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1 IntroductionIn 1987 Dongarra, Du Croz, Du� and Hammarling wrote an article in the ACM Trans. Math.Soft. (Vol. 16, no. 1, page 1) de�ning and proposing a set of Level 3 Basic Linear AlgebraSubprograms. That proposal logically concluded a period of reection and discussion among themathematical software community [12, 21, 24] to de�ne a set of routines that would �nd wideapplication in software for numerical linear algebra and provide a useful tool for implementors andusers. Because these subprograms and their predecessors { the Levels 1 and 2 BLAS { are an aidto clarity, portability, modularity and maintenance of software, they have been embraced by thecommunity and have become a de facto standard for elementary linear algebra computations [11].Many of the frequently used algorithms of numerical linear algebra can be implemented so that amajority of the computation is performed by calls to the Level 2 and Level 3 BLAS. By relying onthese basic kernels, it is possible to develop portable and e�cient software across a wide range ofarchitectures, with emphasis on workstations, vector-processors and shared-memory computers, ashas been done in LAPACK [2].As opposed to shared-memory systems, distributed-memory computers di�er signi�cantly from thesoftware point of view. The underlying interconnection network as well as the vendor suppliedcommunication library are usually machine speci�c. The ongoing Message Passing Interface (MPI)standardization e�ort [17] will undoubtly be of great bene�t to the user community. Nevertheless,a large variety of distributed-memory systems still exists and this motivated the development of aset of portable communication subprograms well suited for linear algebra computations: the BasicLinear Algebra Communication Subprograms (BLACS) [14, 27]. In addition to de�ning a portableinterface the BLACS also provide the correct level of abstraction. They allow the software writerto focus on performing message passing on subsections of matrices rather than at low level bytetransfers.There has been much interest recently in developing parallel versions of the BLAS for distributedmemory computers [1, 3, 15, 16]. Some of this research proposed parallelizing the BLAS, and someimplemented a few important BLAS routines, such as matrix-matrix multiplication. Almost tenyears after the very successful BLAS were proposed, we are in a position to de�ne and implementa set of Basic Linear Algebra Subprograms for distributed-memory computers with similar func-tionality as their sequential predecessors. The proposed set of routines that constitute the ParallelBasic Linear Algebra Subprograms results from the adaptation to distributed memory computersand reuse of the design decisions made for the BLAS. The local computations within a process areperformed by the BLAS, while the communication operations are handled by the BLACS.In an e�ort to simplify the parallelization of serial codes implemented on top of the BLAS, thePBLAS proposed here are targeted at vector-vector, matrix-vector and matrix-matrix operations.The last section illustrates how some common algorithms can be implemented by calls to theproposed routines. There is certainly considerable evidence for the e�ciency of such algorithmson various machines [18]. Such implementations are portable and e�cient across a wide variety ofdistributed memory MIMD computers, ranging from a heterogeneous network of workstations to astatically connected set of identical processors, provided that e�cient machine-speci�c BLAS andBLACS are available. 4



The scope of this proposal is limited. First, the set of routines described in this paper constitutes anextended proper subset of the BLAS. For instance, this proposal does not contain vector rotationroutines or dedicated subprograms for banded or packed matrices. A matrix transposition routinehas been added to the Level 3 subprograms since this operation is much more complex to performand implement on distributed-memory computers. Second, this proposal does not include routinesfor matrix factorizations or reductions; these are covered by the ScaLAPACK (Scalable LinearAlgebra PACKage) project [6, 7]. A reference implementation version of the PBLAS is available onnetlib (http://www.netlib.org). Vendors can then supply system optimized versions of the BLAS,the BLACS and eventually the PBLAS. It is our hope that this proposal will initiate discussionsamong the computer science community so that this project will best reect its needs.This proposal is intended primarily for software developers and to a lesser extent for experiencedapplications programmers. The details of this proposal are concerned with de�ning a set of sub-routines for use in FORTRAN 77 and C programs. However, the essential features of this standardshould be easily adaptable to other programming languages. We have attempted to pave the wayfor such a future evolution by respecting the driving concepts of the HPF [23] and MPI [17] projects.2 Scope of the PBLASThe design of the software is as consistent as possible with that of the BLAS; thus, the experiencedlinear algebra programmer will have the same basic tools available in both the sequential andparallel programming worlds.In real arithmetic the operations for the PBLAS have the following form:� Level 1 - Vector-vector operations� x$ y� x �x� y  x� y  �x + y� dot xT y� nrm2 kxk2� asum kre(x)k1+ kim(x)k1� Index and value of the �rst maximal element in absolute value of a vector.� Level 2 - Matrix-vector operations{ Matrix-vector products� y  �Ax + �y� y  �ATx+ �y{ Rank-1 update of a general matrix� A �xyT + A 5



{ Rank-1 and rank-2 updates of a symmetric matrix� A �xxT + A� A �xyT + �yxT + A{ Multiplication by a triangular matrix� x Tx� x TTx{ Solving a triangular system of equations� x T�1x� x T�Tx� Level 3 - Matrix-matrix operations{ Matrix-matrix products� C  �AB + �C� C  �ATB + �C� C  �ABT + �C� C  �ATBT + �C{ Rank-k and rank-2k updates of a symmetric matrix� C  �AAT + �C� C  �ATA+ �C� C  �ABT + �BAT + �C� C  �ATB + �BTA+ �C{ Multiplication by a triangular matrix� B  �TB� B  �TTB� B  �BT� B  �BTT{ Solving multiple triangular systems of equations� B  �T�1B� B  �T�TB� B  �BT�1� B  �BT�T{ Matrix transposition� C  �C + �ATHere � and � are scalars, x and y are vectors, A, B and C are rectangular matrices (in somecases square and symmetric), and T is an upper or lower triangular matrix (and nonsingularfor the triangular solves).Analogous operations are proposed in complex arithmetic. Conjugate transposition is speci-�ed as well as simple transposition. Additional operations are provided for scaling a complexvector by a real scalar and updates of a Hermitian matrix as follows:6



� x �x� A �xxH + A� C  �AAH + �C� C  �AHA+ �Cwith � and � real for the vector-vector and matrix-matrix operations, and� A �xyH + y(�x)H +A� C  �ABH + ��BAH + �C� C  �AHB + ��BHA+ �Cwith � real.3 Conventions of the PBLAS3.1 Naming ConventionsThe name of a PBLAS routine follows the conventions of the BLAS with the exception that the�rst character in the name is always a `P', which stands for Parallel. The second character (cor-responding to the �rst character in BLAS names) denotes the FORTRAN data type of the matrixor vector as follows:S REALD DOUBLE PRECISIONC COMPLEXZ COMPLEX*16 or DOUBLE COMPLEX (if available)The last characters in the name of the Level 1 routines are abbreviations of the performed operationsas indicated in Table 1. For example PSCOPY is the single precision real vector-vector copy routinename. The third and fourth characters in the name of the Levels 2 and 3 routines refer to the kindof matrix involved as follows:GE All matrix operands are GEneral rectangular;HE One of the matrix operands is HErmitian;SY One of the matrix operands is SYmmetric;TR One of the matrix operands is TRiangular.7



Name Function Pre�xesP2SWAP Swap x and y S, C, D, ZP2SCAL Constant times a vector S, C, D, Z, CS, ZDP2COPY Copy x into y S, C, D, ZP2AXPY Constant times a vector plus a vector S, C, D, ZP2DOT Dot product S, DP2DOTU Dot product C, ZP2DOTC Dot product C, ZP2NRM2 2-norm (Euclidean length) S, D, SC, DZP2ASUM Sum of absolute values (*) S, D, SC, DZP2AMAX Index and value of element having S, C, D, Zmaximum absolute value (*)(*) For complex components zj = xj + iyj these subprograms compute jxj j+ jyj jinstead of (x2j + y2j )1=2.Table 1: Summary of proposed Level 1 PBLAS routinesThe �fth and sixth characters in the name of the Levels 2 and 3 routines denote the type of operationas follows:MM Matrix-matrix product;MV Matrix-vector product;R Rank-1 update of a matrix;R2 Rank-2 update of a matrix;RK Rank-k update of a symmetric or Hermitian matrix;R2K Rank-2k update of a symmetric or Hermitian matrix;SM Solves a system of linear equations for a matrix of right-hand sides;SV Solves a system of linear equations for a right-hand side vector.The suggested combinations are indicated in Table 2. Note, however, that rank-k updates of generalmatrices are provided by the GEMM routines. In the �rst column, under real the second characterS may be replaced by D. In the second column, under complex, the second character C may bereplaced by Z. See appendix C for the complete subroutine calling sequences.In our model implementation, however, the matrix transposition routine is an exception and iscalled P2TRAN2.The collection of routines can be thought of as being divided into four separate parts, real, doubleprecision, complex and complex*16. These routines can be written in C or FORTRAN 90 for8



