
Computational Models of White-Tailed
Deer in the Florida Everglades

C.A. Abbott, M.W. Berry, E.J. Comiskey,
J.C. Dempsey, L.J. Gross, & H.-K. Luh

Computer Science Department

CS-95-296 August 1995



Submitted to IEEE Computational Science & Engineering, (1995)

Computational Models of White-Tailed Deer in the Florida Everglades*C.A. ABBOTT, M.W. BERRY, J.C. DEMPSEY
Department of Computer Science, University of Tennessee, Knoxville TN 37996-1301,fcabbott,berry,dempseyg@cs.utk.eduE.J. COMISKEY, L.J. GROSS, AND H.-K. LUH
Institute for Environmental Modeling and Department of Mathematics, Knoxville TN 37996-1300,fecomiske,gross,luhg@math.utk.edu
Abstract. Computermodels can be used to simulate the interactions between animals and their environments. The SIMPDEL (Spatially-Explicit
Individual-Based Simulation Model of Florida Panther and White-Tailed Deer in the Everglades and Big Cypress Landscapes) model has
been developed to analyze and predict the effects of alternative water managementscenarios in South Florida on the long-term populations of
white-tailed deer and Florida panther. This model simulates the aging, reproduction, foraging, growth, and mortality of individual animals
over a period of 23 years. The primary focus of this work is the use of parallel processing in the three main computational components
of SIMPDEL: hydrology, vegetation, and deer foraging. Very similar results for both sequential and parallel SIMPDEL models have been
obtained and speed improvements ranging from 8.9 to 27.0 were achieved for the parallel model over the sequential model executing on a
Sun SPARCstation 5.

Keywords: computer modeling, Florida Everglades, individual-based, parallel computing, spatially-explicit, white-tailed deer

1. Introduction

The Florida Everglades is considered to be one of the most threatened ecosystems in the nation,

due in part to decades of intense, adverse water management impacts [4]. Restoration alternatives

are currently being developed to restore natural water flows to the area. Hence, there is a need to

predict and compare the effects of alternative hydrologic restoration scenarios on the Everglades

wildlife. Future projections of these effects can be realistically accomplished only by computer

modeling [8].

The SIMPDEL (Spatially-Explicit Individual-Based Simulation Model of Florida Panther and

White-Tailed Deer in the Everglades and Big Cypress Landscapes) model was jointly developed

by a group of modelers and biologists at the Institute for Environmental Modeling, University of

Tennessee [3]. SIMPDEL is a member of the ATLSS family of models (Across-Trophic-Level System

Simulation for the Everglades and Big Cypress Swamp) under development at a variety of insti-

tutions with support from the National Biological Service. Upon completion, the SIMPDEL model

will be used to analyze the effects of alternative water management scenarios on the long-term

populations of white-tailed deer and Florida panther in the Everglades. The model tracks the

* This research has been supported by the National Science Foundation under Grant No. NSF-BIR-93-18160. The serial implementation of
the model was developed with support from the National Park Service through Cooperative Agreement No. CA-5460-0-9001.



2 C.A. ABBOTT ET AL.
growth, movement, foraging and reproduction of individual deer and panther across South Florida

as affected by the underlying landscape, the spatial dynamics of hydrology, and the interactions

between individuals. Typical model simulations include 20; 000 deer and 50 panthers, with the

population sizes varying throughout the simulation due to stochastic mortality and fecundity.

Execution time of the SIMPDEL model increases as the number of deer increases and as the

abundance of forage decreases. For example, execution times ranging from 16:5 to 39 hours were

recorded for increasing population sizes. Hence, a primary goal of this work is to reduce substan-

tially execution time of the sequential SIMPDEL model via parallel programming while producing

population trends similar to those produced by the current sequential model. An additional design

goal is to construct the parallel model in such a way as to ensure that the same results will be

achieved regardless of the number of processors used, in order to simplify code conversion for a

future implementation of the parallel model designed for a distributed network of workstations

using Parallel Virtual Machine (PVM) [9]. As the panther component of the sequential SIMPDEL

requires minimal CPU time, the focus of this study is the parallelization of the deer portion of the

model.

The parallel computing environment used in this research is described in Section 1.1. Section

2 introduces the sequential SIMPDEL model and describes the Everglades study area. Section 3

discusses the parallel SIMPDEL model, and Section 4 presents results and speed improvements of

the parallel model over the sequential model. Finally, a summary and future work considerations

are provided in Section 5.

1.1. Computing Environment

The parallel machine used in this study was a Thinking Machines Corporation CM-5. The CM-5 is

a general-purpose multicomputer providing both SIMD and MIMD capabilities, allowing users to

write both data parallel and message-passing programs. The CM-5 at the University of Tennessee,

Knoxville contains 32 processing nodes (although tens to thousands are possible) connected via a

fat-tree architecture. Processing nodes (PNs) are the processors that perform actual computations

on parallel data and communicate with each other as necessary, to share data [14]. Each PN has a

32MHz SPARC 2 processor, 32Mbytes of memory, and a 128Mflops vector processing unit capable



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 3
of performing 64-bit floating-point and integer operations [11]. Control processors (CPs) manage

the processing nodes and I/O devices.

The CM-5 supports two programming models: hostless and host/node. The host/node model

involves two programs executing simultaneously, one on the host and a second executing on each

processor. The host performs necessary initializations and then invokes the node program. In the

hostlessprogrammingmodel, the host is utilized only as an I/O server and to initiate and terminate

program execution. A single program runs independently on each node, and communication

is achieved through message-passing [13]. For parallelizing SIMPDEL, the hostless programming

model was used. Message-passing was accomplished through the use of communication routines

supplied by the CMMD library, version 3.0.

1.2. Notations

In the following sections, PNi refers to the current processor only, and PNj and PNk refer to any

other processor. A 500m� 500m grid cell is referred to as a 500m grid cell, and a 100m� 100m grid

cell is similarly referred to as a 100m grid cell.

2. Sequential Everglades Model

SIMPDEL is a spatially-explicit individual-based simulation model developed to analyze the effects

of alternative water management strategies on the long-term populations of white-tailed deer and

Florida panther in the Florida Everglades. An individual-basedmodel is one inwhich eachmember

of a population (and its interactions with other members) is simulated individually [5]. There are

four tightly coupled components of the SIMPDEL model: hydrology, vegetation, deer, and panthers.

Hydrology inputs influence vegetation growth and restrict animal movement. Deer depend on

high quality vegetation for maximum energy intake and growth, and panther depend on deer for

prey. The focus of this work is on the first three components: hydrology, vegetation, and deer. For

comparison with the parallel implementation, to be described in Section 3, the sequential SIMPDEL

program was executed without simulating a panther population.



4 C.A. ABBOTT ET AL.
2.1. Study Area

The portion of the Everglades used in this model encompasses about 7,500 mi2, from Lake Okee-

chobee to Florida Bay. The area includes eighteen vegetation types (Figure 1), with the most

prevalent being freshwater marsh and wetlands. The climate in South Florida is subtropical, with

a dry season from mid fall through late spring and a wet season during the summer. Precipitation

is a major route by which water enters the Everglades, with approximately 75% falling from May

through October [6]. Average annual rainfall in the area ranges from 55-65 inches. The study area

terrain is almost flat, with elevations ranging from 10m in the north to 1m in the south [3].

