
Modeling the Bene�ts of Mixed Data and Task ParallelismSoumen Chakrabarti� James Demmely Katherine Yelick�AbstractMixed task and data parallelism exists naturally in manyapplications, but utilizing it may require sophisticatedscheduling algorithms and software support. Recently,signi�cant research e�ort has been applied to exploitingmixed parallelism in both theory and systems communities.In this paper, we ask how much mixed parallelism willimprove performance in practice, and how architecturalevolution impacts these estimates. First, we build andvalidate a performance model for a class of mixed taskand data parallel problems based on machine and problemparameters. Second, we use this model to estimate the gainsfrom mixed parallelism for some scienti�c applications oncurrent machines. This quanti�es our intuition that mixedparallelism is best when either communication is slow orthe number of processors is large. Third, we show that, forbalanced divide and conquer trees, a simple one-time switchbetween data and task parallelism gets most of the bene�tof general mixed parallelism. Fourth, we establish upperbounds to the bene�ts of mixed parallelism for irregular taskgraphs. Apart from these detailed analyses, we provide aframework in which other applications and machines can beevaluated.1 IntroductionMixed parallelism exists naturally in many applications. Inadaptive mesh re�nement (AMR) algorithms, there is taskparallelism between meshes and data-parallelism within amesh [2]. In computing eigenvalues of nonsymmetric ma-trices, the sign function algorithm does divide and conquerwith matrix factorizations at each division [3]. In timing-level circuit simulation there is parallelism between separatesubcircuits and parallelism within the model evaluation ofeach subcircuit [26]. In sparse matrix factorization, multi-frontal algorithms expose task parallelism between separatedense sub-matrices and data parallelism within those densematrices [16]. In global climate modeling [19], there are�Computer Science Division, U. C. Berkeley, CA94720. Supportedin part by ARPA/DOD (DABT63-92-C-0026), DOE (DE-FG03-94ER25206), and NSF (CCR-9210260, CDA-8722788 and CDA-9401156). The information presented here does not necessarily reectthe position or the policy of the Government and no o�cial endorse-ment should be inferred. Email: fsoumen,yelickg@cs.berkeley.eduyComputer Science Division and Mathematics Department,U. C. Berkeley, CA94720. Supported in part by NSF (ASC-9005933,CDA-9401156), ARPA contract DAAL03-91-C-0047via a subcontractfrom the University of Tennessee, ARPA grant DM28E04120 via asubcontract from Argonne National Laboratory, and DOE grant DE-FG03-94ER25206. Email: demmel@cs.berkeley.edu

large data parallel computations performed on grids repre-senting the earth's atmosphere and oceans, and task paral-lelism from the di�erent physical processes being modeled.Several researchers have proposed support to takeadvantage of this mixed parallelism. In the theory area,the best known on-line scheduling algorithm for mixedparallelism is 2:62-optimal [4, 11], and the best o�-linealgorithm is 2-optimal [25, 17]. In the systems area, theParadigm compiler [20], iWarp compiler [24], and NESLcompiler [6] all support limited forms of mixed task and dataparallelism, and there are plans to merge data Fortran Dwith Fortran M [12] and pC++ with CC++ [15] to supportmixed parallelism.In this paper, we step back from these algorithmic andsystems issues and address the question of how much bene�tshould be expected, and what impact architectural evolutionhas on these estimates. Speci�cally, we consider the relativee�ciency of executing a task graph with parallelizabletasks using mixed parallelism vs. pure data parallelism.In a purely data parallel execution, the tasks in the taskgraph are executed one at time using all the processorsfor each. In mixed parallelism, each task is spread overa subset of processors. We are generous in our treatmentof mixed parallelism in that tasks are modeled as having nosetup or switching cost, and optimal scheduling is assumed.By using a performance model derived from a variety ofnumerical applications, we conclude that the speedup ofmixed over data parallelism is often modest, dependingon the application and machine. Furthermore, much ofthe e�ciency of mixed parallelism can be achieved witha much simpler scheduling strategy which we call switchedparallelism, in which either data or task parallelism is usedat a given time. Switched parallelism has been foundempirically useful in FFT, sorting and