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Numerical Linear Algebra with Applications, Vol. 1(1), 1{27 (1996)Low-Rank Orthogonal Decompositions forInformation Retrieval ApplicationsMichael W. BerryDepartment of Computer Science, University of Tennessee, 107 Ayres Hall,Knoxville TN 37996-1301, berry@cs.utk.eduandRicardo D. FierroDepartment of Mathematics, California State University, San Marcos, CA92096, fierro@thunder.csusm.eduCurrent methods to index and retrieve documents from databases usually dependon a lexical match between query terms and keywords extracted from documentsin a database. These methods can produce incomplete or irrelevant results due tothe use of synonyms and polysemus words. The association of terms with docu-ments (or implicit semantic structure) can be derived using large sparse term-by-document matrices. In fact, both terms and documents can be matched with userqueries using representations in k-space (where 100 � k � 200) derived from kof the largest approximate singular vectors of these term-by-document matrices.This completely automated approach called Latent Semantic Indexing or LSI, usessubspaces spanned by the approximate singular vectors to encode important asso-ciative relationships between terms and documents in k-space. Using LSI, two ormore documents may be close to each other in k-space (and hence meaning) yetshare no common terms. The focus of this work is to demonstrate the computationaladvantages of exploiting low-rank orthogonal decompositions such as the ULV (orURV) as opposed to the truncated singular value decomposition (SVD) for theconstruction of initial and updated rank-k subspaces arising from LSI applications.KEY WORDS information, latent semantic indexing, low-rank, orthogonal, ma-trices, retrieval, singular value decomposition, sparse, ULV and URV decomposi-tions, updating1. IntroductionInformation is commonly retrieved from documents using a literal match of termsfound in documents with those of a user's query. There are two potential drawbacks1070{5325/96/010001{27$18.50 Received 25 April 1995c1996 by John Wiley & Sons, Ltd. Revised 10 January 1996



Low-Rank Orthogonal Decompositions for Information Retrieval 3to these methods. First, there are usually many ways to express a given concept(synonymy), thus relevant documents may be ignored. Second, most words havemultiple meanings (polysemy), thus irrelevant documents may be retrieved. Thesetwo drawbacks can render lexical matching methods inaccurate when they are usedto match a user's query. A more e�ective approach would perhaps allow a user toretrieve information by conceptual topic or the meaning of a particular document.Latent Semantic Indexing (LSI) [9] is an attempt to overcome the problems oflexical matching by using statistically derived conceptual indices instead of indi-vidual words for retrieval. LSI, which assumes there is some underlying or latentstructure in word usage that is obscured by variability in word choice, gives rise toan m�n sparse term-by-document matrix that is generated from text parsing. Thesingular value decomposition (SVD), cf. [17], of the term-by-document matrix iscommonly used to analyze the structure in word usage across documents. Retrievalcan be performed using the k-largest singular values and corresponding singularvectors, where k � min(m;n). Performance data [9,10,16] indicates that singu-lar vectors are in fact more robust indicators of meaning than individual terms.A number of software tools have been developed to perform operations such asparsing document texts, creating a term-by-document matrix, computing the trun-cated SVD of this matrix, creating the LSI database of singular values and vectorsfor retrieval, matching user queries to documents, and adding new terms or docu-ments to a database [9,19]. However, the bulk of LSI processing time can be spentin computing the truncated SVD of the large sparse term-by-document matrices,especially when several new terms or documents are to be added to the database.The SVD is the most common example of a two-sided (or complete) orthogonaldecomposition, which is de�ned for a matrix as a product of three matrices: anorthogonal matrix, a middle matrix, and another orthogonal matrix. The middlematrix is usually either lower trapezoidal, upper trapezoidal, or diagonal. Althoughtwo-sided orthogonal decompositions have been around for some time [18], therank-revealing property for trapezoidal middle matrices is recent [12], [20], [21].The focus of this work is to demonstrate that alternative two-sided orthogonaldecompositions can be used for LSI-based information retrieval at a reduced com-putational cost compared to the SVD. The main computational advantages of ourmethod over other methods lie mainly in updating. This paper is organized as fol-lows. Section 2 is a review of basic concepts needed to understand LSI. Section 3 isa discussion of the low-rank ULV algorithm with particular focus on computationalcomplexity and ability to produce good approximations to the singular subspaces ofsparse rectangular matrices. Section 4 uses a constructive example to illustrate howLSI can use the ULV decomposition to represent terms and documents in the samesemantic space, how a query is represented, how additional documents are added(or folded-in), and how ULV-updating represents additional documents. Section 5is a discussion of L-ULV updating, a procedure based on the L-ULV algorithm(which has not been previously considered in the literature). In particular, we givean algorithm for ULV-updating along with a comparison to the folding-in processwith regard to robustness of query matching and computational complexity. Then,L-ULV updating is illustrated using a small example. Section 6 is a brief summaryand considerations for future work.14/1/1996 23:59 PAGE PROOFS paper



