
LAPACK Working Note 101A Proposal for a Fortran 90 Interface forLAPACKJack J. Dongarra� Jeremy Du Crozy Sven HammarlingyJerzy Wa�sniewskiz Adam Zem laxAugust 10, 19951 IntroductionThe purpose of this paper is to initiate discussion of the design of a Fortran 90 interface toLAPACK [1]. Our emphasis at this stage is on the design of an improved user-interface tothe package, taking advantage of the considerable simpli�cations which Fortran 90 allows.The new interface can be implemented initially by writing Fortran 90 jackets to call theexisting Fortran 77 code.Eventually we hope that the LAPACK code will be rewritten to take advantage of the newfeatures of Fortran 90, but this will be an enormous task. We aim to design an interfacewhich can persist unchanged while the underlying code is rewritten.For convenience we use the name \LAPACK77" to denote the existing Fortran 77 package,and \LAPACK90" to denote the new Fortran 90 interface which we are proposing.2 LAPACK77 and Fortran 90 Compilers2.1 Linking LAPACK77 to Fortran 90 programsLAPACK77 can be called from Fortran 90 programs in its present form | with somequali�cations. The quali�cations arise only because LAPACK77 is not written entirely in�Department of Computer Science, University of Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301and Mathematical Sciences Section, Oak Ridge National Laboratory, P.O.Box 2008, Bldg. 6012; Oak Ridge,TN 37831-6367, Email: dongarra@cs.utk.eduyNumerical Algorithms Group Ltd, Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, UK, Email:jeremy@nag.co.uk or sven@nag.co.uk respectivelyzUNI�C, Bldg. 304, Technical University of Denmark, DK-2800 Lyngby, Denmark, Email:jerzy.wasniewski@uni-c.dkxInstitute of Mathematics, Polish Academy of Sciences, �Sniadeckich 8, 00-950 Warsaw, Poland, Email:adamz@impan.gov.pl 1

standard Fortran 77; the exceptions are the use of the COMPLEX*16 data type and relatedintrinsic functions, as listed in Section 6.1 of [1]; these facilities are provided as extensions tothe standard language by many Fortran 77 and Fortran 90 compilers. Equivalent facilitiesare provided in standard Fortran 90, using the parameterized form of the COMPLEX datatype (see below).To link LAPACK77 to a Fortran 90 program (which must of course be compiled by aFortran 90 compiler), one of the following approaches will be necessary, depending on thecompilers available.1. Link the Fortran 90 program to an existing LAPACK77 library, compiled by a For-tran 77 compiler. This approach can only work if the compilers have designed to allowcross-linking.2. If such cross-linking is not possible, recompile LAPACK77 with the Fortran 90 com-piler, provided that the compiler accepts COMPLEX*16 and related intrinsics as exten-sions, and create a new library.3. If these extensions are not accepted, convert the LAPACK77 code to standard For-tran 90 (see below), before recompiling it.The conversions needed to create standard Fortran 90 code for LAPACK77 are:COMPLEX*16) COMPLEX(KIND=Kind(0.0D0)DCONJG(z) for COMPLEX*16 z) CONJG(z)DBLE(z) for COMPLEX*16 z) REAL(z)DIMAG(z) for COMPLEX*16 z) AIMAG(z)DCMPLX(x,y) for DOUBLE PRECISION x, y) CMPLX(x,y,KIND=Kind(0.0D0))One further obstacle may remain: it is possible that if LAPACK77 has been recompiledwith a Fortran 90 compiler, it may not link correctly to an optimized assembly-languageBLAS library that has been designed to interface with Fortran 77. Until this is recti�ed bythe vendor of the BLAS library, Fortran 77 code for the BLAS must be used.2.2 Interface blocks for LAPACK77Fortran 90 allows one immediate extra bene�t to be provided to Fortran 90 users of LA-PACK77, without making any further changes to the existing code: that is a module ofexplicit interfaces for the routines. If this module is accessed by a USE statement in anyprogram unit which makes calls to LAPACK routines, then those calls can be checked bythe compiler for errors in the numbers or types of arguments.The module can be constructed by extracting the necessary speci�cation statements fromthe Fortran 77 code, as illustrated by the following example (in �xed-form source format)containing an interface for the single routine CBDSQR:MODULE LAPACK77_INTERFACES 2

INTERFACESUBROUTINE CBDSQR(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,$ LDU, C, LDC, RWORK, INFO)CHARACTER UPLOINTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRUREAL D(*), E(*), RWORK(*)COMPLEX C(LDC, *), U(LDU, *), VT(LDVT, *)ENDEND INTERFACEEND MODULE LAPACK77_INTERFACESA single module containing interfaces for all the routines in LAPACK77 (over 1000 of them)may be too large for practical use; it may be desirable to split it (perhaps, one module forsingle precision documented routines, one for double precision documented routines, andsimilarly for auxiliary routines).3 Proposals for the Design of LAPACK90In the design of a Fortran 90 interface to LAPACK, we propose to take advantage of thefeatures of the language listed below.1. Assumed-shape arrays: All array arguments to LAPACK90 routines will be assumed-shape arrays. Arguments to specify problem-dimensions or array-dimensions will notbe required.This implies that the actual arguments supplied to LAPACK routines must have theexact shape required by the problem. The most convenient ways to achieve this are:� using allocatable arrays, for example:REAL, ALLOCATABLE :: A(:,:), B(:). . .ALLOCATE(A(N,N), B(N)). . .CALL LA_GESV(A, B)� passing array sections, for example:REAL :: A(NMAX,NMAX), B(NMAX). . .CALL LA_GESV(A(:N,:N), B(:N))Zero dimensions (empty arrays) will be allowed.There are some grounds for concern about the e�ect of assumed-size arrays on perfor-mance, because compilers cannot assume that their storage is contiguous. The e�ecton performance will of course depend on the compiler, and may diminish in timeas compilers become more e�ective in optimizing compiled code. This point needsinvestigation. 3

