
LAPACK Working Note 95ScaLAPACK: A Portable Linear Algebra Library for DistributedMemory Computers - Design Issues and Performance �J. Choiy, J. Demmelz, I. Dhillonz, J. Dongarrax,S. Ostrouchovy, A. Petitety, K. Stanleyz, D. Walker{, and R. C. WhaleyyAbstractThis paper outlines the content and performance of ScaLAPACK, a collection of mathemat-ical software for linear algebra computations on distributed memory computers. The impor-tance of developing standards for computational and message passing interfaces is discussed.We present the di�erent components and building blocks of ScaLAPACK. This paper outlinesthe di�culties inherent in producing correct codes for networks of heterogeneous processors. Wede�ne a theoretical model of parallel computers dedicated to linear algebra applications: theDistributed Linear Algebra Machine (DLAM). This model provides a convenient framework fordeveloping parallel algorithms and investigating their scalability, performance and programma-bility. Extensive performance results on various platforms are presented and analyzed with thehelp of the DLAM. Finally, this paper brie
y describes future directions for the ScaLAPACKlibrary and concludes by suggesting alternative approaches to mathematical libraries, explaininghow ScaLAPACK could be integrated into e�cient and user-friendly distributed systems.
�This work was supported in part by the National Science Foundation Grant No. ASC-9005933; by the DefenseAdvanced Research Projects Agency under contract DAAL03-91-C-0047, administered by the Army Research O�ce;by the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract DE-AC05-84OR21400; and by theNational Science Foundation Science and Technology Center Cooperative Agreement No. CCR-8809615.yDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996-1301zComputer Science Division, University of California, Berkeley, Berkeley, CA 94720xDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996-1301, and Mathematical SciencesSection, Oak Ridge National Laboratory, Oak Ridge, TN 37831{Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 378311

Contents1 Overview and Motivation 12 Design of ScaLAPACK 12.1 Portability, Scalability and Standards : 12.2 ScaLAPACK Software Components : 22.3 Processes versus Processors : 22.4 Local Components : 32.5 Block Cyclic Data Distribution : 32.6 PBLAS : 42.7 ScaLAPACK { LU Decomposition : 52.8 ScaLAPACK - Symmetric Eigenproblem : 62.9 Heterogeneous Networks : 63 The Distributed Linear Algebra Machine (DLAM) 73.1 The BLAS Process : 73.2 The BLACS Network : 83.3 Accuracy and Re�nement of the DLAM : 83.4 The LU factorization on the DLAM : 94 Performance 104.1 Choice of Block Size : 104.2 Choice of Grid Size : 125 Future Directions 145.1 Future addition to ScaLAPACK : 145.2 Alternative Approaches to Libraries : 14

2

1 Overview and MotivationScaLAPACK is a library of high performance linear algebra routines for distributed memoryMIMD computers. It is a continuation of the LAPACK project, which designed and producedanalogous software for workstations, vector supercomputers, and shared memory parallel com-puters. Both libraries contain routines for solving systems of linear equations, least squaresproblems, and eigenvalue problems. The goals of both projects are e�ciency (to run as fastas possible), scalability (as the problem size and number of processors grow), reliability (in-cluding error bounds), portability (across all important parallel machines),
exibility (so userscan construct new routines from well-designed parts), and ease-of-use (by making LAPACKand ScaLAPACK look as similar as possible). Many of these goals, particularly portability,are aided by developing and promoting standards, especially for low-level communication andcomputation routines. We have been successful in attaining these goals, limiting most machinedependencies to two standard libraries called the BLAS, or Basic Linear Algebra Subroutines[6, 7, 14, 16], and BLACS, or Basic Linear Algebra Communication Subroutines [8, 10]. LA-PACK and ScaLAPACK will run on any machine where the BLAS and the BLACS are available.The �rst part of this paper presents the design of ScaLAPACK. After a brief discussion ofthe BLAS and LAPACK, the block cyclic data layout, the BLACS, the PBLAS (Parallel BLAS),and the algorithms used are discussed. We also outline the di�culties encountered in producingcorrect code for networks of heterogeneous processors; di�culties we believe are little recognizedby other practitioners.The second part of this paper presents a theoretical model of parallel computers dedicatedto dense linear algebra: the Distributed Linear Algebra Machine (DLAM). This ideal modelprovides a convenient framework for developing parallel algorithms. Moreover, it can be appliedto obtain theoretical performance bounds and to analyze the scalability and programmabilityof parallel algorithms.Finally, the paper discusses the performance of ScaLAPACK. Extensive results on variousplatforms are presented. One of our goals is to model and predict the performance of eachroutine as a function of a few problem and machine parameters. We show how the DLAM canbe used to express this function, identify performance bottlenecks during development, and helpusers to choose various implementation parameters (like the number of processors) to optimizeperformance. One interesting result is that for some algorithms, speed is not a monotonicincreasing function of the number of processors. In other words, speed can be increased byletting some processors remain idle.2 Design of ScaLAPACK2.1 Portability, Scalability and StandardsIn order to be truly portable, the building blocks underlying parallel software libraries must bestandardized. The de�nition of computational and message-passing standards [12, 14] providesvendors with a clearly de�ned base set of routines that they can optimize. From the user'spoint of view, standards ensure portability. As new machines are developed, they may simplybe added to the network, supplying cycles as appropriate.From the mathematical software developer's point of view, portability may require signi�-cant e�ort. Standards permit the e�ort of developing and maintaining bodies of mathematicalsoftware to be leveraged over as many di�erent computer systems as possible. Given the di-versity of parallel architectures, portability is attainable to only a limited degree, but machinedependences can at least be isolated.Scalability demands that a program be reasonably e�ective over a wide range of numbers ofprocessors. The scalability of parallel algorithms over a range of architectures and numbers of1