4 M.W. Berry and R.D. Fierro2. BackgroundThe SVD is commonly used in the solution of unconstrained linear least squaresproblems, matrix rank estimation, and canonical correlation analysis [2]. Althoughthe SVD provides very accurate subspace information, it is computationally de-manding and di�cult to update for either dense [5] or sparse matrices [1,19]. Thiscan be a drawback for recursive procedures which require simple matrix updates(e.g., appending or deleting a row or column).Alternatively, rank-revealing QR (RRQR) algorithms such as those by Foster [15],Chan [6], and modi�cations [4] can be used to obtain subspace information frommatrices [7], [8]. RRQR decompositions, however, yield subspaces whose accuraciesdepend on the gap in the singular values [13] in the sense that a large gap is requiredto produce good approximations to the singular subspaces. In LSI applications thereis a small gap between the smallest singular value that is retained and the largestsingular value that is discarded, hence an RRQR decomposition is not appropriatefor LSI.Recently, low-rank revealing ULV and URV algorithms [12] for computing goodapproximations to the principal singular subspaces associated with dense or sparsematrices have been designed. By low-rank we mean either the numerical rank ofthe matrix is much smaller than the dimensions of the matrix or a small numberof parameters su�ce to describe a system or model [2,12], such as in LSI applica-tions. These algorithms provide reliable rank detection while avoiding the loss oforthogonality associated with Lanczos bidiagonalization [17], and may be appliedwithout altering the original matrix A (i.e., quite suitable for sparse matrices).2.1. Low-Rank Orthogonal DecompositionsGiven an m � n matrix A, where without loss of generality m � n and rank(A) =r, the singular value decomposition of A is given byA = �U � �0 � �V T = �U1��V T = nXi=1 �ui�i�vTi ; (2.1)where �UT �U = Im, �V T �V = In, and � = diag(�1; � � � ; �n); �i > 0 for 1 � i � r; �j =0 for j � r + 1. The �rst r columns of the orthogonal matrices �U and �V de�nethe orthonormal eigenvectors associated with the r nonzero eigenvalues of AATand ATA, respectively. The i-th column of �U , denoted by �ui, is referred to as theleft singular vector corresponding to the i-th largest singular value, �i. Similarly,the i-th column of �V , denoted by �vi, is referred to as the right singular vectorcorresponding to �i. The set f�ui; �i; �vig is referred to as the i-th largest singulartriplet of matrix A. �Uk and �Vk denote submatrices consisting of the �rst k columnsof �U and �V , respectively.The ULV decomposition of the matrix A is denoted byA = U � L0 �V T = U1LV T ; L = � Lk 0H E � : (2.2)Here, UTU = Im, V TV = In, and L has the properties: Lk is a k�k lower triangular14/1/1996 23:59 PAGE PROOFS paper



Low-Rank Orthogonal Decompositions for Information Retrieval 5matrix whose singular values approximate f�1; �2; : : : ; �kg, E is an (m� k)� (n�k) rectangular matrix, and k(H E)k2 = O(�k+1). Uk and Vk denote submatricesconsisting of the �rst k columns of U and V , respectively, and the accuracies ofthe subspaces associated with Uk and Vk certainly depend on kHk2, cf. [12]. In LSIapplications, k is much less than min(m;n) and represents the number of importantfactors needed for information retrieval (see Section 2.2.).2.2. Latent Semantic IndexingLatent Semantic Indexing [9,14] is applied to an initial term-by-document matrix.The elements of the term-by-document matrix are the weighted occurrences of eachword in a particular document, i.e.,A = [fij � Lw(i; j) �Gw(i)]; (2.3)where fij denotes the frequency in which term i occurs in document j, Lw(i; j) isthe local weighting for term i in document j, and Gw(i) is the global weighting forterm i. The local and global weightings are applied [11] to increase/decrease theimportance of terms within or among documents. Normally every word does notoccur in each document so that the matrix A is sparse (i.e., relatively few nonzeroelements).The matrix A is then factored into the product of 3 matrices using the decom-position in Equation (2.1) or Equation (2.2). A model of latent semantic structurecan be derived from the ULV decomposition de�ned by Equation (2.2). Speci�cally,the orthogonal matrices U and V containing approximate left and right singularvectors of A, respectively, and the triangular matrix, L. Such matrices are usedto cast the original term-document relationships as linearly-independent vectorsor factor values. The use of only k factors or the k-largest approximate singulartriplets obtained by the ULV decomposition is achieved by approximating the orig-inal term-by-document matrix byAk = kXi=1 ui � lii � vTi ; (2.4)where lii denotes the i-th diagonal entry of L from Equation (2.2). This rank-k matrix approximation of A closely resembles the more natural rank-k matrixapproximations obtained by truncating the SVD or ULV, but is more e�cient toderive when Lk is diagonally dominant and kHk is su�ciently small.In some sense, the ULV (or SVD from Equation (2.1)) is one way to derive a setof uncorrelated indexing variables or factors so that each term and document canbe represented by a vector in k-space whose coordinates are de�ned by the elementsof the left or right approximate singular vectors (see Table 1).It is important for the LSI method that the derived Ak matrix does not recon-struct the original term-by-document matrix A exactly. The ULV decomposition,like the SVD, captures most of the important underlying structure in the associa-tion of terms and documents, yet at the same time removes the noise or variabilityin word usage that plagues word-based retrieval methods. Intuitively, since thenumber of dimensions, k, is much smaller than the number of unique terms, m,14/1/1996 23:59 PAGE PROOFS paper



6 M.W. Berry and R.D. FierroTable 1. Interpretation of ULV components within LSI.Ak = Rank-k approx. to A m = Number of termsU = Term vectors n = Number of documentsdiag(Lk) = Diagonal elements of Lk k = Number of factorsV = Document vectors r = Rank of Aminor di�erences in terminology will be ignored. Terms which occur in similar doc-uments, for example, will be near each other in the k-dimensional factor space evenif they never both occur in the same document. This means that some documentswhich do not share any words with a user's query may none the less be near it ink-space. This derived representation which captures term-term associations is usedfor retrieval.Consider the words doctor, physician, patient, and elephant. The terms doctor andphysician are synonyms, patient is a related concept and elephant is unrelated. Inmost retrieval systems, the query physicians is no more likely to retrieve documentsabout doctors than documents about elephants, if neither used precisely the termphysician in the documents. It would be preferable if a query about physiciansalso retrieved articles about doctors and even articles about patients to a lesserextent. The derived k-dimensional feature space can represent these useful terminterrelationships. Roughly speaking, the words doctor and physician will occur withmany of the same words (e.g., disease, health, hospital, illness, medicine, surgery,etc.), and they will have similar representations in k-space. The contexts for patientwill overlap to a lesser extent, and those for elephant will be quite dissimilar. Themain idea in LSI is to explicitly model the interrelationships among terms (using atwo-sided orthogonal decomposition) and to exploit this to improve retrieval.2.3. QueriesA query, i.e., a set of words, can be considered as just another document which canbe represented as a vector. Speci�cally the m � 1 user query vector q is located atthe weighted sum of its component term vectors in k-space. For example, q can berepresented as a k-dimensional vector q̂ viaq̂ = qTUk [diag(Lk)]�1 ; (2.5)where diag(Lk) denotes the diagonal elements of Lk, the k�k principal submatrix ofL. With this representation, the query vector can then be compared to all existingdocument vectors, and the documents ranked by their similarity (nearness) to thequery. One common measure of similarity is the cosine between the query vectorand document vector. Typically, the z closest documents or all documents exceedingsome cosine threshold are returned to the user [9].2.4. UpdatingAn LSI-generated database already requires that a collection of text objects beparsed, a term-by-document matrix be constructed, and the ULV decomposition14/1/1996 23:59 PAGE PROOFS paper



