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Abstract. Computing a fill-reducing ordering of a sparse matrix is a central problem in the
solution of sparse linear systems using direct methods. In recent years, there has been significant
research in developing a sparse direct solver suitable for message-passing multiprocessors. However,
computing the ordering step in parallel remains a challenge and there are very few methods available.
This paper describes a new scheme called parallel contracted ordering which is a combination of a
new parallel nested dissection heuristic and any serial ordering method. The new nested dissection
heuristic called Shrink-Split ND (SSND) is based on parallel graph contraction. For a system with
N unknowns, the complexity of SSND is O(% log P) using P processors in a hypercube; the overall

complexity is O(% log N) when the serial ordering method chosen is graph exploration based nested
dissection. We provide extensive empirical results on the quality of the ordering. We also report
on the parallel performance of a preliminary implementation on three different message passing
multiprocessors.
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1. Introduction. Consider the problem of solving a very large system of linear
questions using Gaussian elimination when the coefficient matrix is sparse. The goal is
to utilize sparsity to achieve low complexity for the solution process. In this regard it is
a well known fact that the system must be reordered to incur low fill-in (original zeroes
that become nonzero) during Gaussian elimination. When the coefficient matrix A
is symmetric positive definite, the solution process (using Cholesky factorization) is
organized into four distinct steps [9]:

e Ordering: Find a permutation matrix P so that PAPT has a sparse Cholesky
factor L.
e Symbolic factorization: Determine the structure of L and set up data struc-
tures.
o Numeric factorization: Compute L; PAPT = LL".
e Triangular Solution: Solve the triangular systems Ly = Pb and LTz = y to
compute ¢ = PT 2.
In the last several years there has been significant interest in a fully parallel solution
using very large message passing multiprocessors. Although effective parallelization of
symbolic and numeric factorization is well understood, computing orderings in parallel
remains a very challenging task for which there are but very few methods available.

Most earlier work on parallel sparse matrix factorization has addressed the nu-
meric factorization step which has the greatest serial complexity [12]. However, the
serial complexity of the ordering step 1s such that if it were not parallelized it would
soon become a bottleneck. For example, for a class of N x N sparse matrices, the serial
complexity of nested dissection is O(NlogN) while that of the numeric factorization
is O(N3/2). Furthermore, performing the ordering in serial makes it impractical to
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have fully parallel sparse direct solver be the main compute kernel in any large scale
parallel scientific application.

In the serial case, the key purpose of ordering is to reduce fill-in (the problem of
minimizing fill if NP-hard) during numeric factorization. The ordering also determines
the column dependencies in computing the Cholesky factor; the dependencies can be
expressed as an “elimination tree” representing the large-grain functional or task
parallelism available in numeric phase. Of the several ordering heuristics that have
been studied, the Multiple Minimum Degree [7, 9] ordering tends to incur the least fill
over a wide class of problems but the elimination trees tend to be tall and unbalanced.
On the other hand, the class of nested dissection [9] methods (which typically incur
more fill-in than MMD) lead to elimination trees that are short and better balanced.
So nested dissection orderings seem more appropriate in the parallel context. A related
fact 1s that nested dissection methods are divide and conquer methods and so task
parallelism during ordering can be utilized by parallel divide and conquer.

In this paper we develop a new parallel nested dissection scheme called Shrink-
Split nested dissection (SSND). We apply SSND till we reduce the ordering problem
to that of ordering as many disjoint submatrices as the total number of available
processors. We show that SSND has the parallel complexity of O(%log P)on P
processors of a hypercube. After SSND, we can essentially apply any serial ordering
scheme independently on each processor and we choose to apply Multiple Minimum
Degree. The overall ordering is called Parallel Contracted Ordering (PCO). We show
that PCO is effective both in reducing fill and achieving good parallel performance.
We begin with a brief review of background and related work in Section 2 and then
present our main contributions in Sections 3 and 4. We develop our algorithm in
Section 3 and analyze its parallel complexity in Section 3.1. Section 4 contains em-
pirical results and is organized into two parts; the first relates to fill reduction while
the second is on parallel performance. Conclusions are presented in Section 5 along
with a discussion of related work.

2. Background and Related Research. We assume familiarity on the part
of the reader with basic graph theoretic notation and key ideas in sparse matrix
computations [9]. We use G(A) to denote the graph of the N x N symmetric positive
definite matrix A; G(A) = (V, E) is undirected, vertices in V correspond to each row
or column of A and E contains an edge between vertices ¢ and j whenever A; ; # 0.
This graph can be used both to mimic the changes to the sparsity structure of A in
the course of eliminating unknowns, and to predict fill and thereby the sparsity of L
for a given numbering of vertices. The ordering methods Multiple Minimum Degree
and Nested Dissection can be easily explained in terms of this graph.

Consider G(A); eliminating the first unknown, will cause fill which is modeled
by making all vertices adjacent to vertex 1 pairwise adjacent, fill edges added to
make the set of vertices adjacent to vertex 1 into a clique. This resulting clique is of
small size if the degree of the vertex being eliminated is low. The “minimum degree”
strategy 1s that of locally reducing fill by picking the vertex to be eliminated as the one
with fewest neighbors. In rather oversimplified terms, given G(A), a new numbering
of vertices in V' is computed by picking the vertex with the smallest degree and
assigning it the lowest unused number. Then the process of eliminating the unknown
corresponding to this vertex is mimicked by adding fill edges to make the adjacency
set of this vertex into a clique. The numbered vertex is removed from the graph
which is then used for yet another step. This process is repeated till all vertices
are numbered. Multiple Minimum Degree(MMD) developed by Alan George and Liu
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[7, 9] is a highly sophisticated implementation of the “minimum degree” heuristic.
The MMD implementation invariably obtains orderings with remarkably low fill. On
the other hand, the elimination tree tends to be tall and unbalanced and so would
conceivably require a new data partitioning strategy for the numeric phase. Finally,
it does not seem clear how to parallelize this ordering method itself; Rothberg has
recently studied this problem in [21].

