
LAPACK++ V. 1.0High Performance Linear AlgebraUsers' GuideApril 1994Jack DongarraRoldan PozoDavid WalkerOak Ridge National LaboratoryUniversity of Tennessee, Knoxville

Contents1 Introduction 32 Overview 52.1 Contents of LAPACK++ : 52.2 A simple code example : 62.3 Basic Linear Algebra Subroutines (BLAS++) : 62.4 Performance : 73 LAPACK++ Matrix Objects 93.1 Fundamental Matrix Operations : 93.2 General Rectangular Matrices : 103.2.1 Declarations : 103.3 Triangular Matrices : 123.3.1 Symmetric, Hermitian and SPD Matrices : 123.4 Banded Matrices : 123.4.1 Triangular Banded Matrices : 133.4.2 Symmetric and Hermitian Banded Matrices : 143.5 Tridiagonal Matrices : 144 Driver Routines 154.1 Linear Equations : 154.2 Eigenvalue Problems : 184.3 Memory Optimizations: Factorizing in place : 185 Factorization Classes 195.1 Optimizations: Factoring in Place : 19A Programming Examples 21A.1 Polynomial data �tting : 21B Release Notes for v. 1.0 23B.1 How to report bugs : 23B.2 Tips and Suggestions : 23B.3 Reducing Compilation time : 23B.3.1 Minimize the number of included header �les : 23B.3.2 Header �le madness : 23B.4 Performance Considerations : 23B.4.1 Array Bounds Checking : 23B.4.2 Improving A(i; j) e�ciency : 24B.5 Exception Handling : 241

2 CONTENTSB.6 Frequently asked questions : 24B.6.1 What is the performance of LAPACK++? : 24B.6.2 Do I need a Fortran compiler to use LAPACK++? : 24B.6.3 Why are the LAPACK++ matrix classes not templated? : : : : : : : : : : : : : : : : 24B.6.4 Can LAPACK++ work with built-in C/C++ arrays and other matrix classes? : : : : 25B.6.5 Can the matrix and vector objects be used independently of BLAS++ and LAPACK++? 25B.6.6 Is there an existing standard for C++ matrix classes? : : : : : : : : : : : : : : : : : : 25C Direct Interfaces to LAPACK and BLAS Routines 27

Chapter 1IntroductionLAPACK++ is an object-oriented C++ extension to the LAPACK [1] library for numerical linear algebra.This package includes state-of-the-art numerical algorithms for the more common linear algebra problemsencountered in scienti�c and engineering applications: solving linear equations, linear least squares, andeigenvalue problems for dense and banded systems.Traditionally, such libraries have been available only in Fortran; however, with an increasing number ofprogrammers using C and C++ for scienti�c software development, there is a need to have high-qualitynumerical libraries to support these platforms as well. LAPACK++ provides the speed and e�ciencycompetitive with native Fortran codes (see section 2.4), while allowing programmers to capitalize on thesoftware engineering bene�ts of object oriented programming.The overall design of LAPACK++ includes support for distributed and shared memory architectures [6]. Version 1.0 includes support only for uniprocessor and shared memory platforms. Distributed memoryarchitectures will be supported in Version 2.0.Replacing the Fortran 77 interface of LAPACK with an object-oriented framework simpli�es the codingstyle and allows for a more exible and extendible software platform. The design goals of LAPACK++include� Maintain performance competitive with Fortran.� Provide a simple interface that hides implementation details of various matrix storage schemes andtheir corresponding factorization structures.� Provide a universal interface and open system design for integration into user-de�ned data structuresand third-party matrix packages.� Replace static work array limitations of Fortran with more exible and type-safe dynamic memoryallocation schemes.� Provide an e�cient indexing scheme for matrix elements that has minimal overhead and can be opti-mized for in most application code loops.� Utilize function and operator overloading in C++ to simplify and reduce the number of interface entrypoints to LAPACK.� Utilize exception error handling in C++ for intelligent managing of error situations without clutteringup application codes.� Provide the capability to access submatrices by reference, rather than by value, and perform factor-izations \in place". This is vital for implementing blocked algorithms e�ciently.3

4 CHAPTER 1. INTRODUCTION� Provide more meaningful naming conventions for variables and function names. (Names no longerlimited to six alphanumeric characters.)LAPACK++ also provides an object-oriented interface to the Basic Linear Algebra Subprograms (BLAS)[4], [8] (see section 2.3), allowing programmers to utilize these optimized computational kernels in their ownC++ applications.

Chapter 2OverviewThe underlying philosophy of the LAPACK++ is to provide an interface which is relatively simple, yetpowerful enough to express all complex and subtle tasks within LAPACK, including those which optimizeperformance and/or storage. Following the framework of LAPACK, the C++ extension contains driverroutines for solving standard types of problems, computational routines to perform a distinct computa-tional task, and auxiliary routines to perform a certain subtask or common low-level computation. Eachdriver routine typically calls a sequence of computational routines. Taken as a whole, the computationalroutines can perform a wider range of tasks than are covered by the driver routines. Currently, dense andband matrices are supported. General sparse matrices are handled in [7].2.1 Contents of LAPACK++With over 1,000 subroutines in the original f77 LAPACK, not every routine is implemented in LAPACK++.Instead, source code examples in the various major areas are provided, allowing users to easily extend thepackage for their particular needs. LAPACK++ provides source code for� Algorithms{ LU Factorization{ Cholesky (LLT) Factorization{ QR Factorization{ Eigenvalue problems� Storage Classes{ rectangular matrices{ symmetric and symmetric positive de�nite (SPD){ banded matrices{ tri/bidiagonal matrices� Element Data Types{ int, long int, oat, double, (double precision) complex,{ arbitrary Vector data types via templates (section B.6.3)5

