
PARALLEL ORDERING USING EDGE CONTRACTION �PADMA RAGHAVANfTECHNICAL REPORT: CS-95-293g yAbstract. Computing a �ll-reducing ordering of a sparse matrix is a central problem in thesolution of sparse linear systems using direct methods. In recent years, there has been signi�cantresearch in developing a sparse direct solver suitable for message-passing multiprocessors. However,computing the ordering step in parallel remains a challenge and there are very few methods available.This paper describes a new scheme called parallel contracted ordering which is a combination of anew parallel nested dissection heuristic and any serial ordering method. The new nested dissectionheuristic called Shrink-Split ND (SSND) is based on parallel graph contraction. For a system withN unknowns, the complexity of SSND is O(NP logP ) using P processors in a hypercube; the overallcomplexity is O(NP logN) when the serial ordering method chosen is graph exploration based nesteddissection. We provide extensive empirical results on the quality of the ordering. We also reporton the parallel performance of a preliminary implementation on three di�erent message passingmultiprocessors.Key words. parallel algorithms, sparse linear systems, �ll-in, ordering, sparse matrix factoriza-tion, nested dissection, parallel nested dissectionAMS(MOS) subject classi�cations. 65F, 65W1. Introduction. Consider the problem of solving a very large system of linearquestions using Gaussian eliminationwhen the coe�cient matrix is sparse. The goal isto utilize sparsity to achieve low complexity for the solution process. In this regard it isa well known fact that the system must be reordered to incur low �ll-in (original zeroesthat become nonzero) during Gaussian elimination. When the coe�cient matrix Ais symmetric positive de�nite, the solution process (using Cholesky factorization) isorganized into four distinct steps [9]:� Ordering: Find a permutation matrix P so that PAPT has a sparse Choleskyfactor L.� Symbolic factorization: Determine the structure of L and set up data struc-tures.� Numeric factorization: Compute L; PAP T = LLT .� Triangular Solution: Solve the triangular systems Ly = Pb and LT z = y tocompute x = P T z.In the last several years there has been signi�cant interest in a fully parallel solutionusing very large message passing multiprocessors. Although e�ective parallelization ofsymbolic and numeric factorization is well understood, computing orderings in parallelremains a very challenging task for which there are but very few methods available.Most earlier work on parallel sparse matrix factorization has addressed the nu-meric factorization step which has the greatest serial complexity [12]. However, theserial complexity of the ordering step is such that if it were not parallelized it wouldsoon become a bottleneck. For example, for a class of N�N sparse matrices, the serialcomplexity of nested dissection is O(NlogN ) while that of the numeric factorizationis O(N3=2). Furthermore, performing the ordering in serial makes it impractical to� This research was supported by the Advanced Research Projects Agency through the ArmyResearch O�ce under contract number DAAL03-91-C-0047.y Department of Computer Science, The University of Tennessee, 107 Ayres Hall, Knoxville, TN37996-1301 1



have fully parallel sparse direct solver be the main compute kernel in any large scaleparallel scienti�c application.In the serial case, the key purpose of ordering is to reduce �ll-in (the problem ofminimizing�ll if NP-hard) during numeric factorization. The ordering also determinesthe column dependencies in computing the Cholesky factor; the dependencies can beexpressed as an \elimination tree" representing the large-grain functional or taskparallelism available in numeric phase. Of the several ordering heuristics that havebeen studied, the Multiple MinimumDegree [7, 9] ordering tends to incur the least �llover a wide class of problems but the elimination trees tend to be tall and unbalanced.On the other hand, the class of nested dissection [9] methods (which typically incurmore �ll-in than MMD) lead to elimination trees that are short and better balanced.So nested dissection orderings seem more appropriate in the parallel context. A relatedfact is that nested dissection methods are divide and conquer methods and so taskparallelism during ordering can be utilized by parallel divide and conquer.In this paper we develop a new parallel nested dissection scheme called Shrink-Split nested dissection (SSND). We apply SSND till we reduce the ordering problemto that of ordering as many disjoint submatrices as the total number of availableprocessors. We show that SSND has the parallel complexity of O(NP logP ) on Pprocessors of a hypercube. After SSND, we can essentially apply any serial orderingscheme independently on each processor and we choose to apply Multiple MinimumDegree. The overall ordering is called Parallel Contracted Ordering (PCO). We showthat PCO is e�ective both in reducing �ll and achieving good parallel performance.We begin with a brief review of background and related work in Section 2 and thenpresent our main contributions in Sections 3 and 4. We develop our algorithm inSection 3 and analyze its parallel complexity in Section 3.1. Section 4 contains em-pirical results and is organized into two parts; the �rst relates to �ll reduction whilethe second is on parallel performance. Conclusions are presented in Section 5 alongwith a discussion of related work.2. Background and Related Research. We assume familiarity on the partof the reader with basic graph theoretic notation and key ideas in sparse matrixcomputations [9]. We use G(A) to denote the graph of the N �N symmetric positivede�nite matrix A; G(A) = (V;E) is undirected, vertices in V correspond to each rowor column of A and E contains an edge between vertices i and j whenever Ai;j 6= 0.This graph can be used both to mimic the changes to the sparsity structure of A inthe course of eliminating unknowns, and to predict �ll and thereby the sparsity of Lfor a given numbering of vertices. The ordering methods Multiple Minimum Degreeand Nested Dissection can be easily explained in terms of this graph.Consider G(A); eliminating the �rst unknown, will cause �ll which is modeledby making all vertices adjacent to vertex 1 pairwise adjacent, �ll edges added tomake the set of vertices adjacent to vertex 1 into a clique. This resulting clique is ofsmall size if the degree of the vertex being eliminated is low. The \minimum degree"strategy is that of locally reducing �ll by picking the vertex to be eliminated as the onewith fewest neighbors. In rather oversimpli�ed terms, given G(A), a new numberingof vertices in V is computed by picking the vertex with the smallest degree andassigning it the lowest unused number. Then the process of eliminating the unknowncorresponding to this vertex is mimicked by adding �ll edges to make the adjacencyset of this vertex into a clique. The numbered vertex is removed from the graphwhich is then used for yet another step. This process is repeated till all verticesare numbered. Multiple Minimum Degree(MMD) developed by Alan George and Liu2