Alternatively, paths in G(A) have special significance for edges in the graph of L
G(L) or in other words nonzeroes in L. Given an ordering of vertices in V| there is
an edge between vertices k,[ in G(L) if and only if there is a path between &k and [ in
G(A) consisting of vertices numbered lower than k& and [. The class of nested dissection
methods originally developed by Alan George relates to this characterization. Let Vj
be a set of vertices (called a separator) whose removal, along with all edges incident on
vertices in Vj, disconnects the graph into two remaining subgraphs, G; = (V1, F1) and
Go = (Va, F3). If the matrix is reordered so that the vertices within each subgraph
are numbered contiguously and the vertices in the separator are numbered last, then
there cannot be any edges in G(L) between vertices in V1 and V2. If the matrix is
permuted accordingly, it will have the following form:

A0 5
A= 0 Ay 5
ST ST A,

In this form, the zero blocks are preserved and factorization if A; and A, can proceed
independently and thereby in parallel. This idea can be applied recursively thereby
nesting the dissections; after log P stages, note that there will be a total of P disjoint
subgraphs (submatrices). The large grain parallelism for the numeric step is defined
clearly by this dissection process. The fill-in relates to the size of the separators and
in broad terms, the smaller the separator, the lower the fill.

Nested dissection algorithms differ primarily in the heuristics used for choosing
separators. An approach called Automatic Nested Dissection [8] involves first finding
a “peripheral” vertex, generating a level structure based on the connectivity of the
graph, and then choosing a “middle” level of vertices as the separator. More recent
heuristics for computing graph separators include spectral methods [20], methods
based on geometric projections and mappings [10, 19] and graph contraction based
heuristics [4, 15].

Parallel nested dissection requires an effective parallel method for computing a
separator. If such a method is available then parallel divide and conquer would
naturally provide functional or task parallelism. For example, if a separator can be
computed effectively in parallel for the entire graph G using all P processors, then at
the next step, at expense of exchanging some data, (G; and G5 could be gathered onto
processor subsets of size P/2 which could then proceed with the recursion in parallel.

The problem of computing separators in parallel is related to a fundamental one
for distributed computing, that of data (graph) partitioning to provide locality. If the
data or computation to be mapped to processors in a parallel machine is represented
as a graph then the “graph partitioning” problem is to find a small edge separator
to split the graph into parts. Recursive application will lead to a multiway partition.
Vertex and edge separators are closely related but for ordering sparse matrices (nested
dissection) we need vertex separators and a special numbering. We will discuss ideas
used in graph partitioning methods as they relate to our work but a direct comparison
with them is not viable.



Breadth first search on sparse graphs has limited parallelism and a scalable im-
plementation would not be possible unless the graph were already partitioned among
processors; obviously such a partitioning requires the computation of separators. The
same is true of spectral methods; the sparse matrix (and thereby its graph) must be
partitioned among processors to enable effective parallel sparse matrix vector multi-
plication.

The first parallel nested dissection method was developed by Gilbert and Zmi-
jewski [11, 22] and was based on the Kernighan-Lin heuristic. However, the method
requires storage proportional to the number of edges in G(A) at a single processor.
The method uses the functional parallelism in parallel divide and conquer. The first
separator was computed essentially on a single processor the next two independently
and in parallel on two processors and so on. Qur SSND uses a parallel divide and
conquer approach but it also parallelizes the task of computing a single separator.

The second parallel method called Cartesian Nested Dissection (CND) was de-
veloped by Heath and Raghavan [14]. CND is suitable for sparse matrices associated
with geometric information. For such matrices, the geometric information is used to
compute a separator in an efficient “data-parallel]” manner; the implementation does
not require an initial locality preserving partitioning of the graph to the processors.
CND has been shown to be a fast and scalable ordering method [14].

Our SSND algorithm was motivated by recent developments in serial ordering and
graph partitioning techniques. Bui and Jones[4] developed a new nested dissection
scheme based on heuristic for computing separators using graph contraction and the
Kernighan-Lin method. Hendrickson and Leyland [15] present a multilevel graph
partitioning scheme where they used graph contraction and the spectral method to
compute edge separators. Yet another related work is that of Barnard and Simon [1]
for graph partitioning using recursive spectral bisection.

In their algorithms, both Bui and Jones [4] and Hendrickson and Leland [15]
compute a sequence of “contracted” graphs. The first graph in the sequence is the
original one, the second is of half the size and so on till the last one (coarsest) has a
small number (& 100) of vertices. A bisection is first computed in the coarsest graph,
next it is projected to the preceding one and refined further to compute a bisection,
this bisection is in turn projected to the next graph and so on till a bisection of the
original graph is produced. In short, to compute a single separator, a sequence of
contracted graphs is produced and a separator is computed in the coarsest graph and
refined through the sequence to obtain final separator. This process of contracting
the graph and refining separators is applied recursively to compute a nested dissection
ordering. These methods with contracted graphs were aimed at improving the quality
of the separator and indeed resulted in separators of significantly smaller size [4, 15]. In
this work, we use the graph contraction idea but in parallel and for a different purpose.
The contracted graphs are used to enable computing a separator in parallel and not to
“improve” the quality of the separator. Secondly, the sequence of contracted graphs
is also used to enable parallel divide and conquer. Finally, the graph contraction is
performed exactly once and is used to compute all the separators.

