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Abstract

Computer models are used in landscape ecology to simulate the effects of human
land-use decisions on the environment. Many socioeconomic as well as ecological
factors must be considered, requiring the integration of spatially explicit multidis-
ciplinary data. The Land-Use Change Analysis System or LUCAS has been
developed to study the effects of land-use on landscape structure in such areas as the
Little Tennessee River Basin in western North Carolina and the Olympic Peninsula
of Washington state. These effects include land-cover change and species habitat
suitability. The map layers used by LUCAS are derived from remotely sensed im-
ages, census and ownership maps, topological maps, and output from econometric
models. A public-domain geographic information system (GIS) is used to store, dis-
play and analyze these map layers. A parallel version of LUCAS (pLUCAS) was
developed using the Parallel Virtual Machine (PVM) on a network of workstations
giving a speedup factor of 10.77 with 20 nodes. A parallel model is necessary for
simulations on larger domains or for maps with a much higher resolution.
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1 Introduction

People affect the environment in which they live in many subtle and com-
plicated ways. In order to better understand the effects of human land-use
decisions on the environment, both ecological and socioeconomic factors must
be considered. This multidisciplinary approach is taken by the Man and the
Biosphere (MAB) project [3], which analyzes the environmental consequences
of alternative land-use management scenarios in two geographically distinct
regions: the Little Tennessee River Basin (LTRB) in North Carolina and the
Olympic Peninsula in Washington State.

The MAB project integrates the diverse disciplines of ecology, economics, so-
ciology, and computer science to evaluate the impacts of land-use. This inte-
gration of ideas also requires that data from the various disciplines share a
compatible representation. Such forms include tabular and spatial databases,
results of mathematical models, spatial models and expert opinions [3]. A geo-
graphic information system or GIS, such as the Geographic Resources Analy-
sis Support System (GRASS), can be used to easily store and manipulate the
spatially explicit representation of this data. The Land-Use Change Analysis
System (LUCAS) is a prototype computer application specifically designed
to integrate the multidisciplinary data stored in GRASS and to simulate the
land-use policies prescribed by the integration model.

1.1 Terminology

Familiarity with common terms from landscape ecology and geographic infor-
mation systems helps to better understand the LUCAS model. The spatially
explicit multidisciplinary data is stored in raster maps. Raster maps, also
known as data layers, are matrices of integers. Fach entry in the matrix is
called a grid cell or pizel and corresponds to the value of an attribute, such
as elevation, for a particular parcel of land. Contiguous pixels with the same
value are called patches or clusters. Many other geographic terms are discussed
in Section 2 in which GRASS is introduced.

The concept of transition is central to the LUCAS model. A transition is a
change, usually in land cover, from a given state to a new state as dictated by
the land-use scenario. Transition probabilities are the probabilities of a tran-
sition occurring for a particular grid cell. The generation of transition proba-
bilities is discussed in Section 3. A scenario is a predefined land management
policy. LUCAS defines many scenarios for each watershed it simulates. Two
watersheds, distinct geographic regions, are currently supported: the LTRB
and the Hoh River on the Olympic Peninsula.



As discussed in Section 3, a stochastic simulation requires multiple replicates,
repeated trials, to statistically verify the simulation. Usually many time steps,
five year intervals, are simulated for each replicate to model change over an
extended period of time.

1.2 Sample Scenario and Validation

In LUCAS, scenarios describe particular land-use policies to be simulated. As
an example, suppose that a natural resource manager in the LTRB would like
to determine the impact of not logging any trees for 25 years on the habitat
of the Wood Thrush (Hylocichla mustelina). The scenario is formally defined
to use the historical transition probabilities based on existing map layers from
1975, 1980 and 1986 along with the restriction that once a grid cell of land
is forested, it will remain forested. For example, the land manager may run
LUCAS with 10 replicates for 5 time steps each to simulate the change over
25 years. She can quickly examine the graphical statistics plotted on the screen
or more carefully analyze the statistics saved to a SAS [30] file. Other scenarios
with different constraints can be investigated and their results compared. In
this way the investigator can better understand the effects of potential land-
use decisions. The simulation and resulting statistics produced by LUCAS are
discussed in Section 3.

To validate the LUCAS model, historical data are compared against the sim-
ulated data. Starting with the oldest existing map, the period of time up to
the year for which the newest map exists must be simulated. The degree to
which the statistics for the simulated and historical land cover layers agree
determines the accuracy of the model for this period. Section 5 addresses this
validation procedure and explains the results.

1.3 Development and Parallelization

As a solution to the problem of modeling landscape change, LUCAS was im-
plemented as an “object-oriented” C++4 application to promote modularity.
It was envisioned that different or additional software modules could easily be
added to existing code as the needs of investigators changed. Section 5 dis-
cusses this future expansion and Section 4 examines the details of the modular
implementation along with the development of a parallel version of LUCAS.
The creation of a distributed version of LUCAS, Parallel LUCAS (pLUCAS),
was motivated by the ever more demanding and time consuming calculations
necessary to extend the LUCAS model to other larger regions. pLUCAS uti-
lizes the Parallel Virtual Machine (PVM) [12], an applications which allows a
network of arbitrary workstations to behave as a single computational unit.



This “virtual machine” can then simulate many land-use scenarios in a fraction
of the time required on a single processor.

2 Geographic Information System

The Geographic Resources Analysis Support System (GRASS) [37], developed
by the United States Army Construction Engineering Research Laboratory
(USACERL), was selected to be the Geographic Information System (GIS) for
LUCAS. Like many GISs, GRASS provides the tools necessary to manipulate
and display spatially explicit data and presents a standard format for data
representation.

2.1 GRASS and LUCAS

GRASS was chosen to be the GIS used in the development of LUCAS for

several reasons:

First, GRASS is able to import a variety of data types. The remote satellite
imagery used to generate the GRASS vegetation map layers used in LUCAS
was purchased from EOSAT, a company which distributes Thematic Mapping
(TM) and Multi-spectral Scanner (MSS) satellite data. These images were
interpreted for land cover using a software package called ERDAS [7]. This
format could readily be converted to a native GRASS format with the GRASS
utility r.in.erdas. Other geographical map layers, such as slope, aspect, and
elevation, were originally in Digital Elevation Model (DEM) format and were
imported via m.dem.extract. The land ownership data was in ARC/INFO!
format and was imported using v.in.arc. Finally, the population density
maps were originally in TIGER/line™ format and were subsequently con-
verted to ARC/INFO and imported into GRASS in the same manner. The
ecologist preparing these maps also used many of GRASS’s map manipulation
tools to create data layers, such as the distance from each point to the nearest
road, which required a simple distance calculation for each grid cell.