Low-Rank Orthogonal Decompositions for Information Retrieval 7(or SVD) of the term-by-document matrix be determined. If additional terms anddocuments are to be included, a few alternatives for incorporating them are possible:� fold-in the new terms and documents, or� update an existing ULV decomposition (or SVD) of the original term-by-documentmatrix.Four terms are de�ned below to avoid confusion when discussing updating. Up-dating is the general process of adding new terms and/or documents to a givenLSI-generated database. Updating may refer to folding-in, ULV-updating, or SVD-updating. SVD-updating has been considered in [19], and ULV-updating is the focusof Section 5. Folding-in terms or documents is a much simpler alternative that usesan existing ULV decomposition (or SVD) to represent new information.Recomputing the ULV decomposition is not a true updating method, but rather away of reconstructing a new LSI-generated database with additional terms and/ordocuments. Recomputing the ULV decomposition of a larger term-by-documentmatrix incurs a higher computational cost for large problems, and may also im-pose excessive memory demands. This procedure allows the new p terms and qdocuments to directly a�ect the latent semantic structure by creating a new term-by-document matrix A(m+p)�(n+q) , computing the ULV decomposition of the newterm-by-document matrix, and generating a di�erent Ak matrix. Folding-in, on theother hand, is based on the existing latent semantic structure (the current Ak).New terms and documents will have no e�ect on the representations of any pre-existing terms and documents. Folding-in typically requires less computation timeand memory but can produce inaccurate representations of new terms and docu-ments. A potential loss of orthogonality in the columns of an updated Uk matrixfor terms and Vk matrix for documents can distort the correct semantic structure(see [3]).Folding-in documents is basically the process described in Section 2.3. for queryrepresentation. New documents are represented in k-space as weighted sums of theircomponent term vectors. New document vectors are then appended to the set ofexisting document vectors or columns of Vk (see Figure 1). Similarly, new terms,which can be represented as a weighted sum of the vectors for documents they occurin, are appended to the set of existing term vectors or columns of Uk (see Figure2).To fold-in a new m� 1 document vector, d, into an existing LSI model, a projec-tion, d̂, of d onto the span of the current term vectors (columns of Uk) is computedby d̂ = dTUk [diag(Lk)]�1 : (2.6)Similarly, to fold-in a new 1 � n term vector, t, into an existing LSI model, aprojection, t̂, of t onto the span of the current document vectors (columns of Vk) isdetermined by t̂ = tVk [diag(Lk)]�1 : (2.7)3. Obtaining the Semantic Model AkRank-revealing algorithms are usually applied to ill-conditioned matrices to deter-mine the number of large singular values or small singular values, and therefore the14/1/1996 23:59 PAGE PROOFS paper



8 M.W. Berry and R.D. Fierro
pAkm � nm � (n+p) = Ukm � km � k diag(Lk)k � kk � k pV Tkk � (n+p)k � n

Figure 1. Block matrix representation of folding-in p documents.
Ak q

(m+q) � nm � n = Uk(m+q) � km � k q diag(Lk)k � kk � k V Tkk � nk � n
Figure 2. Block matrix representation of folding-in q terms.14/1/1996 23:59 PAGE PROOFS paper



Low-Rank Orthogonal Decompositions for Information Retrieval 9numerical rank. This is important for many ill-conditioned least squares problems,for example, where one can then replace the problem with a nearby well-conditionedone to compute a less sensitive solution, cf. [13].Rank-revealing algorithms applied to term-by-document matrices for LSI requirespecial handling for the following reasons:� The numerical rank of the matrix is close to min(m;n), but only approximationsof the k-largest singular values and singular vectors are needed for LSI, wherek� min(m;n). The matrix cannot be expected to have a large gap between �kand �k+1, thus a partition based on the numerical rank is generally too coarseto extract accurate approximations of the singular subspaces associated with thek-largest singular values.� Term-by-document matrices are normally large and sparse. Rank-revealing algo-rithms typically preprocess such matrices using specialized orthogonal triangular-ization via Givens rotations [12] to obtain the triangular matrix and subsequentrank-revealing form. However, the rank-revealing steps can lead to massive �ll-infor the triangular matrix.Any approach customized for the term-by-document matrix would, at the least,need to compute good estimates of the k-largest singular values and singular vectors,and should preserve the sparsity of the original matrixA. In addition, the algorithmmust be amenable to updating.Algorithms for computing two-sided orthogonal decompositions were presentedand analyzed in [12]. One algorithm, called Algorithm L-ULV(A)P, combinesprincipal singular vector estimation, Householder transformations, and deationprocedures to estimate the column spaces of �Uk and �Vk. This algorithm preservesthe structure or sparsity of A. The main idea behind the algorithm is as follows.Suppose we have a technique to computeA = ~U ��1 00 A2� ~V T ;where �1 is the largest (principal) singular value of A. Then the second largestsingular value of A, i.e., �2, is given by �2 = kA2k2, and we can apply the sametechnique to A2 (deation) to obtainA = Û 0@�1 0 00 �2 00 0 A31A V̂ T :On the other hand, suppose the technique computesA = ~U � l11 0h1 A2� ~V T ;where kh1k2 is su�ciently small and l11 approximates �1. We can apply the same14/1/1996 23:59 PAGE PROOFS paper