Real Complex MM MV R R2 RK R2K SM SVPSGE PCGE * * * *PSSY PCSY * * * * * *PCHE * * * * * *PSTR PCTR * * * *Matrix transposition: PSTRAN, PCTRANU and PCTRANC.Table 2: Summary of proposed Level 2 and 3 PBLAS routinesexample; their implementation takes advantage of dynamic memory management features presentin these programming languages. However, as we will see later, the local storage convention ofthe distributed matrix operands in every process's memory is assumed to be FORTRAN like, i.e.,\column major" as it is speci�ed for the BLAS. Thus, it is possible to rely on the BLAS to performthe local computations within a process.3.2 Storage ConventionsThe current model implementation of the PBLAS assumes the matrix operands to be distributedaccording to the block-cyclic decomposition scheme. This allows the routines to achieve scalability,well balanced computations and to minimize synchronization costs. It is not the object of thispaper to describe in detail the data mapping onto the processes, for further details see [7, 13]. Letus simply say that the set of processes is mapped to a virtual mesh, where every process is naturallyidenti�ed by its coordinates in this P � Q grid. This virtual machine is in fact part of a largerobject de�ned by the BLACS and called a context [14].
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2 x 2 process grid point of viewFigure 1: A 5� 5 matrix decomposed into 2� 2 blocks mapped onto a 2� 2 process grid.An M by N matrix operand is �rst decomposed into MB by NB blocks starting at its upper leftcorner. These blocks are then uniformly distributed across the process mesh. Thus every processowns a collection of blocks, which are locally and contiguously stored in a two dimensional \columnmajor" array. We present in Fig. 1 the mapping of a 5 � 5 matrix partitioned into 2 � 2 blocks9



mapped onto a 2 � 2 process grid, i.e M =N =5 and MB =NB = 2. The local entries of every matrixcolumn are contiguously stored in the processes' memories.It follows that a general M by N distributed matrix is de�ned by its dimensions, the size of theelementary MB by NB block used for its decomposition, the coordinates of the process having inits local memory the �rst matrix entry fRSRC ,CSRC g, and the BLACS context (CTXT ) in whichthis matrix is de�ned. Finally, a local leading dimension LLD is associated with the local memoryaddress pointing to the data structure used for the local storage of this distributed matrix. InFig. 1, we choose for illustration purposes RSRC =CSRC =0. In addition, the local arrays in processrow 0 must have a leading dimension LLD greater than or equal to 3, and greater than or equalto 2 in the process row 1.These pieces of information are grouped together into a single 8 element integer array, called thedescriptor, DESC . Such a descriptor is associated with each distributed matrix. The entries ofthe descriptor uniquely determine the mapping of the matrix entries onto the local processes'memories. Moreover, with the exception of the local leading dimension, the descriptor entries areglobal values characterizing the distributed matrix operand. Since vectors may be seen as a specialcase of distributed matrices or proper submatrices, the larger scheme just de�ned encompasses theirdescription as well.For distributed symmetric and Hermitian matrices, only the upper (UPLO='U') triangle or thelower (UPLO='L') triangle is stored. For triangular distributed matrices, the argument UPLO servesto de�ne whether the matrix is upper (UPLO='U') or lower (UPLO='L') triangular.For a distributed Hermitian matrix the imaginary parts of the diagonal elements are zero and thusthe imaginary parts of the corresponding FORTRAN or C local arrays need not be set, but areassumed to be zero. In the P2HER and P2HER2 routines, these imaginary parts will be set to zeroon return, except when � is equal to zero, in which case the routines exit immediately. Similarly,in the P2HERK and P2HER2K routines the imaginary parts of the diagonal elements will also be setto zero on return, except when � is equal to one and � or K is equal to zero, in which case theroutines exit immediately.3.3 Argument ConventionsThe order of the arguments of a PBLAS routine is as follows:1. Arguments specifying matrix options2. Arguments de�ning the sizes of the distributed matrix or vector operands3. Input-Output scalars4. Description of the input distributed vector or matrix operands5. Input scalar (associated with the input-output distributed matrix or vector operand)6. Description of the input-output distributed vector or matrix operands10



Note that every category is not present in each of the routines. The arguments that specify optionsare character arguments with the names SIDE, TRANS, TRANSA, TRANSB, UPLO and DIAG.SIDE is used by the routines as follows:Value Meaning`L' Multiply general distributed matrix by symmetric or triangulardistributed matrix on the left.`R' Multiply general distributed matrix by symmetric or triangulardistributed matrix on the right.TRANS, TRANSA and TRANSB are used by the routines as follows:Value Meaning`N' Operate with the distributed matrix.`T' Operate with the transpose of the distributed matrix.`C' Operate with the conjugate transpose of the distributed matrix.In the real case the values `T' and `C' have the same meaning, and in the complex case the value`T' is not allowed.UPLO is used by the Hermitian, symmetric, and triangular distributed matrix routines to specifywhether the upper or lower triangle is being referenced as follows:Value Meaning`U' Upper triangle.`L' Lower triangle.DIAG is used by the triangular distributed matrix routines to specify whether or not the distributedmatrix is unit triangular, as follows:Value Meaning`U' Unit triangular.`R' Non-unit triangular.When DIAG is supplied as `U' the diagonal elements are not referenced.Thus, these arguments have similar values and meanings as for the BLAS; TRANSA and TRANSBhave the same values and meanings as TRANS, where TRANSA and TRANSB apply to the distributedmatrix operands A and B respectively. We recommend that the equivalent lower case characters beaccepted with the same meaning.The distributed submatrix operands of the Level 3 PBLAS are determined by the arguments M,N and K, which specify their size. These numbers may di�er from the two �rst entries of thedescriptor (M and N ), which speci�es the size of the distributed matrix containing the submatrixoperand. Also required are the global starting indices IA, JA, IB, JB, IC and JC. It is permissible11



to call a routine with M or N equal to zero, in which case the routine exits immediately withoutreferencing its distributed matrix arguments. If M and N are greater than zero, but K is equal tozero, the operation reduces to C(IC:*,JC:*) �C(IC:*,JC:*) (this applies to the GEMM, SYRK,SYR2K, HERK and HER2K routines). The input-output distributed submatrix (B(IB:*,JB:*) for theTR-routines, C(IC:*,JC:*) otherwise) is always M � N if rectangular, or N � N if square.The description of the distributed matrix operands consists of� a pointer in every process to the local array (A, B or C) containing the local pieces of thecorresponding distributed matrix,� the global starting indices in row column order f (IA, JA), (IB, JB), (IC, JC) g,� the descriptor of the distributed matrix as declared in the calling (sub)program (DESCA, DESCBor DESCC).The description of a distributed vector operand is similar to the description of a distributed matrix(X, IX, JX, DESCX) followed by a global increment INCX, which allows the selection of a matrixrow or a matrix column as a vector operand. Only two increment values are currently supportedby our model implementation, namely 1 to select a matrix column and DESCX(1) (i.e INCX=MX)specifying a matrix row.The input scalars always have the dummy argument names ALPHA and BETA. Output scalars areonly present in the Level 1 PBLAS and are called AMAX, ASUM, DOT, INDX and NORM2.We use the description of two distributed matrix operands X and Y to describe the invalid valuesof the arguments:� Any value of the character arguments SIDE, TRANS, TRANSA, TRANSB, UPLO, or DIAG, whosemeaning is not speci�ed,� M < 0 or N < 0 or K < 0,� IX < 1 or IX+M-1 > M (= DESCX(1)) (assuming X(IX:IX+M-1,�) is to be operated on),� JX < 1 or JX+N-1 > N (= DESCX(2)), (assuming X(�,JX:JX+N-1) is to be operated on),� MB (=DESCX(3)) < 1 or NB (=DESCX(4)) < 1,� RSRC (=DESCX(5)) < 0 or RSRC � P (number of process rows),� CSRC (=DESCX(6)) < 0 or CSRC � Q (number of process columns),� LLD (=DESCX(8)) < the local number of rows in the array pointed to by X,� INCX 6= 1 and INCX 6= M (= DESCX(1)) (Only for vector operands),� CTXT X (=DESCX(7)) 6= CTXT Y (=DESCY(7)) with X and Y distributed matrix operands.12



