usenon-blocking communication internally, where its complexity can be shielded from the user.To give the reader an idea of how non-blocking communication works we will use theexample of two processes (for convenience labeled process 0 and process 1) exchanging data(the user bu�er is provided by the variable X). This example will be used in each sectionto illustrate how the various levels of blocking work. The following pseudo-code fragmentshows a possible way to perform this swap:IAM = MYPROCESSID()IF(IAM.EQ.0) THENNON_BLOCKING_SEND FROM VARIABLE X TO PROCESS 1NON_BLOCKING_RECV INTO VARIABLE TMP FROM PROCESS 1ELSE IF(IAM .EQ. 1) THENNON_BLOCKING_SEND FROM VARIABLE X TO PROCESS 0NON_BLOCKING_RECV INTO VARIABLE TMP FROM PROCESS 0END IF.. 36

<DO UNRELATED WORK>..PROBE UNTIL SEND COMPLETESPROBE UNTIL RECV COMPLETESX = TMPEven with this simple example, we can see some opportunities for user error. Forexample, say the user forgets to probe for completion of the send. Then, let us say thatprocess 0's receive completes quickly. Therefore, we overwrite X with process 1's data.Then, when the send is actually completed, process 1 receives its own data back, insteadof process 0's data. There are many other ways to go wrong here, and it is for this reasonthat the BLACS provide no explicit non-blocking operations.B.2 Locally-blockingAs mentioned before, only send operations may be locally-blocking. Remember that re-turning from a locally-blocking operation implies the bu�er is available for re-use, and willcomplete even if the complement of the routine has not been posted. It is impossible fora receive to store the send's contents in the bu�er (and thus free it for re-use) before themessage has been sent, and therefore we see that receives may only be non- or globally-blocking.We say that a locally-blocking send guarantees completion even if the correspondingreceive has not been called. This is actually too strong an assertion. In reality, we guaranteecompletion up to the limit of available bu�er space.If a locally-blocking send is begun, and the corresponding receive has not been posted,the data to be sent must be bu�ered so that is not lost when the user's bu�er is returned tohim. This system bu�er may be allocated by the sending process, the destination process,or by the hardware which transports the send. In any case, the amount of bu�er spaceavailable will always have an upper limit (amount of physical memory free, amount of virtualmemory, etc.). When this space is exhausted, the sends will block until enough systembu�er space becomes available (i.e., until enough of the outstanding sends are completedby the posting of the corresponding receive). Therefore, while locally-blocking sends allowus greater
exibility than the more restrictive globally-blocking sends we will soon discuss,it is not a good idea to post a great number of them without posting any receives.As in the non-blocking section, we give an example of two processes swapping data, thistime using a locally-blocking send, and a globally-blocking receive.IAM = MYPROCESSID()IF(IAM.EQ.0) THENLOCALLY_BLOCKING_SEND FROM VARIABLE X TO PROCESS 1GLOBALLY_BLOCKING_RECV INTO VARIABLE X FROM PROCESS 1ELSE IF(IAM .EQ. 1) THENLOCALLY_BLOCKING_SEND FROM VARIABLE X TO PROCESS 0GLOBALLY_BLOCKING_RECV INTO VARIABLE X FROM PROCESS 0END IF 37