2.2. Landscape Representation

Since the study area is large, the landscape ismodeled at two spatial scales: 100m grid cells and500m
grid cells, where each 500m grid cell represents 25 100m grid cells. At the 500m scale, the landscape

is composedof 68,085 grid cells representedby a 420 row (RPIXEL) by 265 column (CPIXEL) grid cell

map. Data maps containing vegetation types, forage quantities, and water depths are maintained

at both spatial scales. Maps at the 500m scale are represented as two-dimensional arrays (RPIXEL�
CPIXEL), and maps at the finer 100m scale are represented as three-dimensional arrays (RPIXEL�
CPIXEL � 25) in the sequential model.

2.3. Hydrology Component

Thewater level inputs to the SIMPDELmodelwerederived fromtheSouthFloridaWaterManagement

Model (SFWMM), developed by the South Florida Water Management District and Everglades

National Park. SFWMM is a large-scale mathematical model of the present network of canals,

structures, levees, and pumps that make up the highly managed water system controlling water

levels and flows throughout the area [7]. The current water level inputs are averaged weekly

data from the period 1966 through 1989, although daily data are also available. The spatial level of

resolution is at the 2mi scale, which is too coarse tomodel individual animalmovements. Therefore,

spatialdata interpolation is used to redistributewater levels at the 2mi scale to the 100m scale, based

on expected depths for the vegetation types represented in each 2mi cell. This results in a 100m



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 5

Freshwater Marsh & Wetlands

Pastureland

Barren & Urban Land

Cypress Swamp

Bay Swamp

Hardwood Hammocks & Forests

Pinelands

Open Water

Figure 1. SIMPDEL landscape with 18 vegetation types. The legend provides a description of some of the most significant areas.



6 C.A. ABBOTT ET AL.
resolution map that approximates the water level in each vegetation cell. Water levels at the 500m
scale are then computed by averaging the levels in the 25 constituent 100m cells.

2.4. Vegetation Component

The vegetation distribution data used in the model were derived using the South Florida portion

of the Florida Department of Transportation vegetation map, which is a satellite image at the 30m
scale. Vegetation data is represented at both the 100m and 500m scales, which are aggregations of

the 30m satellite image [8].

Each 100m and 500m grid cell contains two quality classes of forage: high quality and medium

quality. High quality forage has a higher caloric value, but is lower in quantity. Medium quality

forage, on the other hand, has a lower caloric value and is higher in quantity. In addition to high

and medium quality forage, there is unlimited low quality forage of the least caloric value. This

class of forage can satisfy only about 80% of a deer’s daily energy requirements [3].

On the first day of the simulation, initial quantities of high and medium quality forage are

assigned to each 100m grid cell based on its vegetation type and average water level for that

year. These quantities are updated at the 100m scale daily, weekly, or monthly for growth effects,

depending on a user-selected option. Depending on the time of year, forage amounts either

increase ordecrease due to seasonal vegetative growthanddeterioration. After computing available

quantities at the 100m scale, 500m forage quantities are computed by averaging values in the 25

constituent 100m cells. In addition to seasonal growth effects, forage amounts in specific 100m and

500m grid cells are updated daily after each deer grazes.

2.5. Deer Component

The white-tailed deer (Odocoileus virginianus seminolus) is the only large herbivore in South Florida

[8]. Everglades deer are considerably smaller than deer found farther north, at about two-thirds the

weight of those found in Pennsylvania or Wisconsin. Deer are most numerous in the prairies and

rocky pinelands. The animals often wade in water to feed on marsh plants; however, extremely

high water may force them onto elevated tree islands, possibly resulting in death by starvation if



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 7
flooding is prolonged. Deer are a major prey item for the endangered Florida panther. A panther

will kill about one deer per week when hunting is good [15].

The SIMPDEL deer component simulates the aging, reproduction, foraging, growth, andmortality

of each individual deer on a daily time step over a period of 23 years (the time period over which

hydrology data are available). The deer component is driven by hydrology and vegetation inputs.

High water levels restrict deer movement and water levels also restrict vegetation growth.

At the start of the simulation, an initial population of deer is generated using a user-selected

population size read from an input file. Age, location, sex, body weight, mating day, and other

characteristics are determined randomly and stored in a data structure for each individual.

2.5.1. Fawn Independence and Dispersal

At age eighteen months, male deer become independent and disperse from the natal range. Dis-

persal location is determined randomly using the deer’s current location and a maximumdispersal

distance. Potential grid locations for dispersal are continually generated up to amaximum number

or until a suitable dispersal location is found. A suitable dispersal location is a 500m grid cell that

contains high quality forage, has a water depth below the maximum level a fawn can withstand,

and has no deer already assigned to that grid cell location. If no suitable grid cell is found, the fawn

will remain at its current position. A female deer at eighteenmonths of age will remain at the same

location as the mother, but will forage independently and move to a new area if forage is scarce

[8]. Fawn independence under the age of eighteen months is also possible, and occurs either when

the mother gives birth to new fawns, or when a female fawn still under the care of its mother gives

birth to fawns.

2.5.2. Mating and Reproduction

Successful reproduction depends on several factors. Pregnancy can occur only on a female’smating

day and depends on her age and health, as determined by comparing her body weight with her

maximum weight ever attained. In addition, an available male deer who has not matedwithin the

rutting period (currently set at one year) must be located within mating distance from the female’s



8 C.A. ABBOTT ET AL.
location. If no male is found, the female does not become pregnant, her mating day is incremented

by 28 days, and the process repeats itself each month until pregnancy results.

2.5.3. Forage Search and Movement Rules

White-tailed deer are extremely efficient foragers, eating highest quality vegetation first before

eating that of a lower quality. An algorithm to simulate this behavior, which is based on the

assumption that deer find the best quality forage [8], is illustrated below.

Each deer’s daily search for food begins at its current location. If the current location contains

available forage above the threshold, ALPHA 1, deer grazing is simulated on the constituent 100m
cells within the current 500m location, effectively reducing the forage levels at both resolutions.

Available forage within a 500m grid cell is a function of the actual forage level, water level, and the

maximumwater depth that the deer can withstand. Since maximumwater depths differ for bucks,

does, and does with fawns, available forage levels in the same grid cell will vary for different deer.

If the available forage level in the current grid cell is less than the threshold, or there is not enough

forage in the cell to satisfy the deer’s maximum daily intake, which is a function of body weight,

a search of the concentric squares centered at the deer’s current location is performed, (see Figure

2(a)) for the nearest 500m grid cell with the maximum level of available high quality forage. If

multiple grid cells along the same concentric square perimeter have the same maximum available

forage level, one of them is chosen at random. The deer is then assigned to this new location and

its daily travel distance incremented by the search radius (the number of grid cells between the

old and new locations). If the chosen cell does not contain enough high quality forage above the

threshold to satisfy the deer’s maximum daily intake, grazing upon medium quality forage within

the same grid cell is simulated. If the maximum forage intake is still not satisfied, the search for

high quality forage will continue up to the deer’s maximummoving distance.

