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Current methods to index and retrieve documents from databases usually depend
on a lexical match between query terms and keywords extracted from documents
in a database. These methods can produce incomplete or irrelevant results due to
the use of synonyms and polysemus words. The association of terms with docu-
ments (or implicit semantic structure) can be derived using large sparse term-by-
document matrices. In fact, both terms and documents can be matched with user
queries using representations in k-space (where 100 < k < 200) derived from k
of the largest approximate singular vectors of these term-by-document matrices.
This completely automated approach called Latent Semantic Indexing or LSI, uses
subspaces spanned by the approximate singular vectors to encode important asso-
ciative relationships between terms and documents in k-space. Using LSI, two or

more documents may be close to each other in k-space (and hence meamng) yet
share no common terms. The focus of this work is to demonstrate the computational
advantages of exploiting low-rank orthogonal decompositions such as the ULV (or
URV) as opposed to the truncated singular value decomposition (SVD) for the
construction of initial and updated rank-% subspaces arising from LSI applications.

KEY WORDS information, latent semantic indexing, low-rank, orthogonal, ma-
trices, retrieval, singular value decomposition, sparse;, ULV and URV decomposi-
tions, updating

1. Introduction

Information is commonly retrieved from documents using a literal match of terms
found in documents with those of a user’s query. There are two potential drawbacks
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Low-Rank Orthogonal Decompositions for Information Retrieval 3

to these methods. First, there are usually many ways to express a given concept
(synonymy), thus relevant documents may be ignored. Second, most words have
multiple meanings (polysemy), thus irrelevant documents may be retrieved. These
two drawbacks can render lexical matching methods inaccurate when they are used
to match a user’s query. A more effective approach would perhaps allow a user to
retrieve information by conceptual topic or the meaning of a particular document.

Latent Semantic Indexing (LSI) [9] is an attempt to overcome the problems of
lexical matching by using statistically derived conceptual indices instead of indi-
vidual words for retrieval. LSI, which assumes there is some underlying or latent
structure in word usage that is obscured by variability in word choice, gives rise to
an m X n sparse term-by-document matrix that is generated from text parsing. The
singular value decomposition (SVD), cf. [17], of the term-by-document matrix is
commonly used to analyze the structure in word usage across documents. Retrieval
can be performed using the k-largest singular values and corresponding singular
vectors, where k < min(m,n). Performance data [9,10,16] indicates that singu-
lar vectors are in fact more robust indicators of meaning than individual terms.
A number of software tools have been developed to perform operations such as
parsing document texts, creating a term-by-document matrix, computing the trun-
cated SVD of this matrix, creating the LSI database of singular values and vectors
for retrieval, matching user queries to documents, and adding new terms or docu-
ments to a database [9,19]. However, the bulk of LST processing time can be spent
in computing the truncated SVD of the large sparse term-by-document matrices,
especially when several new terms or documents are to be added to the database.

The SVD is the most common example of a two-sided (or complete) orthogonal
decomposition, which is defined for a matrix as a product of three matrices: an
orthogonal matrix, a middle matrix, and another orthogonal matrix. The middle
matrix is usually either lower trapezoidal, upper trapezoidal, or diagonal. Although
two-sided orthogonal decompositions have been around for some time [18], the
rank-revealing property for trapezoidal middle matrices is recent [12], [20], [21].

The focus of this work is to demonstrate that alternative two-sided orthogonal
decompositions can be used for LSI-based information retrieval at a reduced com-
putational cost compared to the SVD. The main computational advantages of our
method over other methods lie mainly in updating. This paper is organized as fol-
lows. Section 2 is a review of basic concepts needed to understand LSI. Section 3 is
a discussion of the low-rank ULV algorithm with particular focus on computational
complexity and ability to produce good approximations to the singular subspaces of
sparse rectangular matrices. Section 4 uses a constructive example to illustrate how
LSI can use the ULV decomposition to represent terms and documents in the same
semantic space, how a query is represented, how additional documents are added
(or folded-in), and how ULV-updating represents additional documents. Section 5
i1s a discussion of L-ULV updating, a procedure based on the L-ULV algorithm
(which has not been previously considered in the literature). In particular, we give
an algorithm for ULV-updating along with a comparison to the folding-in process
with regard to robustness of query matching and computational complexity. Then,
L-ULV updating is illustrated using a small example. Section 6 is a brief summary
and considerations for future work.
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4 M.W. Berry and R.D. Fierro

2. Background

The SVD is commonly used in the solution of unconstrained linear least squares
problems, matrix rank estimation, and canonical correlation analysis [2]. Although
the SVD provides very accurate subspace information, it is computationally de-
manding and difficult to update for either dense [5] or sparse matrices [1,19]. This
can be a drawback for recursive procedures which require simple matrix updates
(e.g., appending or deleting a row or column).

Alternatively, rank-revealing QR (RRQR) algorithms such as those by Foster [15],
Chan [6], and modifications [4] can be used to obtain subspace information from
matrices [7], [8]. RRQR decompositions, however, yield subspaces whose accuracies
depend on the gap in the singular values [13] in the sense that a large gap is required
to produce good approximations to the singular subspaces. In LSI applications there
is a small gap between the smallest singular value that is retained and the largest
singular value that is discarded, hence an RRQR decomposition is not appropriate
for LSI.

Recently, low-rank revealing ULV and URV algorithms [12] for computing good
approximations to the principal singular subspaces associated with dense or sparse
matrices have been designed. By low-rank we mean either the numerical rank of
the matrix is much smaller than the dimensions of the matrix or a small number
of parameters suffice to describe a system or model [2,12], such as in LST applica-
tions. These algorithms provide reliable rank detection while avoiding the loss of
orthogonality associated with Lanczos bidiagonalization [17], and may be applied
without altering the original matrix A (i.e., quite suitable for sparse matrices).