2. Automatic allocation of work arrays: Workspace arguments and arguments tospecify their dimensions will not be needed. In simple cases, automatic arrays of therequired size can be declared internally. In other cases, allocatable arrays may need tobe declared and explicitly allocated. Explicit allocation is needed in particular whenthe amount of workspace required depends on the block-size to be used (which is notpassed as an argument).3. Optional arguments: In LAPACK77, character arguments are frequently used tospecify some choice of options. In Fortran 90, a choice of options can sometimes bespeci�ed naturally by the presence or absence of optional arguments: for example,options to compute the left or right eigenvectors can be specifed by the presence ofarguments VL or VR, and the character arguments JOBVL and JOBVR which are requiredin the LAPACK77 routine DGEEV, are not needed in LAPACK90.In other routines, a character argument to specify options may still be required, butcan itself be made optional if there is a natural default value: for example, in DGESVXthe argument TRANS can be made optional, with default value 'N'.Optional arguments can also help to combine two or more routines into one: forexample, the functionality provided by the routine DGECON can be made acessible byadding an optional argument RCOND to DGETRF.4. Generic Interfaces: The systematic occurrence in LAPACK of analogous routinesfor real or complex data, and for single or double precision lends itself well to thede�nition of generic interfaces, allowing four di�erent routines to be accessed throughthe same generic name.Generic interfaces can also be used to cover routines whose arguments di�er in rank,and thus provide a slight increase in
exibility over LAPACK77. For example, inLAPACK77, routines for solving a system of linear equations (such as DGESV), allowfor multiple right hand sides, and so the arrays which hold the right hand sides andsolutions are always of rank 2. In LAPACK90, we can provide alternative versionsof the routines (covered by a single generic interface) in which the arrays holding theright hand sides and solutions may either be of rank 1 (for a single right hand side)or be of rank 2 (for several right hand sides).5. Naming: For the generic routine names, we propose:(a) the initial letter (S, C, D or Z) is simply omitted.(b) the letters LA are pre�xed to all names to identify them as names of LAPACKroutines.In other respects the naming scheme remains the same as described in Section 2.1.3of [1]: for example, LA GESV.It would also be possible to de�ne longer, more meaningful names (which could co-exist with the shorter names), but we have not attempted this here.We have not proposed the use of any derived types in this Fortran 90 interface. Theycould be considered | for example, to hold the details of an LU factorization andequilibration factors. However, since LAPACK routines are so frequently used asbuilding blocks in larger algorithms or applications, we feel that there are advantages4

in keeping the interface simple, and avoiding possible loss of e�ciency through theuse of array pointers (which such derived types would require).6. Error-handling:In LAPACK77, all documented routines have a diagnostic output argument INFO.Three types of exit from a routine are allowed:successful termination: the routine returns to the calling program with INFO setto 0.illegal value of one or more arguments: the routine sets INFO< 0 and calls theauxiliary routine XERBLA; the standard version of XERBLA issues an error mes-sage identifying the �rst invalid argument, and stops execution.failure in the course of computation: the routine sets INFO > 0 and returns tothe calling program without issuing any error message. Only some LAPACK77routines need to allow this type of error-exit; it is then the resposibility of a userto test INFO on return to the calling program.For LAPACK90 we propose that the argument INFO becomes optional: if it is notpresent and an error occurs, then the routine always issues an error message andstops execution, even when INFO> 0 (in which case the error message reports thevalue of INFO). If a user wishes to continue execution after a failure in computation,then INFO must be supplied and tested on return.This behaviour simpli�es calls to LAPACK90 routines when there is no need to testINFO on return, and makes it less likely that users will forget to test INFO whennecessary.If an invalid argument is detected, we propose that routines issue an error messageand stop, as in LAPACK77. Note however that in Fortran 90 there can be di�erentreasons for an argument being invalid:illegal value : as in LAPACK77.invalid shape (of an assumed-shape array): for example, a 2-dimensional array isnot square when it is required to be.inconsistent shapes (of two or more assumed-shape arrays): for example, arraysholding the right hand sides and solutions of a system of linear equations musthave the same shape.The speci�cation could be extended so that the error-message could distinguish be-tween these cases.4 Prototype Implementation of LAPACK90 ProceduresWe have implemented Fortran 90 jacket procedures to the group of LAPACK77 routinesconcerned with the solution of systems of linear equations AX = B for a general matrix A| that is, the driver routines xGESV and xGESVX, and the computational routines xGETRF,xGETRS, xGETRI, xGECON, xGERFS and xGEEQU.5