If a routine is called with an invalid value for any of its arguments, then it must report the fact andterminate the execution of the program. In the model implementation, each routine, on detecting anerror, calls a common error-handling routine PBERROR(), passing to it the current BLACS context,the name of the routine and the number of the �rst argument that is in error. If an error is detectedin the j-th entry of a descriptor array, which is the i-th argument in the parameter list, the numberpassed to PBERROR() has been arbitrarily chosen to be 100�i+j. This allows the user to distinguishan error on a descriptor entry from an error on a scalar argument. For e�ciency purposes, thePBLAS routines only perform a local validity check of their argument list. If an error is detectedin at least one process of the current context, the program execution is stopped.A global validity check of the input arguments passed to a PBLAS routine must be performed inthe higher-level calling procedure. To demonstrate the need and cost of global checking, as wellas the reason why this type of checking is not performed in the PBLAS, consider the followingexample: the value of a global input argument is legal but di�ers from one process to another. Theresults are unpredictable. In order to detect this kind of error situation, a synchronization pointwould be necessary, which may result in a signi�cant performance degradation. Since every processmust call the same routine to perform the desired operation successfully, it is natural and safe torestrict somewhat the amount of checking operations performed in the PBLAS routines.Specialized implementations may call system-speci�c exception-handling facilities, either via anauxiliary routine PBERROR or directly from the routine. In addition, the testing programs can takeadvantage of this exception-handling mechanism by simulating speci�c erroneous input argumentlists and then verifying that particular errors are correctly detected.4 Speci�cations of the PBLAS4.1 Argument DeclarationsType, dimension and description for variables occurring in the subroutine speci�cations are asfollows:CHARACTER*1 SIDE, UPLO, TRANS, TRANSA, TRANSB, DIAGINTEGER IA, IB, IC, INCX, INCY, INDX, IX, IYINTEGER JA, JB, JC, JX, JY, M, N, KINTEGER DESCA( 8 ), DESCB( 8 ), DESCC( 8 )INTEGER DESCX( 8 ), DESCY( 8 )For routines whose second letter is a S:REAL ALPHA, AMAX, ASUM, BETA, DOT, NRM2REAL A( * ), B( * ), C( * ), X( * ), Y ( * )For routines whose second letter is a D: 13



DOUBLE PRECISION ALPHA, AMAX, ASUM, BETA, DOT, NRM2DOUBLE PRECISION A( * ), B( * ), C( * ), X( * ), Y ( * )For routines whose second letter is a C:REAL AMAX, ASUM, DOTC, DOTU, NRM2COMPLEX ALPHA, BETACOMPLEX A( * ), B( * ), C( * ), X( * ), Y ( * )except for PCHER and PCHERK where the scalars � and � are real so that the �rst declaration aboveis replaced by:REAL ALPHA, BETAand for PCHER2K � is complex and � is real, so this is replaced by:COMPLEX ALPHAREAL BETAFor routines whose second letter is a Z:DOUBLE PRECISION AMAX, ASUM, DOTC, DOTU, NRM2COMPLEX*16 ALPHA, BETACOMPLEX*16 A( * ), B( * ), C( * ), X( * ), Y( * )or equivalently,DOUBLE PRECISION AMAX, ASUM, DOTC, DOTU, NRM2DOUBLE COMPLEX ALPHA, BETADOUBLE COMPLEX A( * ), B( * ), C( * ), X( * ), Y( * )except for PZHER and PZHERK where the scalars � and � are real so that the �rst declaration aboveis replaced by:DOUBLE PRECISION ALPHA, BETAand for PCHER2K where � is complex and � is real, so this is replaced by:COMPLEX*16 ALPHADOUBLE PRECISION BETAor equivalently,DOUBLE COMPLEX ALPHADOUBLE PRECISION BETA 14



4.2 Vector-Vector OperationsIn the following sections, no distinction is made between a column or a row of a matrix. Both aredenoted by the word \vector". We de�ne vecN(X) byvecN (X) = ( X(IX; JX : JX+ N� 1) if INCX = DESCX(1) andX(IX : IX+ N� 1; JX) if INCX = 1:1. Vector swap:P2SWAP( N, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY )Operation: vecN(X)$ vecN(Y )2. Vector scaling: P2SCAL( N, ALPHA, X, IX, JX, DESCX, INCX )Operation: vecN(X) � vecN(X)3. Vector copy:P2COPY( N, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY )Operation: vecN(Y ) vecN(X)4. Vector addition:P2AXPY( N, ALPHA, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY )Operation: vecN(Y ) � vecN(X) + vecN (Y )5. Dot products:P2DOT2( N, DOT, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY )Operation: for the PSDOT, PDDOT, PCDOTU or PZDOTU routines,15



DOT  vecN(X)TvecN(Y )For the PCDOTC or PZDOTC routines,DOT  vecN(X)HvecN (Y )6. Vector 2-norm: P2NRM2( N, NORM2, X, IX, JX, DESCX, INCX )Operation: NORM2  kvecN(X)k27. Sum of absolute value of vector entries:P2ASUM( N, ASUM, X, IX, JX, DESCX, INCX )Operation: ASUM  kre(vecN(X))k1+ kim(vecN(X))k18. Index and value of vector entry having maximum absolute value:P2AMAX( N, AMAX, INDX, X, IX, JX, DESCX, INCX )Operation: 8><>: INDX 1st k 3 jre(vecN(X)k)j+ jim(vecN(X)k)j= max(jre(vecN(X)i)j+ jim(vecN(X)i)j)AMAX vecN(X)k4.3 Matrix-Vector OperationsIn the following sections, subM;N(A) denotes the submatrix A(IA:IA+M-1,JA:JA+N-1).1. General matrix-vector products:P2GEMV( TRANS, M, N, ALPHA, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX,BETA, Y, IY, JY, DESCY, INCY )Operation: 16



TRANS = `N' vecM(Y ) � subM;N(A)vecN(X) + � vecM(Y )TRANS = `T' vecN(Y ) � subM;N(A)TvecM(X) + � vecN (Y )TRANS = `C' vecN(Y ) � subM;N(A)HvecM(X) + � vecN(Y )2. Matrix-vector products where the matrix is real or complex symmetric or complex Hermitian:P2SYMV( UPLO, N, ALPHA, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX,BETA, Y, IY, JY, DESCY, INCY )P2HEMV( UPLO, N, ALPHA, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX,BETA, Y, IY, JY, DESCY, INCY )Operation: subN;N(A) is symmetric for the P2SYMV routines and Hermitian for the P2HEMVroutines: vecN(Y ) � subN;N(A)vecN(X) + � vecN(Y )3. Triangular matrix-vector products:P2TRMV( UPLO, TRANS, DIAG, N, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX )Operation: subN;N(A) denotes a triangular submatrix:TRANS = `N' vecN(X) subN;N(A)vecN(X)TRANS = `T' vecN (X) subN;N(A)TvecN(X)TRANS = `C' vecN(X) subN;N(A)HvecN(X)4. Solution of triangular system of equations:P2TRSV( UPLO, TRANS, DIAG, N, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX )Operation: subN;N(A) denotes a triangular submatrix:TRANS = `N' vecN(Y ) subN;N(A)�1subN(X)TRANS = `T' vecN(Y ) subN;N(A)�T subN(X)TRANS = `C' vecN(Y ) subN;N(A)�HsubN(X)5. Rank-1 updates of a general matrix: 17



P2GER2( M, N, ALPHA, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY,A, IA, JA, DESCA )Operation: for the PSGER, PDGER, PCGERU or PZGERU routines,subM;N(A) � vecM(X)vecN(Y )T + subM;N(A)For the PCGERC or PZGERC routines,subM;N(A) � vecM(X)vecN(Y )H + subM;N(A)6. Rank-1 updates of a real or complex symmetric or complex Hermitian matrix:P2SYR( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, A, IA, JA, DESCA )P2HER( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, A, IA, JA, DESCA )Operation: for the P2SYR routines, subN;N(A) is symmetric:subN;N(A) � vecN(X)vecN(X)T + subN;N(A)For the P2HER routines, subN;N(A) is Hermitian,subN;N(A) � vecN(X)vecN(X)H + subN;N(A)7. Rank-2 updates of a real or complex symmetric or complex Hermitian matrix:P2SYR2( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY,A, IA, JA, DESCA )P2HER2( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY,A, IA, JA, DESCA )Operation: for the P2SYR2 routines, subN;N(A) is symmetric,subN;N(A) � vecN (X)vecN(Y )T + � vecN(Y )vecN(X)T + subN;N(A)For the P2HER2 routines, subN;N(A) is Hermitian,subN;N(A) � vecN(X)vecN(Y )H + � vecN(Y )vecN(X)H + subN;N(A)
18