certain eigenvaluesolvers. Here we analyze how close switched parallelism canbe to optimal e�ciency.Our modeling approach has two parts. First, we modelthe e�ciency pro�le of a single parallelizable task. Second,we introduce simple forms of task parallelism and see howwell this supplements the data parallelism within the tasks.For both cases we provide analytical and experimentalestimates for the maximum possible performance gainsobtained using mixed parallelism. In doing this, we makevarious reasonable assumptions about the tasks and thetask graph. Our modeling approach may be of independentinterest, because the basic recipe can easily accommodatedi�erent model components.The paper is organized as follows. Section 2 presents andjusti�es our model in the context of our problem domain.In Section 3, we estimate the performance bene�ts of mixedparallelism for a batch of independent tasks. We show thatover all possible batches with various task sizes, a balancedbatch with identical tasks shows o� mixed parallelism to thegreatest potential bene�t, so it su�ces to study this case indetail. Next we consider task graphs with dependencies inSection 4. For balanced divide and conquer trees, we presentsimulation estimates of data parallel, switched parallel, and



mixed parallel execution e�ciencies. For irregular graphs,we get some general but relatively weaker upper bounds onthe maximum marginal improvement by mixed parallelismover data parallelism. In Section 5 we present experiencewith a recent mixed parallel application. Section 6 suggestsextensions and Section 7 draws conclusions.2 The modelThe performance gain from using mixed parallelism insteadof pure data or task parallelism is a function of the machineparameters and the workload, which we visualize as atask graph with vertices representing parallelizable tasks.The parallel subroutines represented by these vertices,together with machine parameters like network latency andbandwidth, de�ne how scalable these parallelizable tasksare. We thus reduce the factors a�ecting performance tothe following.1. The scalability (equivalently, e�ciency or speedup)pro�le of the parallelizable tasks. Throughout thispaper, all vertices are assumed to run the same parallelsubroutine (or have the same e�ciency pro�le) but ondi�erent problem sizes. This is a reasonable model fora variety of divide and conquer problems.2. The structure of the task graph, which gives an idea ofthe degree of task parallelism available to supplementdata parallelism. By \structure" we mean the taskvertices and directed precedence edges of the graphand the problem sizes at the vertices.Accordingly, our model has two components. In Section 2.1we model a single task pro�le, and in Section 2.2 we modelthe task graph.2.1 The e�ciency of data parallelismWe let e(N;P ) be the parallel e�ciency of solving a problemof size N on P processors. If the serial running time isf(N), the parallel running time r(N;P ) on P processorsis r(N;P ) = f(N)=(P � e(N;P )). e(N;P ) depends onthe algorithm, and relative speeds of computation andcommunication. Despite e's possibly complex dependenceon all these parameters, we will show that for a numberof algorithms of interest, e(N;P ) is accurately modeled bya simple two-parameter function of the problem size perprocessor, N=P .By Amdahl's law, we expect e to be a decreasingfunction of P , with e(�;1) = 1. So our intuition is thate(N;P ) should be an increasing function of N=P . Wewill let e1 � 1 be its asymptotic value for large N=P .The next question is how e(N;P ) approaches e1. Thereare, of course, an in�nite number of functions to modelthis, but we shall propose a simple model that we willempirically validate. Roughly speaking, the model capturesprograms having an area-to-volume relationship betweencommunication and computation, which abounds in parallelscienti�c applications.2.1.1 The asymptotic modelThe e�ciency of a data parallel task of size N on Pprocessors is modeled ase(N;P ) = ( 1 if P = 1e11 + �P=N if P > 1. (1)

The parameter � measures how fast the e�ciency ap-proaches its asymptotic value e1. As shown in �gure 1 thee�ciency reaches half its asymptotic value when N=P = �.Thus, the smaller the value of �, the more e�cient the imple-mentation is for a �xed problem size. The parallel runningtime r(N;P ) isr(N;P ) = f(N)e1 � 1P + �N � : (2)Equation (2) says that adding processors has diminishingreturns, much like Amdahl's law. However, since no sequen-tial and perfectly parallel components can be identi�ed, theasymptotic model is not identical to Amdahl's law.