processors requires that the granularity of computation be adjustable. To accomplish this, weuse block algorithms with adjustable block sizes. Eventually, however, polyalgorithms (wherethe actual algorithm is selected at runtime depending on input data and machine parameters)may be required.Scalable parallel architectures of the future are likely to use physically distributed memory.In the longer term, progress in hardware development, operating systems, languages, compilers,and communication systems may make it possible for users to view such distributed architec-tures (without signi�cant loss of e�ciency) as having a shared memory with a global addressspace. For the near term, however, the distributed nature of the underlying hardware willcontinue to be visible at the programming level; therefore, e�cient procedures for explicit com-munication will continue to be necessary. Given this fact, standards for basic message passing(send/receive), as well as higher-level communication constructs (global summation, broadcast,etc.), are essential to the development of portable scalable libraries. In addition to standardiz-ing general communication primitives, it may also be advantageous to establish standards forproblem-speci�c constructs in commonly occurring areas such as linear algebra.2.2 ScaLAPACK Software ComponentsThe following �gure describes the ScaLAPACK software hierarchy. The components below theline, labeled Local, are called on a single processor, with arguments stored on single processorsonly. The components above the line, labeled Global, are synchronous parallel routines, whosearguments include matrices and vectors distributed in a 2D block cyclic layout across multipleprocessors. We describe each component in turn.
PBLAS

ScaLAPACK

Message Passing Primitives

LAPACK

BLAS

BLACS

ScaLAPACK Software Hierarchy

Global

Local

(MPI, PVM, MPL, GAM, etc.)2.3 Processes versus ProcessorsIn ScaLAPACK, algorithms are presented in terms of processes, rather than physical processors.In general there may be several processes on a processor, in which case we assume that theruntime system handles the scheduling of processes. In the absence of such a runtime system,ScaLAPACK assumes one process per processor.2

2.4 Local ComponentsTheBLAS (Basic Linear Algebra Subprograms) [6, 7, 16] include subroutines for common linearalgebra computations such as dot-products, matrix-vector multiplication, and matrix-matrixmultiplication. As is well known, using matrix-matrix multiplication tuned for a particulararchitecture can e�ectively mask the e�ects of the memory hierarchy (cache misses, TLB misses,etc.), and permit
oating point operations to be performed at the top speed of the machine.As mentioned before, LAPACK, or Linear Algebra PACKage [1], is a collection of routinesfor linear system solving, least squares, and eigenproblems. High performance is attained byusing algorithms that do most of their work in calls to the BLAS, with an emphasis on matrix-matrix multiplication. Each routine has one or more performance tuning parameters, such asthe sizes of the blocks operated on by the BLAS. These parameters are machine dependent, andare obtained from a table at run-time.The LAPACK routines are designed for single processors. LAPACK can also accommodateshared memory machines, provided parallel BLAS are available (in other words, the only par-allelism is implicit in calls to BLAS). Extensive performance results for LAPACK can be foundin the second edition of the manual [2].The BLACS (Basic Linear Algebra Communication Subprograms) [8, 10] are a messagepassing library designed for linear algebra. The computational model consists of a one or twodimensional grid of processes, where each process stores matrices and vectors. The BLACSinclude synchronous send/receive routines to send a matrix or submatrix from one process toanother, to broadcast submatrices to many processes, or to compute global reductions (sums,maxima and minima). There are also routines to set up, change, or query the process grid.Since several ScaLAPACK algorithms require broadcasts or reductions among di�erent subsetsof processes, the BLACS permit a processor to be a member of several overlapping or disjointprocess grids, each one labeled by a context. Some message passing systems, such as MPI [12],also include this context concept. The BLACS provide facilities for safe interoperation of systemcontexts and BLACS contexts.2.5 Block Cyclic Data DistributionThe way in which a matrix is distributed over the processes has a major impact on the loadbalance and communication characteristics of the concurrent algorithm, and hence largely de-termines its performance and scalability. The block cyclic distribution provides a simple, yetgeneral-purpose way of distributing a block-partitioned matrix on distributed memory concur-rent computers. It has been incorporated in the High Performance Fortran standard [11].The block cyclic data distribution is parameterized by the four numbers Pr, Pc, r, and c,where Pr � Pc is the process template and r � c is the block size.Suppose �rst that we have M objects, indexed by an integer 0 � m < M , to map onto Pprocesses, using block size r. The m-th item will be stored in the i-th location of block b onprocess p, where hp; b; ii = �jmr k modP; �bmr cP � ; mmod r� :In the special case where r = 2r̂ and P = 2P̂ are powers of two, this mapping is really just bitextraction, with i equal to the rightmost r̂ bits of m, p equal to the next P̂ bits of m, and bequal to the remaining leftmost bits of m. The distribution of a block-partitioned matrix canbe regarded as the tensor product of two such mappings: one that distributes the rows of thematrix over Pr processes, and another that distributes the columns over Pc processes. That is,the matrix element indexed globally by (m;n) is stored in locationh(p; q); (b; d); (i; j)i =3