[7, 9] is a highly sophisticated implementation of the \minimum degree" heuristic.The MMD implementation invariably obtains orderings with remarkably low �ll. Onthe other hand, the elimination tree tends to be tall and unbalanced and so wouldconceivably require a new data partitioning strategy for the numeric phase. Finally,it does not seem clear how to parallelize this ordering method itself; Rothberg hasrecently studied this problem in [21].Alternatively, paths in G(A) have special signi�cance for edges in the graph of LG(L) or in other words nonzeroes in L. Given an ordering of vertices in V , there isan edge between vertices k; l in G(L) if and only if there is a path between k and l inG(A) consisting of vertices numbered lower than k and l. The class of nested dissectionmethods originally developed by Alan George relates to this characterization. Let Vsbe a set of vertices (called a separator) whose removal, along with all edges incident onvertices in Vs, disconnects the graph into two remaining subgraphs, G1 = (V1; E1) andG2 = (V2; E2). If the matrix is reordered so that the vertices within each subgraphare numbered contiguously and the vertices in the separator are numbered last, thenthere cannot be any edges in G(L) between vertices in V 1 and V 2. If the matrix ispermuted accordingly, it will have the following form:A = 24 A1 0 S10 A2 S2ST1 ST2 As 35 :In this form, the zero blocks are preserved and factorization if A1 and A2 can proceedindependently and thereby in parallel. This idea can be applied recursively therebynesting the dissections; after logP stages, note that there will be a total of P disjointsubgraphs (submatrices). The large grain parallelism for the numeric step is de�nedclearly by this dissection process. The �ll-in relates to the size of the separators andin broad terms, the smaller the separator, the lower the �ll.Nested dissection algorithms di�er primarily in the heuristics used for choosingseparators. An approach called Automatic Nested Dissection [8] involves �rst �ndinga \peripheral" vertex, generating a level structure based on the connectivity of thegraph, and then choosing a \middle" level of vertices as the separator. More recentheuristics for computing graph separators include spectral methods [20], methodsbased on geometric projections and mappings [10, 19] and graph contraction basedheuristics [4, 15].Parallel nested dissection requires an e�ective parallel method for computing aseparator. If such a method is available then parallel divide and conquer wouldnaturally provide functional or task parallelism. For example, if a separator can becomputed e�ectively in parallel for the entire graph G using all P processors, then atthe next step, at expense of exchanging some data, G1 and G2 could be gathered ontoprocessor subsets of size P=2 which could then proceed with the recursion in parallel.The problem of computing separators in parallel is related to a fundamental onefor distributed computing, that of data (graph) partitioning to provide locality. If thedata or computation to be mapped to processors in a parallel machine is representedas a graph then the \graph partitioning" problem is to �nd a small edge separatorto split the graph into parts. Recursive application will lead to a multiway partition.Vertex and edge separators are closely related but for ordering sparse matrices (nesteddissection) we need vertex separators and a special numbering. We will discuss ideasused in graph partitioning methods as they relate to our work but a direct comparisonwith them is not viable. 3



Breadth �rst search on sparse graphs has limited parallelism and a scalable im-plementation would not be possible unless the graph were already partitioned amongprocessors; obviously such a partitioning requires the computation of separators. Thesame is true of spectral methods; the sparse matrix (and thereby its graph) must bepartitioned among processors to enable e�ective parallel sparse matrix vector multi-plication.The �rst parallel nested dissection method was developed by Gilbert and Zmi-jewski [11, 22] and was based on the Kernighan-Lin heuristic. However, the methodrequires storage proportional to the number of edges in G(A) at a single processor.The method uses the functional parallelism in parallel divide and conquer. The �rstseparator was computed essentially on a single processor the next two independentlyand in parallel on two processors and so on. Our SSND uses a parallel divide andconquer approach but it also parallelizes the task of computing a single separator.The second parallel method called Cartesian Nested Dissection (CND) was de-veloped by Heath and Raghavan [14]. CND is suitable for sparse matrices associatedwith geometric information. For such matrices, the geometric information is used tocompute a separator in an e�cient \data-parallel" manner; the implementation doesnot require an initial locality preserving partitioning of the graph to the processors.CND has been shown to be a fast and scalable ordering method [14].Our SSND algorithmwas motivated by recent developments in serial ordering andgraph partitioning techniques. Bui and Jones[4] developed a new nested dissectionscheme based on heuristic for computing separators using graph contraction and theKernighan-Lin method. Hendrickson and Leyland [15] present a multilevel graphpartitioning scheme where they used graph contraction and the spectral method tocompute edge separators. Yet another related work is that of Barnard and Simon [1]for graph partitioning using recursive spectral bisection.In their algorithms, both Bui and Jones [4] and Hendrickson and Leland [15]compute a sequence of \contracted" graphs. The �rst graph in the sequence is theoriginal one, the second is of half the size and so on till the last one (coarsest) has asmall number (� 100) of vertices. A bisection is �rst computed in the coarsest graph,next it is projected to the preceding one and re�ned further to compute a bisection,this bisection is in turn projected to the next graph and so on till a bisection of theoriginal graph is produced. In short, to compute a single separator, a sequence ofcontracted graphs is produced and a separator is computed in the coarsest graph andre�ned through the sequence to obtain �nal separator. This process of contractingthe graph and re�ning separators is applied recursively to compute a nested dissectionordering. These methods with contracted graphs were aimed at improving the qualityof the separator and indeed resulted in separators of signi�cantly smaller size [4, 15]. Inthis work, we use the graph contraction idea but in parallel and for a di�erent purpose.The contracted graphs are used to enable computing a separator in parallel and not to\improve" the quality of the separator. Secondly, the sequence of contracted graphsis also used to enable parallel divide and conquer. Finally, the graph contraction isperformed exactly once and is used to compute all the separators.Concurrent with this work, Barnard and Simon [2] and Karypis and Kumar [16]have developed parallel formulations of multilevel partitioning methods. Barnard andSimon parallelize their earlier recursive spectral scheme [1] for graph partitioning.Karypis and Kumar also parallelize the multilevel approach and develop a paral-lel nested dissection scheme. Their graph contraction method di�ers from than inSSND; the heuristic for computing a separator is also di�erent. Our work di�ers from4