If the maximum moving distance is reached while searching for high quality forage, but no

forage above the threshold has been found within the last search perimeter, the forage search is

restarted from the deer’s current location. This time, however, the search will proceed among the

concentric squares for a 500m cell with available medium quality forage above a new threshold,



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 9
(a)

(b)

Figure 2. SIMPDEL forage search diagram. (a)High/medium quality search area with a maximumtravel distance of 8 grid cells. Dark gray cells
represent the first search perimeter and light gray cells represent the second search perimeter. Each additional search perimeter is surrounded
by a thick black line. (b) Low quality forage search area on the outer search perimeter.



10 C.A. ABBOTT ET AL.
ALPHA 2. Due to the lower caloric content of medium quality forage, ALPHA 2 is larger than

ALPHA 1.

If no grid cells with available high or medium quality forage above the thresholds are located

within the maximum travel distance, the deer is forced to graze on low quality forage, and an

attempt is made to place the deer randomly at a suitable habitat location on the outer perimeter

of the search area (see Figure 2(b)). A suitable habitat location is a 500m grid cell with a water

level below the maximum level the deer can withstand. If no suitable habitat location is found, a

perimeter grid cell will be randomly selected from those not located within the habitat type “open

water”. The deer will remain at its current location only if all perimeter cells are located within this

habitat type.

If the deer is not forced to consume low quality forage, the high/medium quality forage search

will continue until one of three conditions is satisfied: the maximum daily intake is reached, the

maximum travel distance is reached, or the maximum forage time is reached.

Each adult deer or independent fawn will forage sequentially each day of the simulation ac-

cording to the above rules. Order is chosen randomly and is computed daily, so that no deer has

preferential access to food sources.

2.5.4. Growth and Mortality

Deer growth is dependent upon weight, caloric intake, and energy expended during maintenance,

travel, grazing, and reproduction. If energy intake from foraging is greater than energy expenditure,

the deer gains weight, and if energy intake is less than energy expenditure, the deer loses weight

[3].

Deer mortality is the result of several factors. Death by weight loss occurs if the deer’s weight

drops below 70% of its maximum weight ever attained [8]. Death by natural age-related factors

occurs if the natural mortality rate for the deer’s age is greater than a randomly generated number.

Since panther are not simulated, death by panther predation is determined randomly, in order to

maintain the deer population at somewhat realistic levels. Fawn mortality, in addition to the three

factors described above, occurs if the mother dies while the fawn is still nursing.



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 11
initsim

dage

drepro

dforage

dmove

dgraze

dmovelow

dgrow dmortality

ddisperse

hydrology

vegetation

deer

input

for each hydrology update

for each vegetation update
daily

yearly

for each female

for each adult/independent deer

for each move

Figure 3. SIMPDEL program flow by major subroutine



12 C.A. ABBOTT ET AL.
2.6. Program Flow

SIMPDEL program flow is illustrated in Figure 3. Input files are read by subroutine input, and

simulation variables initialized in initsim. Hydrology and vegetation updates are performed

once every seven days by subroutines hydrology and vegetation. The deer component is

simulated daily by subroutine deer, which invokes dage, drepro, and dforage, in sequence.

Subroutine dage increments deer ages daily for deer under two months of age, and monthly

for all others, and calls ddisperse for all male deer turning eighteen months of age. Subroutine

ddisperse simulates thedispersalprocess by randomlyselectingdispersal locations andanalyzing

the locations for suitability. The reproduction process is handled by drepro, which simulates deer

mating and fawn birth, and calls ddisperse for all male deer whose mothers are giving birth

to new fawns. The foraging process is comprised of subroutines dforage, dmove, dgraze, and

dmovelow. Subroutine dmove locates a new 500m grid cell position with available forage and

dgraze simulates deer grazing on the 100m grid cells within the selected 500m cell. Subroutine

dmovelow selects a 500m grid cell along a deer’s maximum travel distance perimeter, and is called

only after no high or medium quality forage is found. Finally, after each deer’s foraging process is

completed, subroutine dgrow updates the deer’s body weight based on daily energy expenditures

and invokes dmortality if death results from weight loss or other factors.

3. Parallel Model

In order to parallelize the SIMPDEL model for execution on the 32 processor Thinking Machines

CM-5, several modifications to the sequential model are required. The following sections describe

the landscape partitioning method, revised data structures, and parallelization of the hydrology,

vegetation, and deer components.

3.1. Landscape Partitioning

A rowwise block-striped partitioning strategy (Figure 4) is used to divide the landscape across the

32 processors. With this data partitioningmethod, the landscape is divided into groups of complete

contiguous rows [12]. Due to the large computationaldemand of both the hydrology and vegetation



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 13
PN

PN

PN

PN

0

1

2

3
13
14

12

15

11
10

9
8

4

6

1
0

5

2
3

7

Figure 4. Example rowwise block-striped data partitioning with 16 rows and 4 processors.

components and the irregular shape of the study area, each processor is assigned a group based on

the total number of 500m grid cells (Figure 5), as opposed to the total number of rows, in order to

achieve a similar initial workload balance. This partitioning method simplifies the deer movement

process (to be discussed in Section 3.3.5), since each processor has only two nearest neighbors.

Processor PNi’s nearest neighbors are PNi�1 and PNi+1 , with the exception of PN0, which has no

nearest neighbor to the north, and PN31, which has no nearest neighbor to the south.

3.1.1. Map Data Structure

In the sequential SIMPDEL model, map data are stored as a series of grids, represented as two

or three-dimensional arrays, depending on the grid cell resolution, as explained in Section 2.2. To

facilitate dynamic grid repartitioning, to be explained in Section 3.1.2, a more efficient data structure

is required. The map data structure used in the parallel model is shown in Figure 6.



14 C.A. ABBOTT ET AL.

Figure 5. Landscape partitioning according to area.



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 15
north

south

rows

firstrow

cells

pixels

firstcol

columns

cpu

water_dist

water_level

vegetation

forage[2]

row

habitat

water_level

forage[2]

numdeer

Figure 6. Parallel Map Data Structure



16 C.A. ABBOTT ET AL.
Each processor has its ownmapdata structure, map, containing an array of rows, row[RPIXEL],

which corresponds to the total number of rows at the 500m scale. Each element of this array is itself

a data structure containing the fields: pixels, cpu, firstcol, and columns.

The pixels array is of length columns containing map data at the 500m resolution, such as

habitat type, water level, forage quantity, and a 5�5 array of 100m cells, each containing vegetation

type, water level and forage quantity at the finer scale, as well as water distribution data required

for hydrology updates. Each processor contains a pixels array for every row it owns, while all

others are set to NULL. In order to decrease memory requirements for map data storage, only

grid cells within the study area boundaries are stored, as opposed to the sequential model which

stores every grid cell, regardless of location. The data structure field firstcol is used to map

column indexes of the pixels array onto their actual positions in the study area. For example,

if map.row[i].firstcol is 5 then map.row[i].pixels[0] contains the data corresponding

to the 5th column of row i (where columns begin at 0), and if map.row[i].columns is 50 then

map.row[i].pixels[49] contains data corresponding to the 54th column of row i.