�(jmr k modPr; jnc k modPc); �� bmr cPr � ; � bnc cPc �� ; (mmod r; nmodc)� :The nonscattered decomposition (or pure block distribution) is just the special case r =dM=Pre and c = dN=Pce. Similarly a purely scattered decomposition (or two dimensionalwrapped distribution) is the special case r = c = 1.2.6 PBLASIn order to simplify the design of ScaLAPACK, and because the BLAS have proven to be veryuseful tools outside LAPACK, we chose to build a Parallel BLAS, or PBLAS, whose interfaceis as similar to the BLAS as possible. This decision has permitted the ScaLAPACK codeto be quite similar, and sometimes nearly identical, to the analogous LAPACK code. Onlyone substantially new routine was added to the PBLAS, matrix transposition, since this is acomplicated operation in a distributed memory environment [3].We hope that the PBLAS will provide a distributed memory standard, just as the BLAShave provided a shared memory standard. This would simplify and encourage the developmentof high performance and portable parallel numerical software, as well as providing manufacturerswith a small set of routines to be optimized. The acceptance of the PBLAS requires reasonablecompromises among competing goals of functionality and simplicity. These issues are discussedbelow.The PBLAS operate on matrices distributed in a 2D block cyclic layout. Since such a datalayout requires many parameters to fully describe the distributed matrix, we have chosen a moreobject-oriented approach, and encapsulated these parameters in an integer array called an arraydescriptor. An array descriptor includes(1) the number of rows in the distributed matrix,(2) the number of columns in the distributed matrix,(3) the row block size (r in section 2.5),(4) the column block size (c in section 2.5),(5) the process row over which the �rst row of the matrix is distributed,(6) the process column over which the �rst column of the matrix is distributed,(7) the BLACS context, and(8) the leading dimension of the local array storing the local blocks.For example, here is an example of a call to the BLAS double precision matrix multiplicationroutine DGEMM, and the corresponding PBLAS routine PDGEMM; note how similar they are:CALL DGEMM (TRANSA, TRANSB, M, N, K, ALPHA,A(IA, JA), LDA,B(IB, JB), LDB, BETA,C(IC, JC), LDC)CALL PDGEMM(TRANSA, TRANSB, M, N, K, ALPHA,A, IA, JA, DESC_A,B, IB, JB, DESC_B, BETA,C, IC, JC, DESC_C)DGEMM computes C = BETA * C + ALPHA * op(A) * op(B), where op(A) is either A or itstranspose depending on TRANSA, op(B) is similar, op(A) is M-by-K, and op(B) is K-by-N. PDGEMMis the same, with the exception of the way in which submatrices are speci�ed. To pass thesubmatrix starting at A(IA,JA) to DGEMM, for example, the actual argument corresponding to theformal argument A would simply be A(IA,JA). PDGEMM, on the other hand, needs to understandthe global storage scheme of A to extract the correct submatrix, so IA and JA must be passed in4

separately. DESC A is the array descriptor for A. The parameters describing the matrix operandsB and C are analogous to those describing A. In a truly object-oriented environment matrices andDESC A would be the synonymous. However, this would require language support, and detractfrom portability.Our implementation of the PBLAS emphasizes the mathematical view of a matrix over itsstorage. In fact, it is even possible to reuse our interface to implement the PBLAS for a di�erentblock data distribution that would not �t in the block-cyclic scheme.The presence of a context associated with every distributed matrix provides the ability tohave separate \universes" of message passing. The use of separate communication contexts bydistinct libraries (or distinct library invocations) such as the PBLAS insulates communicationinternal to the library from external communication. When more than one descriptor arrayis present in the argument list of a routine in the PBLAS, it is required that the individualBLACS context entries must be equal. In other words, the PBLAS do not perform \intra-context" operations.We have not included specialized routines to take advantage of packed storage schemesfor symmetric, Hermitian, or triangular matrices, nor of compact storage schemes for bandedmatrices.2.7 ScaLAPACK { LU DecompositionGiven the infrastructure described above, the ScaLAPACK version (PDGETRF) of the LUdecomposition is nearly identical to its LAPACK version (DGETRF).SEQUENTIAL LU FACTORIZATION CODEDO 20 J = 1, MIN(M, N), NBJB = MIN(MIN(M, N)-J+1, NB)Factor diagonal and subdiagonal blocks and test for exactsingularity.CALL DGETF2(M-J+1, JB, A(J, J), LDA, IPIV(J),$ IINFO)Adjust INFO and the pivot indices.IF(INFO.EQ.0 .AND. IINFO.GT.0) INFO = IINFO + J - 1DO 10 I = J, MIN(M, J+JB-1)IPIV(I) = J - 1 + IPIV(I)10 CONTINUEApply interchanges to columns 1:J-1.CALL DLASWP(J-1, A, LDA, J, J+JB-1, IPIV, 1)IF(J+JB.LE.N) THENApply interchanges to columns J+JB:N.CALL DLASWP(N-J-JB+1, A(1, J+JB), LDA, J, J+JB-1,$ IPIV, 1)Compute block row of U.CALL DTRSM('Left', 'Lower', 'No transpose', 'Unit',$ JB, N-J-JB+1, ONE, A(J, J), LDA,$ A(J, J+JB), LDA)IF(J+JB.LE.M) THENUpdate trailing submatrix.CALL DGEMM('No transpose', 'No transpose',$ M-J-JB+1, N-J-JB+1, JB, -ONE,$ A(J+JB, J), LDA, A(J, J+JB), LDA,$ ONE, A(J+JB, J+JB), LDA)END IFEND IF20 CONTINUE