both these schemes in many respects but it does share a common feature, that of us-ing parallel graph contraction. PCO is implemented on message passing distributedmemory machines such as the Intel Delta while the algorithms in [2, 16] are on theCray T3D using \shmem," the shared memory library. Unlike the other schemes,PCO uses contracted graphs to compute a separator in parallel, not to re�ne and im-prove the quality of the separator. The graph contraction is performed exactly oncein PCO and then used to apply the parallel divide and conquer; in the other schemes,graph contraction is performed at every stage in the recursion. The heuristics usedfor computing the separator in PCO is di�erent from those used in the other twoscheme. Further comparison with the multilevel nested dissection scheme of Karypisand Kumar is provided in Section 4.3. Algorithms. Our PCO algorithm has two phases, a distributed phase fol-lowed by a local phase. In the distributed phase processors cooperate to computea nested dissection ordering; we call the algorithm Shrink-Split ND (SSND). In thelocal phase any serial ordering scheme can be used independently on each processor.We use Multiple Minimum Degree (MMD) in our implementation. In this section wewill describe our SSND heuristic.We now introduce notation that is used in the rest of the paper. We considerG(A), the graph of the matrix A with a total of N vertices; we assume that the totalnumber of edges M is a small constant times N . We use P to denote the total numberof processors and we use �j to denote the j-th processor for j = 0; 1; � � �(P � 1). Forany graph G = (V;E), G(p) denotes a distributed representation of G over some pprocessors. In such a representation, the vertex set is partitioned over the processorsand every vertex is owned by a distinct processor. Each processor owns roughly jV j=pvertices and the edges incident on these vertices; no \locality" is assumed. For graphsG and Ĝ, we use G(p=2) and Ĝ(p=2), to denote that each graph is distributed overprocessor subsets of size p=2 and that these processor subsets are disjoint. Initially,G0 = G(A) is assumed distributed over all P processors and the algorithm starts withG0(P ).SSND uses an e�cient parallel graph contraction scheme aimed at reducing thesize of G(A) to a small number; this step is called shrink. This step produces asequence of graphs G0(P ); G1(P ) � � � ; Gk(P ) with k = log2P � 1. The number ofvertices in Gi+1 is roughly half that in Gi and the last graph Gk is the smallest withless than N=P vertices. The last graph Gk(P ) and the �rst G0(P ) are used in anext step called split, to compute a separator and produce a bisection in each graphin the sequence. The bisected shrunk graphs are used to \nest" the dissections, i.e,apply split recursively using select shrunk subgraphs to generate a set of P � 1separators and hence P subgraphs. This completes the distributed phase; each of thesubgraphs is then mapped to a processor which applies MMD in a local phase. Usingthis notation introduced earlier, we provide a brief outline of the SSND algorithm inFigure 1.The shrink step produces a sequence distributed \shrunk" graphs. It starts withG0(P ), the original graph distributed on P processors. During shrink, the next graphin the sequence is obtained by performing a small number of parallel edge contractionsteps. Consider computing Gi+1(P ) from Gi(P ). The set of processors of size P ispartitioned into P=2 processor pairs. Each processor pair computes a set of edges thatform a matching (i.e., no two edges share a common end point) and the vertices atend points of these edges are \owned" by the two processors. Now the union of suchmatchings over all P=2 processor pairs (denoted by _M ) is also a matching because the5



Parallel shrink-split ND:� shrink: parallel edge-contract to obtain a sequence ofdistributed shrunk graphs:G0(P ); G1(P ); � � �Gk(P ), k = log2(P )� 1� assign p P� split using G0(p) � � �Gk(p):1. separate Gk(p) and project to G0(p)separate G0(p) into ~G0(p) and Ĝ0(p)2. mark split through shrunk graphs to get two sequences:~G0(p); ~G1(p); � � � ~Gk�1(p)Ĝ0(p); Ĝ1(p); � � � Ĝk�1(p)3. redistribute to place each sequence on disjoint processorsubsets of size p=2 to get:~G0(p=2); ~G1(p=2); � � � ~Gk�1(p=2)Ĝ0(p=2); Ĝ1(p=2); � � �Ĝk�1(p=2)� nest: while k > 01. assign k k � 1;2. assign p p=2;3. do in parallel on disjoint processor subsets of size psplit using ~G0(p); ~G1(p); � � � ~Gk(p)split using Ĝ0(p); Ĝ1(p); � � � Ĝk(p)Fig. 1. Summary of key steps in Shrink-split ND; G0 is original graph and P is the totalnumber of processorsvertex to processor assignment is a partition. Next each edge (v; w) 2 _M is replaceda by single vertex whose adjacency set is the union of those of v and w. Let the graphcontracted using _M be _G(P ); if 1=2jGi(P )j < j _G(P )j < (1=3)jGi(P )j, then _G(P ) ismade the new Gi+1(P ). However, if the size criterion is not satis�ed, the process ofcomputing a matching is repeated using _G(P ). The new matching �M , is obtainedusing a di�erent partition of the processors into pairs. The processor pair partition iscomputed in a greedy fashion to maximize the number of edges common to any pairand this in turn helps to get larger sized matchings over all processors. This processorpairing technique along with the fact that most graphs have average degree greaterthan 4 helps to cut down the number of matching steps. Typically, we have observedtwo or three intermediate steps in reducing Gi(P ) to the next Gi+1(P ). At the endof shrink, a sequence of log2P distributed shrunk graphs are available:G0(P ); G1(P ); � � � ; Gk(P ); k = log2P � 1:Note that a vertex in Gi(P ) could contain a pair of vertices in Gi�1(P ) and hence agroup of vertices in the original graph G0(P ).The split step bisects and redistributes a subsequence of shrunk graphs to allowparallel divide and conquer. For example, given G0(p); G1(p); � � �Gl(p); l � log2P�1,and a p processor subset, split will bisect each graph Gi(p) (except the last one) in6