B.3 Globally-blockingOur de�nition of globally-blocking is a little looser than the common de�nition. Usually,globally-blocking means that return from an operation insures that the complementaryoperation has also been called. In other words, return from a globally-blocking send guar-antees that the complementary receive has been posted. In this document, however, theterm globally-blocking is used to describe any operation that is not guaranteed (see the pre-vious section for a little hedging on using the word \guaranteed" in this context) to returnwithout the complementary post. This means, for instance, that while we must programour code to allow for the possibility that a globally-blocking send does not complete untilthe corresponding receive is posted, we cannot assume that returning from the send impliesthat the receive has been posted. For example, we can't use one globally-blocking send tosynchronize two processes.The familiar swapping example, this time using globally-blocking sends and receives, isgiven below.IAM = MYPROCESSID()IF(IAM.EQ.0) THENGLOBALLY_BLOCKING_SEND FROM VARIABLE X TO PROCESS 1GLOBALLY_BLOCKING_RECV INTO VARIABLE X FROM PROCESS 1ELSE IF(IAM .EQ. 1) THENTMP = XGLOBALLY_BLOCKING_RECV INTO VARIABLE X FROM PROCESS 0GLOBALLY_BLOCKING_SEND FROM VARIABLE TMP TO PROCESS 0END IFNote that process 0 posts a send, followed by a receive, while process 1 posts the receive�rst, and then the send. If we attempted to use the same pattern as we did with locally-blocking sends (i.e., both processes send and then receive), with a globally-blocking send,we see that process 0 enters the send, and waits for process 1 to start its receive beforecontinuing. In the meantime, process 1 starts to send to 0, and therefore waits for 0 toreceive before continuing. Both processes are now waiting on each other, and the programwill therefore never continue.For this simple swap example, having one process reverse the order of its calls is anobvious �x. However, when the communication is not just between two processes, butrather involves a hierarchy of processes, determining how to avoid this kind of di�culty canbecome problematic. To be precise, on a system with globally-blocking sends, the followingis required in order to show that a code is deadlock free: Let each process be a node in agraph, and let each globally-blocking send create an arc from the sender to the receiver.Let the corresponding receive destroy the arc created by the send. We must never achievea steady state (all sends/receives which may be reached have been accounted for) wherethere is a cycle.For this reason, it was decided that the BLACS would support locally-blocking point topoint sends. On systems natively supporting globally-blocking sends, non-blocking sendscoupled with bu�ering are used to create locally-blocking sends. The BLACS supportglobally-blocking point to point receives. 38

Up till now, we have discussed the blocking levels mainly in terms of point to point mes-sage passing, where each operation involves at most two processes. The concept naturallyextends to the scoped operations (broadcast and combine), however.A locally-blocking scoped operation would guarantee to return even if no other processesin the scope called the routine; a globally-blocking scoped operation must be called by allprocesses before any process is guaranteed to return. All scoped operations in the BLACSare de�ned as globally-blocking.The only scoped operation which could be programmed as strictly locally-blocking is thebroadcast/send operation. However, since only one process in the scope would be calling it,and the others would have to be programmed as globally-blocking, it does not add greatlyto the programmability of the code to have locally-blocking broadcast/sends. Further, onsome platforms it is possible to achieve considerably better performance if broadcast/sendsare allowed to be globally-blocking, and we therefore de�ned it to fall in line with the otherscoped operations as globally-blocking.C BLACS Error HandlingThis section describes the BLACS error handling features. The BLACS error handlingbehavior may be changed at compile time using the C preprocessor macro BlacsDebugLvl.If you are unsure what debug level your BLACS are using, this can be ascertained by callBLACS GET (see Section 8.4.1 for details).If the BLACS are compiled with a BLACS debug level of 0, very little error checking isperformed. A few critical things will be checked (for instance, BLACS GRIDINIT will stillnot allow you to allocate a process grid with more processes than there are available), butfor performance reasons, the BLACS will not check most of the parameters.It is therefore highly recommended that the user link his code to a BLACS librarycompiled with debug level 1 while debugging his code. BLACS debug level 1 mainly doesparameter checking. A few other services are also provided. For instance, the user will bewarned if a process sends a message to itself. Having a process send to itself is legal, but itdisplays very poor performance, and requires enough bu�er space that it can occasionallycause hangs for large messages. The BLACS therefore issue a warning when this behavioris detected.Many times the debug level 0 code will simply hang, and the developer is left withoutany clue as to what has gone wrong. This may be caused by, for instance, trying to receivefrom a process which is not in the current context. The debug level 1 BLACS can detectthis sort of a user error, and issue a (hopefully helpful) message.The BLACS issue three types of messages:1. BLACS warning: BLACS detect risky behavior, but attempt to correct or ignore.Warning message is printed, and execution proceeds.2. BLACS error: BLACS detects an error, prints an error message, and kills the machinevia a call to BLACS ABORT.3. System error: The BLACS receive an error message from the underlying system, whichis then passed on to the user, and the BLACS kills the machine.39

