
Reverse Communication InterfaceforLinear Algebra Templates for Iterative MethodsJack DongarraUniversity of Tennessee and Oak Ridge National LaboratoryVictor EijkhoutUniversity of California, Los AngelesAjay KalhanUniversity of TennesseeMay 18, 19951 IntroductionIn this report we describe a reverse communication interface for the software implement-ing the iterative methods described in the Templates book [2]. Reverse communication isa technique by which we can hide the implementation details of various operations fromthe implementation of the iterative method. This allows us to (a) remove referencesto the user-prepared array or data structure containing the matrix within the iterativesolver, and (b) uniformly take care of the various components that can be changed bya user. These include implementation details of matrix-vector operations, vector opera-tions, stopping tests, and norm computations.Section 2 discusses the concept of reverse communication with the help of an ex-ample from the Templates code. Section 3 explains the use of iterative methods underthis scheme. Section 4 discusses re�nements and enhancements that we have planned.Finally, Section 5 provides information on how to obtain the software and the Appendixpresents an example code.2 Reverse CommunicationIn this section, we present the motivation behind reverse communication. We thendescribe how to use the interface and discuss its advantages and limitations.

2.1 The InterfaceAll iterative methods have one or more of the following operations:� matrix-vector multiply (transpose and/or nontranspose), and� preconditioner solve (transpose and/or nontranspose).These operations account for a large portion of the computation and thus are the focusof most optimization e�orts. Optimization can involve signi�cant changes in algorithmand data structures. Further, di�erent problems may require di�erent storage formatsfor their associated matrices and vectors.The primary aim of reverse communication (REVCOM) is to isolate the matrix-vector operation. Such operations are performed by routines that the user supplies ondata structures that are most natural to the problem at hand [3]. The idea of reversecommunication is not new. In this approach, the iterative method subroutine does notneed to know anything about the data structure or other requirements of the matrix-vector or preconditioner operations. Whenever the iterative method subroutine needsthe results of one of the operations, it returns control to the user's subroutine that calledit. The user's subroutine then invokes the module that performs the operation. The it-erative method subroutine is invoked again by the user with the results of the operation.This interaction is explained in Figure 1 with the help of the conjugate gradient (CG)iterative method.Here, CGREVCOM implements the iterative method, and CG implements the usersubroutine that manages the requests from CGREVCOM. The user's main programinvokes CG as before. The CG subroutine invokes CGREVCOM; and during this call,the CG method and resume logic are initialized. One step of the initialization of CGis a matrix-vector multiply. At this point in the ow of control, the job indicatorvariable (IJOB) is set to 1, and control is returned to CG. In CG, control resumesat the case statement. When IJOB = 1, the MATVEC subroutine is invoked. Onreturn from MATVEC, control returns to the line with label 10. CGREVCOM is theninvoked, this time with the results of the matrix-vector multiply. Inside CGREVCOM,the resume logic is used to determine where execution should resume. A similar sequenceof actions occurs within the ITERATIVE METHOD MAIN LOOP when results of thepreconditioner solve and matrix-vectormultiply are required. For the former, CG invokesPSOLVE; for the latter, it invokes MATVEC.Data is exchanged by using the following parameters of CGREVCOM.1. IJOB: used by CGREVCOM to tell CG of the operation it needs done, and usedby CG to tell CGREVCOM whether the current invocation is an initialization callor a resume call.2. NDX1, NDX2: used by CGREVCOM to tell CG of the indices of the operandand to identify the destination vectors to be used in the operations. This is forthe cases when these vectors are located in the WORK array. If either is a named2

10

c with job request (IJOB)

c

c

c

revcom return

ITERATIVE METHOD MAIN LOOP

do preconditoner solve

IJOB = 2; RETURN

c

CALL CGREVCOM()

return from CGREVCOM

SUBROUTINE CG(N, B, X, WORK, LDW,

INFO)

ITER, RESID, MATVEC, PSOLVE,

SUBROUTINE CGREVCOM(N, B, X, WORK, LDW,

ITER, RESID, INFO, NDX1, NDX2, SCLR1,

SCLR2, IJOB)

MAIN-PROGRAM

do matrix-vector multiply with X

IJOB = 3; RETURN

IF (IJOB .eq. 2) CALL PSOLVE()

IF (IJOB .eq. 1) CALL MATVEC()

c

c

IF (IJOB .eq. 3) CALL MATVEC()

do matrix-vector multiply with X

do stopping test #2

IF (IJOB .eq. 4) CALL STOPTEST2()

GO TO 10

RETURN20

END

IF (IJOB .eq. -1) GO TO 20

appropriate place not shown.