In Appendix A, we give detailed documentation of the proposed interfaces. Here we giveexamples of calls to each of the proposed routines, the �rst without using any of the op-tional arguments, the second using all the arguments. For the time being and for ease ofcomparison between LAPACK77 and LAPACK90, we have retained the same names forthe corresponding arguments, although of course Fortran 90 o�ers the possibility of longernames (for example, IPIV could become PIVOT INDICES).In this prototype implementation, we have assumed that the code of LAPACK77 is notmodi�ed.LA GESV (simple driver):CALL LA_GESV(A, B)CALL LA_GESV(A, B, IPIV, INFO)Comments:� The array B may have rank 1 (one right hand side) or rank 2 (several right handsides).LA GESVX (expert driver):CALL LA_GESVX(A, B, X)CALL LA_GESVX(A, B, X, AF, IPIV, FACT, TRANS, EQUED, R, C, &FERR, BERR, RCOND, RPVGRW, INFO)Comments:� The arrays B and X may have rank 1 (in which case FERR and BERR are scalars)or rank 2 (in which case FERR and BERR are rank-1 arrays).� RPVGRW returns the reciprocal pivot growth factor (returned in WORK(1) in LA-PACK77).� the presence or absence of EQUED is used to specify whether or not equilibrationis to be performed, instead of the option FACT = 'E'.LA GETRF (LU factorization):CALL LA_GETRF(A, IPIV)CALL LA_GETRF(A, IPIV, RCOND, NORM, INFO)Comments:� instead of a separate routine LA GECON, we propose that optional argumentsRCOND and NORM are added to LA GETRF to provide the same functionality in amore convenient manner. The argument ANORM of xGECON is not needed, becauseLA GETRF can always compute the norm of A if required.6

LA GETRS (solution of equations using LU factorization):CALL LA_GETRS(A, IPIV, B)CALL LA_GETRS(A, IPIV, B, TRANS, INFO)Comments:� The array B may have rank 1 or 2.LA GETRI (matrix inversion using LU factorization):CALL LA_GETRI(A, IPIV)CALL LA_GETRI(A, IPIV, INFO)LA GERFS (re�ne solution of equations and optionally compute error bounds):CALL LA_GERFS(A, AF, IPIV, B, X)CALL LA_GERFS(A, AF, IPIV, B, X, TRANS, FERR, BERR, INFO)Comments:� The arrays B and X may have rank 1 (in which case FERR and BERR are scalars)or rank 2 (in which case FERR and BERR are rank-1 arrays).LA GEEQU (equilibration):CALL LA_GEEQU(A, R, C)CALL LA_GEEQU(A, R, C, ROWCND, COLCND, AMAX, INFO)5 DocumentationIn Appendix A, we give a �rst attempt at draft documentation for these routines. The styleis somewhat similar to that of the LAPACK Users' Guide, but with various obvious newconventions introduced to handle the generic nature of the interfaces.6 Test SoftwareAdditional test software will be needed to test the new interfaces.7

7 TimingsWe have done some timings to measure the extra overhead of the Fortran 90 interface. Wetimed LA GETRF on a single processor of an IBM SP-2 (in double precision) and a singleprocessor of a Cray YMP C92 (in single precision). All timings are given in mega
ops.IBM 1. Speed of LAPACK90 calling LAPACK77 and BLAS from the ESSL library.2. Speed of LAPACK77, using BLAS from the ESSL library.Array size 600 700 800 900 1000 1100 1200 1300 1400 1500LAPACK90 187 180 182 170 172 172 176 177 181 182LAPACK77 191 181 182 171 172 173 176 179 180 182Cray 1. speed of LAPACK90 calling LAPACK77 as provided by CRAY in LIBSCI.2. Speed of LAPACK77 as provided by CRAY in LIBSCI.Array size 600 700 800 900 1000 1100 1200 1300 1400 1500LAPACK90 260 781 260 812 266 832 268 847 270 856LAPACK77 261 787 261 817 267 838 268 851 271 859Two conclusion can be taken from the above tables:1. The LAPACK90 results can be a little slower (1 or 2%) than the LAPACK77 results.2. The Cray timings show a striking loss of speed for matrix sizes which are a multipleof 8. In these tests, the leading dimension of the array holding the matrix was equalto the matrix size (as naturally happens when using assumed-shape arrays); when theleading dimension is a multiple of 8, memory bank con
icts slow the computationsdown. A more careful implementation of the BLAS might be able to reduce thissensitivity to the value of the leading dimension. In Fortran 77, a user can alwaysavoid the problem by declaring arrays with odd values for the leading dimension. InFortran 90, the situation is more complicated; with the current implementation ofLAPACK90, it is likely that the compiler will pass a temporary copy of the arrayA (with leading dimension N) to the LAPACK77 code where all the intensive workis done { so users would have no means of avoiding memory bank con
ict in theLAPACK77 code. If Fortran 90 code were used throughout then assumed-shape arrayscould be used everywhere and the compiler sould not need to create any temporarycopies, and users would have more control.8 AcknowledgmentsJerzy Wa�sniewski's research is partly supported by the Danish Project, E�cient ParallelAlgorithms for Optimization and Simulation (EPOS).We thank very much Dr. Christian de Polignac. He ran the test programs on an IBMRS/6000 and using the NAG compiler on an HP workstation.8

References[1] E. Anderson, Z. Bai, C. H. Bischof, J. Demmel, J. J. Dongarra, J. Du Croz, A. Green-baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. C. Sorensen. LAPACKUsers' Guide Release 2.0. SIAM, Philadelphia, 1995.[2] M. Metcalf and J. Reid Fortran 90 Explained. Oxford, New York, Tokyo, OxfordUniversity Press, 1990.