6 CHAPTER 2. OVERVIEW2.2 A simple code exampleTo provide a �rst glimpse at how LAPACK++ simpli�es the user interface, this section presents a few simplecode fragments. The examples are incomplete and are meant to merely illustrate the interface style. Thenext few sections will further discuss the details of matrix classes and their operations.The �rst example illustrates a code fragment to solve a linear system Ax = b using LU factorization:#include <lapack++.h> // 1LaGenMatDouble A(N,N); // 2LaVectorDouble x(N), b(N); // 3...LaLinSolve(A,x,b); // 4Line (1) includes all of the LAPACK++ object and function declarations. Line (2) declares A to be asquare N �N coe�cient matrix, while line (3) declares the right-hand-side and solution vectors. Finally, theLaLinSolve() function in line (4) calls the underlying LAPACK driver routine SGESV() for solving linearequations.Consider now solving a similar system with a tridiagonal coe�cient matrix:#include <lapack++.h>LaSPDMatDouble A(N,N);LaVectorDouble x(N), b(N);...LaLinSolve(A,x,b);The only code mod�cation is in the declaration of A. In this case LaLinSolve() calls the Cholesky driverroutine for solving symmetric, positive-de�nite linear systems. The LaLinSolve() function has been over-loaded to perform di�erent tasks depending on the type of the input matrix A. If the matrix types areknown at compile time, as in this example, then there is no runtime overhead associated with this.2.3 Basic Linear Algebra Subroutines (BLAS++)The Basic Linear Algebra Subprograms (BLAS) [4] has been the key to obtaining good performance ona wide variety of computer architectures. The BLAS de�ne a common interface for low-level operationsoften found in computational kernels. These operations, such as matrix/matrix multiply and triangularsolves, typically comprise of most of the computatioal workload found in dense and banded linear algebraalgorithms. The Level 3 BLAS obtains good performance on a wide variety of architectures by keeping dataused most often in the closest level of memory hierarhcy (registers, cache, etc.).The BLAS++ interface simpli�es many of the calling sequences to the traditional f77 BLAS interface,by using the LAPACK++ matrix classes. These routines are called within the LAPACK++ algorithms, orcan be called directly at the user-level within applications.There are two levels of the BLAS++ interface. The �rst is a direct interface, as shown in Table C, areessentially inlined to call BLAS directly in eliminating any overhead. The other, more elegant interface,overloads the binary opertors * and + for simple expressions such as C=A*B. Having these two interfacesgives the users the choice between simplicity and performance in their application codes. See Appendix Bfor a list of BLAS++ interface routines.

2.4. PERFORMANCE 7
0 50 100 150 200 250 300 350 400 450 500

10

20

30

40

50

60

70

80

Order of Matrix

Sp
ee

d
in

 M
eg

af
lo

ps

Matrix Multiply (C = A*B) on IBM RS/6000-550

Figure 2.1: Performance of matrix multiply in LAPACK++ on the IBM RS/6000 Model 550 workstation.GNU g++ v. 2.3.1 was used together with the ESSL BLAS-3 routine dgemm.2.4 PerformanceThe performance of LAPACK++ is almost indistinguishable from optimized Fortran. Figure 2.1, for exam-ple, illustrates the performance (Megaop) rating of the simple codeC = A*B;for square matrices of various sizes on the IBM RS/6000 Model 550 workstation. This particular imple-mentation used GNU g++ v. 2.3.1 and utlized the BLAS-3 routines from the native ESSL library. Theperformance results are nearly identical with those of optimized Fortran calling the same library. This isaccomplished by inlining the LAPACK++ BLAS kernels directly into the unerlying function call. Thisoccurs at compile time, without any runtime overhead. The performance numbers are very near the machinepeak and illustrate that using C++ with optimized computational kernels provides an elegant high-levelinterface without sacri�cing performance.The performance di�erence between optimized BLAS called from Fortran and the BLAS++ called fromC++ is barely measureable. Figure 2.2 illustrates performance characteristics of the LU factorization of forsquare matrices of various sizes on the IBM RS/6000 Model 550 workstation. This particular implementationused GNU g++ v. 2.3.1 and utlized the BLAS-3 routines from the native ESSL library. The performanceresults are nearly identical with those of optimized Fortran calling the same library. This is accomplishedby inlining the LAPACK++ BLAS kernels directly into the unerlying function call.

8 CHAPTER 2. OVERVIEW

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45

50

Size of Matrix (NxN)

P
er

fo
rm

an
ce

 (
M

flo
ps

)

Lapack F77 (solid)

Lapack++ shell (dotted)

Lapack++ LU (dashed)Figure 2.2: Performance of LAPACK++ LU factorization on a IBM RS/6000 Model 550 workstation, usingGNU g++ v. 2.3.1 and BLAS routines from the IBM ESSL library. The results are nearly identical to theFortran LAPACK performance. The LAPACK++ shell is call the Fortan dgetrf(), the LAPACK++ LUimplements the right-looking LU algorithm in C++.

Chapter 3LAPACK++ Matrix ObjectsThe fundamental objects in LAPACK++ are numerical vectors and matrices; however, LAPACK++ is nota general-purpose array package. Rather, LAPACK++ is a self-contained interface consistsing of only theminimal number of classes to support the functionality of the LAPACK algorithms and data strucutres.LAPACK++ matrices can be referenced, assigned, and used in mathematical expressions as naturallyas if they were an integral part of C++; the matrix element aij , for example, is referenced as A(i,j). Inkeeping with the indexing convention of C++, matrix subscripts begin at zero. Thus, A(0,0) denotes the�rst element of A. Internally, LAPACK++ matrices are typically stored in column-order for compatibilitywith Fortran subroutines and libraries.Various types of matrix structures are supported: banded, symmetric, Hermitian, packed, triangular,tridiagonal, bidiagonal, and nonsymmetric. The following sections describe these in more detail.Matrix classes andother related data types speci�c to LAPACK++ begin with the pre�x \La" to avoidnaming conicts with user-de�ned or third-party matrix packages. The list of valid names is a subset of thenomenclature shown in Figure 3.1.3.1 Fundamental Matrix OperationsIn its most general formulation, a matrix is a data structure representing an ordered collection of elementsthat can be accessed by an integer pair. In addition to their most common representation as rectangulararrays, matrices can also be represented as linked lists (unstructured sparse), in packed formats (triangular),as a series of Householder transformations (orthogonal), or stored by diagonals. Nevertheless, these variousrepresentations exhibit some commonality. The following operations are available for all matrix types:� Declarations. Matrices can be constructed dynamically by specifying their size as a pair of non-negative integers, as in LaGenMatDouble A(M,N)La 8>>>>>><>>>>>>: Gen� SymmSPD �8<: BandTridiagBidiag 9=;[Unit]� UpperLower � fTriangg 9>>>>>>=>>>>>>; Mat 8>><>>: Complex DoubleFloatIntLongInt 9>>=>>;Figure 3.1: LAPACK++ matrix nomenclature. Items in square brackets are optional.9