Although eachprocessor stores only a portion of themap,and eachportion ismutually exclusive,

all processors contain identical data in the fields: cpu, firstcol, and columns, for each of the

420 (RPIXEL) rows. The value stored in map.row[i].cpu is the processor identification number

on which row i is located so that the processor location of any grid cell can easily be determined,

given the row position. The values stored in map.row[i].firstcol and map.row[i].columns

are used to determine whether a grid location owned by another processor is within the study area

boundaries.

3.1.2. Map Initialization

In order to allow the number of processors to be scaled up or down in future parallel model versions

designed for PVM, the landscape map is partitioned dynamically, after the 500m habitat data has

been read from an input file. After an initial data partitioning according to the number of rows,

each processor creates and initializes a pixels array for each row assigned to that processor, as the

habitat data is read. The map data is then dynamically repartitioned according to area.



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 17
The landscape partitioning strategy allows for simple repartitioning by sending an entire row’s

contents as amessageto a north or southprocessor. The repartitioningphase steps thoughprocessor

pairs, beginning with PN0 and PN1 , followed by PN1 and PN2 , sending and receiving map rows

between pair members until each processor contains an approximately equal area. Since map rows

must be complete, an equal area on each processor is not possible with the shape of the current

landscape map.

3.2. Hydrology and Vegetation Components

The parallel versions of the hydrology and vegetation components are very similar to those of the

sequential model. Since each processor owns a portion of the map, and map data in any grid

cell are independent of any other, no interprocessor communication is involved. For hydrology

updates, the same interpolation method to redistribute water levels from the 2mi scale to the 100m
scale is used (as explained in Section 2.3). However, each processor computes water levels for its

map portion only. Similarly, each processor is responsible for updating forage growth in both the

high and medium quality classes of forage in only the locally owned grid cells. Thus, each of the

32 processors updates hydrology and vegetation values in approximately 1=32 of the study area.

Excellent speed improvements for both components were achieved through parallelization and are

presented in Section 4.

3.3. Deer Component

Unlike the hydrology andvegetation components, execution of the parallel SIMPDELdeer component

is dominated by interprocessor communication, since only a portion of the landscape is available to

any processor. In order to utilize message passing and enable deer movement among processors,

extensive changes to the sequential model are required.

3.3.1. Program Flow

Due to an unavoidable timing problem introduced by parallelization, a reordering of the stages of

subroutine drepro was necessary. In the sequential model, each male fawn disperses from the



18 C.A. ABBOTT ET AL.
natal range immediately before its mother gives birth to new fawns. Adhering to the same structure

in the parallel model could possibly reduce the deer population size over the simulation, since there

exists a small window of time during which the dispersing male is unavailable for mating with

females located on other processors. To eliminate this timing error, dispersing males are placed on

a queue for later dispersal after all processors have completed the reproduction phase.

Since the number of deer residing on each processor is inevitably unequal due to deermovement

and reproduction, as well as the timing of different processing nodes, synchronization is necessary

at certain points in the parallel program in order ensure that all processors have completed one

component phase before starting the next. Explicit synchronization occurs afterdage, afterdrepro,

and again after the dispersal of queuedmaledeer. Since these routinesmay requiremessagepassing,

all processors waiting in the synchronization loopmust continually poll for incomingmessages (see

[1] for the C code used in the synchronization loop). An additional implicit synchronization occurs

at the end of each day as daily results are accumulated from each node. With the entiremapdivided

among the the 32 processors, message passing becomes necessary for deer dispersal, mating, and

foraging activities if these routines require knowledge of data located in remote grid cells (i.e., a grid

located on another processor).

3.3.2. Deer Data Structure

All data pertaining to an individual deer are contained in a data structure. The deer data structure

used in the parallel SIMPDEL model requires several additional fields (Figure 7), as compared to the

structure used in the sequentialmodel. The fields related to the deer foragingprocess: daily trav,

save trav, intake, graze time, graze dist, and energy gain, of the parallel structure are

global variables in the sequential model. The floating-point values stored in these global variables

always correspond to the current foraging deer, since no other deer can begin the foraging sequence

until the current deer’s sequence has ended. A deer may graze on several grid cells before it’s

daily intake is fulfilled, requiring these variables to be updated for each grazing step. However,

in the parallel model, a deer may be moved to a new processor during the foraging sequence (to

be explained in Section 3.3.5) and its foraging continued at the new location. By containing these



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 19
variables as fields in the deer data structure, the copying and recopying of deer data each time a

deer is moved to a new processor is avoided.

typedef struct struct deerf f
int days preg; int ID;
int mating day; int sex;
int fawns; int age;
int births; int age days;
struct deer *fawn ptr[2]; int row;g doetype; int col;

float body wt;
float max body wt;

typedef struct float daily trav;f float save trav;
int days rutting; float intake;
int trav mate; float graze time;g bucktype; float graze dist;

float energy gain
int num moves;

typedef union int graze;f int removed;
doe type doe; struct deer *mother;
buck type buck; deergen gender;g deergen; g;

Figure 7. Parallel deer data structure (new fields are shown in italics).

The data structure fields num moves, graze, and removed are specific to the parallel model.

The integer num moves is used to examine the number of times a deer moves across processor

boundaries, and is incremented for eachmove. The integer graze is assigned the value of the class

of forage for which the deer is searching (FQ HIGH, FQ MEDIUM, or FQ LOW) before being moved to

a location on a new processor. The integer value stored in removed is used to determine if a deer

has been logically removed from the deer array, due to mortality or movement between processors.

A deer is first logically removed, by setting its removed field to 1, before being physically removed

(by deallocating memory) at the end of the day, in order to avoid constant compressions of the deer

array.



20 C.A. ABBOTT ET AL.
3.3.3. Deer Dispersal

Dispersal of male deer occurs either when the deer turns 18 months of age or when the mother

gives birth to new fawns (see Section 2). As in the sequential model, potential dispersal locations

are continually generated up to a maximum number or until a suitable dispersal location is found.

If processor PNi generates a local grid location, PNi will determine if the location is suitable for

deer existence. However, message passing is required if the randomly generated grid cell is not

local to the current processor. If PNi generates a grid location that is owned by processor PNj , the
entire deer structure is sent as a message to PNj , after updating the deer’s row and column to the

new grid position.

Upon receipt of the deer message from PNi, PNj will determine whether the deer’s row and

column location is suitable. If so, the deer is inserted into the deer array owned by PNj . Whether

or not the deer remains on PNj , a message is sent back to PNi indicating suitability of the dispersal

location.

If the response message from PNj indicates suitable dispersal habitat, the deer is removed

from PNi’s deer array and the dispersal process is complete. However, if the response indicates

unsuitability, another grid location is generated and the process is repeated. If, after generating a

maximumnumber of potential dispersal locations, no suitable grid cell is found, the deer’s row and

column fields are reset to the original values and the deer will remain at its initial grid position. A

flowchart illustrating the dispersal process is shown in Figure 8.