9

A Documentation of LAPACK90 ProceduresA.1 LA GESVA.1.1 PurposeLA GESV computes the solution to either a real or complex system of linear equationsAX = B, where A is a square matrix and B and X are either rectangular matrices orvectors.The LU decomposition with partial pivoting and row interchanges is used to factor A asA = PLU , where P is a permutation matrix, L is unit lower triangular, and U is uppertriangular. The factored form of A is then used to solve the system of equations AX = B.A.1.2 Speci�cationSUBROUTINE LA GESV(A, B, IPIV, INFO)type(wp), INTENT(INOUT) :: A(:,:), rhsINTEGER, INTENT(OUT), OPTIONAL :: IPIV(:)INTEGER, INTENT(OUT), OPTIONAL :: INFOwheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)rhs ::= B(:,:) j B(:)A.1.3 ArgumentsA { (input/output) either REAL or COMPLEX square array, shape (:; :), size(A; 1) =size(A; 2).� On entry, the matrix A.� On exit, the factors L and U from the factorization A = PLU ; the unit diagonalelements of L are not stored.B { (input/output) either REAL or COMPLEX rectangular array, shape either (:; :) or(:), size(B; 1) or size(B) = size(A; 1).� On entry, the right hand side vector(s) of matrix B for the system of equationsAX = B.� On exit, if there is no error, the matrix of solution vector(s) X .IPIV { Optional (output) INTEGER array, shape (:), size(IPIV) = size(A; 1). If IPIVis present, it contains indices that de�ne the permutation matrix P ; row i of the matrixwas interchanged with row IPIV (i).INFO { Optional (output) INTEGER.� If INFO is present 10

= 0 : successful exit< 0 : if INFO = �i, the i-th argument had an illegal value� 0 : if INFO = k, U(k; k) is exactly zero. The factorization has been com-pleted, but the factor U is exactly singular, so the solution could not becomputed.� If INFO is not present and an error occurs, then the program is terminated withan error message.A.2 LA GESVXA.2.1 PurposeLA GESVX computes the solution to a either real or complex system of linear equationsAX = B, where A is a square matrix and B and X are either rectangular matrices orvectors.LA GESVX is an expert driver routine, which can also optionally perform the followingfunctions:� solve ATX = B or AHX = B,� estimate the condition number of A� return the pivot growth factor� re�ne the solution and compute forward and backward error bounds� equilibrate the system if A is poorly scaled.

11

A.2.2 Speci�cationSUBROUTINE LA GESVX (A, B, X, AF, IPIV, FACT, TRANS, &EQUED, R, C, FERR, BERR, RCOND, RPVGRW, INFO)type(wp), INTENT(INOUT) :: A(:,:), rhstype(wp), INTENT(OUT) :: soltype(wp), INTENT(INOUT), OPTIONAL :: AF(:,:)INTEGER, INTENT(INOUT), OPTIONAL :: IPIV(:)CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: FACT, &TRANSCHARACTER(LEN=1), INTENT(INOUT), OPTIONAL :: &EQUEDREAL(wp), INTENT(INOUT), OPTIONAL :: R(:), C(:)REAL(wp), INTENT(OUT), OPTIONAL :: err, RCOND, &RPVGRWINTEGER, INTENT(OUT), OPTIONAL :: INFOwheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)rhs ::= B(:,:) j B(:)sol ::= X(:,:) j X(:)err ::= FERR(:), BERR(:) j FERR, BERRA.2.3 DescriptionThe following steps are performed:1. If FACT is not present or FACT = 0N 0, and EQUED is present, real scaling factorsare computed to equilibrate the system:TRANS = 'N' : diag(R)A diag(C) (diag(C))�1 X = diag(R) BTRANS = 'T' : (diag(R)A diag(C))T (diag(R))�1 X = diag(C)BTRANS = 'C' : (diag(R)A diag(C))H (diag(R))�1 X = diag(C)BWhether or not the system will be equilibrated depends on the scaling of the matrixA, but if equilibration is used, A is overwritten by diag(R) A diag(C) and B bydiag(R)B (if TRANS = 0N 0) or diag(C) B (if TRANS = 0T 0 or 0C 0).2. If FACT = 0N 0, the LU decomposition is used to factor the matrix A (after equili-bration if EQUED is present) as A = PLU , where P is a permutation matrix, L isa unit lower triangular matrix, and U is upper triangular.3. The factored form of A is used to estimate the condition number of the matrix A. Ifthe reciprocal of the condition number is less than machine precision, steps 4 { 6 areskipped.4. The system of equations is solved for X using the factored form of A.12