Concurrent with this work, Barnard and Simon [2] and Karypis and Kumar [16]
have developed parallel formulations of multilevel partitioning methods. Barnard and
Simon parallelize their earlier recursive spectral scheme [1] for graph partitioning.
Karypis and Kumar also parallelize the multilevel approach and develop a paral-
lel nested dissection scheme. Their graph contraction method differs from than in
SSND; the heuristic for computing a separator is also different. Our work differs from



both these schemes in many respects but it does share a common feature, that of us-
ing parallel graph contraction. PCO is implemented on message passing distributed
memory machines such as the Intel Delta while the algorithms in [2, 16] are on the
Cray T3D using “shmem,” the shared memory library. Unlike the other schemes,
PCO uses contracted graphs to compute a separator in parallel, not to refine and im-
prove the quality of the separator. The graph contraction is performed exactly once
in PCO and then used to apply the parallel divide and conquer; in the other schemes,
graph contraction is performed at every stage in the recursion. The heuristics used
for computing the separator in PCO is different from those used in the other two
scheme. Further comparison with the multilevel nested dissection scheme of Karypis
and Kumar 1s provided in Section 4.

3. Algorithms. Our PCO algorithm has two phases, a distributed phase fol-
lowed by a local phase. In the distributed phase processors cooperate to compute
a nested dissection ordering; we call the algorithm Shrink-Split ND (SSND). In the
local phase any serial ordering scheme can be used independently on each processor.
We use Multiple Minimum Degree (MMD) in our implementation. In this section we
will describe our SSND heuristic.

We now introduce notation that is used in the rest of the paper. We consider
G(A), the graph of the matrix A with a total of N vertices; we assume that the total
number of edges M is a small constant times N. We use P to denote the total number
of processors and we use 7; to denote the j-th processor for j =0,1,---(P — 1). For
any graph G = (V, E), G(p) denotes a distributed representation of G over some p
processors. In such a representation, the vertex set is partitioned over the processors
and every vertex is owned by a distinct processor. Each processor owns roughly |V|/p
vertices and the edges incident on these vertices; no “locality” is assumed. For graphs
G and G, we use G(p/2) and G’(p/?), to denote that each graph is distributed over
processor subsets of size p/2 and that these processor subsets are disjoint. Initially,
Gy = G(A) is assumed distributed over all P processors and the algorithm starts with
Go(P).

SSND uses an efficient parallel graph contraction scheme aimed at reducing the
size of G(A) to a small number; this step is called shrink. This step produces a
sequence of graphs Gy(P),G1(P)---,Gi(P) with k = log, P — 1. The number of
vertices in G;41 1s roughly half that in G; and the last graph G is the smallest with
less than N/P vertices. The last graph G(P) and the first Go(P) are used in a
next step called split, to compute a separator and produce a bisection in each graph
in the sequence. The bisected shrunk graphs are used to “nest” the dissections, i.e,
apply split recursively using select shrunk subgraphs to generate a set of P — 1
separators and hence P subgraphs. This completes the distributed phase; each of the
subgraphs is then mapped to a processor which applies MMD in a local phase. Using
this notation introduced earlier, we provide a brief outline of the SSND algorithm in
Figure 1.

The shrink step produces a sequence distributed “shrunk” graphs. It starts with
Go(P), the original graph distributed on P processors. During shrink, the next graph
in the sequence is obtained by performing a small number of parallel edge contraction
steps. Consider computing Gj41(P) from G;(P). The set of processors of size P is
partitioned into P/2 processor pairs. Each processor pair computes a set of edges that
form a matching (i.e., no two edges share a common end point) and the vertices at
end points of these edges are “owned” by the two processors. Now the union of such
matchings over all P/2 processor pairs (denoted by M) is also a matching because the
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Parallel shrink-split ND:
e shrink: parallel edge-contract to obtain a sequence of
distributed shrunk graphs:
Go(P),G1(P), - Gr(P), k = log,(P) — 1

e assign p <« P
e split using Go(p)---Gr(p):
1. separate G (p) and project to Go(p)
separate Go(p) into éo(p) and Go(p)

2. mark split through shrunk graphs to get two sequences:
QO(p)a Ql(p)a t Qk—l(p)
GO(p), Gl(p)a o Gk—l(p)

3. redistribute to place each sequence on disjoint processor
subsets of size p/2 to get:
Go(p/2),Gi(p/2),---Gr-1(p/2)

Go(p/2), Grlp/2). -+ Gis(p/2)
e nest: while £ > 0
1. assign k « k —1;
2. assign p « p/2;
3. do in parallel on disjoint processor subsets of size p
split using Go(p), G1(p), -+ Gr(p)
split using Go(p), G1(p), -+ - Gr(p)

FiG. 1. Summary of key steps in Shrink-split ND; Gy is original graph and P is the total
number of processors

vertex to processor assignment is a partition. Next each edge (v, w) € M is replaced
a by single vertex whose adjacency set is the union of those of v and w. Let the graph
contracted using M be G(P); if 1/2|G;(P)| < |G(P)| < (1/3)|G;(P)|, then G(P) is
made the new G;41(P). However, if the size criterion is not satisfied, the process of
computing a matching is repeated using G(P). The new matching M, is obtained
using a different partition of the processors into pairs. The processor pair partition is
computed in a greedy fashion to maximize the number of edges common to any pair
and this in turn helps to get larger sized matchings over all processors. This processor
pairing technique along with the fact that most graphs have average degree greater
than 4 helps to cut down the number of matching steps. Typically, we have observed
two or three intermediate steps in reducing G;(P) to the next G41(P). At the end
of shrink, a sequence of logs P distributed shrunk graphs are available:

Go(P),Gl(P),“',Gk(P), k’:lngP—l.

Note that a vertex in G;(P) could contain a pair of vertices in G;_1(P) and hence a
group of vertices in the original graph Go(P).