Second, the source code for GRASS is provided in the software distribution. In
developing LUCAS, there were many instances in which features or techniques
were not fully documented which made the availability of the GRASS source
code invaluable. A greater understanding of the functionality of GRASS was
thus also gained. The source code also enabled a few GRASS routines to be

LARC/INFO is a registered trademark of ESRI, Environmental Systems Research
Institute, Inc. 380 New York Street, Redlands, CA 92373.



adapted and integrated into LUCAS, avoiding the unnecessary rewriting of
programs. Another benefit of the availability of the source code is the relative
ease of software portability.

The final reason GRASS was selected was one of sheer economics. Because
GRASS was developed with governmental funds, it and its source code are
freely available from USACERL. If a commercial package such as ARC/INFO
were selected, the source code would not necessarily be included in the dis-
tribution and licensing fees would effectively make each copy of LUCAS cost-
prohibitive.

GRASS is not a perfect tool, however. As a non-commercial package, many
bugs persist in the code. For example, the GRASS X-windows monitor often
functions properly under SunOS 4.1.3, but not under Solaris 2.3. Some of the
features of GRASS are not well documented, which again made the availability
of the source code invaluable. The GRASS environment works well for someone
with knowledge of UNIX and programming but would be rather challenging
for an ecologist or land manager without such skills. In spite of its many
foibles, GRASS is a useful environment in which to work and program.

LUCAS was built on top of the GRASS libraries, so switching to another
GIS would be difficult, but not impossible. Replacing the map access routines
would be straight forward, but the graphical display code would need to be
completely rewritten. Naturally the algorithms and methods comprising the
essence of the LUCAS simulations would remain the same, regardless of the

GIS being used.

G SDBASE / coral / homes/ | ucas/ dat a
[ | | . |
Locations hoh dungeness littlet
| | | |
Mapsets  PERVANENT  berry hazen f1 anm
| | | | 1
Elements cell cellhd cats col r hi st
| | | o
Files ohl andcover 75.r90 ohsl ope. r90 ohaspect.r90

Fig. 1. Example of the GRASS storage hierarchy



2.2 GRASS Structure

The GRASS data hierarchy is illustrated in Figure 1. The root of the GRASS
file system is defined by the UNIX environment variable GISDBASE which is the
path name of the GRASS database. Specifying which database to use is there-
fore trivial, making the parallel implementation much easier (see Section 4.2).
Within the database there are many GRASS locations, which correspond to
watersheds in LUCAS. A location is an independent set of data, usually as-
sociated with a distinct geographic region. Within a given location there are
many mapsets. Mapsets are private repositories for maps and their supporting
files. Users may write only to mapsets which they own, but they may access
information in any mapsets which they have permission to read. Within each
location there is a special mapset called PERMANENT which holds specific in-
formation about that location. All users must be able to access PERMANENT,
therefore this is the mapset in which all of the original LUCAS maps are
stored.

FEach mapset contains a series of files and directories (called elements) shown
in Table 1 which correspond to map components. For a particular map, each
element will contain a file with the same name as that map.

Table 1
Table of selected GRASS mapset elements

Element Function

cell Binary raster file

cellhd Header files for raster maps

cats Category value information for raster maps
colr Color table for raster maps

colr2 Secondary color table for raster maps
cell misc | Miscellaneous raster map support files
hist History information for rater maps
dig Binary vector data

dig_ascii | ASCII vectory data

dig_att Vector attribute support

dig_cats | Vector category label support
dig_plus Vector topology support

reg Digitizer point registration

windows Predefined regions

WIND Current region

All of the input maps used in the LUCAS simulations are raster files; discrete
grids (or matrices) of numeric values each corresponding to a square parcel
of land called a grid cell. In GRASS these raster maps are accessed by row.



Any row may be read independently, but each row must be written sequen-
tially because each row is usually compressed using a row-oriented compression
scheme, run-length encoding (RLE) [27]. For raster maps, the cell directory is
where the actual binary map is stored. Maps can be stored in an uncompressed
(32-bit) format for each grid cell (pixel) or in the RLE compressed format.

The GRASS header contains such information as the map resolution, its ge-
ographic coordinates, and the number of rows and columns of grid cells con-
tained in the map. It is assumed that all of the maps used in LUCAS will have
identical headers so that the maps can be assured of being properly overlayed.
If the maps do not have the same region, the map may be resampled within
the correct region using the GRASS utility r.resample.

The category values are the names of the categories assigned to each numeric
value found in a map. For example, in the Dungeness Watershed land cover
map, the value (1) corresponds to coniferous forest; (2) corresponds to de-
ciduous or mixed forest; (3) to grassy, brushy or new growth regions; (4) to
unvegatated areas; (5) to water and (6) to snow, ice or clouds. The value of
(0) is reserved to indicate that no data is present for that grid cell.

The color table of each map assigns a specific color to each category value. If
these are not specified, GRASS will assign arbitrary colors automatically.

The region contains the geographic boundaries of the area being examined by
GRASS as well as the sampling resolution for this area. There is one current
region which must be specified (via g.region) before running LUCAS. For
information on installing GRASS for use with LUCAS see Appendix B and
[13].

2.3  Programming Interface

USACERL provides a series of full-featured C libraries with GRASS which
are carefully documented in the GRASS Programmer’s Manual [31]. There
are numerous major libraries with several smaller support libraries as shown
in Table 2. The existence of these GRASS libraries meant that many low-
level 1/O, graphics and map processing routines already existed and could be
incorporated into LUCAS. The GIS, Raster Graphics, Display Graphics, and
D libraries were the only ones used in the development of LUCAS.

GRASS programs can specify information about the current state of GRASS
by using environment variables. These are separate from UNIX environment
variables and are actually stored in a file, usually $HOME/.grassrc, where
$HOME designates the user’s default home directory. This technique is used by
the LUCAS graphical user interface (GUI) to communicate with the simulation



Table 2
C libraries provided by GRASS

Library Name Description

Simple contiguous-memory binary tree routines
Basic support for the creation and manipulation of two di-

mensional bitmap arrays
Convert Coordinates | Converts from one cartographic coordinate system to

Binary Tree
Bitmap

another
D Wrapper functions for some of the Display library routines
DLG Reads and writes U. S. Geological Survey DLG-3 format
maps

Digitizer Allows control of external digitizer

Display Graphics Graphics display routines; higher level than Raster Graphics
library

GIS General-purpose GRASS routines

Icon Simple manipulation of bitmapped icons

Imagery Integrated image processing routines

Linked List

Generic linked list memory manager; more efficient than

malloc() and free() implementations
Lock Provision for advisory locking mechanism

Projection Cartographic projection filters

Raster Graphics Video graphics display utilities

Rowio Routines to access multiples rows of large input maps
Segment Utilities to allow for random access of large maps
Vask Virtual ask; allows for Curses-like text 1/0

Vector Routines to process binary vector files

program.