5. Iterative re�nement is applied to improve the computed solution matrix and calculateerror bounds and backward error estimates for it.6. If equilibration was used, the matrix X is premultiplied by diag(C) (if TRANS =0N 0) or diag(R) (if TRANS = 0T 0 or 0C0) so that it solves the original system beforeequilibration.A.2.4 ArgumentsA { (input/output) either REAL or COMPLEX square array, shape (:; :), size(A; 1) =size(A; 2).If FACT is not present or FACT = 0N 0,� On entry, the matrix A.� On exit, if EQUED is present, the matrix A may have been overwritten bythe equilibrated matrix (see EQUED).If FACT is present and FACT = 0F 0,� On entry, the matrixA, possibly equilibrated in a previous call toLA GESVX(see EQUED).� On exit, A is unchanged.B { (input/output) either REAL or COMPLEX rectangular array, shape either (:; :) or(:), size(B; 1) or size(B) = size(A; 1).� On entry, the right hand side vector(s) of matrix B for the system of equationsAX = B.� On exit, if EQUED is present, B may have been scaled in accordance with theequilibration of A (see EQUED); otherwise, B is unchanged.X { (output) either REAL or COMPLEX rectangular array, shape either (:; :) or (:),size(X; 1) or size(X) = size(A; 1). If INFO = 0, the solution matrix (vector) Xto the original system of equations. Note that X always returns the solution to theoriginal system of equations; if equilibration has been performed (EQUED is presentand EQUED 6= 0N 0), this does not correspond to the scaled A and B.AF { Optional (input/output) either REAL or COMPLEX square array, shape (:; :),size(AF; 1) = size(AF; 2) = size(A; 1).If FACT is not present or FACT = 0N 0, then AF is an output argument and returnsthe factors L and U from the factorization A = PLU of the original matrix A,possibly equilibrated if EQUED is present.If FACT is present and FACT = 0F 0, then AF is an input argument (and must bepresent); on entry, it must contain the factors L and U of A (possibly equilibratedif EQUED is present), returned by a previous call to LA GESVX.IPIV { Optional (input/output) INTEGER array, shape (:), size(IPIV) = size(A; 1).If FACT is not present or FACT = 0N 0, then IPIV is an output argument andreturns the pivot indices from the factorization A = PLU of the original matrixA, possibly equilibrated if EQUED is present.13

If FACT is present and FACT = 0F 0, then IPIV is an input argument (and mustbe present); on entry, it must contain the pivot indices from the factorization ofA (possibly equilibrated if EQUED is present), returned by a previous call toLA GESVX.TRANS { Optional (input) CHARACTER*1.� If TRANS is present, it speci�es the form of the system of equations:= 0N 0 : AX = B (No transpose)= 0T 0 : ATX = B (Transpose)= 0C 0 : AHX = B (Conjugate transpose)� otherwise TRANS = 0N 0 is assumed.FACT { Optional (input) CHARACTER*1. Speci�es whether or not the factored formof the matrix A is supplied on entry.� If FACT is present then:= 0N 0 : the matrix A will be equilibrated if EQUED is present, then copied toAF and factored.= 0F 0 : on entry, AF and IPIV must contain the factored form of A (possiblyequilibrated if EQUED is present).� otherwise FACT = 0N 0 is assumed.EQUED { Optional (input/output) CHARACTER*1.If FACT is not present or FACT = 0N 0, then EQUED is an output argument. Ifit is present, then the matrix is equilibrated, and on exit EQUED speci�es thescaling of A which has actually been performed:= 0N 0 : No equilibration.= 0R0 : Row equilibration, i.e., A has been premultiplied by diag(R); also B hasbeen premultiplied by diag(R) if TRANS = 0N 0.= 0C 0 : Column equilibration, i.e., A has been postmultiplied by diag(C); alsoB has been premultiplied by diag(C) if TRANS = 0T 0 or 0C 0.= 0B0 : Both row and column equilibration: combines the e�ects of EQUED =0R0 and EQUED = 0C0.If FACT is present and FACT = 0F 0, then EQUED is an input argument; if it ispresent, it speci�es the equilibration of A which was performed in a previous callto LA GESVX with FACT not present or FACT = 0N 0.R { Optional (input/output) REAL array, shape (:), size(R) = size(A; 1). R must bepresent if EQUED is present and EQUED = 0R0 or 0B0; R is not referenced ifEQUED = 0N 0 or 0C0.If FACT is not present or FACT = 0N 0, then R is an output argument. If EQUED= 0R0 or 0B0, R returns the row scale factors for equilibrating A.If FACT is present and FACT = 0F 0, then R is an input argument. If EQUED =0R0 or 0B0, R must contain the row scale factors for equilibrating A, returned bya previous call to LA GESVX; each element of R must be positive.14

C { Optional (input/output) REAL array, shape (:), size(C) = size(A; 1). C must bepresent if EQUED is present and EQUED = 0C 0 or 0B0; R is not referenced ifEQUED = 0N 0 or 0R0.If FACT is not present or FACT = 0N 0, then C is an output argument. If EQUED= 0C0 or 0B0, C returns the column scale factors for equilibrating A.If FACT is present and FACT = 0F 0, then C is an input argument. If EQUED =0C0 or 0B0, C must contain the column scale factors for equilibrating A, returnedby a previous call to LA GESVX; each element of C must be positive.FERR { Optional (output) either REAL array of shape (:) or REAL scalar. If it isan array, size(FERR) = size(X; 2). The estimated forward error bound for eachsolution vector X(j) (the j-th column of the solution matrix X). If XTRUE is thetrue solution corresponding to X(j), FERR(j) is an estimated upper bound for themagnitude of the largest element in (X(j)� XTRUE) divided by the magnitude ofthe largest element in X(j). The estimate is as reliable as the estimate for RCOND,and is almost always a slight overestimate of the true error.BERR { Optional (output) either REAL array of shape (:) or REAL scalar. If it is anarray, size(BERR) = size(X; 2). The componentwise relative backward error of eachsolution vector X(j) (i.e., the smallest relative change in any element of A or B thatmakes X(j) an exact solution).RCOND { Optional (output) REAL. The estimate of the reciprocal condition numberof the matrix A after equilibration (if done). If RCOND is less than the machineprecision (in particular, if RCOND = 0), the matrix is singular to working precision.This condition is indicated by a return code of INFO > 0, and the solution and errorbounds are not computed.RPVGRW { Optional (output) REAL. The reciprocal pivot growth factor kAk1=kUk1.If RPV GRW is much less than 1, then the stability of the LU factorization of the(equilibrated) matrix A could be poor. This also means that the solution X , conditionestimator RCOND, and forward error bound FERR could be unreliable. If factor-ization fails with 0 < INFO � size(A; 1), then RPV GRW contains the reciprocalpivot growth factor for the leading INFO columns of A.INFO { Optional (output) INTEGER.� If INFO is present= 0 : successful exit< 0 : if INFO = �i, the i-th argument had an illegal value> 0 : if INFO = i, and i is� N : U(i; i) is exactly zero. The factorization has been completed, but thefactor U is exactly singular, so the solution and error bounds could notbe computed.= N + 1 : RCOND is less than machine precision. The factorization hasbeen completed, but the matrix is singular to working precision, and thesolution and error bounds have not been computed.� If INFO is not present and an error occurs, then the program is terminated withan error message. 15