PARALLEL LU FACTORIZATION CODEDO 10 J = JA, JA+MIN(M,N)-1, DESCA(4)JB = MIN(MIN(M,N)-J+JA, DESCA(4))I = IA + J - JAFactor diagonal and subdiagonal blocks and test for exactsingularity.CALL PDGETF2(M-J+JA, JB, A, I, J, DESCA, IPIV, IINFO)Adjust INFO and the pivot indices.IF(INFO.EQ.0 .AND. IINFO.GT.0)$ INFO = IINFO + J - JAApply interchanges to columns JA:J-JA.CALL PDLASWP('Forward', 'Rows', J-JA, A, IA, JA, DESCA,$ J, J+JB-1, IPIV)IF(J-JA+JB+1.LE.N) THENApply interchanges to columns J+JB:JA+N-1.CALL PDLASWP('Forward', 'Rows', N-J-JB+JA, A, IA,$ J+JB, DESCA, J, J+JB-1, IPIV)Compute block row of U.CALL PDTRSM('Left', 'Lower', 'No transpose', 'Unit',$ JB, N-J-JB+JA, ONE, A, I, J, DESCA, A, I,$ J+JB, DESCA)IF(J-JA+JB+1.LE.M) THENUpdate trailing submatrix.CALL PDGEMM('No transpose', 'No transpose',$ M-J-JB+JA, N-J-JB+JA, JB, -ONE, A,$ I+JB, J, DESCA, A, I, J+JB, DESCA,$ ONE, A, I+JB, J+JB, DESCA)END IFEND IF10 CONTINUEThe Cholesky decompositions (PDPOTRF and DPOTRF) and QR decompositions (PDGE-QRF and DGEQRF) are analogous. 5

2.8 ScaLAPACK - Symmetric EigenproblemThe solution of the symmetric eigenproblem PDSYEVX consists of three phases: (1) reduce theoriginal matrix A to tridiagonal form A = QTQT where Q is orthogonal and T is tridiagonal,(2) �nd the eigenvalues � = diag(�1; :::; �n) and eigenvectors U = [u1; :::; un] of T so thatT = U�UT , and (3) form the eigenvector matrix V ofA soA = Q(U�UT)QT = (QU)�(QU)T =V �V T . Phases 1 and 3 are analogous to their LAPACK counterparts, similarly to LU. However,our current design for phase 2 di�ers from the serial (or shared memory) design. We have chosento do bisection followed by inverse iteration (like the LAPACK expert driver DSYEVX), but withthe reorthogonalization phase of inverse iteration limited to the eigenvectors stored in a singleprocess. A straightforward parallelization of DSYEVX would have led to a serial bottleneck andsigni�cant slowdowns in the rare situation of matrices with eigenvalues tightly clustered together.The current design guarantees that phase (2) is inexpensive compared to the other phases onceproblems are reasonably large. An alternative algorithm which completely eliminates the needfor reorthogonalization has recently been discovered by Parlett, Fernando, and Dhillon [17], andwe expect to use this version of the routine in the near future. This new routine will guaranteehigh accuracy and high speed independent of the eigenvalue distribution.2.9 Heterogeneous NetworksThere are special challenges associated with writing reliable numerical software on networkscontaining heterogeneous processors, i.e., processors which may do
oating point arithmetic dif-ferently. This includes not just machines with completely di�erent
oating point formats andsemantics (e.g. Cray versus workstations running IEEE standard
oating point arithmetic),but even supposedly identical machines running with di�erent compilers or even just di�erentcompiler options. The basic problem lies in making data dependent branches on di�erent pro-cessors, which may branch di�erently than expected on di�erent processors, leading to di�erentprocessors executing a completely di�erent section of code than the other processors expect. Wegive three examples of this below.The simplest example is an iteration where the stopping criterion depends on the machineprecision. If the precision varies from processor to processor, di�erent processors will havesigni�cantly di�erent stopping criteria than others. In particular, the criterion for the mostaccurate processor may never be satis�ed if it depends on data computed less accurately byother processors. Many problems like this can be eliminated by using the largest machineepilson among all participating processes. Routine PDLAMCH returns this largest value, replacingthe uniprocessor DLAMCH. Similarly, one would use the smallest over
ow threshold and largestunder
ow threshold for other calculations. But this is not a panacea, as subsequent examplesshow.Next, consider the situation where processors sharing a distributed vector v compute its two-norm, and depending on that either scale v by a constant much di�erent from 1, or do not. Thishappens in the inner loop of the QR decomposition, for example. The two-norm is computed bythe ScaLAPACK routine PDNRM2, which computes two-norms locally and does a reduction. If theparticipating processors have di�erent
oating point formats, they may receive di�erent valuesof the two-norm on return, just because the same
oating point numbers cannot be representedon all machines. This two-norm is then compared to a threshold, and if it exceeds the thresholdscaling takes place. Since the two-norm may be di�erent, and the threshold may be di�erent,the result of the comparison could di�er on di�erent processors, so that one process would scalethe sub-vector it owns, and another would not. This would very likely lead to erroneous results.This could in principle be corrected by extending the reduction operation PDNRM2 to broadcasta discrete value (like the boolean value of a comparison); then all participating processors wouldbe able to agree with the processor at the root of the reduction tree.6