The split step bisects and redistributes a subsequence of shrunk graphs to allow
parallel divide and conquer. For example, given Go(p), G1(p), - - Gi(p), | <logsP—1,
and a p processor subset, split will bisect each graph G;(p) (except the last one) in
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the sequence to produce two sequences:

Go(p), G1(p), - Gi—1(p) and Go(p), G1(p), - Gi-1(p).

The processor subset is then partitioned into two subsets of size p/2 and the graphs
are redistributed so that all graphs in each sequence are distributed over exactly
one of the two processor subsets. Now split can be applied in parallel in each of
the two processor subsets to carry the recursion one step further. The recursion
ends on computing P — 1 separators to dissect the graph into P subgraphs. By the
parallel divide and conquer nature of split, each of the processors ends up hav-
ing exactly one of the P subgraphs. The split step has three parts, “separate,”
“mark,” and “redistribute.” We will describe each one for the first time split ” is
invoked with the sequence of subgraphs from Gy - - -Gy using all P processors, i.e.,
GO(P), Gl(P), . Gk(P), k= 10g2 P—-1.

To motivate our “separate” procedure we now relate the size of a separator in
the contracted graph to that of the separator in the original graph. Consider the
class of N vertex planar graphs which have of separators of size ev/N (¢ a small
constant) [18]. Because planarity is preserved under edge contraction, each graph in
the sequence of graphs defined at the end of split, i.e., Gy, G, - -Gy satisfies the
planarity condition. If we assume that each G;;1 has at most twice the number of
VN
2i/2 "

vertices in G, the separator in G is of size ¢

VN

5 Consider expanding Si in G in terms of the original vertices, 1.e., by replacing

The separator S; in Gy, is of size

each vertex by the set of vertices in Gy that it represents. This expanded set can
have at most P times the size of S, that is at most ev/Pv/N vertices. This set forms
a separator in Gy. It is obviously larger than the best separator in Gy but at worst
only by a factor of /P whereas the size of the graph Gy is roughly P times that of
G';. We use the expanded set of Sy (the separator in G) to compute a separator in
Go. In our experiments, the expansion leads to a set that is only about 4 — 8 times
the size of the final separator.

First the “separate,” step; it ultimately computes a vertex separator in GGy. The
the smallest graph Gy (P) is first accumulated onto one processor, designated the
leader of the group of processors. This is indeed feasible because the size of the graph
is small enough. Next, the leader processor can apply any sequential algorithm to
compute a separator in (. In our current implementation, we use the inexpensive
level search based AND heuristic of Sparspak [8, 5]. Now each vertex in Gy is marked
to be either in part Ag, By, or the separator Si. This partition in Gy is projected
to the graph at level 0, i.e., Gy. Recall that each vertex v in G represents a group
of vertices in Gy; if v € A then all vertices in the group are assigned to part A.
Likewise, if v is in By(Sk), the group is assigned to part B(S). Now A, B,S form
a partition of Gy, S is a vertex separator but it tends to be large. Let A and B be
represented by single vertices @ and b. Consider the graph induced by the vertex set
{5, a,b}; the edges include all those incident on S but with a minor modification. All
those edges connecting a vertex v to those in A are replaced by a single edge (v, a),
likewise edges connecting a vertex v to those in B are replaced by (v, ). This graph
is bisected again using a level search approach. A level search is started from vertex
a; if a vertex v 1s encountered which is adjacent to b, the vertex is not included in
continuing the level search, instead it is included in the separator S, ; all other vertices
in the explored in the level search are marked to be in part A. This process leads to
a separator S, of a certain size along with two parts. The same technique 1s applied
starting with vertex b to compute a separator S,. The smaller of S, and S}, is selected
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as the final separator Sy in Go(P). The vertices in Sy are numbered as dictated by
the nested dissection algorithm. Now there is a partition Ag, By and Sy in G.

We illustrate the shrink step as well as the the “separate” procedure of split
for a small 5 x 5 grid graph in Figure 2.

Now to the “mark” step. The sets Ag and By in Gy are used to mark out two
subgraphs G’l and Gl from 1. These are used in turn to mark G’z and Gz and so
on till ék—l and ék_l. So now there are two sequences of shrunk graphs on all P
processors:

Go(P),G1(P), - -Gr_1(P), and Go(P),G1(P),---Gr_1(P)

Finally, the “redistribute” steps distributes the two sequences of subgraphs so the
next step in nested dissection can proceed independently in two disjoint processor
subsets. The set of P processors is partitioned into two halves of size P/2 each. The
1-th processor in one half is paired with the i-th in the other. In each pair, a processor
exchanges its portion of each G; for its partner’s portion of Gi. At the end of such
exchanges the two sequences of shrunk graphs reside on disjoint processor subsets of
size P/2; i.e., we achieve:

Go(P/2),G1(P/2),---Gx_1(P/2), and Go(P/2),G1(P/2), - Gr_1(P/2)

Notice that G, 1s not used after split but since G;_;1 has been bisected, each half
has roughly the same size as the original GG. The dissection is “nested” by applying
split as described above but independently on each of the two processor subsets using
Go(P/2),G1(P/2),---Gr_1(P/2) and Go(P/2),G1(P[2), - Gr_1(P/2). After some
log, P split steps, each processor group will have exactly one processor containing
one subgraph. This completes SSND.

3.1. Parallel Complexity. We now derive expressions for the parallel complex-
ity of SSND. Let P denote the total number of processors connected in a hypercube
with cut-through routing. We assume that ¢ is the startup cost, ¢, is the per word
cost, and that the per-link cost i1s negligible. In this section we use ¢;, where i is a
small integer to denote a suitable constant.

Recall that N is the total number of vertices in GG(A4) and that the total number
of edges 1s assumed to be a small constant times N. The vertices are partitioned
among the processors and each processor is assigned edges incident on its vertices.
Furthermore, each processor has no more than N/P + ¢ vertices. We also assume
that N/P > Plog, P; this is justified given the large per processor memory of recent
MIMD machines. For a graph G, we use N; to denote the number of vertices and
once agaian we assume the number of edges is a small constant times this value. If G;
is distributed over a set of processors and m; belongs to this set, then we use N;(m;)
to denote the number of vertices of G; on processor ;.