A.3 LA GETRFA.3.1 PurposeLA GETRF computes an LU factorization of a general rectangular matrix A using partialpivoting with row interchanges.The factorization has the form A = PLU where P is a permutation matrix, L is lower tri-angular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular(upper trapezoidal if m < n), where m = size(A; 1) and n = size(A; 2).When A is square (m = n), LA GETRF optionally estimates the reciprocal of the con-dition number of the matrix A, in either the 1-norm or the 1-norm. An estimate isobtained for kA�1k, and the reciprocal of the condition number is computed as RCOND =1=(kAk kA�1k).A.3.2 Speci�cationSUBROUTINE LA GETRF(A, IPIV, RCOND, NORM, INFO)type(wp), INTENT(INOUT) :: A(:,:)INTEGER, INTENT(OUT) :: IPIV(:)CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: NORMREAL(wp), INTENT(OUT), OPTIONAL :: RCONDINTEGER, INTENT(OUT), OPTIONAL :: INFOwheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)A.3.3 ArgumentsA { (input/output) either REAL or COMPLEX array, shape (:; :).� On entry, the matrix A.� On exit, the factors L and U from the factorization A = PLU ; the unit diagonalelements of L are not stored.IPIV { (output) INTEGER array, shape (:), size(IPIV) = min(size(A; 1); size(A; 2)).Indices that de�ne the permutation matrix P ; row i of the matrix was interchangedwith row IPIV (i).RCOND { Optional (output) REAL. The reciprocal of the condition number of the ma-trix A for the casem = n, computed as RCOND = 1=(kAk kA�1k). RCOND shouldbe present if NORM is present. If m 6= n then RCOND is returned as zero.NORM { Optional (input) CHARACTER*1. Speci�es whether the 1-norm conditionnumber or the 1-norm condition number is required:� = '1', 'O' or 'o': 1-norm;� = 'I ', 'i': 1-norm. 16

If NORM is not present, the 1-norm is used.INFO { Optional (output) INTEGER.� If INFO is present= 0 : successful exit< 0 : if INFO = �k, the k-th argument had an illegal value> 0 :if INFO = k, U(k; k) is exactly zero. The factorization has been com-pleted, but the factor U is exactly singular, so the solution could notbe computed.� If INFO is not present and an error occurs, then the program is terminated withan error message.A.4 LA GETRSA.4.1 PurposeLA GETRS solves a system of linear equations AX = B, ATX = B or AHX = B with ageneral square matrix A, using the LU factorization computed by LA GETRF.A.4.2 Speci�cationSUBROUTINE LA GETRS (A, IPIV, B, TRANS, INFO)type(wp), INTENT(IN) :: A(:,:)INTEGER, INTENT(IN) :: IPIV(:)type(wp), INTENT(INOUT) :: rhsCHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSINTEGER, INTENT(OUT), OPTIONAL :: INFOwheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)rhs ::= B(:,:) j B(:)A.4.3 ArgumentsA { (input) eitherREAL orCOMPLEX square array, shape (:; :), size(A; 1) = size(A; 2).The factors L and U from the factorization A = PLU as computed by LA GETRF.IPIV { (input) INTEGER array, shape (:), size(IPIV) = size(A; 1). The pivot indicesfrom LA GETRF; for 1 � i � size(A; 1), row i of the matrix was interchanged withrow IPIV (i).B { (input/output) either REAL or COMPLEX rectangular array, shape either (:; :) or(:), size(B; 1) or size(B) = size(A; 1).17

� On entry, the right hand side vector(s) of matrix B for the system of equationsAX = B.� On exit, if there is no error, the matrix of solution vector(s) X .TRANS { Optional (input) CHARACTER*1.� If TRANS is present, it speci�es the form of the system of equations:= 0N 0 : AX = B (No transpose)= 0T 0 : ATX = B (Transpose)= 0C 0 : AHX = B (Conjugate transpose)� otherwise TRANS = 0N 0 is assumed.INFO { Optional (output) INTEGER.� If INFO is present= 0 : successful exit< 0 : if INFO = �k, the k-th argument had an illegal value� If INFO is not present and an error occurs, then the program is terminated withan error message.A.5 LA GETRIA.5.1 PurposeLA GETRI computes the inverse of a matrix using the LU factorization computed byLA GETRF.A.5.2 Speci�cationSUBROUTINE LA GETRI (A, IPIV, INFO)type(wp), INTENT(INOUT) :: A(:,:)INTEGER, INTENT(IN) :: IPIV(:)INTEGER, INTENT(OUT), OPTIONAL :: INFOwheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)A.5.3 ArgumentsA { (input/output) either REAL or COMPLEX square array, shape (:; :), size(A; 1) =size(A; 2).� On entry contains the factors L and U from the factorization A = PLU ascomputed by LA GETRF.� On exit, if INFO = 0, the inverse of the original matrix A.18