10 CHAPTER 3. LAPACK++ MATRIX OBJECTS� Indexing. Individual elements of the matrix can be accessed by an integer pair (i; j) where 0 � i < Mand 0 � j < N . The indexing syntax for a matrix A is the naturalA(i,j)notation, and can also be used as a destination for an assignment, as in A(0,3) = 3.14. A runtimeerror is generated if the index is out of the matrix bounds or outside of speci�ed storage scheme (forexample, accessing outside the non-zero portion of a banded matrix). This index range checking canbe turned o� by de�ning LA NO BOUNDS CHECK.� Assignment. The basic matrix assignment is by copying, and is denoted by the = operator, as inA = BThe sizes of A and B must conform.� Referencing. The unnecessary copying of matrix data elements has been avoided by employing thereference() method, as in A.ref(B)to assign the data space of B to the matrix A. The matrix elements are shared by both A and B, andchanges to the data elements of one matrix will e�ect the other.In addition to these basic operations, all matrix objects employ a destructor to free their memory whenleaving their scope of visibility. By utilizing a reference counting scheme that keeps track of the number ofaliases utilizing all or part of its data space, a matrix object can safely recycle unused data space.3.2 General Rectangular MatricesOne of the fundamental matrix types in LAPACK++ is a general dense rectangular matrix. This cor-ressponds to the most common notion of a matrix as a two-dimensional array. The corresponding LA-PACK++ names are given as LaGenMatType for Lapack General Matrix. The Type can be Int, LongInt,Float, Double, or Complex. Matrices in this category have the added property that submatrices can bee�ciently accessed and referenced in matrix expressions. This is a necessity for describing block-structuredalgorithms.3.2.1 DeclarationsGeneral LAPACK++ matrices may be declared (constructed) in various ways:#include <lapack++.h>float d[4] = {1.0, 2.0, 3.0, 4.0};LaGenMatDouble A(200,100) // 1LaGenMatComplex B; // 2LaGenMatDouble D(A); // 3LaGenMatFloat E(d, 2, 2) // 4Line (1) declares A to be a rectangular 200x100 matrix. The elements are uninitialized. Line (2) declaresB to be an empty (uninitialized) matrix of complex numbers. Until B becomes initialized, any attempt toreference its elements will result in a run time error. Line (3) illustrates the copy constructor; D is a copyof A. Finally, line (4) demonstrates how one can initialize a 2x2 matrix with the data from a standard C++vector. The values are initalized in column-major form, so that the �rst column of E contains f1:0; 2:0g, andthe second column contains f3:0; 4:0g.

3.2. GENERAL RECTANGULAR MATRICES 11SubmatricesBlocked linear algebra algorithms utilize submatrices as their basic unit of computation. It is crucial thatsubmatrix operations be highly optimized. Because of this, LAPACK++ provides mechanisms for accessingrectangular subregions of a general matrix. These regions are accessed by reference, that is, without copyingdata, and can be used in any matrix expression.Submatrices in LAPACK++ are denoted by specifying a subscript range through the LaIndex() function.For example, the 3x3 matrix in the upper left corner of A is denoted asA(LaIndex(0,2), LaIndex(0,2))This references Aij; i = 0; 1; 2 j = 0; 1; 2, and is equivalent to the A(0:2,0:2) colon notation used in Fortran90 and MatlabTM . Submatrix expressions may be also be used as a destination for assignment, as inA(LaIndex(0,2), LaIndex(0,2)) = 0.0;which sets the 3x3 submatrix of A to zero. The index notation has an optional third argument denoting thestride value, LaIndex(start, end, increment)If the increment value is not speci�ed it is assumed to be one. The expression LaIndex(s, e, i) isequivalent to the index sequence s; s + i; s + 2i; : : : s+ be � si ciOf course, the internal representation of an index is not expanded to a full vector, but kept in its compact(start,increment,end) format. The increment values may be negative and allow one to traverse a subscriptrange in the opposite direction, such as in (10,7,-1) which denotes the sequence f10; 9; 8; 7g. Indices canbe named and used in expressions, as in the following submatrix assignments,LaGenMatDouble A(10,10), B, C; // 1LaIndex I(1,9,2), // 2LaIndex J(1,3,2); // 3B = A(I,I); // 4B(2,3) = 3.1; // 5C = B(LaIndex(2,2,4), J); // 6In lines (2) and (3) we declare indices I = f1; 3; 5; 7;9g, and J =f1; 3g. Line (4) sets B to the speci�ed5x5 submatrix of A. The submatrix B can used in any matrix expression, including accessing its individualelements, in line (5). Note that B(2,3) is the memory location as A(5,7). Line (6) assigns the 2x2 submatrixof B to C. Note that C can also be thought of as A(LaIndex(5,2,9), LaIndex(3,2,7)).Although LAPACK++ submatrix expressions allow one to access non-contiguous row or columns, manyof the LAPACK routines only allow submatrices with unit stride in the column direction. Calling anLAPACK++ routine with a non-contiguous submatrix columns will cause data to be copied into a contiguoussubmatrix, if necessary. (The alternative, as done in the Fortran LAPACK, is not to allow this type of callat all.)