Complexity of shrink. Recall that shrink produces a sequence of k = log, P—1
subgraphs of reduced size:

Go(P),G1(P), -, Gu(P).

Now to the cost of computing G;41(P) using G;(P). This is the cost of computing
matchings using processor pairs. Although in our experience only a small constant
number of intermediate matching steps are required, in the worst case each processor
may need to communicate with all others. The processor pairing can be chosen so
that all paths in every communication step are congestion free. The total computation
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cost 1s no more than that of each processor examining all its vertices and edges.
The communication cost is bounded by that of the worst case scenario, all to all
personalized communication with any processor m; communicating at most a small
constant times N;(m;) integers to all other processors. The cost of this collective
communication is ¢, (P — 1) + ¢, Nij(m;). Under the assumption that each processor
has at most some N;/P + ¢ vertices, the total cost of the reducing G;(P) to G;41(P)
is:

N; N;
— +ty— + (P —1).
C1P+ P-I— ( )

Recall that Nji1, the number of vertices in Giy1, is roughly (1/2)N; and that the
sizes of the shrunk graphs form a geometric progression. As a consequence, the total
cost over all k = logs P steps of shrink is at most:

cost(shrink) = 261% + Qtw% +t(P—1)log, P
Thus, the worst case complexity of shrink is O(N/P).

Complexity of split. Split is composed of separate, mark, and redistribute
steps. Furthermore, split itself is applied recursively, starting at & = logs P — 1 with
P processors, next with & — 1 and P/2 processors in each of two processor groups
and so on. Let split(¢,p) denote split using a processor subset of size p on a
subsequence of graphs Go(p), G1(p),---G;(p). The graphs Go(p), G1(p), - - - G;(p) are
not necessarily the same as the original sequence of shrunk graphs but could represent
a subsequence at any stage of the dissection. Let cost(split,i, p) denote the cost of
split(é, p).

Consider split(i, p); first of all, G;(p) and p processors are used to compute a
separator and this separator is projected to Go(p), to compute a partition of Gy(p).
Finally, the partition in marked through the graphs G1(p), Ga(p) - - - Gi—1(p) and these
are redistributed so that there are two resulting sequences on two processor subsets
each of size p/2.

The process of separating G;(p) requires a gather to the leader processor; each
processor has roughly N; /p units to send to the leader processor. The communication
cost is at most t5 loga P + t,, N; /p. The projection to level zero requires at worst an
all to all personalized communication of cost t(p — 1) + ¢, No/p. We assume that
the cost of bisecting the small graph induced by the separator is no more than the
cost of the earlier gather step. The overall cost of separate denoted by cost,, is then
approximately caNo/p+t5(p — 1).

The cost of marking is mainly that of communicating the partition information
through the sequence of graphs. At each graph, it can cost at worst an all to all
personalized communication. For a graph G;(p),0 <! < i, the cost is es(N;/p) +
2ty (N1 /p) + ts(p — 1) log, p. The sizes of the graph are halved starting at Ng and if
we assume that each graph is distributed in a balanced manner over the p processors,
the total cost (costmark) is no more than 263% + Qtw% +its(p— 1) log, p.

The redistribute step requires at most exchanging half the data at a processor
with its partner; hence the cost is at most ¢4 N;/p for Gi(p),0 <! < i. Again given
the sizes of the graphs in the sequence are repeatedly halved, cost,egise is 2¢aNo/p.
Thus the total cost of split(i,p) is :

N,
cost(split,i,p) = cq—2 +ts(p—1) log2P
P
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Now the total cost over all nested calls to split is:

log, P—1
cost(split) = cost(split,i+ 1,21

1=0

At split(log, P, P), the size Ny is actually N. At the next step, there are two
parts in the original graph each roughly half the size. So at split(log, P — 1, P/2),
the size Ny is N/2. However, the number of processors is also being halved. So at
split(log, P, P), the size per processor is N/P, and at split(log, P — 1, P/2), the
size per processor is again N/P. The recursion is applied at most log, P times and
so the sum is bounded by:

i=log, P—1

cost(split,i,p) = Z 85 + 6,2 (i + 1)
0

This 1in turn reduces to:
cost(split) = 64% log, P + ¢5 P log, P

Combining both cost(shrink) and cost(split) the total cost of SSND is:
N
(1) cost(ssnd) = 65 log, P + ¢7Plog, P

The overall complexity of PCO depends on the local ordering scheme. The serial
complexity of nested dissection orderings is O(nlog,n) for a graph with n vertices
[18]. For such a local ordering scheme, each processor has a subgraph with roughly
N/P vertices; hence the cost is O(%log, &). The total parallel cost is therefore
O(% log, N + P log2P). Given our assumption that P logs P is smaller than N/ P we
have a scalable parallel ordering algorithm for general sparse matrices.

4. Empirical Results. We now present empirical results on the performance of
PCO. We first examine the effectiveness of PCO in preserving sparsity by comparing
the fill incurred by PCO and other well established schemes. Next, we discuss the
parallel performance of PCO on three different distributed memory machines.

The amount of fill incurred is a good measure of the effectiveness of any ordering
scheme. Qur test suite has a total of twenty sparse problems ranging in size from
four and a half thousand to about forty thousand unknowns. We use four different
ordering strategies to compare the fill incurred. The test problems are described in
the first three columns of Table 1.