the sequence to produce two sequences:~G0(p); ~G1(p); � � � ~Gl�1(p) and Ĝ0(p); Ĝ1(p); � � � Ĝl�1(p):The processor subset is then partitioned into two subsets of size p=2 and the graphsare redistributed so that all graphs in each sequence are distributed over exactlyone of the two processor subsets. Now split can be applied in parallel in each ofthe two processor subsets to carry the recursion one step further. The recursionends on computing P � 1 separators to dissect the graph into P subgraphs. By theparallel divide and conquer nature of split, each of the processors ends up hav-ing exactly one of the P subgraphs. The split step has three parts, \separate,"\mark," and \redistribute." We will describe each one for the �rst time split " isinvoked with the sequence of subgraphs from G0 � � �Gk using all P processors, i.e.,G0(P ); G1(P ); � � �Gk(P ); k = log2 P � 1.To motivate our \separate" procedure we now relate the size of a separator inthe contracted graph to that of the separator in the original graph. Consider theclass of N vertex planar graphs which have of separators of size cpN (c a smallconstant) [18]. Because planarity is preserved under edge contraction, each graph inthe sequence of graphs de�ned at the end of split, i.e., G0; G1; � � �Gk satis�es theplanarity condition. If we assume that each Gi+1 has at most twice the number ofvertices in Gi, the separator in Gi is of size cpN2i=2 . The separator Sk in Gk is of sizecpNpP . Consider expanding Sk in Gk in terms of the original vertices, i.e., by replacingeach vertex by the set of vertices in G0 that it represents. This expanded set canhave at most P times the size of Sk, that is at most cpPpN vertices. This set formsa separator in G0. It is obviously larger than the best separator in G0 but at worstonly by a factor of pP whereas the size of the graph G0 is roughly P times that ofGk. We use the expanded set of Sk (the separator in Gk) to compute a separator inG0. In our experiments, the expansion leads to a set that is only about 4 � 8 timesthe size of the �nal separator.First the \separate," step; it ultimately computes a vertex separator in G0. Thethe smallest graph Gk(P ) is �rst accumulated onto one processor, designated theleader of the group of processors. This is indeed feasible because the size of the graphis small enough. Next, the leader processor can apply any sequential algorithm tocompute a separator in Gk. In our current implementation, we use the inexpensivelevel search based AND heuristic of Sparspak [8, 5]. Now each vertex in Gk is markedto be either in part Ak, Bk, or the separator Sk. This partition in Gk is projectedto the graph at level 0, i.e., G0. Recall that each vertex v in Gk represents a groupof vertices in G0; if v 2 Ak then all vertices in the group are assigned to part A.Likewise, if v is in Bk(Sk), the group is assigned to part B(S). Now A;B; S forma partition of G0, S is a vertex separator but it tends to be large. Let A and B berepresented by single vertices a and b. Consider the graph induced by the vertex setfS; a; bg; the edges include all those incident on S but with a minor modi�cation. Allthose edges connecting a vertex v to those in A are replaced by a single edge (v; a),likewise edges connecting a vertex v to those in B are replaced by (v; b). This graphis bisected again using a level search approach. A level search is started from vertexa; if a vertex v is encountered which is adjacent to b, the vertex is not included incontinuing the level search, instead it is included in the separator Sa; all other verticesin the explored in the level search are marked to be in part A. This process leads toa separator Sa of a certain size along with two parts. The same technique is appliedstarting with vertex b to compute a separator Sb. The smaller of Sa and Sb is selected7