12 CHAPTER 3. LAPACK++ MATRIX OBJECTSStorage Triangular matrix A Storage in array AUpper 0BB@ a00 a01 a02 a03a11 a12 a13a22 a23a33 1CCA a00 a01 a02 a03� a11 a12 a13� � a22 a23� � � a33Lower 0BB@ a00a10 a11a20 a21 a22a30 a31 a32 a33 1CCA a00 � � �a10 a11 � �a20 a21 a22 �a30 a31 a32 a33Figure 3.2: Internal storage pattern for an example 5x5 triangular matrix.3.3 Triangular MatricesTriangular matrices are denoted having only zero-valued entires below (lower triangular), or above (uppertriangular) the main diagonal. (See Figure 3.2.) The triangular matrix types in LAPACK++ consist ofLa 8<: UpperLowerUnit 9=; Triang � FloatDouble �3.3.1 Symmetric, Hermitian and SPD MatricesSymmetric matrices are square and have aij = aji; Hermitian matrices have aij = a�ji, where � denotescomplex conjugation; a symmetric positive de�nite matrix A has the added property that xTAx > 0 for anynonzero x.Matrix types in each class of this group consists of two components: the mathematical characteristic (e.g.symmetric, Hermitian), and the underlying matrix element type (e.g., oat, complex). The possible matrixtypes include La Symm � DoubleComplex �SPD DoubleHPD ComplexInternally, symmetric and Hermitian matrices may be stored in an Upper or Lower format as shown in �gure3.3.3.4 Banded MatricesSquare matrices whose sparsity pattern has nonzeros close to the diagonal can often be e�ciently representedas banded matrices. An N �N banded matrix is speci�ed by its size N , the number of subdiagonals kl, andthe number of superdiagonals ku. In practice, this storage scheme should be used only when kl, and ku aremuch smaller than N . These matrices can be declared asLaBandedMatDouble B(N, kl, ku);LaBandedMatDouble A;A reference to element Bij is expressed as B(i,j), and if the macro LA NO BOUNDS CHECK is unde�ned, anerror is generated if (i,j) lies outside the bands. Banded matrices may be copied and assigned as

3.4. BANDED MATRICES 13Storage Hermitian matrix A Storage in array AUpper 0BB@ a00 a01 a02 a03�a01 a11 a12 a13�a02 �a12 a22 a23�a03 �a13 �a23 a33 1CCA a00 a01 a02 a03� a11 a12 a13� � a22 a23� � � a33Lower 0BB@ a00 �a10 �a20 �a30a10 a11 �a21 �a31a20 a21 a22 �a32a30 a31 a32 a33 1CCA a00 � � �a10 a11 � �a20 a21 a22 �a30 a31 a32 a33Figure 3.3: Storage pattern for Symmetric and Hermitian matrices.Band matrix A Band storage in array AB0BBBB@ a00 a01a10 a11 a12a20 a21 a22 a23a31 a32 a33 a34a42 a43 a44 1CCCCA � a01 a12 a23 a34a00 a11 a22 a33 a44a10 a21 a32 a43 �a20 a31 a42 � �Figure 3.4: Storage pattern for banded 5x5 matrix with 2 superdiagonals and 1 subdiagonal.A.ref(B); // shallow assignmentA = B; // copysimilar to the LaGenMat classes. The ith diagonal of B is accessed as B(i), and B(-i) is the ith subdiagonal(i > 0). Thus B(0) is the main diagonal, The result is a vector (with possible non-unit stride),LaVectorDouble d = B(-2); // 2nd subdiagonal of Bwhose size is the length of the particular diagonal, not the matrix size N . Note that this diagonal indexingexpression can be used as any LaVector. For example, it is perfectly legal to writeB(-2)(LaIndex(0,3)) = 3.1;to set the �rst four elements of the second subdiagonal of B to the value of 3.1.Accessing out of the matrix band generates a run-time error, unless LA NO BOUNDS CHECK is set.3.4.1 Triangular Banded MatricesTriangular banded matrices are declared, stored, and accessed in a similar format, except that kl = 0 forupper triangular, and ku = 0 for lower triangular matrices:LaUpperTriangBandedMatDouble U(N, kl);LaLowerTriangBandedMatDouble L(N, ku);Diagonals and individual elements are accessed the same way as general banded matrices. Triangularbanded matrices can also be aliases for the upper or lower region of general banded matrices in the followingexample LaBandedMatDouble B(N, kl, ku) = 0.0;LaUpperTriangBandedMatDouble U;

14 CHAPTER 3. LAPACK++ MATRIX OBJECTSLaLowerTriangBandedMatDouble L;U.ref(B);L.ref(B);U(0,0) = 1.0; // B(0,0) and L(0,0) also set to 1.0// (diagonal is shared by L and U.)3.4.2 Symmetric and Hermitian Banded MatricesSymmetric and Hermitian banded matrices with kd subdiagonals and superdiagonals are speci�ed asLaSymmBandedMatDouble S(N, kd);LaHermBandedMatComplex C(N, kd);Diagonals and individual elements are accessed the same way as general baned matrices. If LA NO BOUNDS CHECKis unde�ned, accessing out of the range of diagonal bands generates a run-time error.3.5 Tridiagonal MatricesAlthough bidiagonal and tridiagonal matrices are special cases of the more general banded matrix structure,their occurrence is so common in numerical codes that it is advantageous to treat them as a special case.Unlike general banded matrices, tridiagonal matrices are stored by diagonals rather than columns. A tridi-agonal matrix of order N is stored in three one-dimensional arrays, one of length N containing the diagonalelements and two of length N � 1 containing the subdiagonal and superdiagonal elements in elements 0through N � 2. This ensures that diagonal elements are in consecutive memory locations.Tridiagonal N �N matrices are constructed asLaTridiagMatDouble B(N,N);LaTridiagMatDouble A;reserving a space of 3N (see [1]) elements, or from user data asLaTridiagMatDouble T(N, d, dl, du)where *d, *dl, and *du are contiguous vectors that point to the diagonal, subdiagonal, and superdiagonals,respectively. Note that *d must point to N elements, but *du and *dl can point to only N-1.Matrix elements can be accessed as T(i,j), where j(i � j)j � 2, (i.e. elements on the diagonal, sub orsuperdiagonal) otherwise there is a bounds-check error generated at run time.Since the largest dense submatrix of a tridiagonal matrix has only four elements (2 � 2), index rangesare of limited use and are therefore not implemented with tridiagonal matrices.