However, there are still harder problems. Consider bisection for �nding eigenvalues of sym-metric matrices. In this algorithm, the real axis is broken into disjoint intervals to be searchedby di�erent processors for the eigenvalues contained in each. Disjoint intervals are searchedin parallel. The algorithm depends on a function, call it count(a,b), that counts the numberof eigenvalues in the half open interval [a, b). Using count, intervals can be subdivided intosmaller intervals containing eigenvalues until the intervals are narrow enough to declare theeigenvalues they contain as \found". One problem is that two processors with di�erent
oatingpoint formats cannot even agree on the boundary between their intervals, because they cannotstore the same
oating point number. This could result in multiple copies of eigenvalues if inter-vals overlap, or missing eigenvalues if there are gaps between intervals. Furthermore, the countfunction may count di�erently on di�erent processors, so an interval [a, b) may be consideredto contain 1 eigenvalue by processor A, but 0 eigenvalues by processor B, which has been giventhe interval by processor A during load balancing. This can happen even if processors A andB are identical, but if their compilers generate slightly di�erent code sequences for count. Wehave not yet decided what to do about all of these problems, so we currently only guaranteecorrectness of PDSYEVX for networks of processors with identical
oating point formats (slightlydi�erent
oating point operations are acceptable). See [4] for details.3 The Distributed Linear Algebra Machine (DLAM)In this section, we present a theoretical model of a parallel computer dedicated to dense linearalgebra. This model is from an abstraction of physical models. This ideal model provides aconvenient framework for developing parallel algorithms without worrying about the implemen-tation details or physical constraints. However, we de�ned this restricted model such that actualcode should be easily produced from it.The model can be applied to obtain theoretical performance bounds on parallel computersor to estimate the execution time before or after the algorithm has been implemented. Theabstract model is also useful in scalability and programmability analysis.A P -process DLAM is constructed out of P \BLAS-processes" interconnected by a logical\BLACS-network". This network is a Pr � Pc logical mesh such that Pr:Pc � P . Data areexchanged between BLAS processes through the BLACS network by calling BLACS primitives.The processes can only perform BLAS and BLACS operations.The DLAM presented here could be very easily extended by adding a host process. Thishost process could act like a server acting upon a user request, creating the BLACS-network,distributing the data, starting the BLAS-processes and collecting the results. This host processcould also be used for fault-tolerant applications. In this case, it would take the appropriatecourse of action in the case of a BLAS-process failure. In the following sections, however, wedescribe only the hostless DLAM.3.1 The BLAS ProcessAs mentioned before, an e�cient implementation of the BLAS masks the e�ects of the processormemory hierarchy and frees the programmer from local tuning of this basic kernel. The per-formance of the BLAS heavily depends on the number of memory references per
oating pointoperation. This ratio naturally sorts the BLAS in three levels, where routines belonging to thesame level usually reach similar execution rates. Consequently, the BLAS processes are, as faras performance analysis is concerned, able to perform only three instructions, correspondingto the three BLAS levels. The execution times per
oating point operation of each of theseinstructions are then denoted by
i, with i = 1; 2; 3.7

3.2 The BLACS NetworkThe BLAS processes communicate with each other via calls to the BLACS. For the sake ofsimplicity, we model a restricted subset of the possible BLACS operations, namely point-to-point communication and broadcast/combine operations along a row or column of the mesh. Itis customary to model the time for sending a message of n items between two processes byTs(n; �; �) = �+ n�where � denotes the latency, and � the inverse of the bandwidth. The broadcast/combineoperations are more complicated since the BLACS allow the user to specify a topology argument[8, 10]. We estimate the cost of broadcasting n items using a split-ring topology to p�1 processesby Tb(0S � ring; p; n; �; �) = K(0bcast0;0 S � ring0; p; n) Ts(n; �; �).Similarly, the cost of a 1-tree combine operation of n items involving p processes is estimatedby Tc(0S � ring; p; n; �; �) = K(0combine0;0 S � ring0; p; n) Ts(n; �; �).At this level of the model, it is not possible to determine the values of K because no assumptionhas been made so far on the physical network to model. This justi�es the introduction of thesefunctions K().3.3 Accuracy and Re�nement of the DLAMWhen applying numerically the results obtained by the DLAM, we choose
1 =
2 = 0, assumingthat the cost of these instructions will always be negligible compared to BLACS operations ora Level 3 instruction. We determined
3 as being the achieved peak performance of the BLASmatrix-multiply GEMM. This approximation is incorrect for small block sizes, in which caseLevel 2 operations are performed and
2;
3 should be set respectively to the achieved peakperformance of the BLAS matrix-vector multiply GEMV and zero. Obviously, these coarseapproximations could be re�ned by computing a piece-wise linear approximation of the
i'swith respect to the problem size. This model smoothes the in
uence of the physical memoryhierarchy and could be adapted to out-of-core BLAS operations.Modeling the performance of the DLAM network is tightly coupled to the physical network.Experimental values of � and � can easily be determined for a given machine. If the logicalmesh can be embedded into the physical network and the message collisions ignored, 2 log2(p)is a good approximation of K(0combine0;0 1 � tree0; p; n) assuming the result has to be left onthe p processes and neglecting the cost of the local computations; similarly, K(0bcast0;0 1 �tree0; p; n) � log2(p). When the communications can be pipelined, it is reasonable to estimateK(0bcast0;0 S � ring0; p; n) by 2. Because this model ignores the probable collision of messagesor possible network contention problems, its accuracy depends on the number of physical links.For instance, when comparing the performance obtained on an ideal DLAM with those obtainedon an ethernet based network of workstations sharing one physical link, it is important to useappropriate values for K. Indeed, an upper bound for K(0combine0;0 1� tree0; p; n) is given by2 (p � 1). However, for a given value of p, it is possible to experimentally determine constantswhich take into account the cost due to network contention and message collisions. Moreaccurate models taking into account the collisions of messages could be used, but this is beyondthe scope of this paper. Finally, the described model could obviously be re�ned by computing apiece-wise linear approximation of the time for sending a message with respect to the messagelength. 8