4.4 Matrix-Matrix Operations1. General matrix-matrix products:P2GEMM( TRANSA, TRANSB, M, N, K, ALPHA, A, IA, JA, DESCA,B, IB, JB, DESCB, BETA, C, IC, JC, DESCC )Operation: in the following table sub(C) denotes subM;N(C), sub(A) denotes subM;K(A) whenTRANSA=`N' and subK;M (A) otherwise, �nally sub(B) denotes subK;N (B) when TRANSB=`N'and subN;K(B) otherwise.TRANSA = `N' TRANSA = `T' TRANSA = `C'TRANSB = `N' sub(C) � sub(C) sub(C) � sub(C) sub(C) � sub(C)+ � sub(A)sub(B) + � sub(A)Tsub(B) + � sub(A)Hsub(B)TRANSB = `T' sub(C) � sub(C) sub(C) � sub(C) sub(C) � sub(C)+ � sub(A)sub(B)T + � sub(A)Tsub(B)T + � sub(A)Hsub(B)TTRANSB = `C' sub(C) � sub(C) sub(C) � sub(C) sub(C) � sub(C)+ � sub(A)sub(B)H + � sub(A)Tsub(B)H + � sub(A)Hsub(B)H(In the real case the values `T' and `C' have the same meaning).2. Matrix-matrix products where one matrix is real or complex symmetric or complex Hermitian:P2SYMM( SIDE, UPLO, M, N, ALPHA, A, IA, JA, DESCA,B, IB, JB, DESCB, BETA, C, IC, JC, DESCC )P2HEMM( SIDE, UPLO, M, N, ALPHA, A, IA, JA, DESCA,B, IB, JB, DESCB, BETA, C, IC, JC, DESCC )Operation: subM;M(A) when SIDE=`L' and subN;N(A) when SIDE=`R' is symmetric for theP2SYMM routines, Hermitian for the P2HEMM routines:SIDE = `L' subM;N(C) � subM;M(A)subM;N(B) + � subM;N(C)SIDE = `R' subM;N(C) � subM;N(B)subN;N(A) + � subM;N(C)3. Rank-k updates of a real or complex symmetric or complex Hermitian matrix:P2SYRK( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC )P2HERK( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC )Operation: for the P2SYRK routines, subN;N(C) is symmetric,19



TRANS = `N' subN;N(C) � subN;K(A)subN;K(A)T + � subN;N(C)TRANS = `T' subN;N(C) � subK;N (A)TsubK;N(A) + � subN;N(C)For the P2HERK routines, subN;N(C) is Hermitian,TRANS = `N' subN;N(C) � subN;K(A)subN;K(A)H + � subN;N(C)TRANS = `C' subN;N(C) � subK;N (A)HsubK;N(A) + � subN;N(C)(In the real cases the values `T' and `C' have the same meaning. In the complex caseTRANS=`C' is not allowed in P2SYRK, and TRANS=`T' is not allowed in P2HERK).4. Rank-2k updates of a real or complex symmetric or complex Hermitian matrix:P2SYR2K( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA,B, IB, JB, DESCB, BETA, C, IC, JC, DESCC )P2HER2K( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA,B, IB, JB, DESCB, BETA, C, IC, JC, DESCC )Operation: for the P2SYR2K routines, subN;N(C) is symmetric,TRANS = `N' subN;N(C) � subN;K(A)subN;K(B)T + � subN;K(B)subN;K(A)T+� subN;N(C)TRANS = `T' subN;N(C) � subK;N(A)TsubK;N(B) + � subK;N (B)TsubK;N (A)+� subN;N(C)For the P2HER2K routines, sub(C) is Hermitian,TRANS = `N' subN;N(C) � subN;K(A)subN;K(B)H + � subN;K(B)subN;K(A)H+� subN;N(C)TRANS = `C' subN;N(C) � subK;N(A)HsubK;N(B) + � subK;N (B)HsubK;N(A)+� subN;N(C)(In the real cases the values `T' and `C' have the same meaning. In the complex caseTRANS=`C' is not allowed in P2SYR2K, and TRANS=`T' is not allowed in P2HER2K).5. Matrix transpositionP2TRAN2( M, N, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC )20



Operation: for the PSTRAN, PDTRAN, PCTRANU or PZTRANU routines,subM;N(C) � subM;N(C) + � subN;M(A)TFor the PCTRANC or PZTRANC routines,subM;N(C) � subM;N(C) + � subN;M(A)H6. Triangular matrix-matrix products:P2TRMM( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, IA, JA, DESCA,B, IB, JB, DESCB )Operation: in the following table, sub(B) denotes subM;N(B), sub(A) denotes the subM;M(A)when SIDE=`L' and subN;N(A) when SIDE=`R'. sub(A) is triangular:SIDE = `L' SIDE = `R'TRANSA = `N' sub(B) � sub(A)sub(B) sub(B) � sub(B)sub(A)TRANSA = `T' sub(B) � sub(A)Tsub(B) sub(B) � sub(B)sub(A)TTRANSA = `C' sub(B) � sub(A)Hsub(B) sub(B) � sub(B)sub(A)H(In the real case the values `T' and `C' have the same meaning.)7. Solution of triangular systems of equations:P2TRSM( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, IA, JA, DESCA,B, IB, JB, DESCB )Operation: in the following table, sub(B) denotes subM;N(B), sub(A) denotes the subM;M(A)when SIDE=`L' and subN;N(A) when SIDE=`R'. sub(A) is triangular:SIDE = `L' SIDE = `R'TRANSA = `N' sub(B) � sub(A)�1sub(B) sub(B) � sub(B)sub(A)�1TRANSA = `T' sub(B) � sub(A)�Tsub(B) sub(B) � sub(B)sub(A)�TTRANSA = `C' sub(B) � sub(A)�Hsub(B) sub(B) � sub(B)sub(A)�H(In the real case the values `T' and `C' have the same meaning.)21



5 ImplementationTo support and encourage the use of the PBLAS, we describe here two software components of thispackage which emphasize the software quality aspects used during the development phase, as wellas explain our reasons to believe in the reliability and robustness of these routines:1. A model implementation of the subprograms has been written in ANSI C [25], mainly for itsdynamic memory allocation management features, and FORTRAN 77. The FORTRAN 77BLAS enable the PBLAS to be used on any machine for which the BLACS are available.2. Testing and timing programs have been designed to ensure that implementations conform tothe speci�cations and have been correctly installed.5.1 The Model ImplementationWhile most of the local computations are performed by the BLAS and the communication is handledby the BLACS, the PBLAS is in fact only responsible for organizing the distributed computations.A typical PBLAS subroutine locally checks the coherency and the validity of its input arguments,translates these global parameters into their local equivalents and performs the basic operationsusing an optimally shaped adaptive procedure. Note that most of the PBLAS routines currentlyassume the data to be aligned. Various routines have di�erent alignment restrictions. For instance,some routines will require that two matrices start at the same process row or column, while othersmay require only the block size to be the same. In the next version of the PBLAS, some of theserestrictions have been removed and the remaining restrictions will be evaluated by user feedback.5.1.1 E�ciency.At the lowest level, the e�ciency of the PBLAS is determined by the local performance of the BLASand the BLACS. In addition, depending on the shape of its input and output distributed matrixoperands, the PBLAS select the best algorithm in terms of data transfer across the process grid.Transparent to the user, this relatively simple selection process ensures high e�ciency independentfrom the actual computation performed.For example, there are algorithms [10, 19, 22], for matrix-matrix products like PUMMA which aremuch more e�cient for equally sized input/output matrices. Some of these algorithms require avery large amount of workspace making them impractical for library purposes. However, a simpleimplementation of common matrix multiplication operations has recently been proven to be highlye�cient and scalable [26]. These algorithms, called SUMMA, have the advantage of requiring muchless workspace than PUMMA. These algorithms have, in some sense, already been implementedin terms of internal routines to the PBLAS [9]. Therefore, this work [26] will allow us to improveand generalize the model implementation. However, when one of the matrix operands is \thin"or \fat", the current model implementation employs di�erent algorithms which are more e�cientin the overall number of messages exchanged on the network, and are also usually much moreeconomical in terms of workspace. 22



The current model implementation of the Level 3 PBLAS decides which algorithm to use dependingon the shape of the matrix operands. This decision, however, could also be based on the amount ofmemory available during the execution, the local BLAS performance, and machine constants suchas the latency and bandwidth of the network [4].Internally, the PBLAS currently rely on routines requiring certain alignment properties to be sat-is�ed [9]. These properties have been chosen so that maximum e�ciency can be obtained on theserestricted operations. Consequently, when redistribution or re-alignment of input or output datahas to be performed some performance will be lost. So far, the PBLAS do not perform such redis-tribution or alignment of the input/output matrix or vector operands when necessary. However,the PBLAS routines would provide greater exibility and would be more similar in functionalityto the BLAS if these operations where provided. The question of making the PBLAS more exibleremains open and its answer largely depends on the needs of the user community.5.1.2 Auxiliary Subprograms.It is well known [4, 13, 26] that certain algorithms based on a two-dimensional block-cyclic datadistribution scheme become more e�cient and scalable when appropriate communication topologiesare used for the broadcast and global combine operations [4, 13, 26]. For example, pipelining thebroadcast operation along the rows of the process grid improves the e�ciency and scalability of theLU factorization algorithm [4, 13]. The BLACS topologies allow the user to optimize communicationpatterns for these particular operations. A default topology can also be selected. The list of BLACStopologies as well as the di�erent possible scopes are documented in [14]. In order to set this lowlevel information, the PBLAS provide two routines having the following FORTRAN 77 interface:SUBROUTINE PTOPSET( ICTXT, OP, SCOPE, TOP )SUBROUTINE PTOPGET( ICTXT, OP, SCOPE, TOP )INTEGER ICTXTCHARACTER*1 OP, SCOPE, TOPPTOPSET assigns the BLACS topology [14] TOP to be used in the communication operations OP alongthe scope speci�ed by SCOPE. PTOPGET returns the BLACS topology TOP used in the communicationoperations OP along the scope speci�ed by SCOPE. Application examples of these routines are givenin appendix B. The BLACS provide broadcast (OP=`B') and global combine (OP=`C') operationsto which di�erent topologies are associated. The scope refers to the group of processes involvedin such a BLACS operation. It indicates whether a process row (SCOPE=`R'), process column(SCOPE=`C'), or the entire grid (SCOPE=`A') will participate in these operations.In addition, the PBLAS provide a subroutine to dispose of the PBLAS bu�er allocated in everyprocess's dynamic memory. Its FORTRAN 77 interface is:SUBROUTINE PBFREEBUF() 23