Note 1: Diagram only represents reverse communication

interactions.

Note 2: CGREVCOM() logic to resume execution at

c do matrix-vector multiply

IJOB = 1; RETURN

c do stopping test

IJOB = 4; RETURN

c

STOP

END

all done, return to MAIN-PROGRAM

IJOB = -1; RETURN

c END OF ITERATIVE METHOD MAIN LOOP

Figure 1: Interactions as a result of reverse communication
3

vector (e.g., X), a di�erent opcode is used to indicate that the operation has to bedone by using vector X.3. SCLR1, SCLR2: used by CGREVCOM to tell CG what the scalars in the matrix-vector multiplication are. The Templates code currently uses dgemm from LA-PACK, and that routine requires two scalar arguments|alpha and beta.Note that we have implemented reverse communication only for matrix-vector opera-tions. Vector-vector operations (dot product, norm computation) operate on contiguousmemory locations, and there is not any variation in the implementation of such opera-tions. However, if required, these vector-vector operations can also be easily providedin the reverse communication interface.2.2 Another Use of the InterfaceREVCOM provides a client-server type of interface between the iterative method rou-tine and the interface. That is, the reverse communication asks for services (i.e., is theclient), and the interface level provides the requested services (i.e., the server). Thismodel allows us to abstract from the iterative method routine all pieces of code that areliable to change as a result of user requirements. An important example is the abovediscussion on moving the matrix-vector operations out of the iterative method routine.In the same vein, we can abstract the stopping test, too. It is generally acceptedthat there is not one best stopping test for a given combination of user problem anditerative method. Thus, we can use the REVCOM interface to allow the user to changestopping tests quite cleanly. Without such an interface, all changes would have to bemade directly in the iterative method routine. Since this routine can be complicated,there is an increased risk of introducing collateral errors.The stopping test was included in the interface bymaking the following modi�cations:� A job code was created with which the client can request the stopping test to beperformed.� Di�erent stopping tests may operate on di�erent vectors. Further, only the clientroutine knows the layout of the vectors. Therefore, the server, depending on thestopping test, has to tell the client which vector's indices it needs. This step istaken before the init call to the client routine, by setting the NDX1 and NDX2parameters to appropriate codes. These codes (one for each vector) are de�nedby the client and copied by the server. This mechanism is possible because theworkspace, WORK, can also be referenced in the server routine.The server performs the stopping test and conveys the result to the client via theINFO parameter. A value of 1 indicates a successful test.� The client, during the init call, records the indices needed by the server in localvariables NEED1 and NEED2. Subsequently, every time it requests the stoppingtest to be performed, it sets output parameters NDX1 and NDX2 to NEED1 and4

SUBROUTINE CG()

 NDX1 = 1

 NDX2 = -1

 IJOB = 1

10 CALL CGREVCOM()

c 1 == R; 2 == Z; 3 == P; 4 == Q;

c -1 == ignore; any other == error

SUBROUTINE CGREVCOM()

c Alias workspace columns.

 IF(NDX1.NE.-1) THEN

 R = 1; Z = 2; P = 3; Q = 4

 ENDIF

c Similar code for NDX2/NEED2

 IF(NDX1.EQ.1) THEN NEED1 = ((R - 1) * LDW) + 1
 ELSEIF(NDX1.EQ.2) THEN NEED1 = ((Z - 1) * LDW) + 1

 ELSEIF(NDX1.EQ.3) THEN NEED1 = ((P - 1) * LDW) + 1

 ELSEIF(NDX1.EQ.4) THEN NEED1 = ((Q - 1) * LDW) + 1

c Codes for CGREVCOM’s vectors.

...
c Request stopping test

 NDX1 = NEED1

 RLBL = 5

 NDX2 = NEED2

 IJOB = 4

 RETURN...

...