10 M.W. Berry and R.D. Fierrotechnique to A2 to obtain A = Û 0@ l11 0 0ĥ21 l22 0ĥ1 h2 A31A V̂ T ;such that kh2k2 is su�ciently small and l22 approximates �2. Further, the �rst twocolumns of Û and V̂ approximate the left and right singular vectors correspondingto �1 and �2, respectively (cf. [12]).Our modi�cation of Algorithm L-ULV(A)P relies on a deation parameter�. We monitor khik2 and simply delay deation until either khik2 is su�cientlysmall, i.e., khik2 < �, or the maximum number of attempts have been made toreduce khik2. With a su�cently small � and khik2 < � for i = 1; : : : ; k, then Lkis diagonally dominant and the norm of the resulting o�-diagonal block satis�eskHk2 � pk�. Thus, a su�ciently small deation parameter � guarantees accuratesingular subspace approximations needed for LSI.We de�ne Qtj=sB(j) = B(s)B(s+1) � � �B(t) for s � t and Qtj=sB(j) = I for t < s,where I is the identity matrix of appropriate dimensions.Algorithm L-ULV(A)P for LSI:Input:A, an m � n data matrix� , a rank tolerance�, a deation toleranceN� , maximum number of re�nements before deationNmax, an upper bound for the number of LSI factors kOutput:orthogonal matrices U and V stored in compact forminteger k such that �k > � > �k+1 or k = Nmax.1. Initialize i 1, count 0, U 2 <m�0, and V 2 <n�0.2. Compute the estimate n�(1)est; u(1)est; v(1)esto of the principal (largest) singulartriplet of A.3. While ��(i)est > � and i � Nmax� do4. Compute the Householder vectors z(i)u and z(i)v corresponding to u(i)est andv(i)est, respectively, and store:U  �U; � 0z(i)u �� and V  �V; � 0z(i)v �� :5. De�ne the Householder matricesP(i) � Im�i+1 � �(i)u z(i)u �z(i)u �T and Q(i) � In�i+1 � �(i)v z(i)v �z(i)v �T ;where �(i)u � 2=kz(i)u k22 and �(i)v � 2=kz(i)v k22, and de�ne the submatricesP (i)2 � P(i)(1 : m � i + 1; 2 : m� i+ 1) and14/1/1996 23:59 PAGE PROOFS paper



Low-Rank Orthogonal Decompositions for Information Retrieval 11Q(i)2 � Q(i)(1 : n � i + 1; 2 : n� i + 1):6. Set count count + 1. De�ne hi � M (2 : m � i + 1; 1), whereM � P(i) � �Qi�1j=1P (j)2 �T � A�Qi�1j=1Q(j)2 �Q(i).7. If khik2 < � or count = N�Deate: set i i+ 1 and count 0.End If8. Compute the estimate n�(i)est; u(i)est; v(i)esto of the principal singular tripletof the (m � i+ 1)� (n � i + 1) matrix �Qi�1j=1P (j)2 �T � A�Qi�1j=1Q(j)2 ,(see [12]).End of While loop9. Set k  i� 1.End of algorithm.We note that if deation does not occur then Step 8 is a re�nement step in thatthe needed singular triplet estimate must be recomputed (in iterative algorithms itmakes good sense to incorporate the previous estimate as the initial value). Whenthe algorithm terminates, the orthonormal factors Uk and Vk needed in LSI can berecovered by: Uk = � Ik0m�k � Vk = � Ik0n�k�for t = k:�1: 1 for t = k:�1: 1Uk = � I 00 P(t)�Uk Vk = Vk � I 00 Q(t)�end end.The backward accumulation scheme is used, for example, in the skinny QR factor-ization (see p. 199 of [17]). It can be shown that the �rst k diagonal elements ofL are given by lii = ��(i)est. Here, the singular vector estimate u(i)est is computed(in Step 8 above) by means of Lanczos (or Power method) iterations, cf. [12], fromwhich �(i)est and v(i)est can be obtained. Let s denote a �xed number of iterationsthe Lanczos (or Power) method used to compute the initial estimate u(i)est. If theresulting khik2 is su�ciently small, deation occurs (i  i + 1). Otherwise, u(i)estmust be improved to reduce khik2. Suppose s Lanczos (or Power) iterations arealso used for each re�nement of the estimate u(i)est, and let I denote the averagenumber of times this step is repeated (usually 0 � I < 1). The op (oating-pointoperation) count for computing the needed LSI factors using the modi�ed form ofAlgorithm L-ULV(A)P (applied to a general m � n matrix A with m � n) is14/1/1996 23:59 PAGE PROOFS paper