GRASS is written in traditional Kernighan and Ritchie C (K&R C) [15] for
portability, but LUCAS is written in C++, which required a few adjustments
to be made to the programming interface. C4++ is a strongly typed language
and therefore all functions must be prototyped before they are used. K&R C,
on the other hand, does not impose this requirement and consequently GRASS
header files are devoid of type information. Therefore, before any GRASS
routines could be used in LUCAS, they first had to be prototyped. This is
another reason why the availability of GRASS’s source code was so crucial.

GRASS also allows for hardware-independent graphical displays, called mon-
itors, using MIT’s X-windows, Sun’s OpenWindows, Silicon Graphics’ IRIS,
Tektronix 4105, raster file or other formats. GRASS monitors are used to col-
lect user input regarding which impacts should be examined and to graphically
display resulting maps. The GRASS library routines allow for the complex dis-
playing of spatially explicit data without additional laborious programming.



3 Functional Design of LUCAS

LUCAS was designed to model landscape change stochastically using historical
data as a basis for prediction. Its modular design is intended to increase the
program’s flexibility and to allow for future modifications or additions.

3.1  Stochastic Modeling

The econometric model used in LUCAS is a dynamic, stochastic model which,
by definition, has at least one random variable, namely land cover, and deals
explicitly with time-variable interaction. A stochastic simulation? uses a sta-
tistical sampling of multiple replicates, repeated simulations, of the same
model. Simulations are used when the systems being modeled are too complex
to be described by a set of mathematical equations for which an analytic solu-
tion is attainable. Simulation is, however, an imprecise technique and provides
only statistical estimates and not exact results. The LUCAS computer simu-
lation serves as a tool to help evaluate land-use management policies before
actually implementing them on the real system.

An effective model need only have a high correlation between its prediction
and the actual outcome in the real system, not necessarily approximate the
real system, so statistical results are sufficient to understand the results of the
simulated model [29]. Therefore, the primary output produced by LUCAS are
statistics collected during the simulation which can be viewed as a graph or
analyzed with a statistical package, such as SAS [30]. Figure 2 outlines the
modular model implemented in LUCAS; the validation of which is discussed
in Section 5.1. Aside from predicting future behavior, models also allow in-
vestigators to explore the nature of potential scenarios. Each module of the
LUCAS model is described in detail in the following sections.

3.2  Socioeconomic Model Module and TPM

LUCAS takes a multidisciplinary approach to simulate change in a landscape.
Ecologists and economists used knowledge from both disciplines to develop
a land management simulation. Many discrete and continuous ecological and
sociological variables were used empirically in calculating the probability of
change in land cover (a discrete variable): land-cover type (vegetation), slope,
aspect, elevation, land ownership, population density, distance to nearest road,

2Quch simulations are also sometimes referred to as Monte Carlo simulations be-
cause of their use of random variables [23,29].



distance to nearest economic market center (town), and the age of trees. For
an analysis of the influence of these economic and environmental factors on
landscape change see [36]. Each variable corresponds to a spatially explicit
map layer stored in the GIS (see Section 2). A vector of all of these values
for a given grid cell is called the landscape condition label [8,9]. An example
landscape condition label (LCL) is shown in Table 3.

Socioeconomic Database
Model Module (GRASS)

Transition
Probability
Matrix

Landscape
Change
Module ~

A

]
=
5]
A
)}
]
]
=]
[
o

Land Cover
Maps/
Statistics

Tabular Data

Impact
Maps/
Statistics

Fig. 2. Relationship among LUCAS modules

Table 3
Example Landscape Condition Label in the Hoh Watershed on the Olympic Penin-
sula

{1l e Meaning Attribute
1 2 | Public Lands | Land ownership
2 73 | 73 years old | Tree age (Olympic Peninsula only)
3 4 | Unvegetated | Land cover (vegetation)
4 19 | 19° incline Slope
5 1 | True Steep slope (> 17° incline; Olympics only)
6 || 1531 | 1531 meters | Elevation
7 || 1089 | 1089 meters | Distance along roads to nearest market center
8 21 | 1890 meters | Distance to nearest road
Each element of the LCL # = (71, 23,...,75)T is used to determine the prob-

ability of change using the multinomial logit equation found in Equation (1)
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ki
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where n is the number of cover types, Zis a 5 x 1 column vector composed
of elements xy4,..., 25 of the LCLL ¥ in Table 3, 6} = (B15, B2+, P5;)7 is
a vector of logit coefficients, «;; is a scalar intercept, and Pr(i — j) is the
probability of unvegetated land cover remaining the same (i = x3 = 4 = j)
at time t + 1 or changing to another cover class (i.e., 7 = 1,2,3). The land
ownership (x1) determines which table of logit coefficients should be used and
the tree age (x3), used only for coniferous forest cover types, determines if
the trees have aged sufficiently to be harvested, i.e., change to another cover

type. The null-transition or probability of no land cover change is defined by
Equation 2.

1

1+ Z exp(aik + ngk)
ey

Pr(i — i) =

) (2)

where the symbols have the same meaning as in Equation (1). Example vectors
of coefficients for the Hoh Watershed are shown in Table 4.

Table 4
Example Multinomial Logit Equation Coefficients for unvegetated land cover in the
Hoh Watershed on the Olympic Peninsula

Pixel Transition to

Attribute Conifer Deciduous/Mixed | Grassy/Brushy
intercept a1 = —3.14560 a9 = —3.22460 a3 = —1.81020
slope Bia = 0.03760 Bi2 = 0.00496 Bis= 0.03180
steep slope B21 = —0.51363 B2 = 0.47170 B2,3 = —1.18990
elevation B31 = —0.00018 B30 = —0.00237 B33 = 0.00488
distance to town | (41 = 0.00245 B4 = 0.00490 B4z = 0.03040
distance to road | 51 = —3.14560 B5,2 = —3.22460 85,3 = —1.80200

The multinomial logit coefficients and intercept values were calculated empir-
ically by Wear et al. [39] from existing historical data stored in the GRASS
database (see Figure 2). The table of all probabilities generated by apply-
ing Equation (1) to all cover types is called the transition probability matrix
(TPM), an example of which can be found in Table 5. If the TPM in Table 5

were used, for example, a random number from the closed interval [0, 1] less
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than 0.5839 would change the land cover to grass/brushy, otherwise the land
cover would remain unvegetated. For a discussion of logistic regression and a
basis for Equation (1) see [34].

Table 5
Example Transition Probability Matrix based on the example multinomial logit
coeflicients.

From Unvegetated | Changing to Probability
4 =1 Coniferous <1x1073 =0
4—2 Deciduous/Mixed | < 1x 107% ~ 0
4—3 Grassy/Brushy 0.5839
4 =4 Unvegetated 0.4161

3.3  Landscape Change Module

The Landscape Change Module in Figure 2 is the heart of the LUCAS soft-

ware.

It takes the multinomial logit coefficients generated in Socioeconomic Model
Module, implements the actual landscape change, and produces new land cover
maps and statistics as output. The first step in designing LUCAS was to
develop the method to simulate one time step, a five year period, of landscape
change over multiple replicates. Figure 3 shows the general algorithm used by
LUCAS to simulate a given scenario.