Figure 2: Actions for REVCOM stopping testNEED2, respectively. For the CG algorithm, with stopping criterion 2 from theTemplates book (i.e., jjr(i)jj � stop tol jjbjj), the actions are shown in Figure 2.In the client routine, the code for the stopping test is replaced by code for settingthe job code in IJOB, resume label in RLBL, and control returned to the server.When the client is reinvoked after the stopping test, it tests INFO to check whetherthe stopping test was passed.2.3 Comments on the InterfaceThe subroutine (CG in Figure 1) that implements the reverse communication interfacemust be provided by the user. Apart from any other code, it must contain the GOTOand the IF statements, since these implement the reverse communication feature. Userscan use CG and corresponding routines for other iterative methods as templates for theirown code.As mentioned above, the purpose of the REVCOM interface is to isolate the iterativemethod subroutine from the implementation details of certain operations. A side e�ectis the slightly unnatural programming style that it imposes. In standard Fortran 77,comparable functionality can be achieved by (a) using COMMON blocks, or (b) passinguser subroutines to the iterative method subroutine. COMMON blocks allow for globalvariables that, for software engineering reasons, are not the preferred means for shar-ing data. Further, since multiple processes might read/write the same block, memory5

consistency requirements discourage the use of COMMON blocks. With option (b) onedrawback is that we do not get the same level of isolation as with REVCOM. Anotheris that the calling sequence has to be frozen1. In comparison, the REVCOM interfaceprovides us with a rational framework for incorporating di�erent matrix storage formatsand di�erent implementations of the operations.Programs written with the REVCOM framework are as clean, easy to develop, andeasy to maintain as those without. There is only a one-time overhead of learning theREVCOM protocol for interactions between the iterative method subroutine and thereverse communication interface subroutine.The overheads resulting from the REVCOM interface are as follows:1. SAVE statement in the iterative method subroutine. A cost reduction can beachieved by �nding a smaller subset of CGREVCOM variables that need to beSAVE'd. However, to some extent this overhead will persist.2. Cost of RETURNs from CGREVCOM to CG, and CALL to CGREVCOM fromCG. The amount of CALL/RETURN overhead depends on the problem size. If theproblem size is small, the number of iterations is small (fewer CALL/RETURNs),and therefore this overhead is small. Larger problems entail more iterations andthus greater overhead. However, the ratio of this overhead to execution time is aconstant.3 Use of Reverse CommunicationThe top-level calling sequence for the iterative method depends on the user's speci�ca-tion of the matrix-vector multiply, preconditioner solve routine(s), and data structuresfor the various matrices. As such, the user's subroutine implementing the reverse com-munication interface must be given all the details it needs to perform the operationsrequested of it. In our example codes, since we are still using COMMON blocks, thetop-level calling sequence remains the same. The call to (for example) the CG routineis as follows:CALL CG(N, B, X(1,1), WORK, LDW, ITER(1), RESID(1),$ MATVEC, PSOLVE, INFO(1))In the reverse communication scheme, the CG subroutine now contains the followingcall: CALL CGREVCOM(N, B, X, WORK, LDW, ITER, RESID, INFO,$ NDX1, NDX2, SCLR1, SCLR2, IJOB)1In [1] a case is made that a standard calling sequence can be found for the major components ofmost iterative methods. This would make it possible to write a general iterative package based onuser-supplied routines for the matrix operations. However, this is still less general than the REVCOMapproach. 6

The calling sequence to subroutines at this level is �xed and independent of the datastructure.The user must provide implementations of the various matrix-vector operations andstopping tests required by the iterative method. These implementations should adhereto the prescribed calling sequence. If they do not, the reverse communication level (CGin the above example) subroutine will have to be suitably modi�ed. We note that anychanges will be restricted to this subroutine.Note that we have hard-coded the codes for the vectors in supporting stopping testsin the REVCOM interface. The justi�cation is that the iterative method will changevery rarely. Further, any changes in its vectors will require commensurate changes inthe interface level. The only requirement is that if any changes are made, the encodingtable in the interface routine must also be updated. This risk can be eliminated by usinginclude �les (not standard Fortran 77).The stopping test implementation depends on the user. The only constraint is thatafter the stopping test has been computed, and before the iterative method is invokedagain, the parameter INFO should contain a 1 if the stopping test was successful, andany other integer if the test was not successful. The example code STOPTEST2.f canbe used as a template.In the previous release of the Templates code, the subroutine corresponding to aniterative method (itmeth) resided in �le itmeth.f. For the reverse communication inter-face, each itmeth has two �les; itmeth.f which implements the reverse communicationinterface, and itmethREVCOM.f which contains the iterative method skeleton. As such,these changes are invisible to the user.4 Future WorkA number of imporvements can be made in the current implementation, in particular:� more comprehensive error reporting,� examples with di�erent storage formats,� more preconditioners,� a cookbook explaining how to customize templates for a data format and stoppingtest, and� parallelization (selecting suitable data formats; parallel implementation of MATVEC,PSOLVE, SAXPY, NORM, etc.).We plan to investigate these in future releases.7