3.4 The LU factorization on the DLAMWe present in this section the model corresponding to the parallel right-looking LU factoriza-tion implemented in ScaLAPACK [9]. We restrict ourselves to the case where the matrix isdistributed on the processes using a square (r = c) block cyclic decomposition scheme. Weignore the possible collision of messages on the network. It can be brie
y described as follows:Assume the LU factorization of the k � r �rst columns has proceeded with k 2 �0; 1; : : : n�1r 	.During the next step, the algorithm factors the next panel of r columns, pivoting if necessary.Next the pivots are applied to the remainder of the matrix. The lower trapezoid factor just com-puted is broadcast to the other process columns of the grid using a split-ring topology [8, 10],so that the the upper trapezoid factor can be updated via a triangular solve. This factor is thenbroadcast to the other process rows using a 1-tree topology [8, 10], so that the remainder of thematrix can be updated by a rank-r update. This process continues recursively with the updatedmatrix. The total execution time TLU(n2; P) can be estimated by(n � 1)Tc(01� tree0; Pr; 2; �; �) + (Determine pivot row)(n � 1)2Ts(r; �; �) + (Swap rows in current panel)n�1r Tb(0S � ring0; Pc; r; �; �) + (Broadcast pivot information)n�1rXk=0 2r(Ts(krPc ; �; �) + Ts(n � (k + 1)rPc ; �; �)) + (Swap remaining rows)n�1rXk=0 Tb(0S � ring0; Pc; n� krPr ; �; �) + (Broadcast lower trapezoid factor)n�1rXk=0 n� (k + 1)rPc r2
3 + (Triangular solve: BLAS 3 TRSM)n�1rXk=0 Tb(01� tree0; Pr; n� (k + 1)rPc ; �; �) + (Broadcast upper trapezoid factor)n�1rXk=0 2n� (k + 1)rPr n� (k + 1)rPc r
3 (Rank-r update: BLAS 3 GEMM)Notice that we neglected the BLAS 1 computations performed during the factorization of thecurrent panel of columns, considering that the contribution of this operations to the executiontime is mostly due to communication. In addition, when the logical mesh can be embeddedinto the physical network and the message collisions neglected, the previous formula can besimpli�ed to: TLU(n2; P) = 2n log2(Pr)�+ n22P (2Pc + Pr log2(Pr))� + 2n33P
3: (1)9

4 PerformanceAn important performance metric is parallel e�ciency. Parallel e�ciency, E(N;P), for a prob-lem of size N on P processors is de�ned in the usual way [13] asE(N;P) = 1P Tseq(N)T (N;P) (2)where T (N;P) is the runtime of the parallel algorithm, and Tseq(N) is the runtime of the bestsequential algorithm. An implementation is said to be scalable if the e�ciency is an increasingfunction of N=P , the problem size per processor (in the case of dense matrix computations,N = n2, the number of words in the input).We will also measure the performance of our algorithm in Mega
ops/sec (or Giga
ops/sec).This is appropriate for large dense linear algebra computations, since
oating point dominatescommunication. For a scalable algorithm with N=P held �xed, we expect the performance tobe proportional to P .We seek to increase the performance of our algorithms by reducing overhead due to loadimbalance, data movement, and algorithm restructuring. The way the data are distributed overthe memory hierarchy of a computer is of fundamental importance to these factors. We present inthis section extensive performance results on various platforms for the ScaLAPACK factorizationand reductions routines. Performance data for the symmetric eigensolver (PDSYEVX) arepresented in [5].4.1 Choice of Block SizeIn the factorization or reduction routines, the work distribution becomes uneven as the computa-tion progresses. A larger block size results in greater load imbalance, but reduces the frequencyof communication between processes. There is, therefore, a tradeo� between load imbalanceand communication startup cost, which can be controlled by varying the block size.
500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

matrix order

to
ta

l
M

fl
o

p
s

LU FACT. PREDICTED PERFORMANCE ON 16 (2x8) NODES I860

Predicted (dotted line)

ScaLAPACK (solid line)

r = 1

r = 8

r = 32

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

matrix order

ti
m

e
 d

is
tr

ib
u

ti
o

n

BLOCK SIZE = 40

BANDWITH = 34.00 Mbytes/s

LATENCY = 56.00 us

FLOPS/NODE = 236.00 Mflops

LU PREDICTED TIME DISTRIBUTION ON 64 (4x16) NODES SP2

Latency (dashed)

Bandwith (dotted)

Communication (dashed−dotted)

Computation (solid)

Most of the computation of the ScaLAPACK routines is performed in a blocked fashionusing Level 3 BLAS, as is done in LAPACK. The computational blocking factor is chosen tobe the same as the distribution block size. Therefore, smaller distribution block sizes increasethe loop and index computation overhead. However, because the computation cost ultimately10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5

10

15

20

25

30

35
LU performance on the Intel Paragon (r=c=20)

Matrix Size

G
fl
o

p
s

32x32

16x32

16x16

8x16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5

10

15

20

25

30

35
QR performance on the Intel Paragon (r=c=6)

Matrix Size
G

fl
o

p
s

32x32

16x32

16x16

8x16dominates, the in
uence of the block size on the overall communication startup cost and loopand index computation overhead decreases very rapidly with the problem size for a given gridof processes. Consequently, the performance of the ScaLAPACK library is not very sensitiveto the block size, as long as the extreme cases are avoided. A very small block size leads toBLAS 2 operations and poorer performance (see section 3.3). A very large block size leads tocomputational imbalance.
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

4

5

6

7

8

9

Matrix Size

G
fl
o

p
s

4x16

4x8

2x8

LU performance on thin−node SP−2 (r=c=40)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Matrix Size

G
fl
o

p
s

QR performance on the Intel Paragon MP’s node (r=c=16)

4x16

4x8

2x8The chosen block size impacts the amount of workspace needed on every process. Thisamount of workspace is typically large enough to contain a block of columns or a block ofrows of the matrix operands. Therefore, the larger the block size, the greater the necessaryworkspace, i.e the smaller the largest solvable problem on a given grid of processes. For Level 3BLAS blocked algorithms, the smallest possible block operands are of size r� c. Therefore, it isgood practice to choose the block size to be the problem size for which the BLAS matrix-multiplyGEMM routine achieves 90 % of its reachable peak.11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

4

5

6

7

8

9

Matrix Size

G
fl
o

p
s

8x8

4x8

4x4

LLT performance on thin−node SP−2 (r=c=50)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5