3.8.1 Pizel-Based Transitions

Two types of transitions are simulated by LUCAS: grid cell (or pixel-based)
and patch-based. The determination of the pixel-based landscape transitions is
relatively trivial because each grid cell changes independently. The transition
probabilities from the initial cover type to all other cover types are calculated
using Equation (1) and the value of the landscape condition label of a grid cell.
A pseudorandom number is then drawn from a uniform distribution between
zero and one (see Section 3.3.3). This number, in turn, determines the new
land cover type for this grid cell via the calculated probabilities.

3.8.2 Patch-Based Transitions

Patch-based transitions are considerably more difficult because of the task of
patch identification. A patch (or cluster) is a group of contiguous grid cells with

identical landscape condition labels. The North-East-West-South (NEWS)
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Gathering of Statistics j
and Display of Results

Fig. 3. General LUCAS algorithm

Neighbor Rule [2] was used to define adjacency. The patch-identification al-
gorithm in Figure 4 is used by the GRASS program r.clump and was in-
corporated into LUCAS because of the availability of its source code and its
relatively meager memory usage. It is a two-pass algorithm which requires
only the current and previous rows to be in memory at one time. The tran-
sition is calculated in the same manner as in the pixel-based model when a
new patch is created and its value is passed on to the other members of the
current patch.
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begin
for row := 1 to NumberOfRows do begin
for column := 1 to NumberOfColumns do begin
if this cell <> cell to left and above then begin
Start a new patch and determine new value after transition
end;
else if this cell = cell to left, not above then begin
Continue the patch to the left
end;
else if this cell = cell above, not left then begin
Continue the patch in the row above
end;
else if this cell = cell above and left then begin
if number of patch above = number of patch to the left
then begin
Continue the patch
end;
else begin
Unify the two patches
end;
end;
end;
if second pass then begin
Write out row of new land cover
end;
end.

Fig. 4. Patch-based landscape transition algorithm

3.3.3 Random Number Generation

To implement the stochastic model mentioned in Section 3.1, uniformly dis-
tributed pseudorandom numbers are needed to accurately predict a new land-
cover value for a cell based on the the transition probabilities. Unfortunately,
most vendor-provided random number generators (RNGs) are not sufficient
for such modeling [26,4]. “Good” random numbers should be uniformly dis-
tributed, statistically independent and reproducible [29,24]. Truly random
numbers are not reproducible without storing them, so pseudorandom num-
bers are more suitable for simulations. Repeating a sequence of random num-
bers is desirable to debug simulations and two policies can be more accurately
compared statistically if both use the same “random” sequence [4].

According to Knuth and others [4,17,26,29], a very standard technique for
generating pseudorandom numbers is the use of linear congruential generators
(LCG) which were first introduced by Lehmer in 1949 [18]. LCGs compute the

ith integer in a pseudorandom sequence by the recursion found in Equation (3).
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x; = (ax;—1 + ¢) mod m, (3)

where multiplier a, increment ¢, and modulus m determine the statistical
quality of the generator. This generator meets many of the criteria established
for a “good” RNG including the fact that it requires very little memory to
implement. The problem with LCGs is that their period is limited to m [29]. All
pseudorandom number generators suffer because the sequences they generate
are periodic, i.e., there exists an integer ¢ such that y,., = y, for all n >
0, where y, is the nth number in a random sequence [24]. Without using
costly multiple-precision arithmetic, the cycle generated by LCGs is bounded
by the length of the machine word. Thus on a machine with 32-bit integer
arithmetic (31-bit with the sign bit), this means that a maximum of 2°! — 1 =
2,147.483,647 numbers can be generated before the sequence repeats itself.
Two billion may seem sufficient for a single simulation, but if the transitions
for large maps with millions of cells are to be calculated for many time steps
and replicates, this period could be exhausted.

Park and Miller propose that Lehmer’s LCG with ¢ = 7% = 16807, ¢ = 0
and m = 231 — 1, the Mersenne prime, be adopted as a minimal standard
random number generator because it has been exhaustively tested and its
characteristics are well understood [26].

Another revolutionary generator using a feedback shift register (FSR) was
introduced in 1965 by Tausworthe [32]. It could generate arbitrarily long se-
quences of random numbers without the multidimensional non-uniformities
found in LCGs. The kth bit, ai, of a random bit sequence is defined to be

ag=c1a5—1 + C2a5—2 + ... + Cpo1Up—pt1 + ar—, (mod 2) (4)

and has its maximum possible cycle length if and only if the polynomial 1 +
ar e+ .+ cp_l:sz_l + «? is primitive over GF[2]. 3 However, Toothill et
al. discovered negative results running a statistical test of the Tausworthe FSR
method in 1971 [33]. Two years later Lewis and Payne refined Tausworthe’s
generator to create a generalized FSR (GFSR) [19]. Because this algorithm
uses base two, the addition operation without carry is the same as the binary
exclusive OR (XOR, denoted @). Thus Equation (4) for integers (groups of

bits) is equivalent to

Tp=C1Tp—1 D C2Tp—2D ... D Cpo1Th—pt1 D Th—p- (5)
Using primitive trinomials, 1 4+ 2% 4+ 2, p > ¢, Equation (5) reduces to

L= Tk—q @l’k_p. (6)

3 For more information about Galois Fields, see [10].
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This requires only one XOR operation and some address calculations for each
integer generated by the GFSR and therefore is just as fast, if not faster than
LCGs. It also requires careful initialization of the vector before generating new
random numbers. Kirkpatrick and Stoll presented a specific implementation
of the generator described by Equation (6) (denoted R250) using ¢ = 103
and p = 250 [16]. In 1994 Carter created a C++ class library [5] of R250*
which uses Park and Miller’s minimal standard LCG to initialize the R250’s
bit vector. LUCAS uses Carter’s C++ implementation of R250 as its RNG. It
has an extremely long period (2?*?) and is faster than an LCG. It does require
more memory, i.e., the storage of 250 integers, but this cost is negligible.

3.3.4 Statistics

Once the map of new land cover has been generated, the ecologist or land
manager can use the results to determine the impact of the policy defined in
the Socioeconomic Model Module. As stated in Section 3.1, statistics are the
only true metric for analyzing a stochastic simulation. They also provide a
convenient method for understanding the impact of the particular land man-
agement policy or scenario. The statistics in Table 6 are collected by LUCAS
for each time step.

The stack-based, non-recursive algorithm in Figure 5 is used to identify patches
for statistics purposes. This method differs from the one used for patch-based
transitions, because the statistics algorithm requires the entire map layer to
be in memory at one time, which is not feasible for the composite map used
in Section 3.3.2. This routine was originally developed by Gardner [11] and
later modified by Minser [2].