2.1. Low-Rank Orthogonal Decompositions

Given an m X n matrix A, where without loss of generality m > n and rank(A4) =
r, the singular value decomposition of A is given by

A:U( % )VT:UlEVT:Z;uiUin»T , (2.1)
where UTU = I,,,, VIV = I,,, and ¥ = diag(ay,---,00),0: > 0 for 1 <i <r, ;=
0 for j > r+ 1. The first r columns of the orthogonal matrices U and V define
the orthonormal eigenvectors associated with the » nonzero eigenvalues of AAT
and AT A, respectively. The i-th column of U, denoted by 4;, is referred to as the
left singular vector corresponding to the i-th largest singular value, ¢;. Similarly,
the i-th column of V', denoted by #;, is referred to as the right singular vector
corresponding to o;. The set {u;, 0y, v;} is referred to as the i-th largest singular
triplet of matrix A. Uy and V}, denote submatrices consisting of the first k& columns
of U and V| respectively.
The ULV decomposition of the matrix A is denoted by

L Ly 0
A:U(O)VT:UlLvT,L:<; E) (2.2)

Here, UTU = I,,,, VTV = I,,, and L has the properties: Ly is a k x k lower triangular
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matrix whose singular values approximate {o1,02,...,04}, Fisan (m—k) x (n —
k) rectangular matrix, and ||(H E)||2 = O(ok+1). Ur and Vi denote submatrices
consisting of the first £ columns of U and V| respectively, and the accuracies of
the subspaces associated with Uy and Vj certainly depend on [|H]|2, cf. [12]. In LSI
applications, & is much less than min(m, n) and represents the number of important
factors needed for information retrieval (see Section 2.2.).

2.2.  Latent Semantic Indexing

Latent Semantic Indexing [9,14] is applied to an initial term-by-document matrix.
The elements of the term-by-document matrix are the weighted occurrences of each
word in a particular document, 1.e.,

A= [fij x Lu(i, §) X Gu (D), (2.3)

where f;; denotes the frequency in which term ¢ occurs in document j, Ly (7, j) is
the local weighting for term ¢ in document j, and Gy, (%) is the global weighting for
term ¢. The local and global weightings are applied [11] to increase/decrease the
importance of terms within or among documents. Normally every word does not
occur in each document so that the matrix A is sparse (i.e., relatively few nonzero
elements).

The matrix A is then factored into the product of 3 matrices using the decom-
position in Equation (2.1) or Equation (2.2). A model of latent semantic structure
can be derived from the ULV decomposition defined by Equation (2.2). Specifically,
the orthogonal matrices U and V containing approximate left and right singular
vectors of A, respectively, and the triangular matrix, L. Such matrices are used
to cast the original term-document relationships as linearly-independent vectors
or factor values. The use of only k factors or the k-largest approximate singular
triplets obtained by the ULV decomposition is achieved by approximating the orig-
inal term-by-document matrix by

k
Ak = Zul l“ . vZ»T s (24)
i=1

where l;; denotes the i-th diagonal entry of L from Equation (2.2). This rank-
k matrix approximation of A closely resembles the more natural rank-k matrix
approximations obtained by truncating the SVD or ULV, but is more efficient to
derive when Ly is diagonally dominant and || H]|| is sufficiently small.

In some sense, the ULV (or SVD from Equation (2.1)) is one way to derive a set
of uncorrelated indexing variables or factors so that each term and document can
be represented by a vector in k-space whose coordinates are defined by the elements
of the left or right approximate singular vectors (see Table 1).

It is important for the LSI method that the derived A matrix does not recon-
struct the original term-by-document matrix A exactly. The ULV decomposition,
like the SVD, captures most of the important underlying structure in the associa-
tion of terms and documents, yet at the same time removes the noise or variability
in word usage that plagues word-based retrieval methods. Intuitively, since the
number of dimensions, k, is much smaller than the number of unique terms, m,
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6 M.W. Berry and R.D. Fierro

Table 1. Interpretation of ULV components within LSI.

Ag = Rank-k approx. to A m = Number of terms

U = Term vectors n = Number of documents
diag(Lx) = Diagonal elements of Ly k = Number of factors

14 = Document vectors r = Rank of A

minor differences in terminology will be ignored. Terms which occur in similar doc-
uments, for example, will be near each other in the k-dimensional factor space even
if they never both occur in the same document. This means that some documents
which do not share any words with a user’s query may none the less be near it in
k-space. This derived representation which captures term-term associations is used
for retrieval.

Consider the words doctor, physician, patient, and elephant. The terms doctor and
physician are synonyms, patient is a related concept and elephant 1s unrelated. In
most retrieval systems, the query physicians is no more likely to retrieve documents
about doctors than documents about elephants, if neither used precisely the term
physician in the documents. It would be preferable if a query about physicians
also retrieved articles about doctors and even articles about patients to a lesser
extent. The derived k-dimensional feature space can represent these useful term
interrelationships. Roughly speaking, the words doctor and physician will occur with
many of the same words (e.g., disease, health, hospital, illness, medicine, surgery,
etc.), and they will have similar representations in k-space. The contexts for patient
will overlap to a lesser extent, and those for elephant will be quite dissimilar. The
main idea in LST is to explicitly model the interrelationships among terms (using a
two-sided orthogonal decomposition) and to exploit this to improve retrieval.

2.8, Queries

A query, i.e., a set of words, can be considered as just another document which can
be represented as a vector. Specifically the m x 1 user query vector ¢ is located at
the weighted sum of 1ts component term vectors in k-space. For example, ¢ can be
represented as a k-dimensional vector ¢ via

G = ¢ Uy [diag(Ls)] ™", (2.5)

where diag(Ly) denotes the diagonal elements of Ly, the k x k principal submatrix of
L. With this representation, the query vector can then be compared to all existing
document vectors, and the documents ranked by their similarity (nearness) to the
query. One common measure of similarity is the cosine between the query vector
and document vector. Typically, the z closest documents or all documents exceeding
some cosine threshold are returned to the user [9].