C.1 BLACS Warning and Error MessagesAll BLACS warning messages are printed by the internal routine BlacsWarn, and all BLACSerror messages are printed by the internal routine BlacsErr. The only real di�erencebetween BlacsWarn and BlacsErr is that BlacsErr calls BLACS ABORT after the messageis printed.With these central routines handling BLACS error messages, it should be relatively easyfor the programmer to modify error handling if the default routines are not adequate forhis needs. One particularly annoying problem is that on many systems a print to the screentakes a long time to �nish. BlacsErr may then kill the machine before the print reachesthe screen, and the error message is lost. In this case, the user may wish to make BlacsErrwait before killing, or not kill at all, for instance.BLACS warning messages have the following form:BLACS WARNING '<explanation string>'from {<p>,<q>}, pnum=<pnum>, Contxt=<ictxt>, on line <#> of file '<fname>'.BLACS error messages have the form:BLACS ERROR '<explanation string>'from {<p>,<q>}, pnum=<pnum>, Contxt=<ictxt>, on line <#> of file '<fname>'.The meaning of these parameters are:� explanation string This is the message which should help the user track down whatis wrong. For example, on an incorrect call to BLACS GRIDINIT, the user might get:Process 0 had 2 x 4 grid; correct is 1 x 4.� fp, qg: The row and column process grid coordinates of the process issuing thewarning/error.� pnum: This will be the process number returned in the �rst argument of BLACS PINFO.� ictxt: The integer context handle. Please note that this value is not the same acrossall processes. For instance, process f0, 0g may have ictxt = 0 and process f0, 1ghave ictxt = 1 for the same context. However, the pnum and ictxt together providean unambiguous process/context identi�er.� #: The line number within the �le fname which issued the warning.� fname: The �le name where the routine which issued the warning/error is located.Not all of this information may be available at the time an error or warning is issued.For instance, if the error occurs before the creation of the grid, the process grid coordinateswill be unavailable. For any value which the BLACS cannot �gure out, a -1 is printed toindicate that the value is unknown.C.1.1 ExamplesA few examples should aid in understanding the BLACS warning and error messages.40

Example 1BLACS WARNING 'Failure to call BLACS_GET before grid creation makes code non-portable'from {-1,-1}, pnum=0, Contxt=-1, on line -1 of file 'BLACS_GRIDINIT/BLACS_GRIDMAP'.Here we see that the user has failed to get a system context via a call to BLACS GET,so that the context handle passed to BLACS GRIDINIT or BLACS GRIDMAP is unini-tialized. In this case, we were able to detect and correct this, so it is a warning and not anerror. If by chance the incoming context had been set to a valid system context, however,we would not have been able to detect the problem, and the new BLACS context wouldprobably be incorrectly de�ned.Since this error occurred before the process grid/context was created, we see that theprocess grid coordinates and the context handle are unavailable, and thus printed as -1.Further, at this point the BLACS do not know which �le the user originally called from(BLACS GRIDINIT or BLACS GRIDMAP) and thus are also unable to supply the linenumber.Example 2BLACS ERROR 'CSRC out of range; CSRC=100, NPCOL=2'from {0,0}, pnum=0, Contxt=0, on line -1 of file 'igerv2d_.c'.Here we see that process f0, 0g has issued an illegal receive by specifying the the processcolumn source of the message is 100, when there are in fact only 2 process columns. We seethat the error is in a call to IGERV2D, and that the line number was unavailable.C.2 System Error MessagesThere are times when the BLACS will receive an error message from the underlying systemwhich is not handled by the BLACS. At this time, the BLACS will print the system errormessage, and exit. Since these error messages come from the underlying system, their formwill necessarily vary depending on which BLACS version is being used. The user may needto obtain a book describing system error messages to understand the message. For example,if the PVM BLACS are being used, a PVM error number will be returned. The PVM quickreference guide, for example, could then be consulted to translate the error number into anunderstandable error message.C.2.1 ExamplesExample 1libpvm [t40025]: pvm_upkint(): End of buffer40025: PVM ERROR #-5 on call to pvm_upkint on line 25 of file iunpack00.c.Here we see that the pvm library has printed out an error message saying we've tried tounpack past the end of our bu�er. The BLACS have passed back a PVM error number of-5, which is shown to be `PvmNoData: read past end of buffer' when looked up on thePVM quick reference guide. Further, we see that the PVM routine in use when the error41