3.3.4. Reproduction

To achieve population sizes similar to those in the sequential SIMPDEL model, message passing is

necessary in order to locate suitable mates in areas owned by other processors. In the sequential

model, any male deer within mating distance of a receptive female that has not already mated

within the year is a potential mate. To locate a mate, a search is performed on the entire deer array.

In the parallel model however, themaximumradius of 20 500m grid cells (i.e., 10km) from the female

often spans several processors. In order to reduce or eliminatemessage passing, a restriction could

be imposed on male deer, allowing only those located on the same processor as the female, or only

those deer located on the north or south processors, to be potentialmates. However, any restriction



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 21
Determine if habitat
is suitable for deer

is_habitat_suitable()

Is location on
my PN?

dispersal location

Generate potential

Determine if habitat
is suitable for deer

is_habitat_suitable()

Message Loop

YES

YES

NO

NO

tag = NKEEP_TAG

Send deer to new PN

tag = DISPERSE_TAG

tag = YKEEP_TAG

Remove deer from
deer array

remove_deer()

NO

(tag = DISPERSE_TAG)

get_deer_msg()

PN j

deer_disperse()

PN i

tag = NKEEP_TAG

Send message back to sender

1. Send message back to sender

tag = YKEEP_TAG

2. Insert deer into deer array

insert_deer()

YES

Figure 8. Deer dispersal process on processors PNi and PNj .



22 C.A. ABBOTT ET AL.
100 150 6 74 9 10

number of PNs within
mating distance PNs within mating distancerow column

0 1 2 3 4 5 6

Figure 9. Example mate msg array located on processor PN8

drastically affects the deer population over time, in comparison to that of the sequential program,

and would produce different results for different partition sizes. Thus, the entire mating distance

is made available to each deer, regardless of the number of processors this distance spans.

During the initializationphase of the parallel simulation, an array, mate msg, is created on each

processor (see Figure 9) and is used to store the set of processors within the maximum mating

distance. Processor PNi’s set includes all processors, except PNi, containing one or more map rows

which lie within the interval

[(map.firstrow-radius+1), (map.firstrow+map.rows+radius-2)].

The processor numbers within the set are stored beginning at index 3 in mate msg. The value

stored in mate msg[2] is the total number of processors within the set, and mate msg[0] and

mate msg[1] are reserved for storage of a female deer’s row and column locations.

If no availablemale deer is locatedonPNi, the female’s row and column locations are loaded into

mate msg[0] and mate msg[1], respectively, and a new processor, PNj , is selected at random

from those stored in the array. PNi then sends the entire array to PNj and awaits a response. The

response message indicates whether or not an available male was located and may be sent by any

processor within the set.

Upon receipt of the message from PNi, PNj will search its deer array for an available male deer

within mating distance of the location specified in the message buffer. If a male is located, PNj will



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 23
send a confirmation message to PNi. Otherwise, PNj sets the message index corresponding to its

PN number to -1, and chooses a new processor, PNk, at random from the remaining values in the

message buffer. PNj will then send the updated message buffer to PNk, and so on until either an

available male is found, or messages have been sent to all processors in the message buffer. A reply

message indicating that no male was located will be sent to PNi only if no male deer are available

on any processor in the set, andwill only be sent by the last processor to receive the message buffer.

See [1] for more details of the parallel mating process.

3.3.5. Foraging

Since the landscape is divided among the 32 processing nodes, a deer’s search area may encompass

more than one processor. Without knowledge of data across processor boundaries, it becomes

impossible for the animal to select a new grid location similar to the one it would have chosen in

the sequential model.

Similar parallel ecological models developed in the past have determined whether an animal

shouldmove to a newprocessor by using a decisionmethod referred to as PMI (PreferentialMoving

Index) averaging. With this method, a PMI value is computed at the beginning of each simulation

day, using data from all or portions of a processor’s grid cells, and then broadcast to every other

processor. If the animal cannot locate enough forage on its own processor, the nearest neighbor

processor with the greatest PMI average above a threshold is chosen and the animal is sent to that

processor to continue its foraging sequence [2].

Although PMI averaging may result in decreased parallel execution time for some ecological

applications, this methodwas not used in the parallel SIMPDEL model for several reasons:

1. The per processor area is too large and may increase in future implementations.

2. Forage amounts decrease after each deer grazes. With simulation test populations from 2,000

to 20,000, the PMI averages would quickly become invalid, and frequent updating of the PMI

averages would most likely offset any gain realized by their use.



24 C.A. ABBOTT ET AL.
3. Available forage amounts in the same grid cell differ for bucks, does, and does with fawns,

since these amounts are computed using the maximum water depths that each class of deer

can withstand.

4. Maintenance of PMI averages for both high and medium quality forage classes would be

required.

5. A processor’s PMI average is dependent upon area, thus different partition sizes would

produce different results.

Therefore itwasnecessary todevelopadifferent parallelmethodfordeterminingdeermovement

locations based on the most recent forage levels. The parallel method for the deer forage search

relies on all processors containing grid locationswithin a deer’s search area to examine thenecessary

grid cells in parallel.

High/Medium Quality Forage Search

The parallel forage search algorithm follows the same general movement rules as in the sequential

SIMPDEL model. Each day of the simulation, deer forage sequentially on each processor. Order is

determined randomly each day. Each deer’s daily forage search begins with an attempt to graze

on the current grid location. If the cell does not contain enough available high quality forage, a

search for a new grid cell position is initiated (as explained in Section 2). In order for the forage

search to be performed in parallel by multiple processors, subroutine dmove was separated into

the two subroutines: dmove and find forage cell. Subroutine dmove is invoked only by the

processor onwhich the deer is located,howeverfind forage cellmaybe calledby all processors

containing grid locations within a deer’s search area. Subroutine dmove is responsible for calling

find forage cell, waiting for message responses, and later updating the deer’s position and

travel distance after a new grid cell is found. Locating the new grid cell is the responsibility of

find forage cell, which initiates the forage search among concentric squares centered at the

deer’s current location, and sends messages to neighboring processors if the search area expands

past the current processor’s boundaries. The subroutine flow of the forage search and deer growth

process is discussed in [1].



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 25
If either the top or bottom row of processor PNi’s search area is owned by another processor,

PNi will send a search message to the processor containing that row. If the top row of PNi’s search
area is not located on PNi, it will always be the last row on PNi�1, and if the bottom row of PNi’s
search area is not located on PNi, it will always be the first row on PNi+1. The search message

contains the following information: the deer’s grid position, maximum water depth, maximum

moving distance, the class of forage being searched (FQ HIGH or FQ MEDIUM), and the current

search radius.

Whether or not processor PNi sends a search message to another processor, the local search will

continue until either a 500m cell with available forage is found or the deer’s maximum moving

distance is reached. At this point, if a message has been sent to a neighboring processor, PNi
must wait for one or more message responses, referred to as location messages. A location message

contains the row and column positions of the 500m grid cell with a maximum of available forage,

the available forage level (or 0 if no grid cell is found), the search radius (the number of grid cells

between the selected forage cell and the center of the search area), and an integer value indicating

whether or not the search area expanded past a processor boundary.