We compare the fill resulting from PCO with that for three sequential methods
and two forms of the parallel Cartesian Nested Dissection (CND) [14] method. The
three serial methods we use are: Multiple Minimum Degree (MMD) [9], Automatic
Nested Dissection (AND) [8], and Spectral Nested Dissection (SND) [20]. For both
MMD and AND we use the Sparspak [5] implementation; we use the SND code
distributed by Pothen and Wang. In practice, the serial Multiple Minimum Degree
(MMD) method is known to produce the least fill of any general purpose ordering
heuristic for the vast majority of sparse problems and so comparing against it is a
good test for PCO. AND is generally not as effective as MMD in limiting fill, but
provides a widely recognized point of comparison to ensure that PCO is at least in
the right range with respect to preserving sparsity. AND is one of the fasted serial
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TABLE 1
Description of test problems and comparison of fill-in; All values are in thousands.

Label N (1/2)4] IZ]

MMD | SND | AND | CND | CND- | PCO

MMD

hammond 4.7 18.4 91 101 146 116 125 130
barth4 6.0 23.4 116 135 200 152 154 156
venkat 10.1 39.8 244 256 340 304 298 303
kall2 6.8 53.6 | 576 | 1498 | 1629 | 964 | 980 | 990
spheret 16.3 655 || 905 | 685 | 681 | 686| 720 | 660
barth4dual 11.4 28.3 125 158 212 215 185 179
dimitri3 11.1 43.9 272 289 362 347 352 383
shuttle 104 57.0 | 320 | 381 | 387 | 385 | 373 | 447
ghsl 14.9 58.2 214 322 595 383 323 392
barthb 15.2 61.4 372 400 657 448 600 560
gphl 15.6 62.2 463 498 531 540 542 500
oIl 173 688 || 435 | 483 | 646 | 728 | 688 | 602
gsql 17.4 68.7 312 384 483 476 492 411
barthbdual 30.2 75.1 421 494 648 599 514 581
kall3 10.5 86.6 1659 | 2268 | 3520 1060 1260 | 1691
vaughan 29.6 111.4 1447 | 1935 | 1481 | 4049 1979 | 1380
2502 3073 | 1218 | 673 | 781 | 942 | 915| 873 | 900
gl2 34.0 135.5 1052 | 1081 1478 | 1558 1380 | 1380
gph2 35.1 139.7 1205 | 1248 | 1359 | 1441 1459 | 1301
ghs2 303 | 1528 | 615 | 1056 | 2882 | 867 | 856 | 1256

ordering schemes. SND compares well with MMD with respect to fill but has very
large execution time. We also present fill-in results for parallel CND [14] in two forms:
one in which the CND heuristic is applied throughout in both the distributed and local
phase, and another (CND-MMD) in which CND is applied in the distributed phase
with 32 processors followed by MMD in the local phase. For the results in Table 1, we
used PCO with 32 processors. The fill increases by at most ten percent on increasing
the number of processors to 128.

In Table 1, for a given problem, the value in bold font is that of the largest fill. As
expected, MMD produces the least fill for almost all the problems. The fill incurred
by SND is close to that of MMD while that of AND is the largest for several problems.
On the other hand among the three serial ordering schemes, AND is by far the fastest,
MMD takes more time than AND while SND takes considerably longer. Parallel CND
is suitable for graphs associated with geometric information and when executed on
one processor takes approximately twice the time required by AND. Hence its serial
running time is low and it has been shown to parallelize well on distributed memory
machines. However, it does tend to incur larger fill comparable to the AND heuristic.
When used with MMD for the local phase (32 processors), the fill is reduced in most
cases. Our PCO scheme incurs about the same fill in as the CND-MMD ordering and
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in most cases it incurs less fill than AND.

The behavior of PCO is not surprising. In broad terms, PCO is a combination of
AND and MMD suitable for parallel machines and so the sparsity preservation aspect
of PCO mimics a hybrid of both AND and MMD strategies. What is interesting is
that the combination of graph contraction (shrink) followed by the simple split
is effective; in our experiments we observed that the separators computed were in
fact smaller than those computed by AND. We believe this is related to effect of
graph contraction. Both Bui and Jones [4] as well as Hendrickson and Leland [15]
observe that the separator size is considerably reduced when computed by successive
refinement over a sequence of contracted graphs. In PCO, we do not use the contracted
graphs for refinement but to simply enable computing a separator in parallel; we
project the separator in the smallest shrunk graph to the original and then refine it.
It appears that this two step process leads to a slight improvement in separator size
over AND and in any case is no worse than applying AND on the original graph while
allowing effective parallel implementation.

The design of a fully parallel sparse solver requires an effective parallel ordering
scheme. Ideally, the fill incurred should compare well with the best serial scheme but
in practice the time to compute the ordering is also an important consideration. For
most sparse problems even though the asymptotic complexity of factorization is of
higher order compared to the ordering, the actual factorization times tend to be very
low for codes designed using BLAS. On the other hand, graph-based ordering methods
with indirection and complicated data structures lead to a lower utilization of peak
machine performance and it is not surprising to find that the ordering times are higher
than that of factorization for small to medium problem sizes. Parallel ordering is even
harder because there is no data locality to begin and parallel nested solves both the
ordering and partitioning problem and involves significant data redistribution. There
is certainly a trade-off between time to order versus the fill incurred. Our aim was to
design a fast, reasonably simple, parallel nested scheme suitable for general problems,
i.e., those for which geometry may not be available. PCO serves this purpose; the
fill incurred is in the range marked by MMD and AND and the time to compute the
ordering is typically 1.5 — 2 times that of CND-MMD.

Parallel Performance. As derived in the earlier section, the parallel complexity
of SSND is O(N/ P log, P) and the memory requirement is O(N/P). The complexity
PCO is the same as that of parallel CND. We compare the actual execution times
and speed-ups of PCO with that of CND for three different message passing multipro-
cessors, the Thinking Machines CM5, the Intel iPSC/860, and the Intel Touchstone
Delta.