N=P�e(N;P )1e1e12Figure 1: The proposed e�ciency model for data parallelismwithin a single task.2.1.2 ValidationWe validated our model using experimental data. In �gure 2,we consider three ScaLAPACK programs: LU, QR andCholesky factorizations, and three machines: the Delta,Paragon and iPSC/860 [8]. Each graph plots performance inGFLOPS per processor versus N=P , including experimentaldata (the circles), as well as the prediction of the asymptoticmodel. The iPSC/860 experiments were run with 128processors, and the Paragon and Delta experiments were runwith both 128 and 512 processors. Each graph includes anestimate s inf of the per-processor GFLOPS as N=P ! 1and an estimate of � (sigma). The asymptotic model is agood �t for the actual e�ciency pro�les: the mean relativeerror is 6{11%.Estimates of � are important for performance analysisas well as runtime scheduling decisions, as we shall seelater. To this end, we collect values of � for some parallelscienti�c libraries [8], using existing analytical performancemodels [9, 10]. For each of these routines, we have availablethe communication and computation time as functions ofproblem size, number of processors, network latency, andnetwork bandwidth. Using these given functions, we �rstestimate the parallel running time r(N;P ) for a givenmachine and problem, then �t Equation (1) to it. Theresults are presented in Table 1.2.2 Task graph modelThe second part of our model has to address the task graphstructure. In the theory literature, irregular and even on-line task graphs are handled, but the algorithms are optimalin the asymptotic sense with constants in the range 2{2.6, in the worst case. Unfortunately, a constant factor



Machine � � M/P �MM �LU �BS �SFAlpha+ATM1 3:8� 105 62 64 1:3� 104 5:7� 106 3:4� 106 2:7� 106Alpha+ATM2 3:8� 105 15 64 6500 5:6� 106 3:4� 106 2:7� 106Alpha+Ether 3:8� 105 960 64 2:5� 105 6:9� 106 4:2� 106 3:4� 106Alpha+FDDI 3:8� 105 213 64 4:1� 104 5:9� 106 3:6� 106 2:9� 106CM5 450 4 32 53 490 2234 3826CM5+VU 1:4� 104 103 32 9100 3:1� 105 1:9� 105 1:53� 105Delta 4650 87 16 7400 1:5� 105 9:3� 104 7:2� 104HPAM (FDDI) 300 13 64 154 9300 5400 4250iPSC/860 5486 74 16 5490 1:5� 105 9:2� 104 7:3� 104Paragon 7800 9 16 633 1:25� 105 7:7� 104 6� 104SP1 2:8� 104 50 64 4250 4:8� 105 2:9� 105 2:4� 105T3D 2:7� 104 9 64 1544 4:2� 105 2:5� 105 2� 105Table 1: Estimates of � for di�erent machines and problems in the asymptotic model. The Alphas use PVM as messagingsoftware. ATM1 = current generation; ATM2 = projected next generation. HPAM = a cluster of HP workstations connectedby FDDI with a prototype active message implementation. The programs are matrix multiplication (MM), LU factorization(LU), backsolve (BS), and sign function (SF, discussed later). e1 = 1 for all problems in this table. Parameters � (latency)and � (inverse bandwidth) are normalized to a BLAS-3 FLOP, and the model is �t to data generated from analytical models[9, 10, 23]. The curves were �t for 2 � P � 500 and 100 � n = N1=2 � 10000. An estimate of memory per processor inmegabytes is given in the column marked M/P. Estimates for � and � are in part from [23, 27, 18, 1].of this magnitude (which we will call \packing loss") maysubstantially mask the bene�ts which would otherwise beobtained from mixed parallelism. Furthermore, we know ofno tighter analysis of this constant for a given graph. Weare thus faced with the following problem. Data parallelismis easy to load balance and schedule, but has scalabilitylimits (expressed by our e(N;P ) model). Task parallelismhas ideal e�ciency but shows load imbalance.We circumvent this problem by considering how mixedparallelism will perform in very favorable circumstances,namely in regular divide and conquer trees. Our assump-tions are listed below.� The task graph is a complete tree with branchingfactor d � 2.� The d child tasks of a task of size N are all of size N=c,where c > 1.� The work required to do a task of size N is f(N) = Na,where a � 1.We call such regular trees that have a root size of N as(N;a; c; d) trees. This is a very simple model, and so weneed to understand the limits of its applicability. First,task communication is not accounted for. But for a > 1,task communication cost is generally of lower order thanthe node cost f(N) (e.g., O(N) vs. O(N3=2) in the case ofmany dense matrix operations). Thus, we expect our modelto overestimate the bene�ts of mixed parallelism, providedproblems are large enough. Therefore, a prediction of littlebene�t from mixed parallelism for a particular problem islikely to be trustworthy, while a prediction of great bene�tfrom mixed parallelism must be further analyzed. Second,for evaluating e�ciency gains with high accuracy, onlyregular trees could be considered.In Section 4.2 we develop a comparatively weak boundto the bene�ts of mixed parallelism for irregular graphs. Inspite of the above restriction, we demonstrate interestinge�ects of the tree shape and size on the optimal schedulingstrategy.