As each location message is received, PNi will compare the current minimum search radius

with the search radius from the message buffer. As in the sequential model (explained in Section

2), the nearest grid cell with a maximum level of available forage above the threshold is chosen as

the new grid cell. For example, in Figure 10, a 500m grid cell with a maximum level of available

forage above the threshold has been located on each of the three processors. The maximum forage

cell located on processor PNi�1 has the smallest radius and therefore will be chosen as the deer’s

new grid position, regardless of the amount of available forage in the selected grid cells on PNi and
PNi+1. If multiple grid cells along the same concentric square perimeter have the samemaximum,

one will be chosen at random.

If a grid cell with available forage above the threshold is located after all message responses

have been received, the deer’s position is updated, as well as the positions of any fawns. If the

selected grid cell is owned by processor PNj , the deer’s graze field is set to the value of the forage

class (FQ HIGH or FQ MEDIUM), so that the deer will continue grazing on the same class of forage

on PNj . Processor PNi will then send the deer structure as a message to PNj . However, if the deer



26 C.A. ABBOTT ET AL.
PN

PN

PN

i

i-1

i+1

Maximum forage cell
radius = 7

Maximum forage cell
radius = 6

Maximum forage cell
radius = 5

Deer’s current
location

Figure 10. Search area for a deer located on processor PNi. Searched grid cells are shaded gray and the maximum travel distance perimeter is
outlined with a thick black line.



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 27
is a female with fawns, the deer data for the mother and fawns is first copied into an array of deer

structures, and the entire array is then sent as a message to PNj .
Upon receipt of the deer message from PNi, PNj must first determine the size of the message

buffer, since a deer message may contain data for one, two, or three deer. To determine the size

of the message buffer, the CMMD function CMMD bytes sent is used. The integer value returned

by this function divided by the size (in bytes) of the deer data structure equals the number of deer

structures in the message buffer. The data for each deer is then copied into a separate structure and

inserted into PNj ’s deer array. All adult deer (or independent fawns) will be placed on a queue.

When the current deer has completed foraging for the day, the queue is checked. If the queue is

not empty, the deer that has been waiting for the longest time will be the next to forage. The entire

queue must be emptied before any deer originally residing on the processor can begin the foraging

sequence. The reason for this constraint is that all deer on the deer queue have already begun

the foraging sequence, but did not find enough forage on their original processors to satisfy their

maximum intake. Those on the queue have been assigned new grid locations with available forage

levels. In order to increase the chance that the forage level on a deer’s grid cell will be the same as

when it was chosen, those on the queue must forage before any other. It is still possible however,

that a foraging deer could deplete the resources on a grid cell upon which a queued deer is waiting

to graze, forcing the queued deer to search for a new grid cell. The intensive checking required to

avoid this potential problem would be unnecessary in all but a few simulation years, and therefore

has not been implemented.

Low Quality Forage Search

If no available high ormediumquality forage is foundwithin a deer’smaximum travel distance, the

deer will be placed randomly at a suitable grid location along themaximum travel distance perime-

ter, as explained in Section 2. Since this areamay bedistributed across several processors, a message

is sent to each processor containing grid locations along the maximum travel distance perimeter.

For the parallel model, dmovelow was separated into two subroutines. The first subroutine (of

the same name), which is called only by the processor on which the deer is located, determines

the search area perimeter, sends a message to each processor containing a portion of the perimeter,



28 C.A. ABBOTT ET AL.
andwaits for message responses before determining a deer’s new location. The second subroutine,

find forage cell low, is called from within dmovelow, and also from get deer msg for all

other processors containing grid cells on the maximum travel distance perimeter.

This process of sending messages and waiting for responses is different from that of the

high/medium quality forage search because of the fixed search area perimeter. The message,

referred to as a low quality search message, contains the left and right column positions of the search

area, the deer’s maximum water level, and a row limit value. The row limit is set to the first row

of the search area for all processors north of the sending processor, and is set to the last row of the

search area for all processors south of the sending processor. Thus any processor containing a row

limit boundary will search the entire top or bottom row of the search perimeter in addition to the

two left and right columns. For example, in Figure 11, processors PNi�2 and PNi+1 both contain

row limit values, and therefore must search the entire row of gray colored grid cells.

Current Position

Distance Perimeter
Maximum Travel

PN

PN

PN

PN

i-2

i-1

i

i+1

Figure 11. Low quality search area.



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 29
After sending a message to each processor containing locations within the search perimeter,

PNi will attempt to locate a suitable grid cell along the local portion of the search area perimeter,

according to the rules described in Section 2. The processor must then wait for message responses

from all other processors to which messages were sent. The message response to a low quality

search message, referred to as a low quality location message, contains the randomly selected grid cell

position and a value indicating whether the grid position is above or below the deer’s maximum

water depth.

After all message responses are received, the final grid cell position will be selected based on

water level, as described in Section 2. If a suitable grid position is found, the deer’s row and column

locations will be updated. If this location is owned by another processor, the deer’s graze field is

set to the value FQ LOW, indicating that the deer has completed the foraging sequence, and the deer

structure is then sent as a message to the new processor.

4. Verification and Performance

In order to verify the correctness of the parallel model, outputs of both the sequential and parallel

models were compared and yearly deer distribution maps were created. This section presents the

selected output comparisons and speed improvements in all model components.

4.1. Comparison of Selected Outputs

Although several outputs were produced and analyzed, three main statistics were chosen for

comparison: average daily travel distance of deer, deaths due to weight loss, and year-end population

size. Since daily travel distance and weight loss deaths are dependent upon available forage and

water levels, these statistics are used to verify the hydrology and vegetation components, as well

as the foraging phase of the deer component. Year-end population sizes are used to verify the

reproduction phase of the deer component. Statistics are plotted for an initial deer population size

of 10; 000. Statistics are also plotted for 2; 000 and 20; 000 deer population sizes and are presented

in Appendices A and B respectively. Random initial deer locations and other characteristics were



30 C.A. ABBOTT ET AL.
generated separately for the sequential and parallel programs. The comparisons shown are for

single simulation runs for each of the serial and parallel models for each initial population size.

Figure 12 illustrates the average daily travel distance per year for an initial deer population of

10,000, with discrepancies ranging from 0% to 8% between the sequential and parallel models. A

deer’s travel distance is related to the amount of available forage. Larger available forage quantities

result in smaller travel distances while smaller available forage quantities result in larger travel

distances. The slight increase in travel distance in the parallel model can be explained by the fact

that deer waiting on the queue to forage are required to travel further if the grid cells to which

they are assigned have no available forage by the time they are allowed to graze. Since the total

number of weight loss deaths is large and very similar in both models, a graph showing the log

of these numbers is presented in Figure 13. A difference of only 3% was noted between the two

models over the entire 23 year simulation. This slight difference can be attributed to the increase

in travel distance in the parallel model, since increased travel distance results in increased energy

expenditures and therefore less weight gain. The graph of year-end population sizes shown in

Figure 14 illustrates a difference of no more than 5% between the two models.