as the �nal separator S0 in G0(P ). The vertices in S0 are numbered as dictated bythe nested dissection algorithm. Now there is a partition A0, B0 and S0 in G0.We illustrate the shrink step as well as the the \separate" procedure of splitfor a small 5� 5 grid graph in Figure 2.Now to the \mark" step. The sets A0 and B0 in G0 are used to mark out twosubgraphs Ĝ1 and ~G1 from G1. These are used in turn to mark Ĝ2 and ~G2 and soon till ~Gk�1 and ~Gk�1. So now there are two sequences of shrunk graphs on all Pprocessors: ~G0(P ); ~G1(P ); � � � ~Gk�1(P ); and Ĝ0(P ); Ĝ1(P ); � � �Ĝk�1(P )Finally, the \redistribute" steps distributes the two sequences of subgraphs so thenext step in nested dissection can proceed independently in two disjoint processorsubsets. The set of P processors is partitioned into two halves of size P=2 each. Thei-th processor in one half is paired with the i-th in the other. In each pair, a processorexchanges its portion of each Ĝi for its partner's portion of ~Gi. At the end of suchexchanges the two sequences of shrunk graphs reside on disjoint processor subsets ofsize P=2; i.e., we achieve:~G0(P=2); ~G1(P=2); � � � ~Gk�1(P=2); and Ĝ0(P=2); Ĝ1(P=2); � � � Ĝk�1(P=2)Notice that Gk is not used after split but since Gk�1 has been bisected, each halfhas roughly the same size as the original Gk. The dissection is \nested" by applyingsplit as described above but independently on each of the two processor subsets using~G0(P=2); ~G1(P=2); � � � ~Gk�1(P=2) and Ĝ0(P=2); Ĝ1(P=2); � � � Ĝk�1(P=2). After somelog2P split steps, each processor group will have exactly one processor containingone subgraph. This completes SSND.3.1. Parallel Complexity. We now derive expressions for the parallel complex-ity of SSND. Let P denote the total number of processors connected in a hypercubewith cut-through routing. We assume that ts is the startup cost, tw is the per wordcost, and that the per-link cost is negligible. In this section we use ci, where i is asmall integer to denote a suitable constant.Recall that N is the total number of vertices in G(A) and that the total numberof edges is assumed to be a small constant times N . The vertices are partitionedamong the processors and each processor is assigned edges incident on its vertices.Furthermore, each processor has no more than N=P + c0 vertices. We also assumethat N=P � P log2 P ; this is justi�ed given the large per processor memory of recentMIMD machines. For a graph Gi, we use Ni to denote the number of vertices andonce agaian we assume the number of edges is a small constant times this value. If Giis distributed over a set of processors and �j belongs to this set, then we use Ni(�j)to denote the number of vertices of Gi on processor �j.Complexity of shrink. Recall that shrink produces a sequence of k = log2P�1subgraphs of reduced size: G0(P ); G1(P ); � � � ; Gk(P ):Now to the cost of computing Gi+1(P ) using Gi(P ). This is the cost of computingmatchings using processor pairs. Although in our experience only a small constantnumber of intermediate matching steps are required, in the worst case each processormay need to communicate with all others. The processor pairing can be chosen sothat all paths in every communication step are congestion free. The total computation8
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Fig. 2. Shrink using 5� 5 grid: 1(a) G0, 1(b) G1, 1(c) G2; Separate: 1(d) level search inG2, 1(e) computing separator in G0 9



cost is no more than that of each processor examining all its vertices and edges.The communication cost is bounded by that of the worst case scenario, all to allpersonalized communication with any processor �j communicating at most a smallconstant times Ni(�j) integers to all other processors. The cost of this collectivecommunication is ts(P � 1) + twNi(�j). Under the assumption that each processorhas at most some Ni=P + c vertices, the total cost of the reducing Gi(P ) to Gi+1(P )is: c1NiP + twNiP + ts(P � 1):Recall that Ni+1, the number of vertices in Gi+1, is roughly (1=2)Ni and that thesizes of the shrunk graphs form a geometric progression. As a consequence, the totalcost over all k = log2P steps of shrink is at most:cost(shrink) = 2c1NP + 2twNP + ts(P � 1) log2PThus, the worst case complexity of shrink is O(N=P ).Complexity of split. Split is composed of separate, mark, and redistributesteps. Furthermore, split itself is applied recursively, starting at k = log2P �1 withP processors, next with k � 1 and P=2 processors in each of two processor groupsand so on. Let split(i; p) denote split using a processor subset of size p on asubsequence of graphs G0(p); G1(p); � � �Gi(p). The graphs G0(p); G1(p); � � �Gi(p) arenot necessarily the same as the original sequence of shrunk graphs but could representa subsequence at any stage of the dissection. Let cost(split; i; p) denote the cost ofsplit(i; p).Consider split(i; p); �rst of all, Gi(p) and p processors are used to compute aseparator and this separator is projected to G0(p), to compute a partition of G0(p).Finally, the partition in marked through the graphs G1(p); G2(p) � � �Gi�1(p) and theseare redistributed so that there are two resulting sequences on two processor subsetseach of size p=2.The process of separating Gi(p) requires a gather to the leader processor; eachprocessor has roughly Ni=p units to send to the leader processor. The communicationcost is at most ts log2P + twNi=p. The projection to level zero requires at worst anall to all personalized communication of cost ts(p � 1) + twN0=p. We assume thatthe cost of bisecting the small graph induced by the separator is no more than thecost of the earlier gather step. The overall cost of separate denoted by costsep is thenapproximately c2N0=p+ ts(p� 1).The cost of marking is mainly that of communicating the partition informationthrough the sequence of graphs. At each graph, it can cost at worst an all to allpersonalized communication. For a graph Gl(p); 0 � l � i, the cost is c3(Nl=p) +2tw(Nl=p) + ts(p � 1) log2 p. The sizes of the graph are halved starting at N0 and ifwe assume that each graph is distributed in a balanced manner over the p processors,the total cost (costmark) is no more than 2c3N0p + 2twN0p + ts(p � 1) log2 p.The redistribute step requires at most exchanging half the data at a processorwith its partner; hence the cost is at most c4Nl=p for Gl(p); 0 � l � i. Again giventhe sizes of the graphs in the sequence are repeatedly halved, costredist is 2c4N0=p.Thus the total cost of split(i; p) is :cost(split; i; p) = c4N0p + ts(p� 1) log2P10