‘The source code is available on the World Wide Web at URL
http://taygeta.oc.nps.navy.mil/random.html.
5 This is the corrected patch perimeter/area metric: (0.282 x perimeter/,/area) [1].
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Table 6

Statistics collected by LUCAS

Statistic

Pixel

Proportion of landscape in each cover type
Area (ha) of landscape in each cover type

Statistics Edge:area ratio for each cover type

Amount of edge (km) for each pair of cover types
Total edge (km) in the whole landscape

Patch

Number of patches
Mean patch size
Standard deviation of patch size

Statistics | Size of largest patch

Cumulative frequency distribution of number of patches by size
Mean patch shape (normalized shape index) ®

begin
for row := 1 to NumberOfRows do begin
for column := 1 to NumberOfColumns do begin
if cell is type being analyzed then begin
Push cell onto stack of cells in patch
repeat
Pop cell off top of patch stack
Mark cell as visited
Designate cell as center of a new patch
if neighbors of cell are same type then begin
Push neighbors onto patch stack
Increment patch size, perimeter values
end;
until patch stack is empty
end;
end;
end;
end.

Fig. 5. Patch-based statistics collection algorithm for a given land cover type
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3.4 Impacts Module

The land cover map produced by the Landscape Change Module (see Sec-
tion 3.3) is analyzed by the Impacts Module. This module may determine the
effect the changed landscape has on species habitats, water quality, or other
environmental impacts. Currently LUCAS is designed to perform only species
habitat suitability analyses. Dr. Scott M. Pearson at Mars Hill College (Mars
Hill, NC) created a list of species and habitat identification algorithms for each
of the watersheds currently simulated by LUCAS in Table 7 [28]. The output
from this module is a binary map; either a grid cell is suitable for a species or
it is not. The statistics in Table 6 are again collected for each impact map.

Table 7
Species habitats impacts modeled by LUCAS

Watershed Species

Little Tennessee
River Basin

Catawba Rhododendron
Cranefly Orchid

European Starling

Mountain Dusky Salamander
Northern Flying Squirrel
Princess Tree

Southeastern Shrew

Wood Thrush

Rhododendron catawbiense
Tipularia discolor

Sturnus vulgaris
Desmognathus ochrophaeus
Glaucomys sabrinus
Pauvlownia tomentosa
Sorex longirostris
Hylocichla mustelina

Olympic
Peninsula:

Hoh and

Dungeness

Cascade Oregon Grape
Heather Vole
Honeysuckle

Horsetail

Licorice Fern
Mountain Alder
Mountain Huckleberry
Red Squirrel

Twinflower

Berberis nervosa
Phenacomys intermedius
Lonicera ciliosa
FEquisetum telmateia
Polypodium glycyrhiza
Alnus sinuata

Vaccinium membranaceum
Tamiasciurus hudsonicus
Linnaea borealis

3.5 Parallel/Distributed Design

The parallel version of LUCAS (pLLUCAS) uses the same model as the serial
version, but is designed to run on a network of high-end workstations via the
Parallel Virtual Machine (PVM) software package [22]. This implementation
takes a very coarse-grained approach to parallelism. For accuracy purposes,
the stochastic simulation of LUCAS requires multiple independent replicates
which can easily be run independently on separate machines. The difficulty
arises in managing the interprocessor communication, the scheduling of tasks
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and the handling of data.

Master Permanent
Task GIS

Servant Servant Servant

Task Task Task
(Replicate 1) (Replicate 2) (Initial Stats)

Fig. 6. Relationship between master and servant tasks in pLUCAS

To simplify the problem, centralized task management is used by pLUCAS
(see Figure 6). One task® on the virtual machine is known as the master
while all other tasks are servants. The servant tasks are almost identical to
the serial version of LUCAS with only a few minor modifications. FEach servant
accesses its own copy of the GIS on its local disk because of the intense 1/0
required. The master, on the other hand, handles all task management and
works directly with the permanent GIS. The master manages a FIFO job
queue which consists of all of the independent replicates of one or multiple
simulations. In the serial version of LUCAS, the statistics for the original
maps are collected at the beginning of each run, but the parallel version has a
single job dedicated to that purpose as shown in Figure 6. Two other queues
are maintained to manage available processors: the run queue and the idle
queue. When a servant is available, i.e., at the head of the idle queue, it is
assigned the next task on the job queue. This continues until all tasks have
been dispatched. When a task has completed, the host is moved from the run
queue to the idle queue. After all tasks have completed, the data from the
servants are shipped back to the master to be reassembled and installed in the
permanent GIS.

The pLUCAS master task uses the Park and Miller generator mentioned in

6 A task in PVM is comparable to a UNIX process, i.e., an independent thread of
execution on a given host.
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Section 3.3.3 to create random number seeds which insure that the sequences
generated by the servant tasks’” R250 random number generators are inde-
pendent [6]. These seeds are passed to the servant tasks as they are spawned.

4 Serial and Distributed Implementations

As mentioned in Section 3, stochastic simulations require multiple replicates
to create sufficient data for statistical analysis. These repeated simulations
can be very time consuming on a single workstation if the maps are large and
many scenarios are to be examined. To remedy this, a distributed version of
LUCAS was created using PVM on a network of workstations. This section
first discusses the details of the serial C4++ implementation of LUCAS and
later its evolution into a parallel version.

4.1 C++ Classes

GRASS was written in K&R C [15] which necessitated LUCAS to be written
in either C or C4++ to use the GRASS libraries. C+4 was chosen as the pro-
gramming language for LUCAS to allow for an object-oriented solution. While
C++ is not a fully-object oriented language, it provides the C-compatibility
and useful object-oriented extensions necessary for LUCAS.

LUCAS consists primarily of objects which contain both data and methods
(procedures) which operate on that data. Figure 7 shows all of the major C++
classes found in LUCAS and their interaction.

In the following sections, each class is carefully outlined and its relationship
to the other classes is described in more detail.

4.1.1  DString Class

The DString class is a general-purpose class developed to dynamically manage
strings of text. C is notoriously awkward for performing string manipulations,
so this class helps to make their usage more convenient. Many of the file
names, GRASS variables, labels and similar information used in LUCAS are
text-based, therefore almost every instance of a string is a DString object.
Instantiating a DString object will automatically claim a portion of the system
heap to store the string; actually an array of characters.
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Aside from automatic storage allocation and release of memory, the DString
class also provides much superior operators for string manipulation. In order
to concatenate strings or other objects the insertion operator << is used. To
compare two strings, the intuitive == operator is used. For example:

DString some_string;
DString other_string = "Something else';
int intvalue = 5;

some_string << "X has a value of " << intvalue << " now.'";
if ( some_string == other_string ) {
cout << "The strings are equal.\n";

b

The only difficulty in using such objects is that the GRASS routines require
char* arguments, instead of DString objects, to be passed to them. This
problem is overcome by creating an operator to return the internal character
array.