12 M.W. Berry and R.D. Fierrogiven by 4(m+ n)k2 �s + 1 + I � s + 12(I + 1)�+M (A) �[2(k + 2)(s + I � s) + k(I + 1)] ; (3.8)where M (A) is the number of ops required to compute a matrix-vector productAx or yTA. All lower-order terms have been neglected, including those coming fromthe fact that the dimensions ofM in Step 6 are actually reduced in each step (theseterms are negligible as long as k � n). The op count in Equation (3.8) clearlyillustrates how the overhead depends on both s and I.For a 285�100 sparse term-by-document matrix (with terms required to globallyoccur at least 5 times in the �rst 100 abstracts parsed, see MED collection in [9]),Figure 3 illustrates the number of iterations of the Lanczos methods needed toproduce n�(i)est; u(i)est; v(i)esto ; i = 1; 2; : : : ; 25;in Steps 2 and 8 of the algorithm. The cumulative number of iterations are shownby dashed or dotted lines and bold solid lines indicate when additional re�nementiterations were required for � = 10�2; 10�3. The maximum number of iterationsallowed for the Lanczos method to produce any approximate singular triplet rangedfrom s = 10 to s = 20 for these experiments. Residual errors, kr(i)estk2, of O(�) wereobtained for each approximate singular triplet n�(i)est; u(i)est; v(i)esto, wherekr(i)estk2 = h(kAv(i)est � �(i)estu(i)estk22 + kATu(i)est � �(i)estv(i)estk22) 12 i= hku(i)estk22 + kv(i)estk22i12 :Figure 3 clearly illustrates that the frequency of re�nement (I) for n�(i)est; u(i)est; v(i)estowill increase for smaller values of s (the number of Lanczos iterations). However,to maintain a more moderate computation cost (ops) the number of Lanczos it-erations (s) should not be too large (e.g., s = 15 curve versus s = 20 curve inFigure 3(a)). For smaller values of �, a larger number of Lanczos iterations (s) willensure the desired accuracy (�) in the approximate singular triplets [12]. However,as illustrated in Figure 3(b), the cost (in iterations) per triplet will be higher re-gardless of the number of Lanczos iterations. Although a suitably large value of swill most likely yield a substantial reduction in re�nement steps, the overall num-ber of Lanczos iterations (or steps) may be excessive (s = 20 curve versus s = 15curve).4. A Demonstration of Latent Semantic IndexingIn this section, LSI and the folding-in process discussed in Section 2.4. are applied toa small database of medical topics. In Table 2, 18 topics are taken from the testbedof 1033 MEDLINE abstracts mentioned in Section 2.4.. All the underlined words14/1/1996 23:59 PAGE PROOFS paper
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(a) � = 10�2 (b) � = 10�3Figure 3. Cumulative iteration counts for the Lanczos method within AlgorithmL-ULV(A) when used to approximate the 25-largest singular triplets of the 285 � 100MEDLINE test matrix.in Table 2 denote keywords which are used as referents to the medical topics. Theparsing rule used for this sample database required that keywords appear in morethan one topic. Of course, alternative parsing strategies can increase or decreasethe number of indexing keywords (or terms).Corresponding to the text in Table 2 is the 18 � 14 term-by-document matrixshown in Table 3. The elements of this matrix are the frequencies in which a termoccurs in a document or medical topic (see Equation (2.3)). For example, in medicaltopic M2, the second column of the term-by-document matrix, culture, discharge,and patients all occur once. For simplicity, term weighting is not used in this examplematrix. Now compute the ULV decomposition (with k = 2) of the 18 � 14 matrixin Table 2 to obtain the rank-2 approximation A2 as de�ned in Equation (2.4).Using the �rst column of U2 multiplied by l11 for the x-coordinates and the secondcolumn of U2 multiplied by l22 for the y-coordinates, the terms can be representedon the Cartesian plane. Similarly, the �rst column of V2 scaled by l11 are the x-coordinates and the second column of V2 scaled by l22 are the y-coordinates for thedocuments (medical topics). Figure 4 is a two-dimensional plot of the terms anddocuments for the 18� 14 sample term-by-document matrix.Notice the documents and terms pertaining to patient behavior or hormone pro-duction are clustered above the x-axis while terms and documents related to blooddisease or fasting are clustered near the lower y-axis. Such groupings suggest thatsubsets of medical topics such as fM2, M3, M4g and fM10, M11, M12g each14/1/1996 23:59 PAGE PROOFS paper



14 M.W. Berry and R.D. FierroTable 2. Database of medical topics from MEDLINE. Underlined keywords appear inmore than one topic.Label Medical TopicM1 study of depressed patients after discharge with regard to age of onset and cultureM2 culture of pleuropneumonia like organisms found in vaginal discharge of patientsM3 study showed oestrogen production is depressed by ovarian irradiationM4 cortisone rapidly depressed the secondary rise in oestrogen output of patientsM5 boys tend to react to death anxiety by acting out behavior while girls tendedto become depressedM6 changes in children's behavior following hospitalization studied a week afterdischargeM7 surgical technique to close ventricular septal defectsM8 chromosomal abnormalities in blood cultures and bone marrow from leukaemicpatientsM9 study of christmas disease with respect to generation and cultureM10 insulin not responsible for metabolic abnormalities accompanying a prolongedfastM11 close relationship between high blood pressure and vascular diseaseM12 mouse kidneys show a decline with respect to age in the ability to concentratethe urine during a water fastM13 fast cell generation in the eye lens epithelium of ratsM14 fast rise of cerebral oxygen pressure in ratscontain topics of similar meaning. Although topics M1 and M2 share the poly-semous terms culture and discharge they are not represented by nearly identicalvectors by LSI. The meaning of those terms in topics M1 and M2 are clearly dif-ferent and literal-matching indexing schemes have di�culty resolving such contextchanges. Following the discussion of query representation in Section 2.3., the nextsection demonstrates how a particular query is processed for the small MEDLINEcollection.4.1. QueriesSuppose we are interested in the documents that contain information related tothe age of children with blood abnormalities. Recall that a query vector (q) can berepresented as (q̂) via q̂ = qTUk [diag(Lk)]�1. Since the words of, children, and withare not indexed terms (i.e., stop words) in the database, they are omitted from thequery leaving age blood abnormalities. Mathematically, the Cartesian coordinatesof the query are determined by Equation (2.5) and the sample query age bloodabnormalities is shown as the vector labeled QUERY in Figure 5. This query vectoris then compared (in the Cartesian plane) to all the documents in the database. Alldocuments whose cosine with the query vector is greater than 0:85 are indicatedby the shaded region of Figure 5.A di�erent cosine threshold, of course, could have been used so that a larger or14/1/1996 23:59 PAGE PROOFS paper