IPIV { (input) INTEGER array, shape (:), size(IPIV) = size(A; 1). The pivot indicesfrom LA GETRF; for 1 � i � size(A; 1), row i of the matrix was interchanged withrow IPIV (i).INFO { Optional (output) INTEGER.� If INFO is present= 0 : successful exit< 0 : if INFO = �k, the k-th argument had an illegal value> 0 : if INFO = k, U(K,K) is exactly zero; the matrix is singular and its inversecould not be computed.� If INFO is not present and an error occurs, then the program is terminated withan error message.A.6 LA GERFSA.6.1 PurposeLA GERFS improves the computed solution X of a system of linear equations AX = Bor ATX = B and provides error bounds and backward error estimates for the solution.LA GERFS uses the LU factors computed by LA GETRF.A.6.2 Speci�cationSUBROUTINE LA GERFS (A, AF, IPIV, B, X, &TRANS, FERR, BERR, INFO)type(wp), INTENT(IN) :: A(:,:), AF(:,:), rhsINTEGER, INTENT(IN) :: IPIV(:)type(wp), INTENT(INOUT) :: solCHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSREAL(wp), INTENT(OUT), OPTIONAL :: errINTEGER, INTENT(OUT), OPTIONAL :: INFOwheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)rhs ::= B(:,:) j B(:)sol ::= X(:,:) j X(:)err ::= FERR(:), BERR(:) j FERR, BERRA.6.3 ArgumentsA { (input) eitherREAL orCOMPLEX square array, shape (:; :), size(A; 1) = size(A; 2).The original matrix A.AF { (input) either REAL or COMPLEX square array, shape (:; :), size(AF; 1) =size(AF; 2) = size(A; 1). The factors L and U from the factorization A = PLUas computed by LA GETRF. 19

IPIV { (input) INTEGER array, shape (:), size(IPIV) = size(A; 1). The pivot indicesfrom LA GETRF; for 1 � i � size(A; 1), row i of the matrix was interchanged withrow IPIV (i).B { (input) either REAL or COMPLEX rectangular array, shape either (:; :) or (:),size(B; 1) or size(B) = size(A; 1). The right hand side vector(s) of matrix B for thesystem of equations AX = B.X { (input/output) either REAL or COMPLEX rectangular array, shape either (:; :) or(:), size(X; 1) or size(X) = size(A; 1).� On entry, the solution matrix X , as computed by LA GETRS.� On exit, the improved solution matrix X .TRANS { Optional (input) CHARACTER*1.� If TRANS is present, it speci�es the form of the system of equations:= 0N 0 : AX = B (No transpose)= 0T 0 : ATX = B (Transpose)= 0C 0 : AHX = B (Conjugate transpose)� otherwise TRANS = 0N 0 is assumed.FERR { Optional (output) either REAL array of shape (:) or REAL scalar. If it isan array, size(FERR) = size(X; 2). The estimated forward error bound for eachsolution vector X(j) (the j-th column of the solution matrix X). If XTRUE is thetrue solution corresponding to X(j), FERR(j) is an estimated upper bound for themagnitude of the largest element in (X(j)� XTRUE) divided by the magnitude ofthe largest element in X(j). The estimate is as reliable as the estimate for RCOND,and is almost always a slight overestimate of the true error.BERR { Optional (output) either REAL array of shape (:) or REAL scalar. If it is anarray, size(BERR) = size(X; 2). The componentwise relative backward error of eachsolution vector X(j) (i.e., the smallest relative change in any element of A or B thatmakes X(j) an exact solution).INFO { Optional (output) INTEGER.� If INFO is present= 0 : successful exit< 0 : if INFO = �i, the i-th argument had an illegal value� If INFO is not present and an error occurs, then the program is terminated withan error message.A.6.4 Internal ParametersITMAX { is the maximum number of steps of iterative re�nement. It is set to 5 in theLAPACK77 subroutines (see [1]). 20

A.7 LA GEEQUA.7.1 PurposeLA GEEQU computes row and column scalings intended to equilibrate a rectangle matrixA and reduce its condition number. R returns the row scale factors and C the column scalefactors, chosen to try to make the largest entry in each row and column of the matrix Bwith elements Bij = RiAijCj have absolute value 1.Ri and Cj are restricted to be between SMLNUM = smallest safe number and BIGNUM= largest safe number. Use of these scaling factors is not guaranteed to reduce the conditionnumber of A but works well in practice.A.7.2 Speci�cationSUBROUTINE LA GEEQU (A, R, C, ROWCND, COLCND, &AMAX, INFO)type(wp), INTENT(IN) :: A(:,:)REAL(wp), INTENT(OUT) :: R(:), C(:)REAL(wp), INTENT(OUT), OPTIONAL :: ROWCND, &COLCND, AMAXINTEGER, INTENT(OUT), OPTIONAL :: INFOwheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)A.7.3 ArgumentsA { (input) either REAL or COMPLEX array, shape (:; :). The matrix A, whose equi-libration factors are to be computed.R { (output) REAL array, shape (:), size(R) = size(A; 1). If INFO = 0 or INFO >size(A; 1), R contains the row scale factors for A.C { (output) REAL array, shape (:), size(C) = size(A; 2). If INFO = 0, C contains thecolumn scale factors for A.ROWCND { Optional (output)REAL. If INFO = 0 or INFO > size(A; 1),ROWCNDcontains the ratio of the smallest R(i) to the largest R(i). If ROWCND � 0:1 andAMAX is neither too large nor too small, it is not worth scaling by R.COLCND { Optional (output) REAL. If INFO = 0, COLCND contains the ratio ofthe smallest C(i) to the largest C(i). If COLCND � 0:1, it is not worth scaling byC.AMAX { Optional (output) REAL. Absolute value of largest matrix element. If AMAXis very close to over
ow or very close to under
ow, the matrix should be scaled.INFO { Optional (output) INTEGER. 21