4.1.2  Parameters Class

One of the few global objects in LUCAS is an instance of the Parameters class
called globals. This object provides an interface between the GUI and the rest
of LUCAS. All of the information gathered from the user in the GUI is stored
in GRASS variables which are read by the Parameters object. This object
stores those values and makes them available for other objects, thus creating
a central repository for user-selected parameters. These values are stored in a
height-balanced AVL tree, implemented by the AVL class, providing O(log, n)
access of global parameters.

The Parameters class also reads the impacts file (Section A.2), which describes
each impact module, and the scenario file (Section A.1) prescribed by the user
via the GUI. All of the multinomial logit equation coefficients of the Transition
Probability Matrix (TPM) are read in from the scenario file and stored in an
internal matrix. This matrix is then used to construct the instance of the
Composite class (Section 4.1.3) which in turn constructs its internal Matrix
class object (Section 4.1.5). As each of the input map layers specified in the
scenario file are read, a new OldRaster object (Section 4.1.7) is created, and
an array of these objects is then used to initialize the Composite class.

4.1.3  Composite Class

The Composite class is really the heart of the LUCAS program, containing
both input maps and the TPM. It creates a virtual “composite map” of land-
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scape condition labels (L.CLs) by forming an array of RasterFile objects. The
composite is then used to calculate transitions and produce a new land cover
map object.

Instances of the LandscapeConditionLabel class (Section 4.1.4) are used by the
Composite object to access individual LCLs. Within each LCL, the values are
extracted by the Composite object’s Matrix object (Section 4.1.5) to generate
the necessary transition probabilities.

4.1.4  LandscapeConditionLabel Class

The LandscapeConditionLabel class allows a grid cell on multiple maps to be
viewed as a single vector (see Figure 8 and Table 3). The LandscapeCondi-
tionLabel class is actually a virtual class, i.e., it is never instantiated.

Ownership
Tree Age

Land Cover

Slope

Steep Slope

Elevation

Distance to Town

Distance to Road

Fig. 8. Landscape Condition Label (LCL) as a vector across multiple map layers

Two other classes are derived from this base class: the LCL class and the
LCLrow class. These two classes have nearly identical methods, but one is
designed to operate on a single landscape condition label, and the other on a
row of landscape condition labels. The two classes are friends to each other
to allow access to their private data members. This also allows for operators
to improve code readability.” The LCL class manages its own storage, while
the LCLrow class relies on its own RowBuf class to manage its memory usage.
The RowBuf class provides for simple management of a single or multiple row

"These operators allowed the source code for the GRASS program r.clump to
be used for the patch-based transition module (Section 3.3.2) with relatively few
changes. Instead of single grid cells, the code operates on landscape condition labels
with identical operators.
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buffers; vectors each containing a row of grid cells. Because GRASS uses row-
oriented access to raster maps, all of the map I/O for LUCAS is performed
through the use of row buffers.

4.1.5 Matriz Class

The matrix of multinomial logit coefficients of the TPM are kept in the Matrix
class. The primary function of this class is to calculate transition probabilities
for a grid cell using the logit coefficients and the LCL corresponding to that
grid cell. Once the transition probabilities have been calculated, a random
integer is generated by the R250 class object (Section 4.1.6). This determines
which value the new grid cell should be assigned. The method for calculat-
ing transition probabilities to determine transitions is discussed at length in
Section 3.2.

4.1.6  R250 Class

This class for random number generation was created by Carter [5]. Details
on the implementation of this class can be found in Section 3.3.3. The seed for
the random number generator is the system clock for the serial version and a

number from a random sequence in the parallel version (see Section 3.5 and
Section 4.2.5).

4.1.7 RasterFile Class

The RasterFile class is another virtual base class. Two classes are derived from
this class: the OldRaster class and the NewRaster class, each used to read or
write GRASS raster maps. GRASS differentiates between existing raster files
and new raster files. This fact along with the different methods required for
the two types of maps motivated two separate classes.

The OldRaster class deals with the file management of existing raster files.
It does not have any internal row buffers, rather it relies on external RowBuf
objects (Section 4.1.4). This is because the existing raster objects are accessed
from a number of other objects. The OldRaster class also stores other infor-
mation about existing map layers, such as the GRASS header, category values
and the color map (Section 2.2). These GRASS parameters are used by the
Stats (Section 4.1.8), Graphics (Section 4.1.10) and NewRaster classes when
analyzing the raster map.

The NewRaster class deals with newly created maps (either land cover or tree
age) and manages its own RowBuf object to write out new map rows. The
color map and category values are copied from an OldRaster object to insure
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the new map is properly displayed.

4.1.8 Stats Class

The Stats Class is responsible for analyzing an existing OldRaster object (see
Section 4.1.8) and reporting various statistics about its associated map (Sec-
tion 3.3.4). These statistics are stored in two forms: A SAS-formatted [30]
text file and a special format for XGraph.® The graphics file is actually many
smaller graph files in one, with each graph file having each line preceded by
a unique keyword. This way the GUI is able to scan a single file and create a
menu of graphs to be displayed on the GRASS monitor.

4.1.9  Impacts Class

The function of this class is to determine the suitability of regions as habitats
for various species. Other impacts, such as water quality, could be incorporated
into this class. Table 7 shows which species’ habitats are modeled for each
watershed in LUCAS. A grid cell is deemed suitable habitat for a particular
species if it meets certain criteria. For example, the habitat for the Catawba
Rhododendron in the Little Tennessee River Basin is defined as balds (grassy)
with an elevation of more than 900m or on the edge of forests with the same
elevation. Each species has its own statically (as opposed to dynamically)
defined routine because of performance considerations.

4.1.10  Graphies Class

The Graphics Class is responsible for managing the GRASS monitor window.
When LUCAS is run, the monitor window in Figure 9 allows the user to
choose the format for the output during the simulation. Figure 10 shows the
two formats for the monitor. Each time step the monitor displays either the
original land-cover map next to the permuted land cover map or it displays
the permuted land cover map next to a species impact map.

4.2 Distributed Implementation

The distributed version of LUCAS, Parallel LUCAS or pLUCAS, is derived

from the existing serial version. Modifications were required to integrate the

8 XGraph version 11.3.2 was written in 1989 by David Harrison at the University
of California, Berkeley.
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GRASS 4.1 - Monitor: x0

Original Mop After Transition

B Please Select a Display Format:
Default Format
All Impacts

C Rhododendron

Wood Thrush

First
Replicate. ..

Fig. 9. GRASS monitor used to select output format

Parallel Virtual Machine? (PVM) software environment [22] for distributing
information across a network of workstations. Measures were also taken to
manage the tasks on independent machines and collect results from the hosts
comprising the virtual machine.

4.2.1 PVM

PVM allows tasks to be spawned on independent, heterogeneous workstations
and permits them to communicate over a network via message passing. It
handles such problems as guaranteed message delivery, the correct sequence
of message delivery, and differences in internal data representations on dis-
similar architectures, thus freeing the programmer from such concerns. PVM
guarantees delivery by using the TCP/IP protocol suite. This also aids in
portability as any machine connected to the Internet must communicate via

TCP/IP.