occurred was pvm_upkint, and that it was called on line 25 of the BLACS internal routineiunpack00. This together with some examination of the code in question, revealed that inthis case we were trying to receive more data than was sent.This example is especially well chosen because it illustrates a weakness in the presentversion of the BLACS error messages. The user is informed that the error occurred in theinternal routine iunpack00, but not what interface routine originally called iunpack00.Because of this lack in the BLACS, the user must examine all possible candidates (in thiscase, calls to integer point to point receives, broadcast/receives, or combines), for the error.This is a problem that, despite its relative simplicity, has not yet been addressed.Example 2BLACS ERROR 'MPL error PEMPL17 on call to mpc_recv'from {0,0}, pnum=0, Contxt=0, on line -1 of file 'Arecv2d00.c'.Here we see that the BLACS are using BlacsErr to print a system error message. Thisparticular error might occur when using the MPL BLACS. At this point, the IBM AIXParallel Environment Installation and Diagnosis manual should be consulted. This bookindicates that the error PEMPL17 translates to `The bu�er speci�ed for the operation wastoo small to hold the received message'.D Broadcast TopologiesThis appendix discusses the broadcast topologies o�ered by the present BLACS versions ingreater detail.Many factors e�ect the choice of which topology to use. First, the user must decide ifany processor is more important than others. For instance, if the source processor's timeis more important than other processors', a ring topology is often optimal. On the otherhand, if everyone needs the information quickly, some type of tree is often best.Some topologies tie up the sending processor for large amounts of time, and di�erent pro-cessors get the information at di�erent times depending on topology. Also, some topologiesare \noisy", i.e. many communications are issued simultaneously, while others are \quiet".Noisy algorithms will cause problems on systems where network con
icts are problematic.Quiet algorithms are likely to force some processors to wait much longer than they wouldif a \noisy" topology had been used, since less communication is going on in parallel.Some topologies are \pipelining", i.e., the �rst such operation synchronizes the proces-sors so that subsequent operations will be cheap.In the discussion of the presently supported topologies given below, we use the followingsymbols: Np, the number of processors involved in the operation, and Tc, the time for acomplete communication (send and receive). Simpli�ed estimates of the time to perform agiven algorithm are given below. For a more complete handling of this topic, see [15]All �gures displaying communication patterns are shown with Np = 8, because this sizeis adequate to show o� the features of the topologies, and is still small enough to �t into areasonable amount of space. Further, the processors are numbered from 0; : : : ; (Np�1). Wedo not specify grid coordinates because these broadcasts can operate on rows or columns, or42

the entire grid. If we instantiate such a picture as a row broadcast, for instance, these valuesare column indices. For ease of reference, we will still refer to a given index as \processor I",but this should be taken to mean the processor at the I'th position in a row, a column, or inthe grid. Please note as well that the term processor has now replaced process. We presenttiming analysis in this section, and they will not be accurate if more than one process isspawned to a given processor.To be consistent, processor 0 is always shown as the source (destination) of the broad-cast (combine). Finally, a label S = I to the left of a �gure indicates that the algorithmis in the I'th step. For the time analysis discussed in the text, it is assumed the BLACSare operating in an environment where an arbitrary number of processors may be commu-nicating simultaneously. This assumption will a�ect the accuracy of our prediction if thenumber of actual links is less than those assumed by the algorithm.At the present time there are two classes of broadcast topology. The �rst class involvestopologies based on rings. The second classi�cation consists of topologies based on trees.Within these classes, there are several di�erent algorithms. For ring topologies, the maindi�erences involve which direction within the ring messages
ow (increasing/decreasing),and the number of rings the scope is separated into (Nr). For tree topologies, the mainvariables involve the number of branches (Nb) at each node of the tree, and which branchis sent to �rst.These classes are explained in detail below, and Table 7 provides a quick summation ofsome of the more important properties. This Table speci�es the number of steps until thealgorithm completes (STEPS), the number of messages sent during step i (SENDS, S = i),the number of processors who are �nished with the routine after step i is complete (PROCSDONE, S = i), the time the source processor spends in the algorithm (SRC TIME), and�nally the maximum time spent by any processor in the operation (MAX TIME). Theanalyses shown in Table 7 have been simpli�ed by assuming that Nr is an even multiple ofNp, and Nb = 1, with Np an integer multiple of 2. The speci�c topology section should beexamined for full details. Nr{RING 1{TREESteps Np=Nr log2(Np)SENDS, S = i Nr (2)iPROCS DONE, S = i 1 +Nr � i 0SRC TIME Nr � Tc log2(Np) � TcMAX TIME ((Np�1)Nr +Nr � 1) � Tc log2(Np) � TcPIPELINING? YES NOTable 7: Broadcast topology highlightsD.1 Broadcast Ring TopologiesThe various ring topologies are discussed below. All of these topologies can experiencepipelining of various degrees. Our timing models assume that processors are roughly syn-chronized when entering the broadcast. However, when a ring broadcast is performed, it43