5.2 TestingMaster test programs have been designed, developed and included with the submitted code. Thispackage consists of several main programs and a set of subprograms generating test data andcomparing the results with data obtained by element-wise computations or the sequential BLAS.These testing programs assume the correctness of the BLAS and the BLACS routines; it is thereforehighly recommended to run the testing programs provided with both of these packages beforeperforming any PBLAS test. A separate test program exists for each of the four data types (real, complex, double precision and complex�16 ) as well as each PBLAS level. All test programsconform to the same pattern with only the minimum necessary changes. These programs have beendesigned not merely to check whether the model implementation has been correctly installed, butalso to serve as a validation tool and a modest debugging aid for any specialized implementation.These programs have the following features:� the parameters of the test problems and the names of the subprogram to be tested are speci�edby means of an input data �le, which can easily be modi�ed for debugging,� the data for the test problems are generated internally and the results are checked internally,� the programs check that no arguments are changed by the routines except the designatedoutput scalar, vector or matrix. All input error exits (caused by illegal parameter values) aretested,� the programs generate a concise summary report of the tests as well as pertinent error mes-sages when needed.Input data �les are supplied with every test program, but installers and implementors must bealert to the possible need to extend or modify them. Values of the elements of the matrix operandsare uniformly distributed over (�1:0; 1:0). Care is taken to ensure that the data have full workingaccuracy. Elements in the distributed matrices that are not to be referenced by a subprogram areeither checked after exiting the routine or set to a \rogue" value (�10:010) to increase the likelihoodthat a reference to them will be detected. If a computational error is reported and an element ofthe computed result is of order 10:010, then the routine has almost certainly referenced the wrongelement of the array.After each call to a subprogram being tested, its operation is checked in two ways. First, eachof its input arguments, including all elements of the distributed operands, is checked to see if ithas been altered by the subprogram. If any argument, other than the speci�ed elements of theresult scalar, vector or matrix, has been modi�ed, an error is reported. This check includes thesupposedly unreferenced elements of the distributed matrices. Second, the resulting scalar, vectoror matrix computed by the subprogram is compared with the corresponding result obtained by thesequential BLAS or by simple Fortran code. We do not expect exact agreement because the tworesults are not necessarily computed by the same sequences of oating point operations. We do,however, expect the di�erences to be small relative to working precision. The error bounds arethen the same as the ones used in the BLAS testers. A more detailed description of those tests canbe found in [11, 12]. The test ratio is determined by scaling these error bounds by the inverse of24



machine epsilon ��1. This ratio is compared with a constant threshold value de�ned in the inputdata �le. Test ratios greater than the threshold are agged as \suspect". On the basis of the BLASexperience a threshold value of 16 is recommended. The precise value is not critical. Errors inthe routines are most likely to be errors in array indexing, which will almost certainly lead to atotally wrong result. A more subtle potential error is the use of a single precision variable in adouble precision computation. This is likely to lead to a loss of half the machine epsilon. The testprograms regard a test ratio greater than �� 12 as an error.The PBLAS testing programs are thus very similar to what has been done for the BLAS. However,it was necessary to slightly depart from the way the BLAS testing programs operate due to thedi�culties inherent to the testing of programs written for distributed-memory computers.The �rst obstacle is due to the signi�cant increase of testing parameters. Indeed, programs fordistributed-memory computers need to be tested for virtually any number of processes. Moreover,it should also be possible to vary the data distribution parameters such as the block sizes de�nedin Sect. 3.2. These facts motivated the decision to permit a user con�gurable set of tests for everyroutine. Consequently, one can test the PBLAS with any possible machine con�guration as well asdata layout.The second more subtle di�culty is due to the routines producing an output scalar such as P2NRM2.Because of the block-cyclic decomposition properties and the fact that vector operands are so farrestricted to a matrix row or column, it follows that only one process row or column will own theinput vector. This process row or column is subsequently called the vector scope by analogy withthe BLACS terminology. The question becomes: which processes should get the correct result ?It experimentally appeared convenient to broadcast the result to every process in the vector scopeonly and set it to zero elsewhere. If this scalar is needed by every process in the grid, it is theuser's responsibility to broadcast it. Consequently, such routines need only to be called by theprocesses in the vector scope. Moreover, this appropriate speci�cation to what is needed by theScaLAPACK routines introduces a slight ambiguity when one wants to compute for example thenorm of a column of a 1-by-N distributed matrix. Indeed, this 1-column can equivalently be seenas a row subsection containing one entry. In practice, this case rarely occurs. Should it happen,the PBLAS routines return the correct result only in the process owning the input vector operandand zero in every other grid process.Finally, there are special challenges associated with writing and testing numerical software tobe executed on networks containing heterogeneous processors [4], i.e., processors which performoating point arithmetic di�erently. This includes not just machines with di�erent oating pointformats and semantics such as Cray computers and workstations performing IEEE standard oatingpoint arithmetic, but even supposedly identical machines running di�erent compilers or even justdi�erent compiler options. Moreover, on such networks, oating point data transfers between twoprocesses may require a data conversion phase and thus a possible loss of accuracy. It is thereforeimpractical, error-prone and di�cult to compare supposedly identical computed scalars on suchheterogeneous networks. As a consequence, the validity and correctness of the tests performed canonly be guaranteed for networks of processors with identical oating point formats.25



6 RationaleIn the design of all levels of the PBLAS, as with the BLAS, one of the main concerns is to keepboth the calling sequences and the range of options limited, while at the same time maintainingsu�cient functionality. This clearly implies a compromise, and a good judgement is vital if thePBLAS are to be accepted as a useful standard. In this section we discuss some of the reasoningbehind the decisions we have made.A large amount of sequential linear algebra software relies on the BLAS. Because software reusabilityis one of our major concerns, we wanted the BLAS and PBLAS interfaces to be as similar as possible.Consequently, only one routine, the matrix transposition, has been added to the PBLAS, since thisoperation is much more complex to perform in a distributed-memory environment [8].One of the major di�erences between the BLAS and the PBLAS is likely to be found in the Level 1routines. Indeed, the functions of the former have been replaced by subroutines in the latter. In ourmodel implementation, the top-level routines are written in C, thus it was not possible to return ascalar anywhere else than in the argument list and at the same time to have the routines callableby C or FORTRAN programs. Moreover, it is useful for the P2AMAX routines to return not onlythe value of the element of maximum absolute value but also its global index. This contradicts theprinciple that a function only returns a single value, thus the function became a subroutine.The scalar values returned by the Level 1 PBLAS routines P2DOT2, P2NRM2, P2ASUM and P2AMAXare only correct in the scope of their operands and zero elsewhere. For example, when INCX isequal to one, only the column of processes having part of the vector operands gets the correctresults. This decision was made for e�ciency purposes. It is, however, very easy to have thisinformation broadcast across the process mesh by directly calling the appropriate BLACS routine.Consequently, these particular routines do not need to be called by any other processes other thanthe ones in the scope of their operands. With this exception in mind, the PBLAS follow an SPMDprogramming model and need to be called by every process in the current BLACS context to workcorrectly.Nevertheless, there are a few more exceptions in the current model implementation, where somecomputations local to a process row or column can be performed by the PBLAS, without havingevery process in the grid calling the routine. For example, the rank-1 update performed in the LUfactorization presented in the next section, involves data which is contained by only one processcolumn. In this case, to maintain the e�ciency of the factorization it is important to have thisparticular operation performed only within one process column. In other words, when a PBLASroutine is called by every process in the grid, it is required that the code operates successfully asspeci�ed by the SPMD programming model. However, it is also necessary that the PBLAS routinesrecognize the scope of their operands in order to save useless communication and synchronizationcosts when possible. This speci�c part of the PBLAS speci�cations remains an open question.A few features supported by the PBLAS underlying tools [9] have been intentionally hidden. Forinstance, a block of identical vectors operands are sometimes replicated across process rows orcolumns. When such a situation occurs, it is possible to save some communication and computationoperations. The PBLAS interface could provide such operations, for example, by setting the originprocess coordinate in the array descriptor to -1 (see Sect. 3.2). Such features, for example, would26