� If INFO is present= 0 : successful exit< 0 : if INFO = �i, the i-th argument had an illegal value> 0 : if INFO = i, and i is� m : the i-th row of A is exactly zero> m : the (i�m)-th column of A is exactly zerowhere m = size(A; 1).� If INFO is not present and an error occurs, then the program is terminated withan error message.

22

B Code for One Version of LA GESVWe illustrate here the sort of code that is needed to implement one of the Fortran 90 jacketprocedures. The procedure shown is the real single precision version of LA GESV, withmultiple right hand sides (B is a rank-2 array).B.1 Precision-dependenciesTo handle di�erent precisions, we use a module LA PRECISION to de�ne named constantsSP and DP for the kind values of single and double precision, respectively.MODULE LA_PRECISIONINTEGER, PARAMETER :: SP=KIND(1.0), DP=KIND(1.0D0)END MODULE LA_PRECISIONWithin the LAPACK90 code, all real and complex constructs are expressed in terms of asymbolic kind value WP, which is de�ned by reference to the module LA PRECISION | insingle precision:USE LA_PRECISION :: WP => SPand in double precision:USE LA_PRECISION :: WP => DPThese are the only precision-dependent changes in the code, apart from changes to theprocedure-names.B.2 Error-handlingTo handle errors, as described in Section 4, we use a simple procedure ERINFO, which isassumed to be accessed from a module LA AUX:SUBROUTINE ERINFO(LINFO, SRNAME, INFO)! .. Scalar Arguments ..CHARACTER(LEN = *), INTENT(IN) :: SRNAMEINTEGER , INTENT(IN) :: LINFOINTEGER , INTENT(INOUT), OPTIONAL :: INFO!! .. Executable Statements ..! IF(PRESENT(INFO)) INFO = LINFOIF(LINFO < 0 .OR. LINFO>0 .AND. .NOT.PRESENT(INFO))THEN23

WRITE (*,*) 'Program terminated in LAPACK_90 subroutine ', SRNAMEWRITE (*,*) 'Error indicator, INFO = ', LINFOSTOPEND IFEND SUBROUTINE ERINFOA more elaborate error-handling mechanism could of course be devised.B.3 Accessing LAPACK77 routinesWe assume that interface-blocks for all the LAPACK77 routines are accessible from a mod-ule LAPACK77 INTERFACES. Note that we do not use generic interfaces for the LAPACK77routines, since that would impose some restrictions on the way in which LAPACK77 rou-tines could be called.However, we rename the routine in the USE statement, so that the precision-dependentname-change is localized in the USE statement.B.4 The codeSUBROUTINE SGESV_F90(A,B,IPIV,INFO)! .. Use Statements ..USE LA_PRECISION, ONLY: WP => SPUSE LA_AUX, ONLY: ERINFOUSE LAPACK77_INTERFACES, ONLY: GESV_F77 => SGESV! .. Implicit Statement ..IMPLICIT NONE! .. Scalar Arguments ..INTEGER, INTENT(OUT), OPTIONAL :: INFO! .. Array Arguments ..INTEGER, INTENT(OUT), OPTIONAL, TARGET :: IPIV(:)REAL(WP), INTENT(INOUT) :: A(:,:), B(:,:)! .. Parameters ..CHARACTER(LEN=7), PARAMETER :: SRNAME = 'LA_GESV'! .. Local Scalars ..INTEGER :: LD, LINFO, NRHS, N! .. Local Pointers ..INTEGER, POINTER :: LPIV(:)! .. Intrinsic Functions ..! INTRINSIC ALLOCATE, DEALLOCATE, MAX, PRESENT, SIZEINTRINSIC MAX, PRESENT, SIZE!! .. Executable Statements ..!! Test the arguments! 24

LINFO = 0N = SIZE(A, 1)IF(SIZE(A, 2) /= N)THENLINFO = -1ELSE IF(SIZE(B, 1) /= N)THENLINFO = -2ELSEIF(PRESENT(IPIV))THENIF(SIZE(IPIV) /= N) LINFO = -3END IFEND IF! IF(LINFO == 0)THENLD = MAX(1, N)NRHS = SIZE(B,2)IF(PRESENT(IPIV))THENLPIV => IPIVELSEALLOCATE(LPIV(N))END IF!! Call LAPACK77 routine! CALL GESV_F77(N, NRHS, A, LD, LPIV, B, LD, LINFO)! IF(.NOT.PRESENT(IPIV)) DEALLOCATE(LPIV)END IF! CALL ERINFO(LINFO,SRNAME,INFO)! END SUBROUTINE SGESV_F90
25