5 Obtaining the SoftwareThe software implementing the Templates algorithms is available (in Fortran in doubleprecision) from netlib, a public domain software repository. To retrieve the software,send e-mail of the formmail netlib@ornl.govOn the subject line or the body, typesend (enter shar filename here) from templatesshar �lename contentsdftemplates.shar Double Precision Fortran 77 routinesThe shar �le will be returned via an automatic e-mail handler. Save it to a �le called(shar �lename). Type sh (shar �lename). The �les described above will be unpacked inthe current directory.The �les may also be obtained via anonymous ftp as follows:ftp netlib2.cs.utk.eduftp> cd templatesftp> binaryftp> get dftemplates.sharIn addition, the �le may be acquired through the Web at the URLhttp://www.netlib.org/templates/index.html.References[1] Steven F. Ashby and Mark K. Seager. A proposed standard for iterative linearsolvers. Technical Report UCRL-102860, Lawrence Livermore national Laboratory,1990.[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of LinearSystems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1994.[3] W. D. Joubert, G. F. Carey, N. A. Berner, A. Kalhan, H. Kohli, A. Lorber, R. T.McLay, and Y. Shen. PCG Reference Manual: A Package for the Iterative Solutionof Large Sparse Linear Systems on Parallel Computers. Report CNA-274, Center forNumerical Analysis, University of Texas, Austin, TX, Group C3, LANL, NM, 1995.8

Appendix: Example CodeThis appendix contains the REVCOM code for the CG algorithm. The methods usestopping criterion #2. The structure of the matrices is made available to MATVEC,PSOLVE via a COMMON block in the main program.5.1 CG.f* SUBROUTINE CG(N, B, X, WORK, LDW, ITER, RESID, MATVEC,$ PSOLVE, INFO)** -- Iterative template routine --* .. Scalar Arguments ..INTEGER N, LDW, ITER, INFODOUBLE PRECISION RESID* ..* .. Array Arguments ..DOUBLE PRECISION X(*), B(*), WORK(*)* ..* .. Function Arguments ..EXTERNAL MATVEC, PSOLVE* ..** Purpose* =======** CG implements the reverse communication interface.* CG invokes CGREVCOM, which returns requests for MATVEC, and* PSOLVE. The appropriate routines are called by CG, and* the results are passed to CGREVCOM via another invocation.** Arguments* =========* ==*** This variable used to communicate requests between CG()* and CGREVCOM()* CG -> CGREVCOM: 1 = init,* 2 = use saved state to resume flow.* CGREVCOM -> CG: -1 = done, return to main,* 1 = matvec using SCLR1/2, NDX1/2* 2 = solve using NDX1/2* 3 = matvec using SCLR1/2, NDX1, and vector X9

* 4 = stop test #2INTEGER IJOBLOGICAL FTFLG* Arg/Result indices into WORK[].INTEGER NDX1, NDX2* Scalars passed from CGREVCOM to CG.DOUBLE PRECISION SCLR1, SCLR2* Vars reqd for STOPTEST2DOUBLE PRECISION TOL, BNRM2* ..* .. Executable Statements ..* INFO = 0** Test the input parameters.* IF (N.LT.0) THENINFO = -1ELSE IF (LDW.LT.MAX(1, N)) THENINFO = -2ELSE IF (ITER.LE.0) THENINFO = -3ENDIFIF (INFO.NE.0) RETURN** 1 == R; 2 == Z; 3 == P; 4 == Q; -1 == ignore; any other == error* NDX1 = 1NDX2 = -1TOL = RESIDFTFLG = .TRUE.** First time call always init.* IJOB = 11 CONTINUECALL CGREVCOM(N, B, X, WORK, LDW, ITER, RESID, INFO,$ NDX1, NDX2, SCLR1, SCLR2, IJOB)* On a return from CGREVCOM() we use the table (CGREVCOM -> CG)* to figure out what is reqd.IF (IJOB .eq. -1) THEN* revcom wants to terminate, so do it.10