0 5 10 15 20

Year

1

2

A
ve

ra
ge

 D
ai

ly
 T

ra
ve

l D
is

ta
nc

e 
(k

m
) 

Sequential
Parallel

Figure 12. Average daily travel distance per year for an initial deer population of 10,000.



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 31
0 5 10 15 20

Year

0

1

2

3

L
og

(Y
ea

rl
y 

D
ee

r 
D

ea
th

s 
D

ue
 t

o 
W

ei
gh

t 
L

os
s)

Sequential
Parallel

Figure 13. Weight loss deaths per year for an initial deer population of 10,000.

0 5 10 15 20

Year

9000

10000

12000

14000

16000

D
ee

r 
P

op
ul

at
io

n 
Si

ze
 

Sequential
Parallel

Figure 14. Year-end population sizes for an initial deer population of 10,000.



32 C.A. ABBOTT ET AL.
In order to examine the distribution and abundance of deer across the landscape, yearly distribu-

tion maps were created. Figures 15 through 19 illustrate the actual grid positions of every member

of the deer population in selected simulation years. These figures represent those years showing

the greatest change from previous years. Each dot represents a single 500m grid cell, which may

contain more than one deer, thus different colors are used to represent the number of deer located

on each grid cell. A legend describing the colors used for the distribution maps is provided in

Figure 20. Figure 15 shows the initial random deer distribution in both models on the first day of

the simulation. Figure 16 shows an almost exact distribution of deer in the two models on the first

day of year 4. Results become less exact in the beginning of year 15, as shown in Figure 17. This

difference is due to the random placement of deer on their outer search perimeters since mostly

low quality forage is available during the previous simulation year. Year 18 (Figure 18) shows a

distribution similar to year 4, but with a larger deer concentration in the upper left portion of the

map. Finally, Figure 19 again shows very similar distribution patterns.



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 33
(a) Sequential Model (b) Parallel Model

Figure 15. Deer distribution at the beginning of Year 0 in (a) the sequential model and (b) the parallel model.

(a) Sequential Model (b) Parallel Model

Figure 16. Deer distribution at the beginning of Year 4 in (a) the sequential model and (b) the parallel model.



34 C.A. ABBOTT ET AL.
(a) Sequential Model (b) Parallel Model

Figure 17. Deer distribution at the beginning of Year 15 in (a) the sequential model and (b) the parallel model.

(a) Sequential Model (b) Parallel Model

Figure 18. Deer distribution at the beginning of Year 18 in (a) the sequential model and (b) the parallel model.



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 35
(a) Sequential Model (b) Parallel Model

Figure 19. Deer distribution at the beginning of Year 20 in (a) the sequential model and (b) the parallel model.

41-50 Deer

31-40 Deer

21-30 Deer

11-20 Deer

9-10 Deer

7-8 Deer

5-6 Deer

3-4 Deer

1-2 Deer

Figure 20. Deer distribution map legend.



36 C.A. ABBOTT ET AL.
4.2. Parallel Results

A comparison between the sequential and parallel SIMPDEL models was made based on a 23 year

simulation for each initial population size. Execution times and speed improvements are given in

Table 1. The sequentialprogramwas executedonaSunSPARCstation5, with32Mbytes ofmemory

Table 1. Wall-clock times (in seconds) for the sequential and parallel SIMPDELmodels
for each model component with varying population sizes.

Population Size 2,000

Speed
Component Sequential Parallel Improvements

Deer 16071 807 19.9
Hydrology 21345 609 35.1
Vegetation 20713 394 52.6

Total 59371 2195 27.0
(16.5 hrs) (.61 hrs)

Population Size 10,000

Speed
Component Sequential Parallel Improvements

Deer 55482 6635 8.4
Hydrology 21354 609 35.1
Vegetation 20713 394 52.6

Total 98057 8248 11.9
(27.2) (2.3 hrs)

Population Size 20,000

Speed
Component Sequential Parallel Improvements

Deer 93235 14400 6.5
Hydrology 21354 609 35.1
Vegetation 20713 394 52.6

Total 140434 15757 8.9
(39.0 hrs) (4.4 hrs)

and 640 Mbytes of disk space. The parallel program was executed on a 32 processor Thinking

Machines CM-5 with 32Mbytes of memory on each SPARC 2 processor. Speed improvements were



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 37
Table 2. Cpu times (in seconds) for the sequential SIMPDEL model for each
model component with varying population sizes.

Population Size 2,000 10,000 20,000

Deer 7754 41398 75413
Hydrology 9761 9761 9761
Vegetation 7012 7012 7012

Total 26724 56135 95593
(7.4 hrs) (15.6 hrs) (26.6 hrs)

calculated using wall-clock times; however, cpu times for the sequential model are also presented

(Table 2).

Execution times were recorded for the initial deer population sizes: 2,000, 10,000, and 20,000,

with a peak speed improvement of 27 for the parallel model over the sequential model for the

population size of 2,000. Speed improvements for the hydrology and vegetation components are

larger than the number of processors, due to the greater memory limitations of the sequential

computing environment. For example, execution of the sequential model produces approximately

100,000 page faults per simulation year for an initial population size of 10,000, however with 32

Mbytes of memory on each processor of the CM-5, all data for the parallel model fits in main

memory. In addition, memory requirements are greater in the sequential model since about 1/3

more map data is stored than in the parallel model.

As the sequential model is updated and improved, speed improvements in the hydrology and

vegetation components will most likely decrease. By simply replacing the arrays in the sequential

model with a map data structure similar to that of the parallel model, execution times should

decrease somewhat. The parallel map data structure has two main advantages over the various

arrays used to storemap data in the sequentialmodel. First, the data structure enables the storage of

only the valid grid cells (those representing grid cells within the study area) andprovides ameans of

mapping each grid cell onto its actual position in the landscape. Second, allmapdata corresponding

to the same 500m grid cell is encapsulated into one structure and stored in contiguous memory.

Since most computations require the use of data values located in the same array index, but from

several different arrays, the parallel map data structure provides faster access to data values.



38 C.A. ABBOTT ET AL.
4.3. Performance of Processing Nodes

Althoughasynchronous communicationwasused, the explicit synchronization in theparallelmodel

resulted in similar execution times per processor. If the synchronization points were removed,

similar execution times would still result due to the use of the CMMD reduction functions at the

end of each simulation day. In order to determine actual computation time per processor (Figure

21), the CMMD timing functions were used to measure idle time. Idle time is that portion of time

during which a processor is performing no useful computation. The total number of deer processed

during the 23 year simulation for each processor is shown in Figure 22.

The difference in computation time per processor is dependent not only on the number of deer

residing on a processor, but also on the proximity of the deer to the processor boundary. In addition,

this difference is dependent upon the grid positions of deer located on neighboring processors. The

closer a deer is to a processor boundary, the more likely it will be that the neighboring processor is

required to participate in the deer’s forage search. For example, in Figures 21 and 22, PN0 processed

more deer during the simulation than PN9 , PN10, and PN11, but has a smaller computation time.

Similarly, PN22 processed more deer than PN23, however PN23 has a greater computation time.