Now the total cost over all nested calls to split is:cost(split) = log2 P�1Xi=0 cost(split; i+ 1; 2i+1)At split(log2 P; P ), the size N0 is actually N . At the next step, there are twoparts in the original graph each roughly half the size. So at split(log2P � 1; P=2),the size N̂0 is N=2. However, the number of processors is also being halved. So atsplit(log2P; P ), the size per processor is N=P , and at split(log2 P � 1; P=2), thesize per processor is again N=P . The recursion is applied at most log2 P times andso the sum is bounded by:cost(split; i; p) = i=log2 P�1X0 c3NP + ts2i+1(i + 1)This in turn reduces to:cost(split) = c4NP log2P + c5P log2PCombining both cost(shrink) and cost(split) the total cost of SSND is:cost(ssnd) = c6NP log2P + c7P log2 P(1) The overall complexity of PCO depends on the local ordering scheme. The serialcomplexity of nested dissection orderings is O(n log2 n) for a graph with n vertices[18]. For such a local ordering scheme, each processor has a subgraph with roughlyN=P vertices; hence the cost is O(NP log2 NP ). The total parallel cost is thereforeO(NP log2N +P log2P ). Given our assumption that P log2P is smaller than N=P wehave a scalable parallel ordering algorithm for general sparse matrices.4. Empirical Results. We now present empirical results on the performance ofPCO. We �rst examine the e�ectiveness of PCO in preserving sparsity by comparingthe �ll incurred by PCO and other well established schemes. Next, we discuss theparallel performance of PCO on three di�erent distributed memory machines.The amount of �ll incurred is a good measure of the e�ectiveness of any orderingscheme. Our test suite has a total of twenty sparse problems ranging in size fromfour and a half thousand to about forty thousand unknowns. We use four di�erentordering strategies to compare the �ll incurred. The test problems are described inthe �rst three columns of Table 1.We compare the �ll resulting from PCO with that for three sequential methodsand two forms of the parallel Cartesian Nested Dissection (CND) [14] method. Thethree serial methods we use are: Multiple Minimum Degree (MMD) [9], AutomaticNested Dissection (AND) [8], and Spectral Nested Dissection (SND) [20]. For bothMMD and AND we use the Sparspak [5] implementation; we use the SND codedistributed by Pothen and Wang. In practice, the serial Multiple Minimum Degree(MMD) method is known to produce the least �ll of any general purpose orderingheuristic for the vast majority of sparse problems and so comparing against it is agood test for PCO. AND is generally not as e�ective as MMD in limiting �ll, butprovides a widely recognized point of comparison to ensure that PCO is at least inthe right range with respect to preserving sparsity. AND is one of the fasted serial11



Table 1Description of test problems and comparison of �ll-in; All values are in thousands.Label N (1=2)jAj jLjMMD SND AND CND CND- PCOMMDhammond 4.7 18.4 91 101 146 116 125 130barth4 6.0 23.4 116 135 200 152 154 156venkat 10.1 39.8 244 256 340 304 298 303kall2 6.8 53.6 576 1498 1629 964 980 990sphere6 16.3 65.5 905 685 681 686 720 660barth4dual 11.4 28.3 125 158 212 215 185 179dimitri3 11.1 43.9 272 289 362 347 352 383shuttle 10.4 57.0 320 381 387 385 373 447ghs1 14.9 58.2 214 322 595 383 323 392barth5 15.2 61.4 372 400 657 448 600 560gph1 15.6 62.2 463 498 531 540 542 500gl1 17.3 68.8 435 488 646 728 688 602gsq1 17.4 68.7 312 384 483 476 492 411barth5dual 30.2 75.1 421 494 648 599 514 581kall3 10.5 86.6 1659 2268 3520 1060 1260 1691vaughan 29.6 111.4 1447 1935 1481 4049 1979 1380gsq2 30.73 121.8 673 781 942 915 873 900gl2 34.0 135.5 1052 1081 1478 1558 1380 1380gph2 35.1 139.7 1205 1248 1359 1441 1459 1301ghs2 39.3 152.8 615 1056 2882 867 856 1256ordering schemes. SND compares well with MMD with respect to �ll but has verylarge execution time. We also present �ll-in results for parallel CND [14] in two forms:one in which the CND heuristic is applied throughout in both the distributed and localphase, and another (CND-MMD) in which CND is applied in the distributed phasewith 32 processors followed by MMD in the local phase. For the results in Table 1, weused PCO with 32 processors. The �ll increases by at most ten percent on increasingthe number of processors to 128.In Table 1, for a given problem, the value in bold font is that of the largest �ll. Asexpected, MMD produces the least �ll for almost all the problems. The �ll incurredby SND is close to that of MMD while that of AND is the largest for several problems.On the other hand among the three serial ordering schemes, AND is by far the fastest,MMD takes more time than AND while SND takes considerably longer. Parallel CNDis suitable for graphs associated with geometric information and when executed onone processor takes approximately twice the time required by AND. Hence its serialrunning time is low and it has been shown to parallelize well on distributed memorymachines. However, it does tend to incur larger �ll comparable to the AND heuristic.When used with MMD for the local phase (32 processors), the �ll is reduced in mostcases. Our PCO scheme incurs about the same �ll in as the CND-MMD ordering and12