be useful in the ScaLAPACK routines responsible for applying a block of Householder vectors toa matrix. Indeed, these Householder vectors need to be broadcast to every process row or columnbefore being applied. Whether or not this feature should be supported by the PBLAS is still anopen question.We have adhered to the conventions of the BLAS in allowing an increment argument to be associatedwith each distributed vector so that a vector could, for example, be a row of a matrix. However,negative increments or any value other than 1 or DESC (1) are not supported by our currentmodel implementation. The negative increments �1 and �DESC (1) should be relatively easy tosupport. It is still unclear how it would be possible to take advantage of this added complexity andif other increment values should be supported.The presence of BLACS contexts associated with every distributed matrix provides the abilityto have separate \universes" of message passing. The use of separate communication contextsby distinct libraries (or distinct library invocations) such as the PBLAS insulates communicationinternal to the library execution from external communication. When more than one descriptorarray is present in the argument list of a routine in the PBLAS, it is required that the BLACScontext entries must be equal (see Sect. 3.3). In other words, the PBLAS do not perform \intra-context" operations.We have not included specialized routines to take advantage of packed storage schemes for sym-metric, Hermitian, or triangular matrices, nor of compact storage schemes for banded matrices. Aswith the BLAS no check has been included for singularity, or near singularity, in the routines forsolving triangular systems of equations. The requirements for such a test depend on the applica-tion and so we felt that this should not be included, but should instead be performed outside thetriangular solve.For obvious software reusability reasons we have tried to adhere to the conventions of, and maintainconsistency with, the sequential BLAS. However, we have deliberately departed from this approachby explicitly passing the global indices and using array descriptors. Indeed, it is our experience thatusing a \local indexing" scheme for the interface makes the use of these routines much more complexfrom the user's point of view. Our implementation of the PBLAS emphasizes the mathematical viewof a matrix over its storage. In fact, other block distributions may be able to reuse both the interfaceand the descriptor described in this paper without change. Fundamentally di�erent distributionsmay require modi�cations of the descriptor, but the interface should remain unchanged.The model implementation in its current state provides su�cient functionality for the use of thePBLAS modules in the ScaLAPACK library. However, as we mentioned earlier in this paper, thereare still a few details that remain open questions and may easily be accommodated as soon asmore experience with these codes is reported. Hopefully, the comments and suggestions of theuser community will help us to make these last decisions so that this proposal can be made morerigorous and adequate to the user's needs.Finally, it is our experience that porting sequential code built on the top of the BLAS to distributedmemory machines using the PBLAS is much simpler than writing the parallel code from scratch(see Sect. 7). Taking the BLAS proposals as our model for software design was in our opinion away to ensure the same level of software quality for the PBLAS.27



7 Applications and Use of the PBLASThe PBLAS is a component of the ScaLAPACK library. As such, installing the PBLAS libraryis part of the ScaLAPACK installation procedure. This process is described in [5]. However, thePBLAS will likely become a stand-alone package in the near future, similar to what has been donefor the BLAS and LAPACK libraries [2]. In which case, the installation procedure of the stand-alone PBLAS library will be very close to what has been done for the ScaLAPACK library. Thissection contains code fragments that demonstrate what needs to be done in order to call a PBLASroutine. Then, we show how the PBLAS routines can be used in order to write a parallel linearsystem solver for distributed memory MIMD computers. This code is in fact a slightly simpli�edversion of the ScaLAPACK code.7.1 Use of the PBLASIn order to call a PBLAS routine, it is necessary to initialize the BLACS and create the processgrid. This can be done by calling the routine BLACS GRIDINIT (see [14] for more details). Thefollowing segment of code will arrange four processes into a 2 � 2 process grid. When runningon platforms such as PVM [20], where the number of computational nodes available is unknown apriori, it is necessary to call the routine BLACS SETUP, so that copies (3 in our example) of the mainprogram can be spawned on the virtual machine. Finally, in order to ensure a safe coexistence withother parallel libraries using a distinct message passing layer, such as MPI [17], the BLACS routineBLACS GET queries for an eventual system context (see [14] for more details).INTEGER IAM, ICTXT, NPROCS** (...)* CALL BLACS_PINFO( IAM, NPROCS )* IF( NPROCS.LT.1 ) THENNPROCS = 4CALL BLACS_SETUP( IAM, NPROCS )END IF* CALL BLACS_GET( -1, 0, ICTXT )CALL BLACS_GRIDINIT( ICTXT, 'Row-major', 2, 2 )** (...)*Moreover, to convey the data distribution information to the PBLAS, the descriptor of the matrixoperands should be set. The ScaLAPACK library contains a tool routine called DESCINIT for thatpurpose. This routine takes as arguments the 8-integer (descriptor) array to be initialized, as well as28



the 8 entries to be used. Finally, an error ag is set on output to detect if an incoherent descriptorentry is passed to this routine. DESCINIT should be called by every process in the grid.We present in the following code fragment the descriptor initialization phase as well as a call to aPBLAS routine. This sample program performs the matrix multiplication:C(1 : 4; 1 : 4) A(1 : 4; 1 : 4) � B(1 : 4; 1 : 4).This example program is to be run on four processes arranged in a 2 � 2 process grid. The matricesA;B and C are 5 � 5 matrices partitioned into 2 � 2 blocks. We choose the process of coordinates(0; 0) to be the owner of the �rst entries of the matrices A;B and C. The mapping of these matricesis identical to the example of Fig. 1 given in Sect. 3.2.INTEGER INFO, NMAX, LDA, LDB, LDC, NMAXPARAMETER ( NMAX = 3, LDA = NMAX, LDB = NMAX, LDC = NMAX )* INTEGER DESCA( 8 ), DESCB( 8 ), DESCC( 8 )DOUBLE PRECISION A( NMAX, NMAX ), B( NMAX, NMAX ), C( NMAX, NMAX )** (...)** Initialize the array descriptors for the matrices A, B and C* CALL DESCINIT( DESCA, 5, 5, 2, 2, 0, 0, ICTXT, LDA, INFO )CALL DESCINIT( DESCB, 5, 5, 2, 2, 0, 0, ICTXT, LDB, INFO )CALL DESCINIT( DESCC, 5, 5, 2, 2, 0, 0, ICTXT, LDC, INFO )** (...)* CALL PDGEMM( 'No transpose', 'No transpose', 4, 4, 4, 1.0D+0,$ A, 1, 1, DESCA, B, 1, 1, DESCB, 0.0D+0,$ C, 1, 1, DESCC )** (...)*Finally, it is recommended to release the resources allocated by the BLACS and the PBLAS justbefore ending the program segment using the BLACS and the PBLAS. Note that the routineBLACS GRIDEXIT will free the resources associated with a particular context, while the routineBLACS EXIT will free all BLACS resources (see [14] for more details).CALL PBFREEBUF()* CALL BLACS_GRIDEXIT( ICTXT )* CALL BLACS_EXIT( 0 ) 29



7.2 Solving Linear Systems via LU FactorizationThe primary applications of the PBLAS are in implementing algorithms of numerical linear algebrain terms of operations on submatrices (or blocks). Therefore, provisions have been made to easilyport sequential programs built on top of the BLAS onto distributed memory computers. Note thatthe ScaLAPACK library provides a set of tool routines, which the user might �nd useful for thispurpose.In the following diagram we illustrate how the PBLAS routines can be used to port a simple algo-rithm of numerical linear algebra, namely solving systems of linear equations via LU factorization.Note that more examples may be found in the ScaLAPACK library.
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(Block size)To obtain a parallel implementation of the LU factorization of a N -by-N matrix, we started witha variant of the right-looking LAPACK LU factorization routine given in appendix B.1. Thisalgorithm proceeds along the diagonal of the matrix by �rst factorizing a block B of r columns ata time, with pivoting if necessary. Then a triangular solve and a rank-r update are performed onthe rest of the matrix. This process continues recursively with the updated matrix.For k = 1 to N=r doFactor panel B with pivoting, (P2AMAX, P2SWAP, P2GER2)Apply pivots to the remainder of the matrix, (P2SWAP)Solve C := B1�1C, (Triangular solve, P2TRSM)Update E := E �B2 � C, (Rank-r update, P2GEMM)End for; 30