3 Batch problemsWe will use the e�ciency models of the last section todetermine the best way to allocate processors to a singletask, and then to a batch of L independent, identical tasks.We argue that the bene�t of mixed over data parallelismis largest when the independent tasks are identical, ratherthan being of di�erent sizes. Finally, we give a simple near-optimal heuristic for switched execution of a batch of tasksof various sizes.3.1 Balanced batch problemsFor a single task with sequential running time f(N), thechoice is only between 1 and P processors, and the runningtime is f(N) � minn 1e1 � 1P + �N � ; 1oFor a batch of L independent tasks, each of size N , thesequential running time t1 of all L tasks is Lf(N). Thedata parallel running time tD, where we run each task indata parallel fashion one after the other, is just L times theabove expression. We let tT denote the task parallel runningtime, where we assign one processor per task. Finally, welet tM denote the mixed parallel running time, the optimalrunning time over all possible assignments of processors totasks. Let eD, eS , and eM be the corresponding overalle�ciencies.By allocating only one processor per task, we can getparallel execution time dL=Pef(N). Since the work lowerbound is Lf(N)=P , pure task parallelism is optimal whenL � P (modulo rounding e�ects, which we ignore here andelsewhere). Thus, we need only consider the case L < P .Also assume L divides P . The following is easily seen.Lemma 3.1 When L divides P , the running time forL independent tasks of size N in the asymptotic modelusing optimal mixed parallelism is tM = f(N) �min�1; 1e1 �LP + �N �	, and the running time using dataparallelism is tD = Lf(N)�min�1; 1e1 � 1P + �N �	.The next corollary says how much faster mixed parallelismcan be than data parallelism.
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/PFigure 2: Validation of the asymptotic model using data from the ScaLAPACK implementations of LU, QR, and Cholesky(CH) factorization programs. The machines are iPSC/860 (i860), Paragon (para) and Delta (delt). In each graph, s inf is theper-processor GFLOPs as N=P !1, and sigma is the � in the asymptotic model.Corollary 3.2 When task parallelism is not optimal, therelative improvement of using mixed parallelism over puredata parallelism for the batch problem iseMeD = N�P + 1N�P + 1L (3)Example 3.3 We apply this analysis to complex matrixmultiplication, which was reported as a benchmark for theIllinois Paradigm compiler [20]. The task is MM, themachine is the CM5 without vector units, and L = 4.From �gure 1 we obtain � = 53 and e1 = 1 for thisproblem. To attain a relative improvement � of mixed overdata parallelism, i.e. eD=eM < 1 � �, we need the problemsize to be small. Speci�cally, if each MM involves n � nmatrices, we can substitute the numbers into (3) and seethat n needs to be less than roughly p53P (3� 4�)=4� forthis improvement. E.g., if P = 64 and � = 0:5, then n < 42,a tiny problem indeed. It is interesting that the experimentsreported in [20] for the CM5 use P 2 f64; 128g processors

and n = 64. On the Paragon with P = 512 and � = 633,to ensure eD=eM < 0:5 as above, we will need roughly thatn < 569, which is still not large by the standard of manyscienti�c applications: a matrix of this size �lls only 0.03%of the Paragon's total memory. 2The conclusion is that MM data parallelizes too well tobene�t much from mixed parallelism on a machine asbalanced (i.e. with as low a �) as the CM5 withoutvectors units. Better hunting grounds for cases wheremixed parallelism helps signi�cantly are more unbalancedmachines (high �) and problems with less scalable dataparallel components.Example 3.4 Changing the problem to BS in the lastexample and changing the machine to a 16 processor SP1,we see that n < 1386 must hold for eD=eM � 0:5. Thisis a relatively realistic size. Mixed parallelism improves thee�ciency from roughly 33% to 66%. 2