2.4. Updating

An LSl-generated database already requires that a collection of text objects be
parsed, a term-by-document matrix be constructed, and the ULV decomposition
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Low-Rank Orthogonal Decompositions for Information Retrieval 7

(or SVD) of the term-by-document matrix be determined. If additional terms and
documents are to be included, a few alternatives for incorporating them are possible:

e fold-in the new terms and documents, or
e update an existing ULV decomposition (or SVD) of the original term-by-document
matrix.

Four terms are defined below to avoid confusion when discussing updating. Up-
dating is the general process of adding new terms and/or documents to a given
LSI-generated database. Updating may refer to folding-in, ULV-updating, or SVD-
updating. SVD-updating has been considered in [19], and ULV-updating is the focus
of Section 5. Folding-in terms or documents is a much simpler alternative that uses
an existing ULV decomposition (or SVD) to represent new information.

Recomputing the ULV decomposition is not a true updating method, but rather a
way of reconstructing a new LSI-generated database with additional terms and/or
documents. Recomputing the ULV decomposition of a larger term-by-document
matrix incurs a higher computational cost for large problems, and may also im-
pose excessive memory demands. This procedure allows the new p terms and ¢
documents to directly affect the latent semantic structure by creating a new term-
by-document matrix A(m+P)x(+9)  computing the ULV decomposition of the new
term-by-document matrix, and generating a different A; matrix. Folding-in, on the
other hand, is based on the existing latent semantic structure (the current Ag).
New terms and documents will have no effect on the representations of any pre-
existing terms and documents. Folding-in typically requires less computation time
and memory but can produce inaccurate representations of new terms and docu-
ments. A potential loss of orthogonality in the columns of an updated U, matrix
for terms and V; matrix for documents can distort the correct semantic structure
(see [3]).

Folding-in documents is basically the process described in Section 2.3. for query
representation. New documents are represented in k-space as weighted sums of their
component term vectors. New document vectors are then appended to the set of
existing document vectors or columns of Vi, (see Figure 1). Similarly, new terms,
which can be represented as a weighted sum of the vectors for documents they occur
in, are appended to the set of existing term vectors or columns of Uy, (see Figure
2).

To fold-in a new m x 1 document vector, d, into an existing LSI model, a projec-
tion, ci, of d onto the span of the current term vectors (columns of Uy) is computed
by

d = d"Uy [diag(Lg)] ™" (2.6)

Similarly, to fold-in a new 1 x n term vector, ¢, into an existing LSI model, a
projection, ¢, of ¢ onto the span of the current document vectors (columns of V) is
determined by

f =tV [diag(Lg)] ™" (2.7)

3. Obtaining the Semantic Model A;

Rank-revealing algorithms are usually applied to ill-conditioned matrices to deter-
mine the number of large singular values or small singular values; and therefore the
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m x (n+p) m x k k x k
Ay Uk diag(Ly)
m X n _ mxk k x k

Figure 1. Block matrix representation of folding-in p documents.

(m+q) x n (m+q) x k k x k
m X n _ m x k k x k

BN B

Figure 2.

Block matrix representation of folding-in g terms.
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numerical rank. This is important for many ill-conditioned least squares problems,
for example, where one can then replace the problem with a nearby well-conditioned
one to compute a less sensitive solution, cf. [13].

Rank-revealing algorithms applied to term-by-document matrices for LSI require
special handling for the following reasons:

e The numerical rank of the matrix is close to min(im, n), but only approximations
of the k-largest singular values and singular vectors are needed for LSI, where
k < min(m, n). The matrix cannot be expected to have a large gap between oy,
and o041, thus a partition based on the numerical rank is generally too coarse
to extract accurate approximations of the singular subspaces associated with the
k-largest singular values.

e Term-by-document matrices are normally large and sparse. Rank-revealing algo-
rithms typically preprocess such matrices using specialized orthogonal triangular-
ization via Givens rotations [12] to obtain the triangular matrix and subsequent
rank-revealing form. However, the rank-revealing steps can lead to massive fill-in
for the triangular matrix.

Any approach customized for the term-by-document matrix would, at the least,
need to compute good estimates of the k-largest singular values and singular vectors,
and should preserve the sparsity of the original matrix A. In addition, the algorithm
must be amenable to updating.

Algorithms for computing two-sided orthogonal decompositions were presented
and analyzed in [12]. One algorithm, called ALGORITHM L-ULV(A)P, combines
principal singular vector estimation, Householder transformations, and deflation
procedures to estimate the column spaces of Uy and V. This algorithm preserves
the structure or sparsity of A. The main idea behind the algorithm is as follows.

Suppose we have a technique to compute

s fo 0N p
A_U<0 h)v,

where oy is the largest (principal) singular value of A. Then the second largest
singular value of A, i.e., g, is given by o3 = ||Az||2, and we can apply the same
technique to Az (deflation) to obtain

R 01 0 0 N
A=U|l 0 oo 0 |VT.
0 0 As

On the other hand, suppose the technique computes

ol 0 5
A_U<h1 h)v,

where ||hq||2 is sufficiently small and {1; approximates ;. We can apply the same
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10 M.W. Berry and R.D. Fierro

technique to A to obtain

e 0O
A=U | ha ln 0 | VT,
h hs Ag

such that ||hs]|2 is sufficiently small and l32 approximates 3. Further, the first two
columns of U and V approximate the left and right singular vectors corresponding
to o1 and o2, respectively (cf. [12]).

Our modification of ALGORITHM L-ULV(A)P relies on a deflation parameter
d. We monitor ||h;||2 and simply delay deflation until either ||h;]|2 is sufficiently
small, i.e., [|hi]]2 < J, or the maximum number of attempts have been made to
reduce [|h;||2. With a sufficently small ¢ and |[|A]]2 < & for ¢ = 1,... k&, then Ly
is diagonally dominant and the norm of the resulting off-diagonal block satisfies
|H||2 < V/k6. Thus, a sufficiently small deflation parameter § guarantees accurate
singular subspace approximations needed for LSI.