Despite the analytic measures of scalability, the actual speedups obtained on
available message passing multiprocessors 1s far from ideal. There are several factors
that account for this. First of all, most machines have a high communication to
computation ratio, i.e., the time required to communicate one word is large multiple
of that required for one unit of computing. Next, the interconnection network affects
the performance and most collective communication operations such as broadcast,
gather etc. have higher cost on the mesh compared to the hypercube. Thirdly,
algorithms for hypercubes can be better adapted to meshes by careful mapping of
processors in a hypercube to those in the mesh but no automated tools exist for
this purpose. Recently, after we developed our code several message passing libraries
have been developed [6, 3]; implementations in terms of these library routines should
ease the problem of performance tuning. Finally, cache-effects and message buffering

13



protocols also play a role in observed speed-ups. For example, with an effective short
message protocol, sending several short messages may take less time than a single
long message even though the total volume of communication may be the same. Both
parallel CND and PCO are implemented in C with message passing extensions. In
both codes the “hypercubic” versions of most collective communications are run as
1s on the mesh; no attempt has been made to recode for better performance on the
mesh.

The three machines we use (TMC-CM5, Intel iPSC/860, Intel Delta) support
the same basic MIMD computational paradigm with explicit message passing but
differ in many significant ways. The CMb5 has Sparc processors with 32 Mbytes of
local memory in a fat-tree network. The fat-tree network can simulate a hypercubic
network without any significant penalty [17] and with the low execution rate (5 Mflops)
of the Sparc, the CM5 has the most favorable communication to computation ratio
of the three machines. The Intel iPSC/860 has iPSC/860 processors with 8 Mbytes
of local memory, connected in a hypercube. The Intel Touchstone Delta has the same
iPSC/860 processors but with 16 Mbytes of local memory and a mesh interconnection
network. Besides the interconnection network, the message protocols are also different
on the two Intel multiprocessors.

We compare the parallel performance of PCO against that of CND. For the latter,
we again use two versions, one with CND all through and the other (CND-MMD) with
CND for a distributed phase and MMD for the local. The version of CND and CND-
MMD we use for fair comparison i1s not the code available in public domain as part
of a fully parallel solver [13]. The redistribution step after distributed CND has been
modified to redistribute only the graph information while the version in the solver
redistributes the numeric values as well as the right hand side vector for later numeric
factorization. Recall that MMD is applied in a local phase for both PCO and CND-
MMD. The local phase problem size is quite small for the test problems and MMD 1is
a faster method than both CND and SSND for these local phase problems. This is not
the case with larger problems, and MMD is slower than CND; for smaller problems
when CND is used for the local phase, a sort step required to set up data structures
is the dominant cost. We use four representative problems from our earlier test suite
for studying the effect on execution times while successively doubling the number of
processors from 16 to 128. Two of the problems “gl2” and “gsq2” are highly graded
2-D finite-elements; “gl2” 1s an L-shaped region while “gsq2” is a square region. Both
problems are fairly small with about thirty thousand unknowns and about four times
as many nonzeroes. The third problem i1s “barthbdual,” a 3-D mesh while the fourth
“g500” 1s a 500 x 500 model grid problem. For most problems with the same number
of processors, the execution time of PCO is at about 1.5 to 2 times that of CND-
MMD. This factor plays a significant role on execution times for the same problem
but with increasing number of processors. On doubling the number of processors, the
local phase size is roughly halved by applying another step of the relatively expensive
distributed ordering.

In Table 2, we provide parallel execution times for PCO, CND, and CND-MMD
on each of the three machines. The values in the column labeled 16 contain execution
times in seconds. In the remaining columns, the execution time is expressed as a
fraction of that for 16 processors for a given problem. For example, for PCO and the
problem ”gl2” on the Intel Delta, the columns labeled 16 and 32 contain 10.7 and 0.75
to indicate that the execution time on 32 processors is .75 times that on 16 processors.
For all methods we observe that:
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TABLE 2
Ezecution Times on 16-128 processors of the Intel tPSC/860, TMC-CM5, and Intel Delta.

Values for processors 32-128 are presented as a fraction of the time for 16 processors.

Problem Machine Algorithm 16 32 64 12 8
Problem (seconds)
gl2
TMC - CM5 PCO 31.5 .70 A4 .29
CND-MMD 21.4 72 45 .29
CND 29.5 .68 40 .25
1IPSC/860 PCO 11.9 .70 .53 .38
CND-MMD 8.7 73 .52 .32
CND 11.5 .65 45 .27
Intel /Delta PCO 10.7 .75 .60 .50
CND-MMD 7.9 .69 45 31
CND 9.9 .67 A1 .27
gsq2
TMC - CM5 PCO 31.4 .62 A1 .28
CND-MMD 20.8 .68 A2 .29
CND 27.6 .65 40 .24
iPSC/860 PCO 11.9 .69 .53 .35
CND-MMD 8.2 73 .53 .36
CND 11.5 .61 .39 .26
Intel/Delta  PCO 10.9 .66 .55 51
CND-MMD 7.5 .69 AT .38
CND 10.2 .66 A2 .27
barthbdual
TMC - CM5 PCO 31.6 .68 46 .36
CND-MMD 20.0 .70 46 .32
CND 21.1 .68 A2 .28
1IPSC/860 PCO 12.9 .76 .54 40
CND-MMD 8.1 .76 .50 .35
CND 8.5 72 46 .32
Intel /Delta PCO 11.7 .82 .56 .45
CND-MMD 7.5 .87 .55 .38
CND 7.9 77 A7 .35
gh00
TMC - CM5 PCO 52.4 .62 A3 .30
CND-MMD 24.0 .65 46 .32
CND 28.6 .60 .34 .26
1IPSC/860 PCO 20.2 .65 45 .34
CND-MMD 10.4 .65 .50 .35
CND 10.8 .60 .34 .32
Intel /Delta PCO 17.7 .62 .56 .34
CND-MMD 9.2 .65 45 .36
CND 9.3 .65 40 .34
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e the best parallel performance is on the CM5 which has the most balanced
communication to computation ratio as well as the fat-tree (hypercubic) net-
work.