Chapter 4Driver Routines4.1 Linear EquationsThis section provides LAPACK++ routines for solving linear systems of the formAx = b: (4.1)where A is the coe�cient matrix, b is the right hand side, and x is the solution. A is assumed to besquare matrix of order n, although underlying computational routines allow for A to be rectangular. Forseveral right hand sides, we write AX = B; (4.2)where the columns ofB are individual right hand sides, and the columns ofX are the corresponding solutions.The task is to �nd X, given A and B. The coe�cient matrix A can be one of the types show in Figure 3.1.Note that for real (non-complex) matrices, symmetric and Hermitian are equivalent.The basic syntax for a linear equation driver in LAPACK++ is given byLaLinSolve(A, X, B);The matrices A and B are input, and X is the output. A is an M � N matrix of one of the above types.Letting nrhs denote the number of right hand sides in eq. 4.2, X and B are both rectangular matrices of sizeN � nrhs.This version requires intermediate storage of � M � (N + nrhs elements. Section 5 describes how to usefactorization classes to reduce this storage requirement at the expense of overwriting A and B.In cases where no additional information is supplied, the LAPACK++ routines will attempt to follow anintelligent course of action. For example, if LaLinSolve(A,X,B) is called with a non-square MxN matrix,the solution returned will be the linear least square that minimizes jjAx� bjj2 using QR factorization. Or,if A is SPD, then the Cholesky factorization will be used. Alternatively, one can directly specify the exactfactorization method, such as LU factor(F, A). In this case, if A is non-square, only the factors returnrepresent only a partial factorization of the upper square portion of A.Error conditions in performing the LaLinSolve() operations can be retrieved via the LaLinSolveInfo()function, which returns information about the last called LaLinSolve(). A zero value denotes a successfulcompletion. A negative value of �i denotes that the ith argument was somehow invalid or inappropriate. Apositive value of i denotes that in the LU decomposition, U (i; i) = 0; the factorization has been completedbut the factor U is exactly singular, so the solution could not be computed. In this case, the value returnedby LaLinSolve() is a null (0x0) matrix. 15

16 CHAPTER 4. DRIVER ROUTINESTable 4.1: LAPACK++ Drivers for Linear Equations: Rectangular Matrices.General LaGenMat<t> A(M,N);LaGenMat<t> B(M,nrhs), X(M,nrhs);LaGenFact<t> F;LaLinSolve(A, X, B);LaLinSolveIP(A, X, B);LaLinSolve(F, X, B);Symmetric LaUpperSymmMat<t> A(N,N);LaLowerSymmMat<t> A(N,N);LaGenMat<t> B(N, nrhs), X(N, nrhs);LaSymmFact<t> F;LaLinSolve(A, X, B);LaLinSolveIP(A, X, B);LaLinSolve(F, X, B);Symmetric LaUpperSPDMat<t> A(N,N);Positive LaLowerSPDMat<t> A(N,N);De�nite LaGenMat<t> B(N, nrhs), X(N, nrhs);LaSPDFact<t> F;LaLinSolve(A, X, B);LaLinSolveIP(A, X, B);LaLinSolve(F, X, B);Complex LaUpperSymmMat<t> A(N,N);Symmetric LaLowerSymmMat<t> A(N,N);LaGenMat<t> B(N, nrhs), X(N, nrhs);LaSymmFact<t> F;LaLinSolve(A, X, B);LaLinSolveIP(A, X, B);LaLinSolve(F, X, B);

4.1. LINEAR EQUATIONS 17Table 4.2: LAPACK++ Drivers for Linear Equations: Tridiagonal Matrices.General LaTriadMat<t> A(N,N);LaGenMat<t> B(N,nrhs), X(N,nrhs);LaGenFact<t> F;LaLinSolve(A, X, B);LaLinSolveIP(A, X, B);LaLinSolve(F, X, B);Symmetric LaUpperTriadSPDMat<t> A(N,N);Positive LaLowerTriadSPDMat<t> A(N,N);De�nite LaGenMat<t> B(N, nrhs), X(N, nrhs);LaSPDFact<t> F;LaLinSolve(A, X, B);LaLinSolveIP(A, X, B);LaLinSolve(F, X, B);Table 4.3: LAPACK++ Drivers for Linear Equations: Banded Matrices.General LaBandedMat<t> A(N,N);LaGenMat<t> B(N,nrhs), X(N,nrhs);LaBandedFact<t> F;LaLinSolve(A, X, B);LaLinSolve(F, X, B);Symmetric LaUpperBandedSPDMat<t> A(N,N);Positive LaLowerBandedSPDMat<t> A(N,N);De�nite LaGenMat<t> B(N, nrhs), X(N, nrhs);LaSPDFact<t> F;LaLinSolve(A, X, B);LaLinSolve(F, X, B);