forces an obvious ordering onto the processors; i.e, the �rst processor in the ring will leavethe operation before the processor which follows it in the ring. This means that once thecost of the �rst broadcast is paid, the processors are optimally ordered to perform anotherring broadcast. The time each processor incurs for the second broadcast will be roughlyTc, rather than that given in the text. Therefore, whenever a given processor is to issueseveral consecutive broadcasts, use of a ring topology should be considered. It will resultin minimization of the sender's time as usual, but since the ordering cost is incurred onlyonce, it may result in faster overall transfer rates as well.Pipelines can be maintained if the algorithm
ows across processors in an orderly way.For example, if the sender of row broadcasts starts out as the �rst process column, and thenis the second, etc, an increasing ring pipeline will be maintained. If the
ow is in the oppositedirection, it may be possible to set up a decreasing ring pipeline. The e�ects of pipeliningon broadcast times will be discussed in greater detail after all ring-based topologies havebeen explained.Unidirectional Ring Unidirectional ring topologies require the source processor to issueone broadcast, and each processor then receives and forwards the message. The two unidi-rectional ring topologies are increasing ring (TOP = 'I'), and decreasing ring, (TOP = 'D').These algorithms have the advantage that the originating processor must spend only Tc timein the broadcast. However, the last processor in the ring will spend (Np � 1) � Tc time inalgorithm. Figures 3 and 4 respectively show increasing and decreasing ring broadcast.Unidirectional rings are the most \quiet" algorithms possible: only one processor is sendingat a time.��������������������������������- - - - - - -0 1 2 3 4 5 6 7Figure 3: Increasing ring broadcast��������������������������������� � � � � ��� ��
0 1 2 3 4 5 6 7Figure 4: Decreasing ring broadcastSplit Ring The split ring attempts to alleviate the long waiting time inherent in unidi-rectional rings, without tying up the originating node. Examining Figure 5 should convincethe reader that the longest time spent in the algorithm is roughly bP=2c � Tc, and that thesource spends (2 � Tc) time in broadcast. The split ring topology is called by TOP = 'S'.Although it is unlikely to be important in all but the most critical of optimizations, the usershould know that the split ring sends in the increasing direction �rst. This is a relatively\quiet" algorithm as only two processors will be sending at any one time.44

��������������������������������- - - - � ��� ��
0 1 2 3 4 5 6 7Figure 5: Split ring broadcastMultiring The multiring algorithm (also referred to as multipath) provides a scalablering algorithm. By de�nition, the graph created by a multiring topology is not a ring atall, but is instead a special kind of tree. We call it a ring topology despite this, becauseit behaves like the true ring topologies: pipelining may occur, and maximum time in thealgorithm scales linearly with the number of processors involved.In this algorithm, the user provides the number of rings (Nr) upon which the broadcastis to proceed. The processors participating in the broadcast are then split up into Nrseparate increasing or decreasing rings (increasing rings result if BLACS SET is called witha positive Nr, decreasing rings are used if Nr is set to a negative number). Figure 6 shows amultiring with Nr = 3. Note that the source sends to the closest ring �rst, and the farthestring last. This may seem counter-productive, in the sense that if we would like to minimizelink contention, sending the to far ring �rst makes more sense. However, ring topologiesare most useful in pipelined codes, where, since the
ow of the algorithm proceeds in onedirection across the processors, the time spent by the nearer processors is more importantthan that of the far processors.��������������������������������- - - - -� �� �? ?0 1 2 3 4 5 6 7Figure 6: Multiring broadcast with Nr = 3This algorithm requires dNp=Nre steps, and at each step Nr sends will be initiated. Thesource processor is �nished after the �rst step, and Nr processors �nish each step thereafter.The source processor must send to all rings, and so its time in the algorithm should beNr�Tc.The longest time spent in this algorithm will be roughly ((Np�1)=Nr +Nr � 1) � Tc.Most instantiations of the multiring topology will be relatively \quiet", since at worstNr processors will be sending at the same time.Calling the multiring algorithm is more complicated than the less general algorithmsdescribed above. Not only must a topology be selected, but a number of rings must bepassed to the BLACS. The general purpose support routine BLACS_SET may be used to dothis. Multiring is called by setting TOP = 'm'. Here is an example of the recommendedway to call the multiring topology:call blacs_set(icontxt, 11, 3)call dgebs2d(icontxt, 'Row', 'm', m, n, A, lda)... 45