3.2 Unbalanced batch problemsSo far we have considered batches of tasks of identical sizeN . Here we argue that permitting tasks of di�erent sizesmakes data parallelism only closer in performance to optimalmixed parallelism, because, if there are a few large tasksthat dominate the work content of the batch, the margin forimprovement over pure data parallelism will be small.To prove this, suppose we have a batch of L > 1 tasks,the i-th task of size Ni. Suppose all tasks have the samee�ciency pro�le e(Ni; P ), and that the sequential processingtime for task i is f(Ni), where f(x) = xa as before. We willneed the following theorem for our proof.Theorem 3.5 (H�older's Inequality) Let xk; yk > 0 for1 � k � L, p > 1, and q be such that 1p + 1q = 1. ThenXk xkyk � �Xk xpk�1=p�Xk yqk�1=q:Let the pure data parallel running time be tD, the optimalswitched execution time be tS, and the optimal mixedparallel running time be tM (tM � tS � tD). We willshow that, among all possible batches, a balanced batchposes the worst instance for data parallelism and thusprovides the greatest potential for improvement throughmixed parallelism. Of course, certain quantities have toremain invariant over the space of maximization. Twoinvariants are possible:1. The total workPi f(Ni) = F , a constant.2. The total size PiNi = N , a constant.We will consider both variations.Lemma 3.6 With tD, tM , and f de�ned as above,eMeD = tDtM � 1e1 + �Pe1 �Pk f(Nk)=NkPk f(Nk) � :Proof. Immediate, using tM � 1P Pk f(Nk).The remaining exercise it to bound from above the paren-thesized term in the above RHS.Theorem 3.7 Subject to either invariant,eMeD � 1e1 �1 + �PLN � :Proof. Here we will do a continuous analysis, assumingNi's are real, rather than integers. Also assume Ni > 1 toavoid problems near zero.For constant F , the quantity in parentheses is maximizedwhen all f(Ni) = F=L. This follows since x=f�1(x) =x1�1=a which is convex for a > 1.For constant N , using p = a=(a � 1) and q = a inTheorem 3.5, we obtainXk Na�1k � 1 � �Xk Nak�1� 1a � L1=a:Since Pk Nak � L(N=L)a = Na=La�1, we havePkNa�1kPk Nak � L1=a�Pk Nak �1=a � LN :This value is achieved when all Nk are set to N=L.It can be veri�ed that the claim also holds for functions ofthe form f(x) = x log x, etc., so the claim is quite broadlyapplicable.

3.3 Switching heuristic for unbalanced batchIn the previous section we bounded the maximum possiblegain in e�ciency of mixed over data parallelism. In thissection we analyze an intuitive heuristic for a simplerexecution model: execute some of the largest tasks in dataparallel fashion, and pack the remaining small tasks into atask parallel phase.The input instance is a set of independent tasks. Task ihas size Ni and sequential running time fi = f(Ni) whichincreases with Ni. Assume all Ni are large enough that(1=P + �=Ni) < e1 (otherwise these small tasks wouldclearly be better o� in the task parallel phase). The timeto run task i in data parallel mode is Ti = f(Ni) (1=P +�=Ni)=e1, which increases with Ni. The problem is todecide for each whether to execute it in data parallel modeor task parallel mode.Let Pack(P;S) be the makespan (length of schedule)generated by packing tasks from set S in task parallelmode into P processors. There are heuristics that returnPack � (1 + �)PackOPT for any given � > 0, within timethat is polynomial in jSj [22]. It is easy to see thatPackOPT � 1P Ps2S fs +maxs2S fs. Consider the followingheuristic.Pre�x-Su�xSort tasks in decreasing order: N1 > N2 > � � � > NL.For 1 � i � L+ 1De�ne p[i] =P1�j<i Tj (p[1] = 0).De�ne s[i] = Pack(P; fi; : : : ; Lg) (s[L+ 1] = 0).Pick 1 � i� � L+ 1 such that p[i�] + s[i�] is minimal.Run tasks 1; : : : ; i� � 1 in data parallel mode.Run tasks i�; : : : ; L in task parallel mode.Suppose tasks i; : : : ; L have to be scheduled using switchedparallelism, given the constraint that the largest task i hasto be in the task parallel phase. Let s�[i] be the constrainedoptimal switched makespan.Lemma 3.8 PackOPT(P; fi; : : : ; Lg) � 2 s�[i].Proof. Because s�[i] � maxf(fi + � � �+ fL)=P; fig.Theorem 3.9 For any given � > 0, algorithm