From the application programmer's point of view, it is conceptually simple to translate the serialversion of the code into its parallel equivalent. Translating BLAS calls to PBLAS calls primarilyconsists of the following steps: a `P' has to be inserted in front of the routine name, the leadingdimensions should be replaced by the global array descriptors, and the global indices into thedistributed matrices should be inserted as separate parameters in the calling sequence:CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1, N-J-JB+1,$ JB, -ONE, A( J+JB, J ), LDA, A( J, J+JB ), LDA, ONE,$ A( J+JB, J+JB ), LDA ) #CALL PDGEMM( 'No transpose', 'No transpose', M-J-JB+JA, N-J-JB+JA,$ JB, -ONE, A, I+JB, J, DESCA, A, I, J+JB, DESCA, ONE,$ A, I+JB, J+JB, DESCA )This simple translation process considerably simpli�es the implementing phase of linear algebracodes built on top of the BLAS. Moreover, the global view of the matrix operands allows theuser to be concerned only with the numerical details of the algorithms and a minimum number ofimportant details necessary to programs written for distributed-memory computers.The resulting parallel code is given in appendix B along with the serial code. These codes arevery similar as most of the details of the parallel implementation such as communication andsynchronization have been hidden at lower levels of the software.In addition, the underlying block-cyclic decomposition scheme ensures good load-balance, and thusperformance and scalability. In the particular example of the LU factorization, it is possible totake advantage of other parallel algorithmic techniques such as pipelining and the overlappingof computation and communication operations. Because the factorization and pivoting phases ofthe algorithm described above are much less computational intensive than its update phase, it isintuitively suitable to communicate the pivot indices as soon as possible to all processes in thegrid, especially to those who possess the next block of columns to be factorized. In this way theupdate phase can be started as early as possible [13]. Such a pipelining e�ect can easily be achievedwithin PBLAS based codes by using ring topologies along process rows for the broadcast operations.These particular algorithmic techniques are enabled by the PBLAS auxiliary routines PTOPGET andPTOPSET (see Sect. 5.1.2). They notably improve the performance and the scalability of the parallelimplementation.
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A Questions for the CommunityFor convenience we summarize here those questions on which we would particularly welcome feed-back:� Should the alignment restrictions in the current implementation be removed, or do the PBLASprovide su�cient functionality the way they are ? (see Sect. 5.1)� When a PBLAS routine is called by every process in the grid, it is required that the code oper-ates successfully accordingly to the SPMD programming model. However, it is also necessarythat the PBLAS routines recognize the scope of their operands for e�ciency purposes. Is itreasonable to slightly depart from the SPMD programming model for e�ciency purposes ?(see Sect. 6)� Should the PBLAS be able to recognize and take advantage of replicated operands acrossprocess rows or columns ? For example, a column replicated vector is a vector distributedover the rows of a process column, and every other column owns an aligned copy of that vector.If such an operand is to be set on output, should all the distinct copies of the replicated arraybe updated ? (see Sect. 6)� Should other vector increment values (e.g INCX) be supported beside 1 and DESCX(1) ? (seeSect. 6)� Is the current set of PBLAS routines su�cient or should we consider adding more routinesand increase the PBLAS functionality and usefulness ? (see Sect. 6)
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B Code ExamplesB.1 Sequential LU FactorizationSUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )** LU factorization of a M-by-N matrix A using partial pivoting with* row interchanges.* INTEGER INFO, LDA, M, N, IPIV( * )DOUBLE PRECISION A( LDA, * )* INTEGER I, IINFO, J, JB, NBPARAMETER ( NB = 64 )EXTERNAL DGEMM, DGETF2, DLASWP, DTRSMINTRINSIC MIN* DO 20 J = 1, MIN(M,N), NBJB = MIN( MIN(M,N)-J+1, NB )** Factor diagonal block and test for exact singularity.* CALL DGETF2( M-J+1, JB, A(J,J), LDA, IPIV(J), IINFO )** Adjust INFO and the pivot indices.* IF( INFO.EQ.0 .AND. IINFO.GT.0 ) INFO = IINFO + J - 1DO 10 I = J, MIN(M,J+JB-1)IPIV(I) = J - 1 + IPIV(I)10 CONTINUE** Apply interchanges to columns 1:J-1 and J+JB:N.* CALL DLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )IF( J+JB.LE.N ) THENCALL DLASWP( N-J-JB+1, A(1,J+JB), LDA, J, J+JB-1, IPIV, 1 )** Compute block row of U and update trailing submatrix.* CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,$ N-J-JB+1, 1.0D+0, A(J,J), LDA, A(J,J+JB), LDA )IF( J+JB.LE.M )$ CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1,$ N-J-JB+1, JB, -1.0D+0, A(J+JB,J), LDA,$ A(J,J+JB), LDA, 1.0D+0, A(J+JB,J+JB), LDA )END IF20 CONTINUERETURN* END 35



B.2 Parallel LU FactorizationSUBROUTINE PDGETRF( M, N, A, IA, JA, DESCA, IPIV, INFO )* INTEGER IA, INFO, JA, M, N, DESCA( 8 ), IPIV( * )DOUBLE PRECISION A( * )** LU factorization of a M-by-N distributed matrix A(IA:IA+M-1,JA:JA+N-1)* using partial pivoting with row interchanges.* INTEGER I, IINFO, J, JBEXTERNAL IGAMN2D, PTOPSET, PDGEMM, PDGETF2, PDLASWP, PDTRSMINTRINSIC MIN* CALL PTOPSET( 'Broadcast', 'Row', 'S-ring' )DO 10 J = JA, JA+MIN(M,N)-1, DESCA( 4 )JB = MIN( MIN(M,N)-J+JA, DESCA( 4 ) )I = IA + J - JA** Factor diagonal block and test for exact singularity.* CALL PDGETF2( M-J+JA, JB, A, I, J, DESCA, IPIV, IINFO )IF( INFO.EQ.0 .AND. IINFO.GT.0 ) INFO = IINFO + J - JA** Apply interchanges to columns JA:J-JA and J+JB:JA+N-1.* CALL PDLASWP( 'Forward', 'Rows', J-JA, A, IA, JA, DESCA,$ I, I+JB-1, IPIV )IF( J-JA+JB+1.LE.N ) THENCALL PDLASWP( 'Forward', 'Rows', N-J-JB+JA, A, IA, J+JB,$ DESCA, I, I+JB-1, IPIV )** Compute block row of U and update trailing submatrix.* CALL PDTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,$ N-J-JB+JA, 1.0D+0, A, I, J, DESCA, A, I, J+JB,$ DESCA )IF( J-JA+JB+1.LE.M ) THEN$ CALL PDGEMM( 'No transpose', 'No transpose', M-J-JB+JA,$ N-J-JB+JA, JB, -1.0D+0, A, I+JB, J, DESCA, A,$ I, J+JB, DESCA, 1.0D+0, A, I+JB, J+JB, DESCA )END IF10 CONTINUEIF( INFO.EQ.0 ) INFO = MIN(M,N) + 1CALL IGAMN2D( ICTXT, 'Row', ' ', 1, 1, INFO, 1, I, J, -1, -1, MYCOL )IF( INFO.EQ.MIN(M,N)+1 ) INFO = 0CALL PTOPSET( 'Broadcast', 'Row', ' ' )* RETURN* END 36



B.3 Parallel General Linear System SolveSUBROUTINE PDGETRS( TRANS, N, NRHS, A, IA, JA, DESCA, IPIV, B,$ IB, JB, DESCB )* CHARACTER TRANSINTEGER IA, IB, IDUM1, JA, JB, N, NRHSINTEGER DESCA( * ), DESCB( * ), DESCIP( 8 ), IPIV( * )DOUBLE PRECISION A( * ), B( * )* LOGICAL LSAMEINTEGER NUMROCEXTERNAL DESCSET, LSAME, NUMROC, PDLAPIV, PDTRSM* IF( N.EQ.0 .OR. NRHS.EQ.0 ) RETURNCALL DESCSET( DESCIP, DESCA( 1 ) + DESCA( 3 )*NPROW, 1, DESCA( 3 ),$ 1, DESCA( 5 ), MYCOL, ICTXT, DESCA( 3 ) +$ NUMROC( DESCA( 1 ), DESCA( 3 ), MYROW, DESCA( 5 ), NPROW ) )* IF( LSAME( TRANS, 'N' ) ) THEN** Solve A * X = B. Apply row interchanges to the right hand sides.* Solve L*X = B, overwriting B with X.* Solve U*X = B, overwriting B with X.* CALL PDLAPIV( 'Forward', 'Row', 'Col', N, NRHS, B, IB, JB,$ DESCB, IPIV, IA, 1, DESCIP, IDUM1 )CALL PDTRSM( 'Left', 'Lower', 'No transpose', 'Unit', N, NRHS,$ 1.0D+0, A, IA, JA, DESCA, B, IB, JB, DESCB )CALL PDTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,$ NRHS, 1.0D+0, A, IA, JA, DESCA, B, IB, JB, DESCB )ELSE** Solve A' * X = B. Solve U'*X = B, overwriting B with X.* Solve L'*X = B, overwriting B with X.* Apply row interchanges to the solution vectors.* CALL PDTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit', N, NRHS,$ 1.0D+0, A, IA, JA, DESCA, B, IB, JB, DESCB )CALL PDTRSM( 'Left', 'Lower', 'Transpose', 'Unit', N, NRHS,$ 1.0D+0, A, IA, JA, DESCA, B, IB, JB, DESCB )CALL PDLAPIV( 'Backward', 'Row', 'Col', N, NRHS, B, IB, JB,$ DESCB, IPIV, IA, 1, DESCIP, IDUM1 )END IF* RETURN* END 37