The developer is presented with a simple programming interface to create
messages of a specified type. First a message buffer is initialized, next the
message components are packed according to type and finally the message is

9PVM version 3.3.7 was used in pLUCAS.
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Original Mop After Transition

Forest 31% Complete
Replicate 5

Unvegetated Timestop 13

Grassy/brushy

Water

(a) Land cover maps before and after simulation

After Transiiion Cotmodbn Rhododerdron

Forest 31% Camplete

Replicate 5

Unvegetated Timestep 13

Grassy/brushy
Water

(b) Maps of land cover and impacts after simulation

Fig. 10. GRASS monitor showing the two possible types of display formats

sent with a designated message tag. On the receiving end, either a blocking
or non-blocking receive can be used to retrieve any message or messages with
a specific tag. The elements of the message are then unpacked by the receiver
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according to the same types in which they were packed.

To initialize PVM, a pvmd daemon process must be started on each of the
machines participating in the virtual machine. Once the virtual machine is
running, all messages are communicated from the user process to the local
pvmd daemon via TCP sockets, which then sends the messages across the
network to the remote pvmd daemon via UDP sockets. The remote pvmd then
relays the information to the remote version of the user process again via
TCP. The PVM libraries [12] are required for a user program to be able to
communicate with the local pvmd daemon.

4.2.2 pLUCAS Graphical User Interface

The serial GUI was originally written by MacIntyre [21,20] in K&R C and Mo-
tif 1.2 and was later converted to ANSI C and the Motif User Interface Lan-
guage (UIL) by Levy [3]. The existing user interface requires the proprietary
Motif Developer’s Libraries which are not available on all of the machines on
which the parallel version was intended to be run. Instead, the public-domain

packages TCL 7.4b3 and Tk 4.0b3 were used.

The Tool Command Language (TCL) [25] and its graphical Tool Kit (Tk)
allow for the rapid development of MIT X11 Windows-based interfaces as well
as provide a rich variety of scripting commands. This made the ideal choice
for pLUCAS because its GUI is relatively simple and it primarily manipulates
files and strings; tasks which are more difficult in C. Since TCL is a scripting
language, changes made to the interface were immediate, without requiring
time-consuming recompiling. Developing a new interface in TCL/Tk required
a number of days, instead of months, to implement. The primary disadvantage
of using TCL/Tk over Motif or the Xt libraries is that it is interpreted and
therefore slower and somewhat less robust, but the maintenance is simpler
and the time required to learn the package is much less.

4.2.3  Main Window

The main window of pLUCAS is shown in Figure 11(a). The user can select
the PVM host file used to initialize the virtual machine as well as adding and
removing hosts from this list via the Configure menu. This menu also allows
the user to copy the data files to the remote hosts, remove these files and
start and stop PVM. The large listbox in the center of the window displays
scenarios which have been selected in the Add Scenario Window. Once all of
the scenarios have been selected, the Run Scenarios pushbutton starts the
virtual machine and calls the pLUCAS C++ program to manage the remote
PVM tasks.
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(b) Add scenario window of pLUCAS GUI
Fig. 11. pLUCAS graphical user interface

4.2.4  Add Scenario Window

This window (See Figure 11(b)) is displayed when the Add Scenario pushbut-
ton is selected in the main window. The design of this window was strongly
influenced by the existing serial LUCAS GUI. Each field has a menubutton
which pops up a list of radio buttons used to select the dependent variable,
watershed, mapset, beginning year, and scenario name. The scales in the bot-
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tom left corner select the number of replicates and time steps to be run and
the number of maps to be saved per replicate. A scrollable listbox on the right
allows the user to select any impacts to be run each replicate.

Once the scenario has been properly selected, the Add Scenario pushbutton
adds this current scenario to the list on the main window. The Reset push-
button resets the window to the default values and the Dismiss pushbutton
unmaps the entire window.

4.2.5 Modifications to LUCAS

In the serial version of LUCAS, the main program directed the classes in
Figure 7 to perform the desired number of replicates and time steps of simu-
lation. In the parallel version, this responsibility is passed to the PVM class
(Section 4.2.6) and the main program determines which incarnation of pLU-
CAS is currently running. Under PVM it is typical to have a single executable
perform many different functions. pLUCAS has three major modes: master,
servant and send data, each of which are examined in Section 4.2.6 in more
detail.

The Stats class also had to be altered in the distributed version of LUCAS
because all of the statistics collected each time step were originally stored in
a single file. The implicit parallelism of pLUCAS required that each servant
create its own, independent statistical files which are later reassembled by the
master.

The final major alteration necessary to make LUCAS a parallel application
was the creation and distribution of unique seeds for the random number
generator. As discussed in Section 3.3.3, the R250 generator uses the standard
Lehmer linear congruential generator to create seeds. This seed must be unique
to each servant process to insure that a replicate is not repeated. Two hundred
fifty integers are used to initialize the R250 generator, so a new seed for the
LCG is generated simply by taking the value of the sequence after every 250
iterations.

4.2.6 PVM Class

As discussed in the Section 3.5, there are three major states of the pLUCAS
executable (see Figure 6). Each serves a different function which is outlined
in the following subsections.
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4.2.7 Master mode

There is only one master task in the virtual machine. It is responsible primarily
for task scheduling and result collecting. The master task is run directly from
the GUI, but all other PVM tasks are spawned by the master task itself.

Once the number of hosts running in the virtual machine has been determined,
the master task spawns servant tasks to perform the jobs defined by the user
in the GUI. Because the master task spends most of its time in a blocking
wait state for the servant tasks to complete their jobs, a servant task also runs
on the master node to increase the overall throughput.

Once the servant tasks have performed all of the desired simulations, a send
data task is spawned by the master on each host. After the results are all back
on the host node, a single SAS and graphics output file is generated for each
scenario from the many independently generated statistics files. These files
along with any saved land cover maps are then installed in the permanent
GIS. This final step is cumbersome and costly in terms of communication
bandwidth, but the results need to be centrally stored in order for them to be
of any use.

4.2.8  Servant mode

A PVM task running in servant mode is essentially a scaled-down version of
the serial version of LUCAS. It is responsible for simulating multiple time
steps of a single replicate. The only difference between this mode and the
serial version is that the master task assigns a unique replicate number and
random number seed to a particular servant task. It notifies the master task
upon completion of its calculations.