10

15

20

25

30

35
LLT performance on the Intel Paragon (r=c=20)

Matrix Size
G

fl
o

p
s

32x32

16x32

16x16

8x16Determining optimal, or near optimal block sizes for di�erent environments is a di�cult taskbecause it depends on many factors including the machine architecture, speeds of the di�erentBLAS levels, the latency and bandwidth of message passing, the number of process available,the dimensions of the process grid, the dimension of the problem, and so on. However, there isenough evidence and expertise for automatically and accurately determining optimal, or nearoptimal block sizes via an enquiry routine. Furthermore, for small problem sizes it is also possibleto determine if redistributing n2 data items is an acceptable cost in terms of performance aswell as memory usage. In the future, we hope to calculate the optimal block size via an enquiryroutine.
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

4

5

6

7

8

9

Matrix Size

G
fl
o

p
s

QR, 8x8
LLT, 8x8

LU, 4x16

BRD, 8x8

TRD, 8x8

Performance comparison of various codes on 64 SP−2 thin nodes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Matrix Size

E
ff
ic

ie
n

c
y

LU Efficiency on the Intel Paragon MP’s node (r=c=16)

4x164x82x8

4.2 Choice of Grid SizeThe best grid shape is determined by the algorithm implemented in the library and the under-lying physical network. A one link physical network will favor Pr = 1 or Pc = 1. This a�ects12

the scalabilty of the algorithm, but reduces the overhead due to message collisions. It is possibleto predict the best grid shape given the number of processes available. The current algorithmsfor the factorization or reduction routines can be split into two categories.If at every step of the algorithm a block of columns and/or rows needs to be broadcast, asin the LU or QR factorizations, it is possible to pipeline this communication phase and overlapit with some computation. The direction of the pipeline determines the shape of the grid. Forexample, the LU, QR and QL factorizations perform better for \
at" process grids (Pr < Pc).These factorizations share a common bottleneck of performing a reduction operation along eachcolumn (for pivoting in LU, and for computing a norm in QR and QL). The �rst implicationof this observation is that large latency message passing perform better on a \
at" grid thanon a square grid. Secondly, after this reduction has been performed, it is important to updatethe next block of columns as fast as possible. This is done by broadcasting the current blockof columns using a ring topology, i.e, feeding the ongoing communication pipe. Similarly, theperformance of the LQ and RQ factorizations take advantage of \tall" grids (Pr > Pc) for thesame reasons, but transposed.The theoretical e�ciency of the LU factorization can be estimated by (see (1), (2)):ELU(N;P) = 11 + 3P logPrn2 �
3 + 34n(2Pc + Pr logPr) �
3For large n, the last term in the denominator dominates, and it is minimized by choosing a Prslightly smaller than Pc. Pc = 2Pr works well on Intel machines. For smaller n, the middleterm dominates, and it becomes more important to choose a small Pr. Suppose that we keepthe ratio Pr=Pc constant as P increases, thus we have Pr = upP and Pc = vpP , where u and vare constant [9]. Moreover, let ignore the log2(Pr) factor for a moment. In this case, Pr=n andPc=n are proportional to pP=n and n2 must grow with P to maintain e�ciency. For su�cientlarge Pr, the log2(Pr) factor cannot be ignored, and the performance will slowly degrade withthe number of processors P . This phenomenon is observed in practice as shown in the plotabove showing the e�ciency of the LU factorization on the Intel Paragon.
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

Matrix Size

G
fl
o

p
s

8x8, r=c=6

4x8, r=c=12

TRD performance on thin−node SP−2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

Matrix Size

G
fl
o

p
s

8x8, r=c=8

4x8, r=c=6

BRD performance on thin−node SP−2

The second group of routines physically transpose a block of columns and/or rows at everystep of the algorithm. In these cases, it is not usually possible to maintain a communicationpipeline, and thus square or near square grids are more optimal. This is the case for thealgorithms used for implementing the Cholesky factorization, the matrix inversion and the13

reduction to bidiagonal form (BRD), Hessenberg form (HRD) and tridiagonal form (TRD). Forexample, the update phase of the Cholesky factorization of a lower symmetric matrix physicallytransposes the current block of columns of the lower triangular factor.Assume now that at most P processes are available. A natural question arising is: couldwe decide what process grid Pr � Pc � P should be used? Similarly, depending on P , it isnot always possible to factor P = Pr:Pc to create the appropriate grid. For example, if Pis prime, the only possible grids are 1 � P and P � 1. If such grids are particularly bad forperformance, it may be bene�cial to let some processors remain idle, so the remainder can beformed into a \squarer" grid [15]. These problems can be analyzed by a complicated functionof the machine and problem parameters. It is possible to develop models depending on themachine and problem parameters which accurately estimate the impact of modifying the shapeof the grid on the total execution time, as well as predicting the necessary amount of extramemory required for each routine.5 Future Directions5.1 Future addition to ScaLAPACKBasic building blocks like the BLAS, the BLACS and the PBLAS have been made publicallyavailable. At the time this paper was written, the current version of the PBLAS was beingextended by removing alignment assumptions made on the operands. Moreover, the PBLASpackage is being internally restructured to facilitate its maintenance and reinforce its robustness.Concurrently, many of the LAPACK functions missing in ScaLAPACK are being assembled andintegrated. These include condition estimation, iterative re�nement of linear solutions and linearleast square solvers. We are planning improved versions of the symmetric eigenvalue routine.SVD and nonsymmetric eigenvalue routines are also in preparation. More elaborate testing andtiming programs are being developed to ensure the robustness and the e�ciency of the library.Finally, banded, general sparse, and out-of-core prototype routines are being investigated.5.2 Alternative Approaches to LibrariesTraditionally, large, general-purpose mathematical software libraries on uniprocessors and sharedmemory machines have tried to hide much of the complexity of data structures and performanceissues from the user. For example, the LAPACK project incorporates parallelism in the Level 3BLAS, where it is not directly visible to the user. Unfortunately, it is not possible to hide thesedetails as neatly on distributed memory machines. Currently, the data structures and data de-composition must be speci�ed by the user, and it may be necessary to explicitly transform thesestructures in between calls to di�erent library routines. These de�ciencies in the conventionaluser interface have prompted extensive discussion of alternative approaches for scalable parallelsoftware libraries of the future. Here are some possibilities.1. Traditional function library (i.e., minimumpossible change to the status quo in going fromserial to parallel environment). This will allow one to protect the programming investmentthat has been made. More aggressive use of performance models may permit us to choosethe best layout and redistribute the input data structure automatically. This is attractivefor dense linear algebra since for large problems the O(n3)
oating point operations willdominate the O(n2) cost of redistribution.2. Reactive servers on the network. A user would be able to send a computational problem toa server that was specialized in dealing with the problem. This �ts well with the conceptsof a networked, heterogeneous computing environment with various specialized hardware14