in most cases it incurs less �ll than AND.The behavior of PCO is not surprising. In broad terms, PCO is a combination ofAND and MMD suitable for parallel machines and so the sparsity preservation aspectof PCO mimics a hybrid of both AND and MMD strategies. What is interesting isthat the combination of graph contraction (shrink) followed by the simple splitis e�ective; in our experiments we observed that the separators computed were infact smaller than those computed by AND. We believe this is related to e�ect ofgraph contraction. Both Bui and Jones [4] as well as Hendrickson and Leland [15]observe that the separator size is considerably reduced when computed by successivere�nement over a sequence of contracted graphs. In PCO, we do not use the contractedgraphs for re�nement but to simply enable computing a separator in parallel; weproject the separator in the smallest shrunk graph to the original and then re�ne it.It appears that this two step process leads to a slight improvement in separator sizeover AND and in any case is no worse than applying AND on the original graph whileallowing e�ective parallel implementation.The design of a fully parallel sparse solver requires an e�ective parallel orderingscheme. Ideally, the �ll incurred should compare well with the best serial scheme butin practice the time to compute the ordering is also an important consideration. Formost sparse problems even though the asymptotic complexity of factorization is ofhigher order compared to the ordering, the actual factorization times tend to be verylow for codes designed using BLAS. On the other hand, graph-based ordering methodswith indirection and complicated data structures lead to a lower utilization of peakmachine performance and it is not surprising to �nd that the ordering times are higherthan that of factorization for small to medium problem sizes. Parallel ordering is evenharder because there is no data locality to begin and parallel nested solves both theordering and partitioning problem and involves signi�cant data redistribution. Thereis certainly a trade-o� between time to order versus the �ll incurred. Our aim was todesign a fast, reasonably simple, parallel nested scheme suitable for general problems,i.e., those for which geometry may not be available. PCO serves this purpose; the�ll incurred is in the range marked by MMD and AND and the time to compute theordering is typically 1:5� 2 times that of CND-MMD.Parallel Performance. As derived in the earlier section, the parallel complexityof SSND is O(N=P log2 P ) and the memory requirement is O(N=P ). The complexityPCO is the same as that of parallel CND. We compare the actual execution timesand speed-ups of PCO with that of CND for three di�erent message passing multipro-cessors, the Thinking Machines CM5, the Intel iPSC/860, and the Intel TouchstoneDelta.Despite the analytic measures of scalability, the actual speedups obtained onavailable message passing multiprocessors is far from ideal. There are several factorsthat account for this. First of all, most machines have a high communication tocomputation ratio, i.e., the time required to communicate one word is large multipleof that required for one unit of computing. Next, the interconnection network a�ectsthe performance and most collective communication operations such as broadcast,gather etc. have higher cost on the mesh compared to the hypercube. Thirdly,algorithms for hypercubes can be better adapted to meshes by careful mapping ofprocessors in a hypercube to those in the mesh but no automated tools exist forthis purpose. Recently, after we developed our code several message passing librarieshave been developed [6, 3]; implementations in terms of these library routines shouldease the problem of performance tuning. Finally, cache-e�ects and message bu�ering13



protocols also play a role in observed speed-ups. For example, with an e�ective shortmessage protocol, sending several short messages may take less time than a singlelong message even though the total volume of communication may be the same. Bothparallel CND and PCO are implemented in C with message passing extensions. Inboth codes the \hypercubic" versions of most collective communications are run asis on the mesh; no attempt has been made to recode for better performance on themesh.The three machines we use (TMC-CM5, Intel iPSC/860, Intel Delta) supportthe same basic MIMD computational paradigm with explicit message passing butdi�er in many signi�cant ways. The CM5 has Sparc processors with 32 Mbytes oflocal memory in a fat-tree network. The fat-tree network can simulate a hypercubicnetwork without any signi�cant penalty [17] and with the low execution rate (5 M
ops)of the Sparc, the CM5 has the most favorable communication to computation ratioof the three machines. The Intel iPSC/860 has iPSC/860 processors with 8 Mbytesof local memory, connected in a hypercube. The Intel Touchstone Delta has the sameiPSC/860 processors but with 16 Mbytes of local memory and a mesh interconnectionnetwork. Besides the interconnection network, the message protocols are also di�erenton the two Intel multiprocessors.We compare the parallel performance of PCO against that of CND. For the latter,we again use two versions, one with CND all through and the other (CND-MMD) withCND for a distributed phase and MMD for the local. The version of CND and CND-MMD we use for fair comparison is not the code available in public domain as partof a fully parallel solver [13]. The redistribution step after distributed CND has beenmodi�ed to redistribute only the graph information while the version in the solverredistributes the numeric values as well as the right hand side vector for later numericfactorization. Recall that MMD is applied in a local phase for both PCO and CND-MMD. The local phase problem size is quite small for the test problems and MMD isa faster method than both CND and SSND for these local phase problems. This is notthe case with larger problems, and MMD is slower than CND; for smaller problemswhen CND is used for the local phase, a sort step required to set up data structuresis the dominant cost. We use four representative problems from our earlier test suitefor studying the e�ect on execution times while successively doubling the number ofprocessors from 16 to 128. Two of the problems \gl2" and \gsq2" are highly graded2-D �nite-elements; \gl2" is an L-shaped region while \gsq2" is a square region. Bothproblems are fairly small with about thirty thousand unknowns and about four timesas many nonzeroes. The third problem is \barth5dual," a 3-D mesh while the fourth\g500" is a 500� 500 model grid problem. For most problems with the same numberof processors, the execution time of PCO is at about 1:5 to 2 times that of CND-MMD. This factor plays a signi�cant role on execution times for the same problembut with increasing number of processors. On doubling the number of processors, thelocal phase size is roughly halved by applying another step of the relatively expensivedistributed ordering.In Table 2, we provide parallel execution times for PCO, CND, and CND-MMDon each of the three machines. The values in the column labeled 16 contain executiontimes in seconds. In the remaining columns, the execution time is expressed as afraction of that for 16 processors for a given problem. For example, for PCO and theproblem "gl2" on the Intel Delta, the columns labeled 16 and 32 contain 10:7 and 0:75to indicate that the execution time on 32 processors is :75 times that on 16 processors.For all methods we observe that: 14



Table 2Execution Times on 16-128 processors of the Intel iPSC/860, TMC-CM5, and Intel Delta.Values for processors 32-128 are presented as a fraction of the time for 16 processors.Problem Machine Algorithm 16 32 64 12 8Problem (seconds)gl2 TMC - CM5 PCO 31.5 .70 .44 .29CND-MMD 21.4 .72 .45 .29CND 29.5 .68 .40 .25iPSC/860 PCO 11.9 .70 .53 .38CND-MMD 8.7 .73 .52 .32CND 11.5 .65 .45 .27Intel/Delta PCO 10.7 .75 .60 .50CND-MMD 7.9 .69 .45 .31CND 9.9 .67 .41 .27gsq2 TMC - CM5 PCO 31.4 .62 .41 .28CND-MMD 20.8 .68 .42 .29CND 27.6 .65 .40 .24iPSC/860 PCO 11.9 .69 .53 .35CND-MMD 8.2 .73 .53 .36CND 11.5 .61 .39 .26Intel/Delta PCO 10.9 .66 .55 .51CND-MMD 7.5 .69 .47 .38CND 10.2 .66 .42 .27barth5dual TMC - CM5 PCO 31.6 .68 .46 .36CND-MMD 20.0 .70 .46 .32CND 21.1 .68 .42 .28iPSC/860 PCO 12.9 .76 .54 .40CND-MMD 8.1 .76 .50 .35CND 8.5 .72 .46 .32Intel/Delta PCO 11.7 .82 .56 .45CND-MMD 7.5 .87 .55 .38CND 7.9 .77 .47 .35g500 TMC - CM5 PCO 52.4 .62 .43 .30CND-MMD 24.0 .65 .46 .32CND 28.6 .60 .34 .26iPSC/860 PCO 20.2 .65 .45 .34CND-MMD 10.4 .65 .50 .35CND 10.8 .60 .34 .32Intel/Delta PCO 17.7 .62 .56 .34CND-MMD 9.2 .65 .45 .36CND 9.3 .65 .40 .3415