Low-Rank Orthogonal Decompositions for Information Retrieval 15Table 3. The 18 � 14 term-by-document matrix corresponding to the medical topics inTable 2.Terms DocumentsM1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14abnormalities 0 0 0 0 0 0 0 1 0 1 0 0 0 0age 1 0 0 0 0 0 0 0 0 0 0 1 0 0behavior 0 0 0 0 1 1 0 0 0 0 0 0 0 0blood 0 0 0 0 0 0 0 1 0 0 1 0 0 0close 0 0 0 0 0 0 1 0 0 0 1 0 0 0culture 1 1 0 0 0 0 0 1 1 0 0 0 0 0depressed 1 0 1 1 1 0 0 0 0 0 0 0 0 0discharge 1 1 0 0 0 1 0 0 0 0 0 0 0 0disease 0 0 0 0 0 0 0 0 1 0 1 0 0 0fast 0 0 0 0 0 0 0 0 0 1 0 1 1 1generation 0 0 0 0 0 0 0 0 1 0 0 0 1 0oestrogen 0 0 1 1 0 0 0 0 0 0 0 0 0 0patients 1 1 0 1 0 0 0 1 0 0 0 0 0 0pressure 0 0 0 0 0 0 0 0 0 0 1 0 0 1rats 0 0 0 0 0 0 0 0 0 0 0 0 1 1respect 0 0 0 0 0 0 0 1 0 0 0 1 0 0rise 0 0 0 1 0 0 0 0 0 0 0 0 0 1study 1 0 1 0 0 0 0 0 1 0 0 0 0 0smaller set of documents would be returned. The cosine is merely used to rank-orderdocuments and its numerical value is not always an adequate measure of relevance[19,22].4.2. Comparison with Lexical MatchingIn this example, LSI has been applied using two factors, i.e., A2 is used to ap-proximate the original 18�14 term-by-document matrix). Using a cosine thresholdof :85, three medical topics related to blood abnormalities and kidney failure werereturned: topics M8, M9, and M12. If the cosine threshold was reduced to just:75, then titles M7 and M11 (which are somewhat related) are also returned.With lexical-matching, �ve medical topics (M1, M8,M10, M11,M12) would bereturned. Clearly, topics M1 and M10 are not relevant and topic M9 would bemissed. On the other hand, LSI is able to retrieve the most relevant topic fromTable 2 (i.e., M9) to the original query age of children with blood abnormalitiessince christmas disease is the name associated hemophilia in young children. Thisability to retrieve relevant information based on context or meaning rather thanliteral term usage is the main motivation for using LSI.Table 4 lists the LSI-ranked documents (medical topics) with di�erent numbersof factors (k). The documents returned in Table 4 satisfy a cosine threshold of :40,i.e., returned documents are within a cosine of :40 of the pseudo-document used torepresent the query. As alluded to earlier, the cosine best serves as a measure forrank-ordering only as Table 4 clearly demonstrates that its value associated withreturned documents can signi�cantly vary with changes in the number of factors k.14/1/1996 23:59 PAGE PROOFS paper
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18 M.W. Berry and R.D. FierroTable 4. Returned documents and corresponding cosine values based on di�erentnumbers k of LSI factors for a �xed cosine threshold of 0:40.Number of Factorsk = 2 k = 4 k = 8M 9 1.00 M 8 0.92 M 8 0.67M12 0.88 M 9 0.89 M12 0.55M 8 0.85 M 2 0.64 M10 0.54M11 0.82 M10 0.48M10 0.79 M12 0.46M 7 0.74 M11 0.40M14 0.72M13 0.71M 4 0.67M 1 0.56M 2 0.42 Table 5. Additional medical topics for updating.Label Medical TopicM15 behavior of rats after detected rise in oestrogenM16 depressed patients who feel the pressure to fastthen construct the rank-2 approximation to ~A given by~A2 = ~U2 diag(~L2) ~V T2 : (4.9)Figure 7 is a two-dimensional plot of the 18 terms and 16 documents (medical topics)using the elements of ~U2 and ~V2 for term and document coordinates, respectively.Notice the di�erence in term and document positions between Figures 6 and 7.Clearly, the new medical topics from Table 5 have helped rede�ne the underlyinglatent structure when the ULV decomposition of ~A is computed. That is, one candiscuss blood pressure and behavioral pressure in di�erent contexts. Note that inFigure 7 (unlike Figure 6) the topics (old and new) related to the use of rats forma well-de�ned cluster or subset of documents. Folding-in the 2 new medical topicsbased on the existing rank-2 approximation to A (de�ned by Table 3) may notaccurately reproduce the true LSI representation of the new (or updated) database.In the case of topic M15, for example, the existing LSI model did not reect theassociation of the term behavior with rats, and hence the folding-in procedure failedto form the cluster fM13, M14, M15g of related documents shown in Figure 7.Updating methods which can approximate the ULV (or SVD) of the larger term-by-document matrix ~A become attractive in the presence of memory or time con-straints. In practice, the di�erence between folding-in and ULV-updating is likely todepend on the number of new documents and terms relative to the number in theoriginal ULV decomposition of A. Thus, we expect ULV-updating to be especiallyvaluable for rapidly changing databases. The accuracy of SVD-updating approaches14/1/1996 23:59 PAGE PROOFS paper



Low-Rank Orthogonal Decompositions for Information Retrieval 19
0.0 0.2 0.4 0.6 0.8 1.0