call dgebs2d(icontxt, 'Column', 'm', 3, 2, work, 5)Notice that BLACS_SET need only be called when changing Nr, therefore, in the exampleabove, both the row and column broadcasts will split their processors into 3 increasingrings.Pipelining All ring-based topologies can display pipelining. However, as the number ofrings (Nr) increases, the pipeline advantage tends to decrease. After a ring broadcast, eachseparate ring is correctly pipelined with respect to the processors within its ring, but notwith the source processor. As the source processor sends more and more messages, this lackof synchronization becomes worse. An example illustrates this principle. Assume we havejust �nished a Nr-ring broadcast. At this point the maximum cost paid is that given in thetopology description above (call this time T 1). We then repeat this broadcast k times. Ifwe have a 1-ring, all processors are synchronized so that the total cost is just T 1+k �Tc. IfNr > 1, however, for each iteration beyond the �rst we pay the Tc cost, plus the cost of theother sends the source has had to issue before sending to our ring again. Thus, in general,the cost is T 1 + k �Nr � Tc.D.2 Broadcast Tree TopologiesHypercube The �rst tree-based topology is called hypercube. This algorithm is a spe-cialized broadcast which matches the Intel i860's hypercube network. It uses bit leveloperations to achieve low overhead in computing source and destination of messages. Itwas originally coded by Robert van de Geijn[3, 13], and only slightly modi�ed for inclusionin the BLACS. This topology requires that Np be an integer power of 2. If it is not, thegeneral tree algorithm described below is called instead. A �nal detail is that at each nodein the tree, messages are sent to the nearest node �rst. This broadcast strategy is shown inFigure 7.Hypercube broadcasts are most useful when getting the information out to all processorsis more important than saving origin node time. It requires all nodes to spend roughlyTc � log2(Np) time in the broadcast. Hypercube broadcasts are relatively \noisy", since thenumber of processors sending at one time grows with Np. In the last step of the broadcast,Np=2 processors will be sending simultaneously.General Tree The �nal topology that is supported is the general tree broadcast. It allowsthe user to choose the number of branches (Nb) at each step in the broadcast tree. Figures8, 9 and 10 show general tree broadcasts with Nb = 1; 2; 3. Note that general tree withNb = 1 is a hypercube broadcast where at each node in the tree, the node furthest from thepresent node is sent to �rst. This tends to minimize link contentions, if the assumption ismade that processors far away from each other tend not to share the same link.With this algorithm, Np does not have to be an integer power of Nb. The timing analysisfor this algorithm is relatively complex, so we do not reproduce it here (analysis for themost common use, Nb = 1 is shown in Table 7). See [15] for full details.46

General tree broadcasts are obviously \noisy", and the greater Nb and Np are, the more\noisy" the algorithm becomes. This topology may be called in several ways. If the usersets TOP = 't', the routine BLACS_SET should be used in the same way as discussed formultiring. An example should clarify this:call blacs_set(icontxt, 11, 2)call dgebs2d(icontxt, 'Row', 't', m, n, A, lda)This would call the general tree algorithm with Nb = 2. The ways to call the generaltree broadcast are summarized below.TOP Explanation'1' tree with Nb = 1.'2' tree with Nb = 2.'3' tree with Nb = 3.'4' tree with Nb = 4.'5' tree with Nb = 5.'6' tree with Nb = 6.'7' tree with Nb = 7.'8' tree with Nb = 8.'9' tree with Nb = 9.'t' tree with Nb = I,where I is set by call to BLACS SET.'f ' perform fully-connected broadcast, i.e. Nb = Np� 1

47

��
S = 0S = 1S = 2S = 3 00

00
11
1

22 33 4 5 6 7
JJJJĴZZZZZZZ~ZZZZZZZ~PPPPPPPPPPPPPPPPqPPPPPPPPPPPPPPPPqPPPPPPPPPPPPPPPPqPPPPPPPPPPPPPPPPqFigure 7: Hypercube broadcast, nearest node �rst.�������� �������� ���� ���� ������������������������������������

S = 0S = 1S = 2S = 3 00
00

1 22 3 44
4

5 66 7
PPPPPPPPPPPPPPPPqZZZZZZZ~ ZZZZZZZ~JJJJĴ JJJJĴ JJJJĴ JJJJĴFigure 8: General tree broadcast with Nb = 148

�������� ���� ������������������������������������
S = 0S = 1S = 2 00

0
1 2 33 4 5 66 7

XXXXXXXXXXXXXXXXXXXXXXXXzHHHHHHHHHHHjZZZZZZZ~ ZZZZZZZ~JJJJĴ JJJJĴ JJJJĴFigure 9: General tree broadcast with Nb = 2
�������� ������������������������������������

S = 0S = 1S = 2 00
0

1 2 3 44 5 6 7
PPPPPPPPPPPPPPPPqZZZZZZZ~ ZZZZZZZ~HHHHHHHHHHHj HHHHHHHHHHHjJJJJĴ JJJJĴFigure 10: General tree broadcast with Nb = 349

E Combine TopologiesAt the present time, only two topologies are supported for combines. All of the notationused in the discussion of broadcast topologies is required in this discussion. In addition,the time To, de�ned to be the time required to perform the given operation (max, min, orsum) and TD, the time the destination processor spends in the algorithm, are also needed.E.1 General Tree GatherThe �rst combine topology is the general tree gather, or fan-in, which is basically the samealgorithm as the general tree broadcast (or fan-out) described in appendix D.2, except thatcommunication
ows in the opposite direction. Figures 11 and 12 show the communicationpatterns of this algorithm with Nb = 1 and Nb = 4 (as before, Nb refers to the number ofbranches at each node of the tree).If all processors in the scope of the operation need the information, it is rebroadcastusing broadcast's general tree algorithm. This topology can be called in the exact sameway as broadcast's general tree algorithm, i.e. through the use of BLACS_SET and settingTOP = 't', or by setting TOP ='1' : : :'9'.Assuming that only one processor needs the answer (the case when all processors requirethe answer will be dealt with later) this topology has many desirable features. First, ateach step of the algorithm only 1Nb of the processors left in the operation go on to the nextstep.In [15] it is shown that for the presently supported platforms, Nb = 1 will usually be thebest choice to minimize TD. It is further demonstrated that Nb > 1 broadcasts are typicallycompetitive only for small problem sizes.With these caveats, we say that Nb = 1 is the interesting choice, and then, TD =dlog2(Np)e(Tc + To). If all processors require the answer, it is found as above, and thenbroadcast to all processors via the general tree algorithm described in Section D.2. Thelongest time any processor would then spend in the algorithm would be dlog2(Np)e(2�Tc+To)E.2 Bidirectional ExchangeThis topology is specialized for leave-on-all combines, and therefore, if a leave-on-one com-bine has been requested, the general tree algorithm with Nb = 1 is called instead. It isbased on an algorithm presented in [3]. This topology involves having pairs of processorsexchange information, and thus it performs best when Np is an integer power of 2. Thecommunication pattern inherent in this algorithm is shown in Figure 13. As the user cansee, this an extremely \noisy" algorithm: every processor is sending and receiving at everystep in the algorithm. It is called by setting TOP = 'h'.Unless the platform supports the overlap of sends and receives, this topology is inferiorto fan-in/fan-out. If sends and receives cannot occur simultaneously, the best speed thisalgorithm can achieve is TD = log2(Np) � (2 � Tc + To). This TD is for all processors. Fan-in/fan-out with Nb = 1 has the same maximal cost, but some processors may �nish earlier.Therefore, this topology should only be used on platforms where sends and receives can beoverlapped. 50

������������������������������������ ���� ���� �������� ��������
S = 0S = 1S = 2S = 3

0000
1 22 3 444

5 66 7�����/ �����/ �����/ �����/��������+ ��������+����������������) Figure 11: General tree gather with Nb = 1������������������������������������ ��������
S = 0S = 1S = 2

000
1 2 3 4 55 6 7�����/ �����/��������+ ��������+������������ ����������������) ��������������������9 Figure 12: General tree gather with Nb = 451