We define H;:s BU) = Bl) B+l ... BU) for s < ¢ and H;:s BU) = [fort < s,

where [ is the 1dentity matrix of appropriate dimensions.

ALGORITHM L-ULV(A)P for LSI:

Input:
A, an m x n data matrix
T, a rank tolerance
4, a deflation tolerance
Ns, maximum number of refinements before deflation
Niax, an upper bound for the number of LSI factors &

Output:
orthogonal matrices U and V stored in compact form
integer k such that o > 7 > 0441 or k = Npax.

1. Initialize i < 1, count « 0, U € R™*% and V € R"*°.
COREY

est’ Yest’

2. Compute the estimate {0' véls)t} of the principal (largest) singular

triplet of A.
3. While (O'(i) > 7 and 7 < Nmax) do

est
(£

est

(1) (1)

4. Compute the Householder vectors z;’ and z;’ corresponding to u

(@)

Vot » respectively, and store:

(3] e (a(2)

5. Define the Householder matrices
L AT L AT
Pliy = In—igr — B2 (sz)) and Qi) = In-it1 — A ={" (252)) ,
where ﬁl(f) = 2/||z1(f)||§ and 65” = 2/||z£2)||§, and define the submatrices
P = Pyy(1:m—i+1,2:m—i+1) and

and
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Q(;)EQ(i)(lzn—i-l-l,?in—i‘i‘l)'

6. Set count 4+ count + 1. Define h; = M(2: m — i+ 1,1), where
1 = Py (T2 PP A TTZE QY x Q.
7. If ||hil]l2 < & or count = Ny
Deflate: set ¢ ¢ 7+ 1 and count + 0.
End If
8. Compute the estimate {Ugs)t, uggt, vgs)t} of the principal singular triplet

of the (m — i+ 1) x (n — i+ 1) matrix (H;;ll Pz(j))T x A X H;_:ll Q(Zj),
(see [12]).
End of While loop
9. Set k<« i—1.

End of algorithm.

We note that if deflation does not occur then Step 8 is a refinement step in that
the needed singular triplet estimate must be recomputed (in iterative algorithms it
makes good sense to incorporate the previous estimate as the initial value). When
the algorithm terminates, the orthonormal factors Uy and Vi needed in LSI can be

recovered by:
1 1
Uk:(O kk) Vk:(O kk)

fort =k:—-1:1 fort =k:—-1:1

0 I 0
U, = U Vi = V),
g (0 P(t)) g g ’“(0 Q(t))

end end.

The backward accumulation scheme is used, for example, in the skinny QR factor-

ization (see p. 199 of [17]). Tt can be shown that the first & diagonal elements of
L are given by l;; = :I:O'((;S)t. Here, the singular vector estimate u s computed
(in Step 8 above) by means of Lanczos (or Power method) iterations, cf. [12], from
(1) (1)

est est

the Lanczos (or Power) method used to compute the initial estimate uggt. If the

resulting ||h;]|2 is sufficiently small, deflation occurs (i « ¢ + 1). Otherwise, uggt

must be improved to reduce ||h;||2. Suppose s Lanczos (or Power) iterations are

which o and v can be obtained. Let s denote a fixed number of iterations

also used for each refinement of the estimate u'’) , and let I denote the average
number of times this step is repeated (usually 0 < I < 1). The flop (floating-point
operation) count for computing the needed LSI factors using the modified form of
ALGORITHM L-ULV(A)P (applied to a general m x n matrix A with m > n) is
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12 M.W. Berry and R.D. Fierro

given by

4(m + n)k? s+1+[><s+%([+1) + M(A) x
[2(k +2)(s + I x 5) + k(I +1)], (3.8)

where M (A) is the number of flops required to compute a matrix-vector product
Az or yTA. All lower-order terms have been neglected, including those coming from
the fact that the dimensions of M in Step 6 are actually reduced in each step (these
terms are negligible as long as & < n). The flop count in Equation (3.8) clearly
illustrates how the overhead depends on both s and I.

For a 285 x 100 sparse term-by-document matrix (with terms required to globally
occur at least 5 times in the first 100 abstracts parsed, see MED collection in [9]),
Figure 3 illustrates the number of iterations of the Lanczos methods needed to
produce

@ @ @) C
{Uest’ Ugts Vogt [+ L= 1,2,...,25,
in Steps 2 and 8 of the algorithm. The cumulative number of iterations are shown
by dashed or dotted lines and bold solid lines indicate when additional refinement
iterations were required for § = 1072, 1073, The maximum number of iterations
allowed for the Lanczos method to produce any approximate singular triplet ranged

from s = 10 to s = 20 for these experiments. Re&dual errors, ||rest||2, of O(J) were

(4) (Z)

est) Vest [ where

U

obtained for each approximate singular triplet { Tosty

Hrf(ils)tHz = |:(||Aves)t - Uf(istuest||2 + ||AT f(is)t Uf(is)t est” )%:|

/(103 + 1eE]”

@ @)
est> Yest Yest
will increase for smaller values of s (the number of Lanczos iterations). However,

Figure 3 clearly illustrates that the frequency of refinement (7) for {0'

to maintain a more moderate computation cost (flops) the number of Lanczos it-
erations (s) should not be too large (e.g., s = 15 curve versus s = 20 curve in
Figure 3(a)). For smaller values of 4, a larger number of Lanczos iterations (s) will
ensure the desired accuracy (d) in the approximate singular triplets [12]. However,
as illustrated in Figure 3(b), the cost (in iterations) per triplet will be higher re-
gardless of the number of Lanczos iterations. Although a suitably large value of s
will most likely yield a substantial reduction in refinement steps, the overall num-
ber of Lanczos iterations (or steps) may be excessive (s = 20 curve versus s = 15
curve).