CQuickRefere
ncetothePBLA

S
Level 1 PBLASdim scalar vector vector pre�xesP2SWAP ( N, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY ) x$ y S, D, C, ZP2SCAL ( N, ALPHA, X, IX, JX, DESCX, INCX ) x �x S, D, C, Z, CS, ZDP2COPY ( N, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY ) y  x S, D, C, ZP2AXPY ( N, ALPHA, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY ) y  �x+ y S, D, C, ZP2DOT ( N, DOT, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY ) dot xT y S, DP2DOTU ( N, DOTU, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY ) dotu  xT y C, ZP2DOTC ( N, DOTC, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY ) dotc xHy C, ZP2NRM2 ( N, NORM2, X, IX, JX, DESCX, INCX ) norm2 kxk2 S, D, SC, DZP2ASUM ( N, ASUM, X, IX, JX, DESCX, INCX ) asum  kre(x)k1 + kim(x)k1 S, D, SC, DZP2AMAX ( N, AMAX, INDX, X, IX, JX, DESCX, INCX ) indx  1st k 3 kRe(xk)j+ jIm(xk)j S, D, C, Z= max(jRe(xi)j+ jIm(xi)j) = amaxLevel 2 PBLASoptions dim scalar matrix vector scalar vectorP2GEMV ( TRANS, M, N, ALPHA, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX, BETA, Y, IY, JY, DESCY, INCY ) y  �op(A)x+ �y; op(A) = A;AT ;AH ;A �m� n S, D, C, ZP2HEMV ( UPLO, N, ALPHA, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX, BETA, Y, IY, JY, DESCY, INCY ) y  �Ax+ �y C, ZP2SYMV ( UPLO, N, ALPHA, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX, BETA, Y, IY, JY, DESCY, INCY ) y  �Ax+ �y S, DP2TRMV ( UPLO, TRANS, DIAG, N, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX ) x �Ax; x �AT x;x �AHx; S, D, C, ZP2TRSV ( UPLO, TRANS, DIAG, N, A, IA, JA, DESCA, X, IX, JX, DESCX, INCX ) x �A�1x; x �A�Tx; x �A�Hx; S, D, C, Zoptions dim scalar vector vector matrixP2GER ( M, N, ALPHA, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY, A, IA, JA, DESCA ) A  �xyT + A;A �m� n S, DP2GERU ( M, N, ALPHA, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY, A, IA, JA, DESCA ) A  �xyT + A;A �m� n C, ZP2GERC ( M, N, ALPHA, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY, A, IA, JA, DESCA ) A  �xyH + A;A�m � n C, ZP2HER ( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, A, IA, JA, DESCA ) A  �xxH + A C, ZP2HER2 ( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY, A, IA, JA, DESCA ) A  �xyH + y(�x)H + A C, ZP2SYR ( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, A, IA, JA, DESCA ) A  �xxT + A S, DP2SYR2 ( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY, A, IA, JA, DESCA ) A  �xyT + �yxT + A S, DLevel 3 PBLASoptions dim scalar matrix matrix scalar matrixP2GEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, IA, JA, DESCA, B, IB, JB, DESCB, BETA, C, IC, JC, DESCC ) C  �op(A)op(B)+ �C; op(X) = X;XT ;XH ;C �m� n S, D, C, ZP2SYMM ( SIDE, UPLO, M, N, ALPHA, A, IA, JA, DESCA, B, IB, JB, DESCB, BETA, C, IC, JC, DESCC ) C  �AB + �C;C  �BA+ �C;C �m� n; A = AT S, D, C, ZP2HEMM ( SIDE, UPLO, M, N, ALPHA, A, IA, JA, DESCA, B, IB, JB, DESCB, BETA, C, IC, JC, DESCC ) C  �AB + �C;C  �BA+ �C;C �m� n; A = AH C, ZP2SYRK ( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC ) C  �AAT + �C;C  �ATA+ �C;C � n� n S, D, C, ZP2HERK ( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC ) C  �AAH + �C;C  �AHA + �C;C � n� n C, ZP2SYR2K ( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA, B, IB, JB, DESCB, BETA, C, IC, JC, DESCC ) C  �ABT + �BAT + �C;C  �ATB + �BTA + �C;C � n � n S, D, C, ZP2HER2K ( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA, B, IB, JB, DESCB, BETA, C, IC, JC, DESCC ) C  �ABH + ��BAH + �C;C  �AHB + ��BHA+ �C;C � n � n C, ZP2TRAN ( M, N, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC ) C  �C + �AT ; A� n �m;C �m� n S, DP2TRANU ( M, N, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC ) C  �C + �AT ; A� n �m;C �m� n C, ZP2TRANC ( M, N, ALPHA, A, IA, JA, DESCA, BETA, C, IC, JC, DESCC ) C  �C + �AH ;A � n�m;C �m� n C, ZP2TRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, IA, JA, DESCA, B, IB, JB, DESCB ) B  �op(A)B;B  �Bop(A);op(A) = A;AT ;AH ;B �m� n S, D, C, ZP2TRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, IA, JA, DESCA, B, IB, JB, DESCB ) B  �op(A�1)B;B  �Bop(A�1); op(A) = A; AT ; AH ; B �m� n S, D, C, Z
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Meaning of pre�xesS - REAL C - COMPLEXD - DOUBLE PRECISION Z - COMPLEX*16(may not be supportedby all machines)Level 2 and Level 3 PBLASMatrix TypesGE - GEneralSY - SYmmetricHE - HErmitianTR - TRiangularLevel 2 and Level 3 PBLASOptionsDummy options arguments are declared as CHARAC-TER*1 and may be passed as character strings.TRANS2 = 'No transpose', 'Transpose', 'Conjugatetranspose', (X; XT ; XH)UPLO = 'Upper triangular', 'Lower Triangular'DIAG = 'Non-unit triangular', 'Unit triangular'SIDE = 'Left' or 'Right' (A or op(A) on the left, or Aor op(A) on the right)For real matrices, TRANS2 = 'T' and TRANS2 ='C' have the same meaning.For Hermitian matrices, TRANS2='T' is not allowed.For complex symmetricmatrices, TRANS2='C' is notallowed.Obtaining the software via netlibIn order to get instructions for downloading thePBLAS, send email to netlib@ornl.gov and inthe body of the message type send index fromscalapack.Send comments, questions to scalapack@cs.utk.edu.
Array Descriptor, IncrementThe array descriptor DESCA is an integer array of di-mension 8. It describes the two-dimensional block-cyclicmapping of the matrix A.The two �rst entries are the dimensions of the matrix (row,column). The third and fourth entries are the row- andcolumn block sizes used to distribute the matrix. The �fthand the sixth are the coordinates of the process containingthe �rst entry of the matrix. The seventh entry is theBLACS context in which the computation takes place. Thelast entry contains the leading dimension of the local arraycontaining the matrix elements.The increment speci�ed for vectors is always global. So faronly 1 and DESCA(1) are supported.ReferencesJ. Dongarra and R. C. Whaley, LAPACK, Working Note94, A User's Guide to the BLACS v1.0, Computer Sci-ence Dept. Technical Report CS-95-281, University of Ten-nessee, Knoxville, March, 1995. To receive a postscriptcopy, send email to netlib@ornl.gov and in the mail mes-sage type: send lawn94.ps from lapack/lawns.J. Choi, J. Dongarra, and D. Walker, PB-BLAS: A Setof Parallel Block Basic Linear Algebra Subroutines, Pro-ceedings of Scalable High Performance Computing Confer-ence (Knoxville, TN), pp. 534-541, IEEE Computer SocietyPress, May 23-25, 1994.J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrou-chov, A. Petitet, K. Stanley, D. Walker and R. C. Wha-ley, LAPACK, Working Note 95, ScaLAPACK: A ScalableLinear Algebra library for Distributed Memory ConcurrentComputers - Design Issues and Performance, ComputerScience Dept. Technical Report CS-95-283, University ofTennessee, Knoxville, March 1995. To receive a postscriptcopy, send email to netlib@ornl.govand in themail messagetype: send lawn95.ps from lapack/lawns.J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walkerand R. C. Whaley, LAPACK, Working Note 100, A Pro-posal for a Set of Parallel Basic Linear Algebra Subpro-grams, Computer Science Dept. Technical Report CS-95-292, University of Tennessee, Knoxville, July 1995. Toreceive a postscript copy, send email to netlib@ornl.govand in the mail message type: send lawn100.ps fromlapack/lawns.
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