18 CHAPTER 4. DRIVER ROUTINES4.2 Eigenvalue ProblemsExample routines are provided in LAPACK++/SRC/eigslv.cc for the solution of symmetric eigenvalue prob-lems. The function LaEigSolve(A, v);for computing the eigenvalues v of symmetric matrix A, andLaEigSolve(A, v, V);for computing the eigenvectors V. Similarly,LaEigSolveIP(A, v);overwrites A with the eigenvectors.4.3 Memory Optimizations: Factorizing in placeWhen using large matrices that consume a signi�cant portion of available memory, it may be bene�cial toremove the requirement of separately storing intermediate factorizaton representations at the expense ofdestroying the contents of the input matrix A. For most matrix factorizations we require temporary datastructures roughly equal to the size of the original input matrix. (For general banded matrices, one mayneed even slight more, see section 3.4.) For example, for a square N �N dense nonsymmetric factorization,the temporary memory requirement can be reduced from N � (N + nrhs + 1) elements to N � 1 Suchmemory-e�cient factorizations are accomplished with the LaLinSolveIP() routine:LaLinSolveIP(A, X, B);Here the contents of A are overwritten (with the respective factorization), and B is overwritten by thesoultion. It is also explicitly returned by the function so that it matches the return type of LaLinSolve().In the line above, both X and B refer to the same memory locations.

Chapter 5Factorization ClassesFactorization classes are used to describe the various types of matrix decompositions: LU, Cholesky (LLT),QR, and singular-value decompositions (SVD). The driver routines of LAPACK++ typically choose an ap-propriate factorization, but the advanced user can express speci�c factorization algorithms and their variantsfor �ner control of their application or for meeting strict memory storage and performance requirements.In an object-oriented paradigm it is natural to encapsulate the factored representation of a matrix ina single object. An LU factorization, for example, returns the upper and unit-lower triangular factors, Land U , as well the pivoting information that describes how the rows were permuted during the factorizationprocess. The representation of the L and U factors is incomplete without this information. Rather thanstore and manage these components separately, a factorization class is used as follows,LaGenMatDouble A, B, X;LaGenFactDouble F;LaLUFactor(F, A);LaLinSolve(F, X, B);More importantly, the various factorization components can be extracted from F, as in,LaUnitLowerTriangMatDouble L;LaUpperTriangMatDouble U;LaGenMatDouble Y;L = F.L();U = F.U();Y = LaLinSolve(L, B);X = LaLinSolve(U, Y);Here we solve AX = B by �rst solving the lower triangular system, LY = B, and then the upper triangularsystem, UX = Y . (The pivot information is stored in both L and U.) The LaGenFact object can also beused directly to solve (LU)X = B by callingLaLinSolve(F, X, B);5.1 Optimizations: Factoring in PlaceBy default, the matrix factorization does not alter the contents of the original matrix or overwrite it.Nevertheless, the ability to \factor in place" is crucial when dealing with realistic memory constraints onlarge matrices, and is a necessity to implement blocked linear algebra algorithms e�ciently.19

20 CHAPTER 5. FACTORIZATION CLASSESHere we utilize the \in place" versions of computational routines (see section 4.3), which overwrite thematrix A to conserve space:LaGenMatDouble A;LaGenFactDouble F;LaLUFactorIP(F, A);

Appendix AProgramming ExamplesTo illustrate what programming with LAPACK++ looks like to scienti�c and engineering code developers,this section provides a few code examples. These examples are presented here for illustrative purposes, yet wehave tried to use realistic examples that accurately display a level of sophistication encountered in realisticapplications.A.1 Polynomial data �ttingThis code example solves the liner least squares problem of �tting N data points (xi; yi) to a dth degreepolynomial equation p(x) = a0 + a1x+ a2x2 + : : :+ adxdusing QR factorization. Given the two vectors x and y it returns the vector of coe�cients a= fa0; a1; a2; : : :ad�1g.It is assumed that N � d. The solution arises from solving the overdetermined Vandermonde systemXa = y:26664 1 x10 x20 : : : xd01 x11 x21 : : : xd1... ...1 x1N�1 x2N�1 : : : xdN�1 3777526664 a0a1...ad 37775 = 26664 y0y1...yN�1 37775in the least squares sense, i.e., minimizing jjXa� yjj2. The resulting code is shown in �gure A.1.
21

22 APPENDIX A. PROGRAMMING EXAMPLES
LaVectorDouble poly_fit(LaVectorDouble x, LaVectorDouble y, int d){ int N = min(x.size(), y.size());LaGenMatDouble P(N,d);LaVectorDouble a(d);for (i=0; i<N; i++) // construct Vandermonde matrix{ x_to_the_j = 1;for (j=0; j<d; j++){ P(i,j) = x_to_the_j;x_to_the_j *= x(i);}}a = LaQRLinSolveIP(P, y); // solve Pa = y using linear least squaresreturn a;} Figure A.1: Code Example: polynomial data �tting.

Appendix BRelease Notes for v. 1.0B.1 How to report bugsReport bugs, comments, questions and suggestions to lapackpp@cs.utk.edu.B.2 Tips and SuggestionsB.3 Reducing Compilation timeB.3.1 Minimize the number of included header �lesLAPACK++ header �les can be quite large, particularly when one takes into the various data types (e.g.double precision, complex) and di�erent matrix types (e.g. symmetric, upper triangular, tridiagonal).If your compiler does not support the ability pre-compile header �les, it could be spending a signi�cantportion of its time processing LAPACK++ object and function declarations.The main header lapack++.h is a \catch-all" �le containing complete declarations for over �fty matrixclasses and several hundred inlined matrix functions. While this �le is most general, it is unlikely that onewill need all of its declarations. It is much more e�cient to include a speci�c header �le for a matrix storageclass or matrix data type.B.3.2 Header �le madnessThe LAPACK++ header �les will typical only include those function declarations for the matrix types cur-rently de�ned. For example, if LaSpdMatDoublematrices are used, then the compiler macro LA SPD MAT DOUBLE His de�ned. Thus, the LAPACK++ can select to include only those header �les which are relevant.The alternative is to include every possible matrix type and LAPACK++ function, for every program,even a tiny program which uses a small portion of the LAPACK++ / MATRIX++ classes.Therefore, one should declare all of their matrix and vector types before including BLAS++ and LA-PACK++ header �les.B.4 Performance ConsiderationsB.4.1 Array Bounds CheckingLAPACK++ allows the application developer to determine the level of run-time index range checking per-formed when accessing individual A(i; j) elements. It is strongly recommend for developers to use the23