Pre�x-Su�xcan, in polynomial time, produce a schedule of length at most2 (1 + �) times OPT, the optimal makespan.Proof. Given an optimal schedule, we can locate thelargest task ` executed in task parallel mode. Pre�x-Su�xproduces a schedule of length p[i�]+s[i�] � p[`]+s[`] = p[`]+Pack(P;f`; : : : ; Lg) � p[`]+(1+�) PackOPT(P;f`; : : : ; Lg) �p[`] + 2 (1 + �)s�[`] � 2 (1 + �) (p[`] + s�[`]) = 2 (1+ �)OPT,since OPT = p[`] + s�[`].4 Task graphsIn this section we evaluate the bene�ts of mixed parallelismfor task graphs where each vertex is a parallelizable task.As mentioned before, we can make the tightest predictionsfor balanced divide and conquer trees which do not showa \packing loss" because the tasks on each level are allidentical. Later we provide a weaker performance boundfor irregular task graphs.The motivation to study divide and conquer problemsarises out of the relatively small degree of task parallelism



available in applications. Static task graphs, such asthose generated from control ow graphs by parallelizingcompilers, have a �xed small degree of task parallelism. Forexample, the benchmarks in [20] have 4{7 fold e�ective taskparallelism and the signal processing applications in [24]have a 2{5 fold task parallelism. The task parallelism inclimate modeling applications is typically no more than 4{6. Divide and conquer is a natural parallel programmingparadigm with large amounts of task parallelism, sincethe task graph (tree) is dynamically generated, and itssize depends on the problem size (unlike in the abovestatic examples). This can potentially supplement dataparallelism with more generous amounts of task parallelism.4.1 Balanced treesWe begin by motivating our choice of task graphs outlinedin Section 2.2. We include some examples, and characterizethese example as (N;a; c;d) trees. In addition to mixedand data parallelism, we study an intermediate form calledswitched parallelism, which is easier to implement thangeneral mixed parallelism but has most of the bene�ts.Finally, we compute the running times of full divide andconquer trees using these three kinds of parallelism andapply the results to our examples.4.1.1 ApplicationsEigenvalue algorithms. Eigenvalue algorithms exhibitmixed parallelism. For example, a recent implementation ofa dense nonsymmetric algorithm [3] proceeds by successivelyseparating the matrix into two submatrices, the union ofwhose eigenvalues are the eigenvalues of the original matrix.The root node has size N = n2. If the separation isperfect, each child is of size n2 � n2 , or N=4. Performingthis separation requires O(N3=2) FLOPS. This successiveseparation process forms a binary tree with c = 2, d = 4,and a = 3=2. (We scale time so that the constant in O(N3=2)becomes one.) For symmetric matrices, an algorithm similarin spirit is the beta-function technique of Bischof et al [5].An eigenvalue algorithm of a di�erent avor, but still fromthe divide and conquer category, is Cuppen's method forsymmetric tridiagonal matrices, where we can actually splitthe matrix exactly in half all the time [7, 21] (although thecosts of the children are not so simple).Sparse Cholesky. We consider the regular but importantspecial case of the matrix arising from the 5-point Laplacianon a square grid, ordered using the nested dissectionordering [13]. In this case one may think of dividing thematrix into 4 independent subproblems, corresponding todividing the square grid into 4 subsquares, each of half theperimeter. The work performed at a node which correspondsto an n�n grid is O(n3); most of this cost is a dense Choleskyof a small n � n submatrix corresponding to the nodes onthe boundaries of the subsquares. Thus N = n2, a = 3=2,c = 4 and d = 4. We will also see that the results go over tomatrices with planar graphs.4.1.2 Parallel Scheduling StrategiesWe will consider the following three strategies:Data parallelism. The tasks in the tree are executed sequen-tially, with the optimum number of processors (1 or P )used for each task.