4. A Demonstration of Latent Semantic Indexing
In this section, LSI and the folding-in process discussed in Section 2.4. are applied to

a small database of medical topics. In Table 2, 18 topics are taken from the testbed
of 1033 MEDLINE abstracts mentioned in Section 2.4.. All the underlined words
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. 520, 1=0.04 600 -
500 s=10, 1=0.
_ . _ s=10,1=0.44
— Refinement lterations 7 s=15,1=0.14 500 + p
] ./ s20,1=0.11
400 . /
2] 2 ,
o 0400 /
2 5]
g 300 4 o — Refinement Iterations
E 2300 1
8 8
S 200 4 =)
£ o S 200 -
=] jm}
0 (0]
100 7 100 A
1OA T T T T 1 lOA ' T T T T 1
0 5 10 15 20 25 0 5 10 15 20 25

Number of Accepted Triplets

(a) 6 = 1072

Number of Accepted Triplets

(b) & = 10-3

Figure 3. Cumulative iteration counts for the Lanczos method within ALGORITHM
L-ULV(A) when used to approximate the 25-largest singular triplets of the 285 x 100
MEDLINE test matrix.

in Table 2 denote keywords which are used as referents to the medical topics. The
parsing rule used for this sample database required that keywords appear in more
than one topic. Of course, alternative parsing strategies can increase or decrease
the number of indexing keywords (or terms).

Corresponding to the text in Table 2 is the 18 x 14 term-by-document matrix
shown in Table 3. The elements of this matrix are the frequencies in which a term
occurs in a document or medical topic (see Equation (2.3)). For example, in medical
topic M2, the second column of the term-by-document matrix, culture, discharge,
and patients all occur once. For simplicity, term weighting is not used in this example
matrix. Now compute the ULV decomposition (with & = 2) of the 18 x 14 matrix
in Table 2 to obtain the rank-2 approximation A, as defined in Equation (2.4).

Using the first column of Uy multiplied by /17 for the x-coordinates and the second
column of Us multiplied by ls5 for the y-coordinates, the terms can be represented
on the Cartesian plane. Similarly, the first column of V5 scaled by {;; are the x-
coordinates and the second column of V5 scaled by l55 are the y-coordinates for the
documents (medical topics). Figure 4 is a two-dimensional plot of the terms and
documents for the 18 x 14 sample term-by-document matrix.

Notice the documents and terms pertaining to patient behavior or hormone pro-
duction are clustered above the z-axis while terms and documents related to blood
disease or fasting are clustered near the lower y-axis. Such groupings suggest that
subsets of medical topics such as {M2, M3, M4} and {M10, M11, M12} each
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14 M.W. Berry and R.D. Fierro

Table 2. Database of medical topics from MEDLINE. Underlined keywords appear in
more than one topic.

Label Medical Topic

M1 study of depressed patients after discharge with regard to age of onset and culture

M2 culture of pleuropneumonia like organisms found in Vaginamscharge of patients
M3 study showed oestrogen production is depressed by ovarian irradiation
M4 cortisone rapidly depressed the secondary rise in oestrogen output of patients

M5 boys tend to react to death anxiety by acting out behavior while girls tended
to become depressed

M6 changes in children’s behavior following hospitalization studied a week after
discharge

M7 surgical technique to close ventricular septal defects

M8 chromosomal abnormalities in blood cultures and bone marrow from leukaemic
patients

M9 study of christmas disease with respect to generation and culture

M10  insulin not responsible for metabolic abnormalities accompanying a prolonged
fast

M11  close relationship between high blood pressure and vascular disease

M12  mouse kidneys show a decline with respect to age in the ability to concentrate
the urine during a water fast o

M13  fast cell generation in the eye lens epithelium of rats

M14  fast rise of cerebral oxygen pressure in rats

contain topics of similar meaning. Although topics M1 and M2 share the poly-
semous terms culture and discharge they are not represented by nearly identical
vectors by LSI. The meaning of those terms in topics M1 and M2 are clearly dif-
ferent and literal-matching indexing schemes have difficulty resolving such context
changes. Following the discussion of query representation in Section 2.3., the next
section demonstrates how a particular query is processed for the small MEDLINE
collection.

4.1, Queries

Suppose we are interested in the documents that contain information related to
the age of children with blood abnormalities. Recall that a query vector (¢) can be
represented as () via ¢ = ¢7 Uy, [diag(Lk)]_l. Since the words of, children, and with
are not indexed terms (i.e., stop words) in the database, they are omitted from the
query leaving age blood abnormalities. Mathematically, the Cartesian coordinates
of the query are determined by Equation (2.5) and the sample query age blood
abnormalities 1s shown as the vector labeled QUERY in Figure 5. This query vector
is then compared (in the Cartesian plane) to all the documents in the database. All
documents whose cosine with the query vector is greater than 0.85 are indicated
by the shaded region of Figure 5.

A different cosine threshold, of course, could have been used so that a larger or
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Table 3. The 18 x 14 term-by-document matrix corresponding to the medical topics in

Table 2.
Terms Documents
M1 M2 M3 M4 M5 M6 M7 M8 M9 Mio Mi1l Mi2 Mi13 Mi4
abnormalities 0 0 0 0 0 0 0 1 0 1 0 0 0 0
age 1 0 0 0 0 0 0 0 0 0 0 1 0 0
behavior 0 0 0 0 1 1 0 0 0 0 0 0 0 0
blood 0 0 0 0 0 0 0 1 0 0 1 0 0 0
close 0 0 0 0 0 0 1 0 0 0 1 0 0 0
culture 1 1 0 0 0 0 0 1 1 0 0 0 0 0
depressed 1 0 1 1 1 0 0 0 0 0 0 0 0 0
discharge 1 1 0 0 0 1 0 0 0 0 0 0 0 0
disease 0 0 0 0 0 0 0 0 1 0 1 0 0 0
fast 0 0 0 0 0 0 0 0 0 1 0 1 1 1
generation 0 0 0 0 0 0 0 0 1 0 0 0 1 0
oestrogen 0 0 1 1 0 0 0 0 0 0 0 0 0 0
patients 1 1 0 1 0 0 0 1 0 0 0 0 0 0
pressure 0 0 0 0 0 0 0 0 0 0 1 0 0 1
rats 0 0 0 0 0 0 0 0 0 0 0 0 1 1
respect 0 0 0 0 0 0 0 1 0 0 0 1 0 0
rise 0 0 0 1 0 0 0 0 0 0 0 0 0 1
study 1 0 1 0 0 0 0 0 1 0 0 0 0 0

smaller set of documents would be returned. The cosine 1s merely used to rank-order
documents and its numerical value is not always an adequate measure of relevance

[19,22].