¢ performance on the Intel iPSC/860 hypercube is worse than that on the CM5
because of the higher communication to computation ratio.

e the relative decrease in execution time is the least on the Intel Delta because of
the the mesh connectivity as well as the large communication to computation
ratio. The effect of the mesh interconnection is more visible for PCO because
1t 1s more communication intensive.

grid size grid size
71 100 141 200 283 400 565 800 71 100 141 200 283 400 565 800
R N A A R N A A
45 45 CND
40 40
35 35
ISD 30 CND 30
e
€ - _
q 25 25
u
b 204 20
15 15
10 PCO 10 PCO
5 5
CND-MMD CND-MMD
0 T T T T T T 0 T T T T T T
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
number of processors (Intel Delta) number of processors (TMC -CM5)

Fia. 3. Scaled Speedup for a series of grid problems on the Intel Delta and TMC-CM5

With respect to Table 2, if the speedup is linear in the number of processors
(relative to the execution time on 16 processors), the values in columns labeled 32,
64 and 128 should be .5, .25 and .125. For PCO with 128 processors of the CM5,
the time on 128 processors is about twice the ideal value for “gl2” and “gsq2,” i.e.,
on 128 processors the execution time is about .28 times that on 16 processors. This
is worse than the value of .24 observed for the same problems on the CM5 for CND
but very close to the values of .29 — .30 observed for CND-MMD. For “barthbdual,”
the speedup of PCO is a little less than that of CND-MMD. This is in part because
the shrink procedure takes slightly longer with a larger number of processors; we
found that the number of intermediate steps in contracting from one level to the next
remains the same for 16 through 64 processors but tends to increase by a total of 3—4
for 128 processors. For “gh00,” the speedup of PCO is quite similar to that of CND
but in absolute terms, the total execution time is larger than that of CND.
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We next examine the speed-up of PCO when the problem size per processor is
kept fixed and the number of processors is increased. We use a sequence of model grid
problems for this purpose starting with 71 x 71 grid for a single processor and ending
with the 800 x 800 grid for 128 processors. Once again, if T; denotes the execution
time using ¢ processors, the scaled speedup is computed as ¢ x 7% The scaled speedup
is plotted for the Intel Delta and the CMb in Figure 3. Thelplot shows the effect
of the interconnection network; the mesh leads to lower speed-ups for all methods.
It is conceivable that some of this effect will not be so significant if all the collective
communication routines are optimized for the mesh. The speedup achieved by PCO is
comparable to that of CND-MMD on both multiprocessors. The plot for PCO is not
as smooth because the speedup drops for 8 and 64 processors. In these two instances
there is an increase in the number of intermediate steps in contracting one graph to
the next.

Recently, Karypis and Kumar [16] have implemented a parallel multilevel nested
dissection (MLND) on the Cray T3D using the shared memory library. The differ-
ences between the their algorithm and PCO algorithm have been described earlier
in Section 2. We now comment on differences in performance and complexity. Ku-
mar and Karypis show that their method produces low fill-in (comparable to that of
Multiple Minimum Degree) for some test problems; they attribute this to their “graph-
growing” separator heuristic. Our PCO certainly has higher fill-in on average than
MMD. Given the difference in computing paradigms (shared memory vs distributed
memory) and the parallel multiprocessors, a direct comparison in performance is not
viable. However, on the basis of execution times presented [16] it appears that the
relative speed-up on going from 16 to 128 processors is higher for PCO compared to
MLND. For MLND, the execution time on 128 processors (Table 4 in [16]) is in the
range 0.5 — 0.6 times that on 16 processors. On the TMC-CM5, the execution time
for PCO on 128 processors is in the range 0.28 — 0.30 times that on 16 processors.
Furthermore, SSND has a lower parallel complexity of O(% log P) as well as a lower
memory requirement of O(N/P). MLND has parallel complexity of O(% log P) and
memory requirements are O(%).

5. Conclusions. We have developed SSND, a new parallel nested dissection
scheme of complexity O(% log P) for dissecting a graph with N vertices into P sub-
graphs. The overall ordering scheme called PCO uses Multiple Minimum Degree for
ordering the P subgraphs independently in a local phase. If instead of Multiple Min-
imum Degree, a graph based nested dissection dissection method [18] is used, the
overall complexity of PCO is O(% log N'). The ordering shows good speed-ups on the
Thinking Machines CM5, Intel iPSC/860, and the Intel Touchstone Delta. A scaled
speedup of 35 is obtained for the model grid problem with 128 processors of the CMb.
The fill-in obtained is within twice that of Multiple Minimum Degree and less than
that of Automatic Nested Dissection for the problems in our test-suite.

In summary, PCO seems highly promising. We believe that the fill-in incurred by
PCO can be substantially decreased by using a single parallel refinement step after
SSND. In our initial experiments we have found that such a “post-refinement” step
can reduce the separator sizes by as much as twenty to thirty five percent. We are
in the process of effectively parallelizing this step. We believe that especially for
message passing multiprocessors with high communication latency, a single “post-
refinement” step is more viable than successive refinements as in the serial multilevel
approach [4, 15]. Such a “post-refinement” step would be applicable after any P
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way dissection scheme. A “post-refinement” also allows the movement of elements
between more than two regions. Our initial experiments indicate that this helps to
smooth out some of the larger separators and the imbalance in sizes of subgraphs
resulting from successive bisection. We also believe that parallel performance on the
mesh architectures would be substantially improved with an implementation using
optimized collective communication schemes.
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