resources (or even the heterogeneous partitioning of a single homogeneous parallel ma-chine). Again, this is attractive for dense linear algebra since O(n3)
ops are performedon a data structure of size O(n2).3. Interactive environments like Matlab or Mathematica, perhaps with \expert" drivers (i.e.knowledge-based systems) for special domains, such as structural analysis. Such envi-ronments have proven to be especially attractive for rapid prototyping of new algorithmsand systems that may subsequently be implemented in a more customized manner forhigher performance. With the growing popularity of the many integrated packages basedon this idea, this approach would provide an interactive, graphical interface for specifyingand solving scienti�c problems. Both the algorithms and data structures are hidden fromthe user, because the package itself is responsible for storing and retrieving the problemdata in an e�cient, distributed manner. In a heterogeneous networked environment, suchinterfaces could provide seamless access to computational engines that would be invokedselectively for di�erent parts of the user's computation according to which machine is mostappropriate for a particular subproblem.4. Reusable templates (i.e., users adapt \source code" to their particular applications). Atemplate is a description of a general algorithm rather than the executable object code orthe source code more commonly found in a conventional software library. Nevertheless,although templates use generic versions of key data structures, they o�er whatever degreeof customization the user may desire. We have constructed such a set of template for in-teractive linear system solvers, and are currently constructing one for eigenvalue problems.References[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. \LAPACK Users' Guide".SIAM, Philadelphia, PA, 1992.[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. \LAPACK Users' Guide,Second Edition". SIAM, Philadelphia, PA, 1995.[3] J. Choi, J. Dongarra, and D.Walker. \Parallel Matrix Transpose Algorithms on DistributedConcurrent Computers". Technical Report UT CS-93-215, LAPACK Working Note #65,University of Tennessee, 1993.[4] J. Demmel, I. Dhillon, and H. Ren. \On the correctness of parallel bisection in
oatingpoint". Technical Report UCB//CSD-94-805, University of California, Berkeley ComputerScience Division, 1994. available via anonymous ftp from tr-ftp.cs.berkeley.edu, in directorypub/tech-reports/csd/csd-94-805, �le all.ps.[5] J. Demmel and K. Stanley. \The Performance of Finding Eigenvalues and Eigenvectorsof Dense Symmetric Matrices on Distributed Memory Computers". In Proceedings of theSeventh SIAM Conference on Parallel Proceesing for Scienti�c Computing. SIAM, 1994.[6] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. \A Set of Level 3 Basic LinearAlgebra Subprograms". ACM Transactions on Mathematical Software, 16(1):1{17, 1990.[7] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. \Algorithm 656: An extendedSet of Basic Linear Algebra Subprograms: Model Implementation and Test Programs".ACM Transactions on Mathematical Software, 14(1):18{32, 1988.[8] J. Dongarra and R. van de Geijn. \Two dimensional Basic Linear Algebra CommunicationSubprograms". Technical Report UT CS-91-138, LAPACK Working Note #37, Universityof Tennessee, 1991. 15

[9] J. Dongarra, R. van de Geijn, and D. Walker. \A Look at Scalable Dense Linear AlgebraLibrairies". Technical Report UT CS-92-155, LAPACK Working Note #43, University ofTennessee, 1992.[10] J. Dongarra and R. C. Whaley. \A User's Guide to the BLACS v1.0". Technical ReportUT CS-95-281, LAPACK Working Note #94, University of Tennessee, 1995.[11] High Performance Forum. \High Performance Fortran Language Speci�cation". TechnicalReport CRPC-TR92225, Center for Research on Parallel Computation, Rice University,Houston, TX, May 1993.[12] Message Passing Interface Forum. \MPI: A Message-Passing Interface standard". Interna-tional Journal of Supercomputer Applications, 8(3/4), 1994.[13] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. \Solving Problemson Concurrent Processors", volume 1. Prentice Hall, Englewood Cli�s, N.J, 1988.[14] R. Hanson, F. Krogh, and C. Lawson. \A Proposal for Standard Linear Algebra Subpro-grams". ACM SIGNUM Newsl., 8(16), 1973.[15] W. Hsu, G. Thanh Nguyen, and X. Jiang. \Going BeyondBinary". http://www.cs.berkeley.edu/ xjiang/cs258/project 1.html, 1995. CS 258 Classproject.[16] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. \Basic Linear Algebra Subprograms forFortran Usage". ACM Transactions on Mathematical Software, 5(3):308{323, 1979.[17] B. Parlett, I. Dhillon, and V. Fernando. Private Communication, 1995.

16