24 APPENDIX B. RELEASE NOTES FOR V. 1.0LA BOUNDS CHECK whenever possible, thus guarding against out-of-bounds references. This is typically usedin the design and debugging phases of the program development, and can be turned o� in production runs.B.4.2 Improving A(i; j) e�ciencyThe LAPACK++ matrix classes were optimized for use with BLAS and LAPACK routines. These routinesrequire matrices to be column-ordered and adhere to Fortran-like accessibility.The code for A(i,j) inlines integer multiplications to compute the address o�set; however, most C++compilers cannot optimize this out of a loop. (See note below.) An alternate implementation uses anindirect-addressing scheme similar to A[i][j] to access individual elements. Tests have shown this to be moresuccessful on various C++ compilers: Sun, Borland.B.5 Exception HandlingAlthough exception handling has been o�cially accepted into the language by the ANSI committee (Novem-ber 1990) it is not yet supported by all C++ compilers. LAPACK++ will use C++ exception handlingas soon as it becomes widely available. Currently, Version 0.9 uses a macro mechanism to simulate throwexpressions so that the library code will work correctly when exception handling becomes supported:#define throw throw_inline void throw(const char *message){ cerr << "Exception: " << message << endl;exit(1);}Transfer of control does not correspond to a \try" block, but rather exits the program with the properdiagnostic message. This is a similar behavior to the real exception handling if there was no explicit user-supplied try block.B.6 Frequently asked questionsB.6.1 What is the performance of LAPACK++?For medium-to-large large matrices (say n > 100) where performance is a consideration, LAPACK++performance is identical to the native Fortran LAPACK codes. For example, a recent test on IBM RS/6000workstation showed both packages obtaining speeds of 50 Mops for matrices of size 300x300 and larger.This is not surprising, since the both utilize the same optimized Level 3 BLAS routines for the computation-intensive sections. See [6] for more performance details.B.6.2 Do I need a Fortran compiler to use LAPACK++?No, you can use the C version of LAPACK available from netlib.B.6.3 Why are the LAPACK++ matrix classes not templated?There is a templated vector example template v.h in the LAPACK++/INCLUDE subdirectory. This shouldprovide provide an example for those who wish to create vectors and matrices of arbitrary types.LAPACK++ does not support generic matrix types, since the underlying BLAS code supports onlysupport real and complex oating point numbers.

B.6. FREQUENTLY ASKED QUESTIONS 25B.6.4 Can LAPACK++ work with built-in C/C++ arrays and other matrixclasses?Yes. LAPACK++ routines utilize contiguous storage for optimum data reuse (Level 3 BLAS) and C++arrays must be explicitly transformed into this data storage before integrating with LAPACK++. This iseasily accomplished with the various matrix constructors, e.g. LaGenMatDouble::LaGenMatDouble(double**, int, int).For integrating with external C++ matrix classes, all that is required of a user-speci�c matrix class isthe ability to access individual elements, i.e. something similar to A(i,j). Any C++ matrix library shouldsupport this. If your matrix class uses column-major ordering, then the conversion can be as simple as acopying a pointer to the �rst element. Consult the LAPACK++ Users' Manual for more details.B.6.5 Can the matrix and vector objects be used independently of BLAS++and LAPACK++?Yes, the MATRIX++ subdirectory LAPACK++/MATRIX++ subdirectory (see �gure ??) can be used as anindependent package. This may be useful if to develop matrices and vectors of user-de�ned types. Thecodes in this subdirectory de�ne only access functions, assignments, construction, and basic non-arithmeticrelationship between matrices.B.6.6 Is there an existing standard for C++ matrix classes?As of early 1994, no. Researchers in the LAPACK++ project have been working with various groups inC++ numerics to establish such a standard. Some e�orts are being made to bring an multi-dimensionalarray class proposal to the ANSI C++ committee, but as far as matrix classes (e.g. banded, symmetric,sparse, orthogonal) are concerned, a formal standard has not been presented. Some of this will rely on userexperiences and feeback with matrix packages.

26 APPENDIX B. RELEASE NOTES FOR V. 1.0

Appendix C
Direct Interfaces to LAPACK andBLAS Routines

27

28 APPENDIX C. DIRECT INTERFACES TO LAPACK AND BLAS ROUTINES
Filename Function Descriptionblas++.h Vec * Vec Vector * VectorVec + Vec Vector + VectorVec - Vec Vector - VectorMat * Vec General Matrix * VectorMat * Vec Banded Matrix * VectorMat * Vec Symmetric Matrix * VectorMat * Vec Symmetric Banded Matrix * VectorMat * Vec SPD Matrix * VectorMat * Vec Lower Triang Matrix * VectorMat * Vec Upper Triang Matrix * VectorMat * Vec Unit Lower Triang Matrix * VectorMat * Vec Unit Upper Triang Matrix * VectorMat + Mat General Matrix + General MatrixMat - Mat General Matrix - General MatrixMat * Mat General Matrix * General MatrixMat * Mat Symmetric Matrix * General MatrixMat * Mat Lower Triang Matrix * General MatrixMat * Mat Upper Triang Matrix * General MatrixMat * Mat Unit Lower Triang Matrix * General MatrixMat * Mat Unit Upper Triang Matrix * General MatrixNorm Inf(Vec) In�nity Norm of a VectorNorm Inf(Mat) In�nity Norm of a MatrixMach eps oat() Returns Machine Epsilon - oatMach eps double() Returns Machine Epsilon - double