4.2.  Comparison with Lexical Matching

In this example, LSI has been applied using two factors, i.e., As is used to ap-
proximate the original 18 x 14 term-by-document matrix). Using a cosine threshold
of .85, three medical topics related to blood abnormalities and kidney failure were
returned: topics M8, M9, and M12. If the cosine threshold was reduced to just
.75, then titles M7 and M11 (which are somewhat related) are also returned.
With lexical-matching, five medical topics (M1, M8, M10, M11, M12) would be
returned. Clearly, topics M1 and M10 are not relevant and topic M9 would be
missed. On the other hand, LSI is able to retrieve the most relevant topic from
Table 2 (i.e., M9) to the original query age of children with blood abnormalities
since christmas disease 1s the name associated hemophilia in young children. This
ability to retrieve relevant information based on context or meaning rather than
literal term usage is the main motivation for using LSI.

Table 4 lists the LSI-ranked documents (medical topics) with different numbers
of factors (k). The documents returned in Table 4 satisfy a cosine threshold of .40,
i.e., returned documents are within a cosine of .40 of the pseudo-document used to
represent the query. As alluded to earlier, the cosine best serves as a measure for
rank-ordering only as Table 4 clearly demonstrates that its value associated with
returned documents can significantly vary with changes in the number of factors &.
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Figure 4. Two-dimensional plot of terms and documents for the 18 x 14 example.

4.3.  Folding-In

Suppose the fictitious topics listed in Table 5 are to be added to the original set of
medical topics in Table 2. These new topics (M15 and M16) essentially use the
terms as the original topics in Table 2 but in a somewhat different sense or context.
Topic M15 relates a rise in oestrogen with the behavior of rats rather than patients.
Topic M16 uses the term pressure in the context of behavior rather than blood. As
with Table 2, all underlined words in Table 5 are considered significant since they
appear in more than one title (across all 16 topics from Tables 2 and 5). Folding-in
(see Section 2.4.) is one approach for updating the original LSI-generated database
with the 2 new medical topics. Figure 6 demonstrates how these topics are folded-
into the database based on k = 2 LSI factors via Equation (2.6). The new medical
topics are denoted on the graph by their document labels (in a different boldface

14/1/1996 23:59 PAGE PROOFS paper



Low-Rank Orthogonal Decompositions for Information Retrieval 17
0.2+ e depressed M1
edischarge .
e patients
m3 e
A
o1 1 a |\2€'\5A5 aM4
;2 eoestrogen
© behavior 9 e culture
® study
T T T T T 1
0| 0.2 0.4 0.6 0.8 1.0
A R eage
R e abhormalities
bloo QUERY
eclo
o disease
erise
0.2+ ® respect AM9
® jeneration
aM10
1 AMI1N \112
e pressure
-0.4 erats
aM13
aM14
-0.6 —
efast
Figure 5. A Two-dimensional plot of terms and documents along with the query age

blood abnormalities.

font). Notice that the coordinates of the original topics stay fixed, and hence the
new data have no effect on the clustering of existing terms or documents.

4.4. Recomputing the ULV

Ideally, the most robust way to produce rank-k approximations (Ag) to a term-
by-document matrix which has been updated with new terms and documents is
to simply compute the ULV decomposition (see Equation (2.2)) of a reconstructed
term-by-document matrix, say A.

Suppose the topics from Table 5 are combined with those of Table 2 in order to
create a new 18 x 16 term-by-document matrix A. Following Equation (2.4), we
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Table 4. Returned documents and corresponding cosine values based on different
numbers k of LSI factors for a fixed cosine threshold of 0.40.

Number of Factors
k=2 k=4 k=8
M 9 1.00 M8& 092 M8 0.67
M12 088 M9 0.89 M12 0.55
M8 08 M2 0.64 M10 0.54
M1l 0.82 M10 0.48
M10 0.79 M12 0.46
M7 074 M1l 0.40

Mi14 0.72
M13  0.71
M4 0.67
M1 0.56
M2 042
Table 5. Additional medical topics for updating.
Label Medical Topic

M15  behavior of rats after detected rise in oestrogen
M16  depressed patients who feel the pressure to fast

then construct the rank-2 approximation to A given by
Az = Uz dlag(iz) VQT. (49)

Figure 7 is a two-dimensional plot of the 18 terms and 16 documents (medical topics)
using the elements of Us and Vs for term and document coordinates, respectively.
Notice the difference in term and document positions between Figures 6 and 7.
Clearly, the new medical topics from Table 5 have helped redefine the underlying
latent structure when the ULV decomposition of Ais computed. That is, one can
discuss blood pressure and behavioral pressure in different contexts. Note that in
Figure 7 (unlike Figure 6) the topics (old and new) related to the use of rats form
a well-defined cluster or subset of documents. Folding-in the 2 new medical topics
based on the existing rank-2 approximation to A (defined by Table 3) may not
accurately reproduce the true LST representation of the new (or updated) database.
In the case of topic M15, for example, the existing LSI model did not reflect the
association of the term behavior with rats, and hence the folding-in procedure failed
to form the cluster {M13, M14, M15} of related documents shown in Figure 7.
Updating methods which can approximate the ULV (or SVD) of the larger term-
by-document matrix A become attractive in the presence of memory or time con-
straints. In practice, the difference between folding-in and ULV-updating is likely to
depend on the number of new documents and terms relative to the number in the
original ULV decomposition of A. Thus, we expect ULV-updating to be especially
valuable for rapidly changing databases. The accuracy of SVD-updating approaches
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Figure 6. Two-dimensional plot of folded-in medical topics M15 and M16.

can be easily compared to that obtained when the SVD of A is explicitly computed,
cf. [1] and [19].