Mixed parallelism. Level ` in the tree is treated as a batchof d` independent tasks each of size N=c`, and usingthe optimal scheduling strategy of lemma 3.1.Switched parallelism. This is a limited kind of mixed paral-lelism, in which each task runs on 1 or P processors,the machine switching between task and data paral-lelism as needed. For balanced trees, we use dataparallelism down to some level in the tree, and thenswitch to task parallelism. This switch will occur nolater than level logd P , since at this level there will bea frontier of P identical tasks, one for each processorto work at unit e�ciency. Thus, switched parallelismwill not be as e�cient as optimal mixed parallelism,but it is much simpler to implement, so if its e�ciencyis nearly as good, it is an attractive option. Switchedparallelism is used, for example, by Bischof et al [5].We will let t1, tD, tM , tS and tT denote the running timesfor sequential execution, data parallelism, mixed parallelism,switched parallelism and task parallelism, respectively, ande1 = 1, eD, eM , eS and eT denote the correspondinge�ciencies.How to schedule switched parallelism. We may applyLemma 3.1 to choose the optimal level `S at which to switchfrom data to task parallelism:`S = min�` : e1 � dP̀ + �(cd)`N � : (4)While we cannot write down a closed form expression for`S, it is easy to evaluate numerically, as well as to examinethe limiting cases of N=P � � and N=P � �. WhenN=P � �, the �rst term in the RHS dominates and so weswitch when ` > logd(Pe1), i.e. when the number of tasksd` at level ` exceeds the maximum possible speedup Pe1.When N=P � �, the second term in the RHS dominatesand so we switch when ` > logcd(Ne1=�).How to schedule mixed parallelism. We may againapply Lemma 3.1 to choose the optimal processor allocationfor each level of the tree. Analogous to switched parallelism,there is a level `M at which one switches from mixed to taskparallelism:̀ M = min�` : e1 � dP̀ + �c`N � :As before, if N=P � � then the �rst term in the RHSdominates and so we switch when ` > logd(Pe1). IfN=P � �, we switch when ` > logc(Ne1=�). Notice that,everything else being �xed, `S � `M .4.1.3 Comparing all the alternativesWe can collect all the preceding analyses into equations forthe execution times for the sequential program (t1), andparallel programs with pure data parallel (tD), switched (tS)and mixed (tM) strategies.t1 = P0�`�logc N d`f �Nc` �tD = P0�`�logc N d`f �Nc` �minn1; 1e1 � 1P + �c`N �otS = P0�`�logd P f �Nc` �minn1; d`e1 � 1P + �c`N �o



+ Plogd P<`�logc N dP̀ f �Nc` �tM = P0�`�logd P f �Nc` �minn1; 1e1 � dP̀ + �c`N �o+ Plogd P<`�logc N dP̀ f �Nc` �Notice how the essential di�erence between these expressionsis made by the position of the d` term in the �rst sum.Even after assuming the form Na for f(N), these havecumbersome closed forms, but they can be evaluated usingfew lines of Matlab code, which we do for the simulationstudies that follow. They can also be numerically solved bya runtime scheduler very quickly, compared to the bulk ofthe tasks.Our next step is to estimate the performance di�erencebetween mixed and switched parallelism. We show that fortrees large enough at the root, switched parallelism doesvery well, leaving little room for improvement. The basicintuition is that high up in the tree, a vertex has problem sizelarge enough that data parallelism is e�cient, while lowerdown, there are many problems to support task parallelism.Lemma 4.1 For (N;a; c;d) divide and conquer trees in theasymptotic model, the relative bene�t of mixed over switchedparallelism istS � tMtS < �Pe1N X0�`<`M � dca�1�`:4.1.4 Simulated performanceThe space of programs, machines, and problem sizes is toolarge to examine completely; therefore we take some slicesthrough this space that give insight into the bene�ts ofmixed parallelism for typical current architectures and oursuite of scienti�c programs. The following graphs are shown.1. We �x P = 128, e1 = 1, a = 3=2, and c = d = 4(as in sparse Cholesky), and plot eD=eM and eS=eMagainst � (log-scale) in �gure 3. The memory pernode is assumed to be 64MBytes, and the four plotscorrespond to problem sizes that �ll 25, 50, 75 and100% of the memory. For typical values of � for variousmachines see table 1.2. For the same sparse Cholesky problem, we considerfour machines. In each case, the x-axis is P . N is suchthat the memory is completely �lled. We plot eM , eS,and eD against lg P in �gure 4.3. The setting is as above, except that typical values of Pare chosen for each machine and the x-axis is n = N1=2(log-scale). See �gure 5.4. The setting is as in item (3), but the problem is thesign function program (c = 4, d = 2). See �gure 6. Foreach task, as a reasonable estimate, there are 15 LU's,15 BS's and 8 MM's. For this compound data paralleltask, estimates of � for various machines are shown incolumn SF of table 1 (e1 = 1). If Cuppen's eigenvaluealgorithm is used, and the e�ect of \deation" issmall [7], the task tree has the same parameters as thesign function example above, although � is di�erent.Comments. From table 1, typical values of � are all inthe 102 to 106 range. Throughout this range, switchedparallelism appears to make up for much of the de�citin data parallel performance. The non-monotonicity in�gure 3 occurs because after � becomes absurdly large