  0.1

  0.2

 -0.2

 -0.4

 -0.6

abnormalities

age

behavior

blood

close    

culture  

depressed

discharge

disease

fast

generation

oestrogen

patients

pressure

rats

respect
rise

study

M7

M11

M1 

M8

M5
M4

M3

M6

M2

M10

M12

M14

M9  

M13

M15

M16

Figure 6. Two-dimensional plot of folded-in medical topics M15 and M16.can be easily compared to that obtained when the SVD of ~A is explicitly computed,cf. [1] and [19].5. ULV-UpdatingThe process of ULV-updating discussed in Section 2.4. can also be illustrated us-ing titles from Tables 2 and 5. The three steps required to perform a completeULV-update involve adding new documents, adding new terms, and correction forchanges in term weightings. The order of these steps, however, need not follow theordering presented in this section (see [3,19]).14/1/1996 23:59 PAGE PROOFS paper
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Figure 7. Two-dimensional plot of terms and documents using the ULV decompositionof a reconstructed term-by-document matrix.5.1. Matrix RepresentationsLet D denote the p new document vectors to process, then D is an m � p sparsematrix since most terms (as was the case with the original term-by-documentmatrixA) do not occur in each document. D is appended to the columns of a rank-kapproximation Âk of the m�n matrixA so that the k-largest approximate singularvalues and corresponding singular vectors ofB = (Âk j D) (5.10)are computed. This is almost the same process as recomputing the ULV, only A isreplaced by Âk. A suitable choice for Âk is discussed in Section 5.2..Let T denote a collection of q � 1 term vectors for ULV-updating. Then T is a14/1/1996 23:59 PAGE PROOFS paper



Low-Rank Orthogonal Decompositions for Information Retrieval 21q � n sparse matrix, since each term rarely occurs in every document. T is thenappended to the rows of Âk so that the k-largest approximate singular values andcorresponding singular vectors of C = � ÂkT � (5.11)are computed.The correction step for incorporating changes in term weights (see Equation(2.3)) is performed after any terms or documents have been ULV-updated and theterm weightings of the original matrix have changed. For a change of weightings inj terms, let Yj be an m � j matrix comprised of rows of zeros or rows of the j-thorder identity matrix, Ij , and let Zj be an n� j matrix whose columns specify theactual di�erences between old and new weights for each of the j terms (see [19] forexamples). Computing the ULV decomposition of the following rank-j update toÂk de�nes the correction step � = Âk + YjZTj : (5.12)5.2. ULV-Updating ProceduresThe mathematical computations required in each phase of the ULV-updating pro-cess are detailed in this section. Table 6 contains a list of symbols, dimensions, andvariables used to de�ne the ULV-updating phases. ULV-updating incorporates newterm or document information into the current semantic model (Ak from Equa-tion (2.4)) using sparse term-by-document matrices (D, T , and YjZTj ) discussed inSection 5.1..The ULV-updating procedures below exploit the natural rank-k matrix approxi-mation of the original term-by-document matrix A, i.e.,Âk = UkLkV Tk ;from which the current semantic model Ak = Ukdiag(Lk)V Tk (see Equation (2.4)) isderived. Recall that the diagonal elements of the triangular matrix Lk and columnsof the orthogonal matrices Uk, Vk serve as approximations to the singular values andsingular vectors, respectively, of the original term-by-document matrix A. A briefsummary of the required computations for updating the current rank-k semanticmodel, Ak, using standard linear algebra is given below.5.2.1. Updating Documents Let B = (Âk j D) from Equation (5.10) havethe ULV decomposition B = UBLBV TB . ThenUTk B � Vk OO Ip � = �Lk j UTk D� ;where Lk is the lower triangular matrix de�ned by Equation (2.2), and UTk D isa dense k � p matrix. Since Uk is typically stored as a dense matrix, the nonzerostructure of D can be exploited in computing the matrix product UTk D. If Pk is theappropriate (k+p)� (k+p) orthogonal matrix (constructed from the accumulation14/1/1996 23:59 PAGE PROOFS paper



22 M.W. Berry and R.D. FierroTable 6. Symbols used in ULV-updating phases.Symbol Dimensions De�nitionA m� n Original term-by-document matrixÂk m� n Rank-k ULV decomposition of AUk m� k First k columns of U inULV decomposition for ALk k � k Lower triangular k � k principal submatrixof L in ULV decomposition for AVk n� k First k columns of V inULV decomposition for AZj n � j Adjusted term weightsYj m� j Permutation matrixD m� p New document vectorsT q � n New term vectorsof either Householder transformations or Givens rotations for just this step) suchthat �Lk j UTk D�Pk = �~Lk j 0� ;then it follows thatUB = Uk; VB = � Vk OO Ip �Pk; and LB = ~Lk: (5.13)Hence UB and VB are m� k and (n + p)� (k + p) dense matrices, respectively.5.2.2. Updating Terms Let C = � ÂkT � from Equation (5.11) have the ULVdecomposition C = UCLCV TC . Then� UTk OO Iq �CVk = � LkTVk � ;where TVk is a dense q � k matrix. Here, T is a sparse matrix whose nonzerostructure can be exploited for right multiplication by the dense matrix Vk. Let Ik�1be the (k � 1)-th order identity matrix. If Qk is the appropriate (q + 1) � (q + 1)orthogonal matrix (constructed from accumulated Householder transformations orGivens rotations for this step) such that� Ik�1 OO QTk �� LkTVk � = � ~LkO � ;then it follows thatUC = � Uk OO Iq �� Ik�1 OO Qk � ; VC = Vk; and LC = ~Lk:Hence UC and VC are (m+ q)� (k+ q) and n�k dense matrices, respectively. Notethat the �rst k � 1 rows of the lower triangular matrices Lk and ~Lk are identical.14/1/1996 23:59 PAGE PROOFS paper