GOTO 2ELSEIF (IJOB .eq. 1) THEN* call matvec.CALL MATVEC(SCLR1, WORK(NDX1), SCLR2, WORK(NDX2))ELSEIF (IJOB .eq. 2) THEN* call solve.CALL PSOLVE(WORK(NDX1), WORK(NDX2))ELSEIF (IJOB .eq. 3) THEN* call matvec with X.CALL MATVEC(SCLR1, X, SCLR2, WORK(NDX2))ELSEIF (IJOB .EQ. 4) THEN* do stopping test 2* if first time, set INFO so that BNRM2 is computed.IF(FTFLG) INFO = -1CALL STOPTEST2(N, WORK(NDX1), B, BNRM2, RESID, TOL, INFO)FTFLG = .FALSE.ENDIF** Done what revcom asked, set IJOB & go back to it.* IJOB = 2GOTO 1** Terminate*2 CONTINUERETURN** End of CG* END5.2 CGREVCOM.f* SUBROUTINE CGREVCOM(N, B, X, WORK, LDW, ITER, RESID, INFO,$ NDX1, NDX2, SCLR1, SCLR2, IJOB)** -- Iterative template routine --* .. Scalar Arguments ..INTEGER N, LDW, ITER, INFODOUBLE PRECISION RESID** (output) 11

DOUBLE PRECISION SCLR1, SCLR2* (input/output)INTEGER IJOB* ..* .. Array Arguments ..DOUBLE PRECISION X(*), B(*), WORK(LDW,*)** (output) for matvec and solve. These index into WORK[]INTEGER NDX1, NDX2* ..** Purpose* =======** CGREVCOM solves the linear system Ax = b using the* Conjugate Gradient iterative method with preconditioning.* Whenever it needs to compute a MATVEC or PSOLVE, it returns* control to CG.** ==** .. Parameters ..DOUBLE PRECISION ZERO, ONEPARAMETER (ZERO = 0.0D+0, ONE = 1.0D+0)* ..* .. Local Scalars ..INTEGER MAXIT, R, Z, P, Q, NEED1, NEED2DOUBLE PRECISION TOL, ALPHA, BETA, RHO, RHO1, BNRM2, DDOT, DNRM2** Indicates where to resume from. Only valid when IJOB = 2!INTEGER RLBL** Saving all.SAVE* ..* .. External Routines ..EXTERNAL DAXPY, DCOPY, DDOT, DNRM2* ..* .. Executable Statements ..** Entry point, test IJOBIF (IJOB .eq. 1) THENGOTO 1ELSEIF (IJOB .eq. 2) THEN* here we do resumption handling12

IF (RLBL .eq. 2) GOTO 2IF (RLBL .eq. 3) GOTO 3IF (RLBL .eq. 4) GOTO 4* If none of these, errorINFO = -4GOTO 20ENDIF******************1 CONTINUE****************** INFO = 0MAXIT = ITERTOL = RESID** Alias workspace columns.* R = 1Z = 2P = 3Q = 4** Check if caller will need indexing info.* IF(NDX1.NE.-1) THENIF(NDX1.EQ.1) THENNEED1 = ((R - 1) * LDW) + 1ELSEIF(NDX1.EQ.2) THENNEED1 = ((Z - 1) * LDW) + 1ELSEIF(NDX1.EQ.3) THENNEED1 = ((P - 1) * LDW) + 1ELSEIF(NDX1.EQ.4) THENNEED1 = ((Q - 1) * LDW) + 1ELSE* report errorINFO = -5GO TO 20ENDIFELSENEED1 = NDX1ENDIF* IF(NDX2.NE.-1) THENIF(NDX2.EQ.1) THEN 13