��S = 0S = 1S = 2 00
0

11
1

22
2

33
3

44
4

55
5

66
6

77
7�Qs �Qs �Qs �QsQk� Qk� Qk� Qk���� ���QQQs QQQsQQQk QQQk��� ��� ��� ���QQQs QQQsQQQk QQQk��� ����������� �������� �������� ��������HHHHHHHHjHHHHHHHHjHHHHHHHHjHHHHHHHHjHHHHHHHHY HHHHHHHHY HHHHHHHHY HHHHHHHHY��������������������������������Figure 13: Bidirectional exchangeAssuming simultaneous send and receive, we have two interesting cases. If Np is aninteger power of two, all processors will spend roughly TD = log2(Np) � (Tc + To) in thealgorithm. If Np is not an integer power of two, the �rst step of the algorithm requiresprocessors beyond the power of two to send their values to processors within an integerpower of two, the normal bidirectional exchange takes place, and then the answers aresent back out to the non-power of two processors. Then, processors will spend roughlyTD = 2 � Tc + To + blog2(Np)c � (Tc + To) in the algorithm.In the best case, this algorithm will give all processors the answer in the same amount oftime that it takes to get the answer to one processor using the fan-in algorithm. However, itwill rarely be the case that this speed is realized. Not only must simultaneous send/receivebe allowed, but a twice the bandwidth is required, and a network of at least the richnessof a hypercube is required to avoid link con
icts. Therefore, fan-in/fan-out should be usedin the general case, and this topology should be utilized only when timings show that it issuperior.

52

F Example ProgramThe following routine takes the available processes, forms them into a process grid, and thenhas each process check in with the process at f0,0g in the process grid. For more detailedexamples, see the BLACS homepage.PROGRAM HELLO* -- BLACS example code --* Written by Clint Whaley 7/26/94* Performs a simple check-in type hello world* ..* .. External Functions ..INTEGER BLACS_PNUMEXTERNAL BLACS_PNUM* ..* .. Variable Declaration ..INTEGER CONTXT, IAM, NPROCS, NPROW, NPCOL, MYPROW, MYPCOLINTEGER ICALLER, I, J, HISROW, HISCOL** Determine my process number and the number of processes in* machine* CALL BLACS_PINFO(IAM, NPROCS)** If in PVM, create virtual machine if it doesn't exist* IF (NPROCS .LT. 1) THENIF (IAM .EQ. 0) THENWRITE(*, 1000)READ(*, 2000) NPROCSEND IFCALL BLACS_SETUP(IAM, NPROCS)END IF** Set up process grid that is as close to square as possible* NPROW = INT(SQRT(REAL(NPROCS)))NPCOL = NPROCS / NPROW** Get default system context, and define grid* CALL BLACS_GET(0, 0, CONTXT)CALL BLACS_GRIDINIT(CONTXT, 'ROW', NPROW, NPCOL)CALL BLACS_GRIDINFO(CONTXT, NPROW, NPCOL, MYPROW, MYPCOL)** If I'm not in grid, go to end of program53

* IF ((MYPROW.GE.NPROW) .OR. (MYPCOL.GE.NPCOL)) GOTO 30** Get my process ID from my grid coordinates* ICALLER = BLACS_PNUM(CONTXT, MYPROW, MYPCOL)** If I am process {0,0}, receive check-in messages from* all nodes* IF ((MYPROW.EQ.0) .AND. (MYPCOL.EQ.0)) THENWRITE(*,*) ' 'DO 20 I = 0, NPROW-1DO 10 J = 0, NPCOL-1IF ((I.NE.0) .OR. (J.NE.0)) THENCALL IGERV2D(CONTXT, 1, 1, ICALLER, 1, I, J)ENDIF** Make sure ICALLER is where we think in process grid* CALL BLACS_PCOORD(CONTXT, ICALLER, HISROW, HISCOL)IF ((HISROW.NE.I) .OR. (HISCOL.NE.J)) THENWRITE(*,*) 'Grid error! Halting . . .'STOPEND IFWRITE(*, 3000) I, J, ICALLER10 CONTINUE20 CONTINUEWRITE(*,*) ' 'WRITE(*,*) 'All processes checked in. Run finished.'** All processes but {0,0} send process ID as a check-in* ELSECALL IGESD2D(CONTXT, 1, 1, ICALLER, 1, 0, 0)END IF30 CONTINUECALL BLACS_EXIT(0)1000 FORMAT('How many processes in machine?')54

2000 FORMAT(I)3000 FORMAT('Process {',i2,',',i2,'} (node number =',I,$ ') has checked in.')STOPEND

55