Low-Rank Orthogonal Decompositions for Information Retrieval 235.2.3. Term Weight Corrections Let � = Âk + YjZTj , where Yj is m �j and Zj is n�j from Equation (5.12) have the ULV decomposition � = U�L�V T� .Then UTk �Vk = Lk +Xj ;where Xj = UTk YjZTj Vk is a dense k�k matrix. The sparsity of Zj can be exploitedfor the intermediate matrix product ZTj Vk prior to left multiplication by the appro-priate columns of Uk de�ned by UTk Yj . If Wk is the appropriate k � k orthogonalmatrix (constructed from either Householder transformations or Givens rotationsfor this triangularization step) such thatWTk (Lk +Xj) = ~Lk;where ~Lk is a k � k lower triangular matrix, then it follows thatU� = UkWk ; V� = Vk and L� = ~Lk:Hence U� and U� are m � k and n� k dense matrices, respectively.5.2.4. Accuracy and Costs With regard to the accuracy of the singular sub-space approximations generated from the updated ULV decompositions discussedabove, the magnitude of the diagonal elements of ~Lk, i.e., j~liij, in each case canbe used as approximations for �(i)est of the respective matrices B, C, and �. Theaccuracy of the ~lii's can be improved through systematic reduction in the norm ofthe o�-diagonal elements of ~Lk, as provided by standard QR iterations (with shiftsfor optimal convergence). As with Algorithm L-ULV(A)P of Section 3., deationoccurs once an o�-diagonal element of ~Lk is less than � in magnitude.As noted in Section 3., LSI requires the k-largest singular values and correspond-ing singular vectors, where k � min(m;n) remains �xed (even after applying theupdating procedures discussed above). Hence, rank-revealing techniques are notrequired for the ULV decomposition of matrices B, C, and �.Table 7 contains the complexities (ignoring lower order terms) for folding-in termsand documents, and the three phases of ULV-updating. From these complexitiesthe required number of oating-point operations (or ops) for each method canbe compared for varying numbers of added documents or terms. Recall that Ukand Vk are already known (see Table 3.8) so that the only terms involving m andn are those associated with multiplication by the dense matrices Uk and Vk, andthe sparse matrices D, T , and Zj . As shown in [3] and [19] for SVD-updating,the computational complexity in each case of ULV-updating depends the values ofthe variables listed in Table 6. For example, if the sparsity of the D matrix fromEquation (5.10) reects that of the originalm�n term-by-document matrixA withm� n, then folding-in will still require considerably fewer ops than ULV-updatingwhen adding p new documents provided p� n.Figure 8 illustrates the number of oating-point operations (log-scale) required(using the expressions from Table 7) to update the last p = 25; 50; 75 abstracts tothe collection of MEDLINE abstracts represented by the 285 � (100 � p) sparseterm-by-document matrix previously discussed in Section 2.4.. For as few as p = 25documents, folding-in requires (on average) as much as 1:6 times more operationsthan ULV-updating with up to k = 25 LSI factors with deation tolerance � = 10�214/1/1996 23:59 PAGE PROOFS paper



24 M.W. Berry and R.D. FierroTable 7. Computational complexity of updating methods (based on the use ofHouseholder transformations) without recomputing the ULV decomposition of a new Lmatrix. The number M(G) is the number of ops required to compute a matrix-vectorproduct Gx or yTG.Method ComplexityULV-updating documents kM(D) + 2k3=3 + 2k2p+ 2kp2 + 2k2nULV-updating terms kM(T ) + 2k3=3� 2k2q + 2kq2 + qnULV-updating weight correction kM(Zj) + 2k3=3 + 2k2j � k2 + 2k2mFolding-in documents 2mkpFolding-in terms 2nkq(see Section 2.4.). For p = 75 documents (or abstracts), folding-in required (onaverage) about twice as many operations needed by ULV-updating. Recomputingthe ULV decomposition (see Equation (2.2)) for k = 1 to k = 25 LSI factors canrequire 75 and 40 times the number of oating-point operations of ULV-updatingand folding-in, respectively, when adding p = 75 new documents to the collection.When compared to SVD-updating (see [1,3,19]), Figure 9 demonstrates the clearadvantage of ULV-updating. For the same document updating depicted in Figure 8,SVD-updating requires about 6 and 14 times more oating-point operations thanULV-updating for adding p = 75 and p = 25 documents (abstracts), respectively,to the MEDLINE test collection.5.3. ULV-Updating ExampleTo illustrate ULV-updating, suppose the two medical topics in Table 5 are to beadded to the original set of medical topics in Table 2. In this example, only docu-ments are added and weights are not adjusted, hence only the ULV decompositionof matrix B in Equation (5.10) is computed.Initially, a 18� 2 term-by-document matrix, D, corresponding to the new med-ical topics in Table 5 is generated and then appended to A2 to form a 18 � 16matrix B of the form given by Equation (5.10). Following Equation 2.4, the rank-2approximation (B2) to B is given byB2 = Û2 diag(L̂2) V̂ T2 ;where the columns of Û2 and V̂2 are the left and right approximate singular vectors,respectively, corresponding to the approximate singular values l̂11 and l̂22 of B.Figure 10 is a two-dimensional plot of the 18 terms and 16 documents (medicaltopics) using the elements of Û2 and V̂2 for term and document coordinates, re-spectively. Notice the similar clustering of terms and medical topics in Figures 7(recomputing the ULV) and 10, and the di�erence in document and term cluster-ing with Figure 6 (folding-in). The slight di�erences between the plots of Figures 7and 10 can be attributed to the use of Âk rather than A (see Equation (5.10)) in14/1/1996 23:59 PAGE PROOFS paper
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26 M.W. Berry and R.D. Fierrothe ULV-updating process (Figure 10). As discussed in Section 2.2., the intent forusing rank-k approximations (Âk) to original term-by-document matrices (A) is tocapture underlying semantic structure.
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Figure 10. Two-dimensional plot of terms and documents using the ULV-updatingprocess.6. Summary and Future WorkA slight modi�cation of Algorithm L-ULV(A)P has been demonstrated to be ane�cient and suitably accurate scheme for computing the ULV decomposition ofsparse term-by-document matrices arising from information retrieval applications.The algorithm was shown to be especially attractive for its reduced computationalcomplexity in the context of updating documents, terms, or term corrections to14/1/1996 23:59 PAGE PROOFS paper
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