NEED2 = ((R - 1) * LDW) + 1ELSEIF(NDX2.EQ.2) THENNEED2 = ((Z - 1) * LDW) + 1ELSEIF(NDX2.EQ.3) THENNEED2 = ((P - 1) * LDW) + 1ELSEIF(NDX2.EQ.4) THENNEED2 = ((Q - 1) * LDW) + 1ELSE* report errorINFO = -5GO TO 20ENDIFELSENEED2 = NDX2ENDIF** Set initial residual.* CALL DCOPY(N, B, 1, WORK(1,R), 1)IF (DNRM2(N, X, 1).NE.ZERO) THEN*********CALL MATVEC(-ONE, X, ONE, WORK(1,R))** Set args for revcom return* SCLR1 = -ONESCLR2 = ONENDX1 = -1NDX2 = ((R - 1) * LDW) + 1** Prepare for return to CG* RLBL = 2IJOB = 3RETURN******************2 CONTINUE****************** IF (DNRM2(N, WORK(1,R), 1).LT.TOL) GO TO 30ENDIFBNRM2 = DNRM2(N, B, 1)IF (BNRM2.EQ.ZERO) BNRM2 = ONE14

* ITER = 0* 10 CONTINUE** Perform Preconditioned Conjugate Gradient iteration.* ITER = ITER + 1** Preconditioner Solve.**********CALL PSOLVE(WORK(1,Z), WORK(1,R))** Set args for revcom return* NDX1 = ((Z - 1) * LDW) + 1NDX2 = ((R - 1) * LDW) + 1** Prepare for return & return* RLBL = 3IJOB = 2RETURN******************3 CONTINUE****************** RHO = DDOT(N, WORK(1,R), 1, WORK(1,Z), 1)** Compute direction vector P.* IF (ITER.GT.1) THENBETA = RHO / RHO1CALL DAXPY(N, BETA, WORK(1,P), 1, WORK(1,Z), 1)* CALL DCOPY(N, WORK(1,Z), 1, WORK(1,P), 1)ELSECALL DCOPY(N, WORK(1,Z), 1, WORK(1,P), 1)ENDIF** Compute scalar ALPHA (save A*P to Q).**********CALL MATVEC(ONE, WORK(1,P), ZERO, WORK(1,Q))* 15

* Set args for revcom return* NDX1 = ((P - 1) * LDW) + 1NDX2 = ((Q - 1) * LDW) + 1SCLR1 = ONESCLR2 = ZERO** Prepare for return to CG* RLBL = 4IJOB = 1RETURN******************4 CONTINUE****************** ALPHA = RHO / DDOT(N, WORK(1,P), 1, WORK(1,Q), 1)** Compute current solution vector X.* CALL DAXPY(N, ALPHA, WORK(1,P), 1, X, 1)** Compute residual vector R, find norm,* then check for tolerance.* CALL DAXPY(N, -ALPHA, WORK(1,Q), 1, WORK(1,R), 1)**********RESID = DNRM2(N, WORK(1,R), 1) / BNRM2*********IF (RESID.LE.TOL) GO TO 30* NDX1 = NEED1NDX2 = NEED2* Prepare for resumption & returnRLBL = 5IJOB = 4RETURN******************5 CONTINUE*****************IF(INFO.EQ.1) GO TO 30* IF (ITER.EQ.MAXIT) THENINFO = 1 16

GO TO 20ENDIF* RHO1 = RHO* GO TO 10* 20 CONTINUE** Iteration fails.* RLBL = -1IJOB = -1RETURN* 30 CONTINUE** Iteration successful; return.* RLBL = -1IJOB = -1RETURN** End of CGREVCOM* END5.3 STOPTEST2.f* SUBROUTINE STOPTEST2(N, R, B, BNRM2, RESID, TOL, INFO)** -- Iterative template routine --* .. Scalar Arguments ..INTEGER N, INFODOUBLE PRECISION RESID, TOL, BNRM2* ..* .. Array Arguments ..DOUBLE PRECISION R(*), B(*)* ..** Purpose* =======** Computes the stopping criterion 2: (norm(b - A*x) / norm(b)) < TOL.17

** ==** .. Parameters ..DOUBLE PRECISION ZERO, ONEPARAMETER (ZERO = 0.0D+0, ONE = 1.0D+0)* ..* .. External Routines ..DOUBLE PRECISION DNRM2EXTERNAL DNRM2* ..* .. Executable Statements ..* IF(INFO.EQ.-1) THENBNRM2 = DNRM2(N, B, 1)IF (BNRM2.EQ.ZERO) BNRM2 = ONEENDIF* RESID = DNRM2(N, R, 1) / BNRM2INFO = 0IF (RESID.LE.TOL) INFO = 1* RETURN** End of STOPTEST2* END
18