29Filename Function Descriptionblas1++.h Blas Norm1(Vec) One Norm of a VectorBlas Norm2(Vec) nrm2 kxk2Blas Add Mult(double,Vec,Vec) y �x+ yBlas Add Mult IP(double,Vec,Vec) y �y+ = xBlas Copy(Vec,Vec) y xBlas Dot Prod(Vec,Vec) dot �+ xTyBlas Apply Plane Rot(Vec,Vec) Apply Plane RotationBlas Gen Plane Rot(double x 4) Generate Plane RotationBlas Scale(double,Vec) x �xBlas Swap(Vec,Vec) x$ yBlas Index Max(Vec) Returns Maximum Vector Elementblas2++.h Blas Mat Vec Mult(GenMat,Vec) Gen Mat * VecBlas Mat Vec Mult(BandMat,Vec) Band Mat * VecBlas Mat Vec Mult(SymmMat,Vec) Symm Mat * VecBlas Mat Vec Mult(SymmBandMat,Vec) Symm Band Mat * VecBlas Mat Vec Mult(SpdMat,Vec) SPD Mat * VecBlas Mat Vec Mult(LowerTriangMat,Vec) Lower Triang Mat * VecBlas Mat Vec Mult(UpperTriangMat,Vec) Upper Triang Mat * VecBlas Mat Vec Mult(UnitLowerTriangMat,Vec) Unit Lower Triang Mat * VecBlas Mat Vec Mult(UnitUpperTriangMat,Vec) Unit Upper Triang Mat * VecBlas Mat Vec Solve(LowerTriangMat,Vec) Lower Triang Mat/Vec SolveBlas Mat Vec Solve(UpperTriangMat,Vec) Upper Triang Mat/Vec SolveBlas Mat Vec Solve(UnitLowerTriangMat,Vec) Unit Lower Triang Mat/Vec SolveBlas Mat Vec Solve(UnitUpperTriangMat,Vec) Unit Upper Triang Mat/Vec SolveBlas R1 Update(GenMat,Vec,Vec) A �xyT +ABlas R1 Update(SymmMat,Vec,Vec) A �xxT +ABlas R1 Update(SpdMat,Vec,Vec) A �xxT +ABlas R2 Update(SymmMat,Vec,Vec) A �xyT + �yxT +ABlas R2 Update(SpdMat,Vec,Vec) A �xyT + �yxT +Ablas3++.h Blas Mat Mat Mult(GenMat,GenMat) Gen Mat * Gen MatBlas Mat Trans Mat Mult(GenMatT,GenMat) Gen Mat Transpose * Gen MatBlas Mat Mat Trans Mult(GenMat,GenMatT) Gen Mat * Gen Mat TransposeBlas Mat Mat Mult(LowerTriangMat,GenMat) Lower Triang Mat * Gen MatBlas Mat Mat Mult(UpperTriangMat,GenMat) Upper Triang Mat * Gen MatBlas Mat Mat Mult(UnitLowerTriangMat,GenMat) Unit Lower Triang Mat * Gen MatBlas Mat Mat Mult(UnitUpperTriangMat,GenMat) Unit Upper Triang Mat * Gen MatBlas Mat Mat Mult(SymmMat,GenMat,GenMat) Symm Mat * Gen MatBlas Mat Mat Solve(LowerTriangMat,GenMat) Lower Triang Mat/Gen Mat SolveBlas Mat Mat Solve(UpperTriangMat,GenMat) Upper Triang Mat/Gen Mat SolveBlas Mat Mat Solve(UnitLowerTriangMat,GenMat) Unit Lower Triang Mat/Gen Mat SolveBlas Mat Mat Solve(UnitUpperTriangMat,GenMat) Unit Upper Triang Mat/Gen Mat SolveBlas R1 Update(SymmMat,GenMat) C �AAT + �CBlas R2 Update(SymmMat,GenMat,GenMat) C �ABT + �BAT + �C

30 APPENDIX C. DIRECT INTERFACES TO LAPACK AND BLAS ROUTINES

Bibliography[1] E. Anderson, Z. Bai, C. Bischof, J. W. Demmel, J. J. Dongarra, J. Du Croz, A. Green-baum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK: A portable linear algebralibrary for high-performance computers, Computer Science Dept. Technical Report CS-90-105, Univer-sity of Tennessee, Knoxville, 1990. (LAPACK Working Note 20).[2] E. Anderson, J. J. Dongarra, S. Ostrouchov, Installation Guide for LAPACK, LAPACK Work-ing Note 41, University of Tennessee, Computer Science Technical Report CS-92-151, Feb., 1992.[3] J. Choi and J. J. Dongarra and D. W. Walker, PB-BLAS : Parallel Block Basic Linear AlgebraSubroutines on Distributed Memory Concurrent Computers, Oak Ridge National Laboratory, Mathe-matical Sciences Section, in preparation, 1993.[4] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, A set of Level 3 Basic LinearAlgebra Subprograms, ACM Trans. Math. Soft., 16 (1990), pp. 1{17.[5] J. J. Dongarra, R. Pozo, D. W. Walker, An Object Oriented Design for High PerformanceLinear Algebra on Distributed Memory Architectures, Object Oriented Numerics Conference (OONSKI),Sunriver, Oregon, May 26-27, 1993.[6] J. J. Dongarra, R. Pozo, D. W. Walker, LAPACK++: A Design Overview of Object-OrientedExtensions for High Performance Linear Algebra, Computer Science Technical Report, University ofTennessee, 1993.[7] J. J. Dongarra, A. Lumsdaine, Xinhiu Niu, Roldan Pozo, Karin Remington, A Sparse MatrixLibrary in C++ for High Performance Architectures, Proceedings of the Object Oriented NumericsConference, Sunriver, Oregon, April 1994.[8] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, Basic Linear Algebra Subprogramsfor FORTRAN usage, ACM Trans. Math. Soft ., 5 (1979), pp. 308{323.[9] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B.Moler, Matrix Eigensystem Routines { EISPACK Guide, vol. 6 of Lecture Notes in Computer Science,Springer-Verlag, Berlin, 2 ed., 1976.Addison-Wesley, 1986.
31