� the best parallel performance is on the CM5 which has the most balancedcommunication to computation ratio as well as the fat-tree (hypercubic) net-work.� performance on the Intel iPSC/860 hypercube is worse than that on the CM5because of the higher communication to computation ratio.� the relative decrease in execution time is the least on the Intel Delta because ofthe the mesh connectivity as well as the large communication to computationratio. The e�ect of the mesh interconnection is more visible for PCO becauseit is more communication intensive.
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CND-MMD................................................................................................ PCO...........................................................................Fig. 3. Scaled Speedup for a series of grid problems on the Intel Delta and TMC-CM5With respect to Table 2, if the speedup is linear in the number of processors(relative to the execution time on 16 processors), the values in columns labeled 32,64 and 128 should be :5, :25 and :125. For PCO with 128 processors of the CM5,the time on 128 processors is about twice the ideal value for \gl2" and \gsq2," i.e.,on 128 processors the execution time is about :28 times that on 16 processors. Thisis worse than the value of :24 observed for the same problems on the CM5 for CNDbut very close to the values of :29� :30 observed for CND-MMD. For \barth5dual,"the speedup of PCO is a little less than that of CND-MMD. This is in part becausethe shrink procedure takes slightly longer with a larger number of processors; wefound that the number of intermediate steps in contracting from one level to the nextremains the same for 16 through 64 processors but tends to increase by a total of 3�4for 128 processors. For \g500," the speedup of PCO is quite similar to that of CNDbut in absolute terms, the total execution time is larger than that of CND.16



We next examine the speed-up of PCO when the problem size per processor iskept �xed and the number of processors is increased. We use a sequence of model gridproblems for this purpose starting with 71� 71 grid for a single processor and endingwith the 800 � 800 grid for 128 processors. Once again, if Ti denotes the executiontime using i processors, the scaled speedup is computed as i� T1Ti . The scaled speedupis plotted for the Intel Delta and the CM5 in Figure 3. The plot shows the e�ectof the interconnection network; the mesh leads to lower speed-ups for all methods.It is conceivable that some of this e�ect will not be so signi�cant if all the collectivecommunication routines are optimized for the mesh. The speedup achieved by PCO iscomparable to that of CND-MMD on both multiprocessors. The plot for PCO is notas smooth because the speedup drops for 8 and 64 processors. In these two instancesthere is an increase in the number of intermediate steps in contracting one graph tothe next.Recently, Karypis and Kumar [16] have implemented a parallel multilevel nesteddissection (MLND) on the Cray T3D using the shared memory library. The di�er-ences between the their algorithm and PCO algorithm have been described earlierin Section 2. We now comment on di�erences in performance and complexity. Ku-mar and Karypis show that their method produces low �ll-in (comparable to that ofMultiple MinimumDegree) for some test problems; they attribute this to their \graph-growing" separator heuristic. Our PCO certainly has higher �ll-in on average thanMMD. Given the di�erence in computing paradigms (shared memory vs distributedmemory) and the parallel multiprocessors, a direct comparison in performance is notviable. However, on the basis of execution times presented [16] it appears that therelative speed-up on going from 16 to 128 processors is higher for PCO compared toMLND. For MLND, the execution time on 128 processors (Table 4 in [16]) is in therange 0:5 � 0:6 times that on 16 processors. On the TMC-CM5, the execution timefor PCO on 128 processors is in the range 0:28� 0:30 times that on 16 processors.Furthermore, SSND has a lower parallel complexity of O(NP logP ) as well as a lowermemory requirement of O(N=P ). MLND has parallel complexity of O( NpP logP ) andmemory requirements are O( NpP ).5. Conclusions. We have developed SSND, a new parallel nested dissectionscheme of complexity O(NP logP ) for dissecting a graph with N vertices into P sub-graphs. The overall ordering scheme called PCO uses Multiple Minimum Degree forordering the P subgraphs independently in a local phase. If instead of Multiple Min-imum Degree, a graph based nested dissection dissection method [18] is used, theoverall complexity of PCO is O(NP logN ). The ordering shows good speed-ups on theThinking Machines CM5, Intel iPSC/860, and the Intel Touchstone Delta. A scaledspeedup of 35 is obtained for the model grid problem with 128 processors of the CM5.The �ll-in obtained is within twice that of Multiple Minimum Degree and less thanthat of Automatic Nested Dissection for the problems in our test-suite.In summary, PCO seems highly promising. We believe that the �ll-in incurred byPCO can be substantially decreased by using a single parallel re�nement step afterSSND. In our initial experiments we have found that such a \post-re�nement" stepcan reduce the separator sizes by as much as twenty to thirty �ve percent. We arein the process of e�ectively parallelizing this step. We believe that especially formessage passing multiprocessors with high communication latency, a single \post-re�nement" step is more viable than successive re�nements as in the serial multilevelapproach [4, 15]. Such a \post-re�nement" step would be applicable after any P17
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