5. ULV-Updating

The process of ULV-updating discussed in Section 2.4. can also be illustrated us-
ing titles from Tables 2 and 5. The three steps required to perform a complete
ULV-update involve adding new documents, adding new terms, and correction for
changes in term weightings. The order of these steps, however, need not follow the
ordering presented in this section (see [3,19]).
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Figure 7. Two-dimensional plot of terms and documents using the ULV decomposition
of a reconstructed term-by-document matrix.

5.1. Matriz Representations

Let D denote the p new document vectors to process, then D 1s an m x p sparse
matrix since most terms (as was the case with the original term-by-document matrix
A) do not occur in each document. D is appended to the columns of a rank-k
approximation Ay of the m x n matrix A so that the k-largest approximate singular
values and corresponding singular vectors of

B = (A | D) (5.10)

are computed. This is almost the same process as recomputing the ULV, only A is
replaced by Ag. A suitable choice for Ay 1s discussed in Section 5.2..
Let T denote a collection of ¢ x 1 term vectors for ULV-updating. Then T is a
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¢ X n sparse matrix, since each term rarely occurs in every document. 7' is then
appended to the rows of Ay so that the k-largest approximate singular values and

corresponding singular vectors of
Ay
¢ = 5.11
(<) .11
are computed.

The correction step for incorporating changes in term weights (see Equation
(2.3)) is performed after any terms or documents have been ULV-updated and the
term weightings of the original matrix have changed. For a change of weightings in
J terms, let Y; be an m x j matrix comprised of rows of zeros or rows of the j-th
order identity matrix, [;, and let Z; be an n x j matrix whose columns specify the
actual differences between old and new weights for each of the j terms (see [19] for
examples). Computing the ULV decomposition of the following rank-j update to
Ay, defines the correction step

= A, +Y; 27 (5.12)

5.2. ULV-Updating Procedures

The mathematical computations required in each phase of the ULV-updating pro-
cess are detailed in this section. Table 6 contains a list of symbols, dimensions, and
variables used to define the ULV-updating phases. ULV-updating incorporates new
term or document information into the current semantic model (A; from Equa-
tion (2.4)) using sparse term-by-document matrices (D, T, and Y]Z]T) discussed in
Section 5.1..

The ULV-updating procedures below exploit the natural rank-k matrix approxi-
mation of the original term-by-document matrix A, 1.e.,

Ap = Up L VT,

from which the current semantic model A, = deiag(Lk)VkT (see Equation (2.4)) is
derived. Recall that the diagonal elements of the triangular matrix Ly and columns
of the orthogonal matrices Uy, Vi serve as approximations to the singular values and
singular vectors, respectively, of the original term-by-document matrix A. A brief
summary of the required computations for updating the current rank-k semantic
model, Ay, using standard linear algebra 1s given below.

5.2.1. Updating Documents Let B = (/lk | D) from Equation (5.10) have
the ULV decomposition B = UgLp Vg. Then

Vi O
vis (4 ) = 1uin),

where Ly is the lower triangular matrix defined by Equation (2.2), and UkTD is
a dense k x p matrix. Since Uy 1s typically stored as a dense matrix, the nonzero
structure of D can be exploited in computing the matrix product UkTD. If Py is the
appropriate (k+p) x (k+p) orthogonal matrix (constructed from the accumulation
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Table 6. Symbols used in ULV-updating phases.

Symbol  Dimensions  Definition

A m X n Original term-by-document matrix
Ak m X n Rank-k ULV decomposition of A
U m x k First & columns of U in
ULV decomposition for A
Ly kxk Lower triangular k x k principal submatrix
of L in ULV decomposition for A
Vi nxk First & columns of V' in
ULV decomposition for A
Z; nxjy Adjusted term weights
Y; m X j Permutation matrix
D mXxp New document vectors
T qgxn New term vectors

of either Householder transformations or Givens rotations for just this step) such
that R
(L | UFD) Pe = (L 1 0),

then it follows that

Up=Up, Vo= % 9 VP, and Lp= L. (5.13)
o I,
Hence Up and Vg are m x k and (n + p) x (k + p) dense matrices, respectively.
5.2.2. Updating Terms Let C' = jf ) from Equation (5.11) have the ULV

decomposition C' = Ug L¢ VCT. Then

ur o (L
(0 %)= (7).

where T'Vg 1s a dense ¢ X k matrix. Here, T 1s a sparse matrix whose nonzero
structure can be exploited for right multiplication by the dense matrix Vj. Let I
be the (k — 1)-th order identity matrix. If @y is the appropriate (¢ + 1) x (¢ + 1)
orthogonal matrix (constructed from accumulated Householder transformations or
Givens rotations for this step) such that

Iy_1 O Ly a
0 Qg ™, )\ O ’
then it follows that

. U. O Ir-1 O _ _ 7T
Uc—<0 Iq)<0 Qk),VC—Vk, and Lc—Lk.

Hence Uc and Vi are (m+q) x (k+¢) and n x k dense matrices, respectively. Note
that the first & — 1 rows of the lower triangular matrices L, and Ly are identical.
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5.2.3. Term Weight Corrections Let ® = A, + YijT, where Y is m x
j and Z; is n x j from Equation (5.12) have the ULV decomposition ® = Ug Lg V{ .
Then

U,?@Vk = L —|—Xj,

where X; = UkTYijT Vi is a dense k x k matrix. The sparsity of Z; can be exploited
for the intermediate matrix product ZjT Vi prior to left multiplication by the appro-
priate columns of Uy defined by UkTY] If W, is the appropriate k& x k orthogonal
matrix (constructed from either Householder transformations or Givens rotations
for this triangularization step) such that

Wi (L + X;) = L,
where Ly is a k x k lower triangular matrix, then it follows that
Up =UgWs , Vo =V, and Lo = Lg.