5. Summary and Future Work

A parallel model of the hydrology, vegetation, and deer components of the current sequential SIM-

PDEL model has been presented. Results were very similar in both models and excellent speed

improvements were obtained. In addition to promising results, the parallel model proved worth-

while in verifying the outputs produced by the sequential model. The original SIMPDEL model

contained an extremely large number of bugs and was restructured and improved during paral-

lel model development. Thus the parallel model provided a means for result comparison which

aided in locating bugs in the sequential model that may not otherwise have been noticed. The

results also provide strong evidence that grid-based parallelization schemes can be highly effective

for individual-based ecological models with explicit spatial structure. Earlier concerns on par-

allelization for individual-based ecological models involving movement argued that distributing

individuals over processors would be more efficient than dividing space over processors [10]. A



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 39
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

PN

0

1000

2000

3000

4000

5000

T
im

e 
(s

ec
on

ds
) 

Figure 21. Total computation time per processor for an initial deer population of 10,000.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

PN

0

1000000

2000000

3000000

4000000

T
ot

al
 n

um
be

r 
of

 d
ee

r 
pr

oc
es

se
d 

Figure 22. Total number of deer processed on each processor for an initial deer population of 10,000.



40 C.A. ABBOTT ET AL.
parallel implementation of SIMPDEL in which processors handle specified individuals was not de-

veloped since initial attempts indicated that it would be extremely difficult and inefficient to do so,

in part due to the message passing required to update the underlying forage maps.

Future work on the parallel SIMPDEL model consists of porting the existing parallel code to a

network of workstations using PVM [9]. Since the landscape is initially partitioned dynamically

according to area, the number of processors used can be scaled up or down, with little or no change

to the code structure beyond the replacement of CMMD function calls with the corresponding

function calls from the PVM library. In addition, the panther component will be parallelized and

incorporated into the model. Future plans for the sequential model include additional water level

inputs, map data layers, and catastrophic events, which may also be included into the parallel

SIMPDEL model.

References

1. ABBOTT, C. A. 1995. Master’s Thesis, A Parallel Individual-Based Model of White-Tailed Deer in the Florida Everglades, University of

Tennessee, Knoxville.

2. BERRY, M. AND UZIEL, E. 1995. Parallel Models of Animal Migration in Northern Yellowstone National Park. International Journal of

Supercomputer Applications and High Performance Computing. In press.

3. COMISKEY, E., GROSS, L., FLEMING, D., HUSTON, M., BASS, O., LUH, H.-K., ANDWU, Y. 1995. A Spatially-explicit Individual-based Simulation

Model for Florida Panther andWhite-Tailed Deer in the Everglades and Big Cypress Landscapes. Department of Mathematics, University

of Tennessee.

4. DAVIS, S. AND OGDEN, J. 1994. Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, Florida.

5. DEANGELIS, D. AND GROSS, L. 1992. Individual-BasedModels and Approaches in Ecology. Routledge, Chapman and Hall, New York.

6. DUEVER, M., MEEDER, J., MEEDER, L., AND MCCOLLOM, J. 1994. The Climate of South Florida and Its Role in Shaping the Everglades

Ecosystem. In Everglades: The Ecosystem and Its Restoration, pp. 225–248.Delray Beach, Florida: St. Lucie Press.

7. FENNEMA, R., NEIDRAUER, C., JOHNSON, R., PERKINS, W., AND MACVICAR, T. 1994. A Computer Model to Simulate Everglades Hydrology.

In Everglades: The Ecosystem and Its Restoration, pp. 249–289.Delray Beach, Florida: St. Lucie Press.

8. FLEMING, D., DEANGELIS, D., GROSS, L., ULANOWICZ, R., WOLFF, W., LOFTUS, W., AND HUSTON, M. 1994. ATLSS: Across-Trophic-Level

System Simulation for the Freshwater Wetlands of the Everglades and Big Cypress Swamp. In Proceedings of the ATLSS Workshop, National

Biological Survey, Homestead, Florida.

9. GEIST, A. ET AL. 1994. PVM: Parallel Virtual Machine A User’s Gui and Tutorial for Networked Parallel Computing. MIT Press, Cambridge, MA.

10. HAEFNER, J. 1992. Parallel Computers and Individual-Based Models: An Overview. In Individual-BasedModels and Approaches in Ecology,

pp. 126–164.New York: Routledge, Chapman and Hall.

11. HWANG, K. 1993. Advanced Computer Architecture: Parallelism, Scalability, Programmability. McGraw-Hill, Inc., New York, New York.

12. KUMAR, V., GRAMA, A., GUPTA, A., AND KARYPIS, G. 1994. Introduction to Parallel Computing: Design and Analysis of Anlgorithms. The

Benjamin/CummingsPublishing Company, Inc., Redwood City, California.



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 41
13. ThinkingMachinesCorporation 1993b.CMMDReference Manual Version 3.0. Cambridge,Massachusetts: ThinkingMachines Corporation.

14. Thinking Machines Corporation 1993a. CMMD User’s Guide Version 3.0. Cambridge, Massachusetts: Thinking Machines Corporation.

15. WILLIAM B. ROBERTSON, J. 1989. Everglades: The Park Story. Florida National Parks andMonuments Association, Inc., Homestead, Florida.

Appendices

A. Plotted Statistics for the Initial Population Size of 2,000 Deer

0 5 10 15 20

Year

1.0

1.5

2.0

2.5

A
ve

ra
ge

 D
ai

ly
 T

ra
ve

l D
is

ta
nc

e 
(k

m
) 

Sequential
Parallel

Figure 23. Average daily travel distance per year for an initial deer population of 2,000.



42 C.A. ABBOTT ET AL.
0 5 10 15 20

Year

0

5

10

15

20

Y
ea

rl
y 

D
ee

r 
D

ea
th

s 
D

ue
 t

o 
W

ei
gh

t 
L

os
s

Sequential
Parallel

Figure 24. Weight loss deaths per year for an initial deer population of 2,000.

0 5 10 15 20

Year

1500

2000

2500

3000

3500

4000

D
ee

r 
P

op
ul

at
io

n 
Si

ze
 

Sequential
Parallel

Figure 25. Year-end population sizes for an initial deer population of 2,000.



COMPUTATIONAL MODELS OF WHITE-TAILED DEER 43
B. Plotted Statistics for the Initial Population Size of 20,000 Deer

0 5 10 15 20

Year

1.0

1.5

2.0

2.5

A
ve

ra
ge

 D
ai

ly
 T

ra
ve

l D
is

ta
nc

e 
(k

m
) 

Sequential
Parallel

Figure 26. Average daily travel distance per year for an initial deer population of 20,000.



44
0 5 10 15 20

Year

0

1

2

3

4

L
og

(Y
ea

rl
y 

D
ee

r 
D

ea
th

s 
D

ue
 t

o 
W

ei
gh

t 
L

os
s)

Sequential
Parallel

Figure 27. Weight loss deaths per year for an initial deer population of 20,000.

0 5 10 15 20

Year

14000

15000

20000

25000

30000

D
ee

r 
P

op
ul

at
io

n 
Si

ze
 

Sequential
Parallel

Figure 28. Year-end population sizes for an initial deer population of 20,000.