(> 106), parallelism is no longer e�ective. In general, for�ne-grain MPP-class machines, mixed parallelism has littlemarginal bene�t, while for more coarse-grain networks ofworkstations, switched parallelism is adequate. The choiceof strategy is dictated not only by �, N and P , but alsothe size reduction factor c and branching degree d. This isseen in �gures 5 and 6: mixed parallelism gives less marginalbene�t over switched or data for small values of d and largevalues of c (and vice versa). Figures 5 and 6 exhibit troughsbecause at the lower end of problem sizes, absolute e�ciencyof all the strategies are very small but close to each other.4.2 Irregular graphsIn this paper we have mostly addressed regular problems.For batches, we established that a balanced batch makesdata parallelism perform worst. Suppose we want toestimate the performance gains from mixed parallelismapplied to an arbitrary task graph G. As mentioned before,it depends on scalability of the data parallel vertices as wellas the amount of task parallelism. However, as we shallsee, irrespective of the task graph, the maximum possiblegains from mixed parallelism is related only to the numberof vertices L, and either the sum N of the problem sizes atthe vertices, or the total computation cost F of the graph.Theorem 4.2 The maximum bene�t from mixed paral-lelism for a task graph G with L vertices such that the sumof problem sizes is N can be bounded aseMeS � eMeD � 1e1 �1 + �PLN � ;in the asymptotic model using P processors.Proof. Given an irregular graph G with some (unknown)value of tD=tM , we will transform G into a batch G0 suchthat the running time ratio t0D=t0M � tD=tM . To do thissimply delete all dependency edges from G: clearly t0D = tDand t0M � tM . Next invoke Theorem 3.7, picking all Nk =N=L or f�1(F )=L, depending on whether the invariant isconstant N or constant F . Thus over the space of all possibletask graphs, the best one for mixed parallelism is a balancedindependent batch.We recall that we have given the mixed strategy the bene�tsof ideal e�ciency and no precedence edges. Thus the abovebound is overly optimistic. Even so, it is useful for derivingheuristic bounds to performance in some irregular graphs.E.g., Gilbert and Tarjan study nested dissection algorithmsto solve sparse systems on planar graphs [14], where aproblem of size N is divided into d = 2 subproblems,where each part is no bigger than 2N=3. No matter whatstrategy we use in the upper levels, we only need to godown to roughly `(�) = 1lg(3=2) (1 � log �log P ) � 1:71(1 � log �log P )levels before the largest leaf is of size at most �n=P . Atthis point task packing is at most (1 + �) times optimal.Given that there is not much need to go below this level,L � P 1:71, so the maximum bene�t is bounded aboveroughly by tS=tM � tD=tM � 1 + �P 2:72=N .5 ExperimentsOur analysis in this paper was in part motivated by plans toimplement a parallel divide and conquer program for �ndingall eigenvalues of a dense non-symmetric matrix using the
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pro�le equation may be tailored. Another extension couldbe to deal with non-homogeneous processor networks or non-homogeneous tasks, for example where one task is much bet-ter suited to one machine than another [19].7 ConclusionsWe have built a simple model to evaluate the utility ofmixed data and task parallelism, with the goal of identifyinghow the communication cost and graph structure of theprogram, and network performance of the machine, a�ectthe performance gain from using mixed parallelism. Ourwork provides the following.� A simple general model for the e�ciency of data par-allelism that is validated against detailed performancemodels and empirical timing data.� A simple formula for the bene�ts of mixed parallelismover data parallelism for a batch of equal-sized tasks.� An upper bound on the bene�t of mixed over dataparallelism for tasks graphs of arbitrary shape andarbitrary task sizes, assuming all tasks have the samee�ciency pro�le.� A simple heuristic for scheduling an unbalanced batchof tasks, which is 2 (1 + �)-optimal.� Simple formulae for the e�ciency of mixed, data, andswitched parallel for a regular divide and conquer tasktree.� Examples to show that switched parallelism attainsmost of the bene�t of mixed parallelism for a varietyof interesting scienti�c problems.These results have two implications. First, research resultson mixed parallelism should report the performance gainover (at least) the space of parameters we have studied; thegain at a particular value of N , P , or � may be misleading.Second, to avoid unnecessary coding complexity and/orruntime overhead, it is important to make rough estimatesof performance gains before picking data, task, mixed, orswitched parallelism.Acknowledgements. Thanks to Jaeyoung Choi, Ren-Cang Li, Xiaoye Li, Ken Stanley, Mike Mitzenmacher,S. Muthukrishnan, and the anonymous referees.
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