Hence Ug and Ug are m x k and n X k dense matrices, respectively.

5.2.4. Accuracy and Costs With regard to the accuracy of the singular sub-
space approximations generated from the updated ULV decompositions discussed
above, the magnitude of the diagonal elements of Ly, ie., |l~”|, in each case can
2
; et
accuracy of the [;;’s can be improved through systematic reduction in the norm of
the off-diagonal elements of Ly, as provided by standard QR iterations (with shifts
for optimal convergence). As with ALGORITHM L-ULV/(A )P of Section 3., deflation
occurs once an off-diagonal element of Ly, is less than & in magnitude.

As noted in Section 3., LSI requires the k-largest singular values and correspond-
ing singular vectors, where k < min(m, n) remains fixed (even after applying the
updating procedures discussed above). Hence, rank-revealing techniques are not
required for the ULV decomposition of matrices B, (', and ®.

Table 7 contains the complexities (ignoring lower order terms) for folding-in terms
and documents, and the three phases of ULV-updating. From these complexities
the required number of floating-point operations (or flops) for each method can
be compared for varying numbers of added documents or terms. Recall that Uy
and V3 are already known (see Table 3.8) so that the only terms involving m and
n are those associated with multiplication by the dense matrices Uy and Vj, and
the sparse matrices D, T, and Z;. As shown in [3] and [19] for SVD-updating,
the computational complexity in each case of ULV-updating depends the values of
the variables listed in Table 6. For example, if the sparsity of the D matrix from
Equation (5.10) reflects that of the original m x n term-by-document matrix A with
m > n, then folding-in will still require considerably fewer flops than ULV-updating
when adding p new documents provided p < n.

Figure 8 illustrates the number of floating-point operations (log-scale) required
(using the expressions from Table 7) to update the last p = 25,50, 75 abstracts to
the collection of MEDLINE abstracts represented by the 285 x (100 — p) sparse
term-by-document matrix previously discussed in Section 2.4.. For as few as p = 25
documents, folding-in requires (on average) as much as 1.6 times more operations
than ULV-updating with up to k& = 25 LSI factors with deflation tolerance § = 102

be used as approximations for o, of the respective matrices B, C'; and ®. The
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Table 7. Computational complexity of updating methods (based on the use of
Householder transformations) without recomputing the ULV decomposition of a new L
matrix. The number M(G) is the number of flops required to compute a matrix-vector

product Gz or y'G.

Method Complexity
ULV-updating documents kEM(D)+ 2k°/3 + 2k%p + 2kp® + 2k°n
ULV-updating terms EM(T) + 2k*/3 — 2k*q + 2kq® + qn

ULV-updating weight correction kM (Z;)+ 2k% /3 4 2k%5 — k% 4 2k*m

Folding-in documents 2mkp
Folding-in terms 2nkq

(see Section 2.4.). For p = 75 documents (or abstracts), folding-in required (on
average) about twice as many operations needed by ULV-updating. Recomputing
the ULV decomposition (see Equation (2.2)) for k& = 1 to k = 25 LSI factors can
require 75 and 40 times the number of floating-point operations of ULV-updating
and folding-in, respectively, when adding p = 75 new documents to the collection.
When compared to SVD-updating (see [1,3,19]), Figure 9 demonstrates the clear
advantage of ULV-updating. For the same document updating depicted in Figure 8§,
SVD-updating requires about 6 and 14 times more floating-point operations than
ULV-updating for adding p = 75 and p = 25 documents (abstracts), respectively,
to the MEDLINE test collection.

5.8, ULV-Updating Example

To illustrate ULV-updating, suppose the two medical topics in Table b are to be
added to the original set of medical topics in Table 2. In this example, only docu-
ments are added and weights are not adjusted, hence only the ULV decomposition
of matrix B in Equation (5.10) is computed.

Initially, a 18 x 2 term-by-document matrix, D, corresponding to the new med-
ical topics in Table 5 is generated and then appended to As to form a 18 x 16
matrix B of the form given by Equation (5.10). Following Equation 2.4, the rank-2
approximation (Bz) to B is given by

Bz = [72 dlag(ﬁz) VQT,

where the columns of U5 and Vs are the left and right approximate singular vectors,
respectively, corresponding to the approximate singular values l11 and ls» of B.
Figure 10 is a two-dimensional plot of the 18 terms and 16 documents (medical
topics) using the elements of U, and V, for term and document coordinates, re-
spectively. Notice the similar clustering of terms and medical topics in Figures 7
(recomputing the ULV) and 10, and the difference in document and term cluster-
ing with Figure 6 (folding-in). The slight differences between the plots of Figures 7
and 10 can be attributed to the use of Ay rather than A (see Equation (5.10)) in
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the ULV-updating process (Figure 10). As discussed in Section 2.2., the intent for
using rank-k approximations (Ay) to original term-by-document matrices (4) is to

capture underlying semantic structure.
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Figure 10. Two-dimensional plot of terms and documents using the ULV-updating

process.

6. Summary and Future Work

A slight modification of ALGORITHM L-ULV{(A)P has been demonstrated to be an
efficient and suitably accurate scheme for computing the ULV decomposition of
sparse term-by-document matrices arising from information retrieval applications.
The algorithm was shown to be especially attractive for its reduced computational
complexity in the context of updating documents, terms, or term corrections to
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existing term-by-document matrices associated with applications such as Latent
Semantic Indexing (LST).

There are a number of computational improvements that would make LSI even

more useful, especially for large collections:

computing the ULV of extremely large sparse matrices, i.e., much larger than the
usual 100,000 by 60,000 term-by-document matrix processed on RISC worksta-
tions with less than 500 megabytes of RAM,

perform ULV-updating (see Section 5.) in real-time for databases that change
frequently and/or are distributed across networks, and

efficiently comparing queries to documents (i.e., finding near neighbors in high-
dimension spaces).
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