4.2.9 Send data mode

This mode copies data from the servant nodes to the master node and was
created to reduce the amount of time spent relaying information back to the
master. One send data task is assigned to each servant node. If many replicates
are run on the same host, it is much more efficient to send all of the information
back to the master at once, rather than piecemeal. The send data mode also
performs rudimentary housekeeping on the remote node, cleaning up after the
servant tasks and preparing for the next time pLUCAS is run.
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5 Results and Conclusions

Although it is not necessary in land management for a model to closely ap-
proximate the system being modeled, validation is useful to test the model’s
realism. In Section 5.1 the validity of the implementation of the LUCAS model
is discussed. Such a simulation must be reasonably fast, as well as valid, to
efficiently investigate a large number of land use scenarios. In order to reduce
the computational time to a minimum, a parallel version of LUCAS was cre-
ated which 1s significantly faster than its serial counterpart. To determine the
benefits of this distributed implementation, both LUCAS and pLUCAS are
compared in Section 5.2. Although parallelization is a research advancement,
much more is yet to be accomplished with this ecological simulation model.
Potential future directions for LUCAS are outlined in Section 5.3.

5.1 Validation of the LUCAS model

To test the validity of the LUCAS model, ten pixel-based replicates of the
historical transition simulations for the Little Tennessee River Basin were an-
alyzed. Each replicate began with an initial land cover map for the year 1975.
Two 5-year time steps using the historical transition probabilities from 1975—
1986 were simulated followed by one time step using the 1986-1991 historical
transition probabilities. The simulated 1980, 1985 and 1990 maps were then
compared against the historical 1980, 1986 and 1991 maps. '°

Turner [35] reported that the proportion of land cover of each cover type
simulated by LUCAS corresponded closely to the actual historical land cover
types. The simulation for forest, which was the dominant land cover type,
had little room to redistribute because it comprises 90% of the landscape and
hence was spatially distributed accurately. For the other cover types, however,
LUCAS simulated many more patches than were present in the historical
maps, i.e., the landscape became more fragmented. This is not surprising
considering that the pixel-based model used in the simulation examines only
independent grid cells. For example, after one time step 3417 patches of grassy
land cover with an average patch size of 1.09 cells were simulated, whereas the
actual map contained 1583 grassy patches with an average patch size of 2.4
cells. If a patch-based simulation were used, it would likely cause somewhat less
fragmentation. However, due to the strict definition of a patch in the current
implementation, i.e., contiguous grid cells with identical landscape condition
labels, many patches tend to degenerate into one-cell patches or pixels. This is
because the chance of at least one of the components of the LCL differing from

10Due to the availability of only a select number of land cover maps, historical
maps are not available for each simulated year.
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its neighbor is great, thus creating small patches. A complete set of statistics
from the model validation is available in [13].

5.2  Distributed Results

To test the relative speed of LUCAS and pLUCAS on a varying number of
hosts, 10 replicates of 20 time steps for each of the four historical, pixel-based
scenarios of the Hoh Watershed on the Olympic Peninsula shown in Table 8
were used. Figure 12 shows the Hoh land cover map before and after a 100
year simulation.

Table 8
Scenarios of land-cover change for Hoh Watershed according to historical transition
probabilities

Ownership Type
Scenario Public Private
1 1986—-1991 | 1986—-1991
2 1986-1991 | 1975-1986
3 1975-1986 | 1986—-1991
4 1975-1986 | 1975-1986

5.2.1 Computing environment

Both LUCAS and pLUCAS were tested on a shared 10 Mb/sec Ethernet
network of 20 dedicated 70 MHz Sun SPARCstation 5 machines each with
32 Mb of memory. pLUCAS and a bare essential subset of the GIS were
locally installed in the /var/tmp directory, a local disk, on each machine which
required 6 Mb of disk space for the initial installation and approximately
25 Mb during execution.

5.2.2  Scalability, Speedup, and Efficiency

Three trials of the same set of scenarios were performed using one host for
LUCAS and 4, 8, 12, 16, and 20 hosts for pLUCAS. The elapsed wall-clock
time for program execution found in Figure 13 and Appendix D were compared
and relative speedups are shown in Figure 14. These times do not include the
minimal 1-2 minute one-time setup overhead for pLUCAS found in Table D.1.

Speedup factor is defined as S(n) = T(1)/T(n), [14] where T'(n) is the elapsed
wall-clock time, and n is the number of nodes (or hosts in PVM). Figure 14
shows an asymptotic behavior for speedup: for a small number of hosts the
speedup is very dramatic, but as more and more hosts are added, the relative
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(a) Before simulation of Scenario 4

(b) After simulation of Scenario 4
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Fig. 12. Hoh Watershed maps before and after a 100-year simulation

speedup becomes increasingly less. The speedup appears to approach a factor
of approximately 11 over the serial version. Naturally, a linear speedup would

be ideal, but is not realized due to increasing overhead and the communication

bottleneck inherent in a master-servant model of parallelism.

From the speedup factors, the efficiencies for the various number of proces-
sors is easily determined. Efficiency is calculated by £ = S(n)/n, where S is
the speedup factor and n is the number of hosts. Figure 15 shows that the
relative average efficiency steadily decreases as more hosts are added to the

virtual machine. As the speedup factor approaches its asymptote, the effi-
ciency plummets. This means that small gains in speed come at the cost of

inefficient machine use.
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Fig. 13. Average wall-clock execution time for pLUCAS on multiple hosts

Clearly pLUCAS is scalable for a moderate number of hosts (&~ 20). Running
pLUCAS on a much larger number of machines, however, would not necessarily
be beneficial as speed increases would likely be small. Porting the program in
its current form to a supercomputer without concurrent I/O would also be
rather impractical because pLUCAS is an [/O-intensive application. It would
be reasonable, however, if each node had access to either a local disk or a
shared, striped disk array with parallel I/O. This is why PVM made such an
excellent choice as a parallel platform for pLUCAS.

5.3  Future Development

Although the LUCAS Project has set a precedent for landscape change simu-
lation, it is not the final solution to ecological landscape modeling. Much more
research needs to be done both ecologically and computationally in this field.
An immediate addition to LUCAS could be the integration of the multino-
mial logit coefficients for the Dungeness Watershed, also on the the Olympic
Peninsula. Data already exists and is in place, so these additional scenarios
could be immediately incorporated into the package.

The first extension to the existing code itself could be the addition of other im-
pact modules, such as water quality or additional species impacts. The species
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habitat module could also be reconstructed in such a way that the user could
easily and dynamically define a habitat, thereby alleviating the need for pre-
defined routines. Naturally performance will continue to be an issue, making
the migration to such a dynamic system more challenging. Similarly, other
transition probability modules could be created which would not require an
economist to generate a table of coefficients a priori, rather a land manager
could simply define a scenario and run it in the same sitting. The economist’s
knowledge would then have to be encoded in some other fashion than is cur-
rently employed.

The next most obvious future need will be simulations on larger maps or at
higher resolution which will increase the already sizeable demand on the com-
puter’s resources. A natural solution would be to spatially distribute portions
of the maps across many processors of a supercomputer or a network of work-
stations, having each node calculate a portion of the map. For pixel-based
simulations this would be fairly straightforward, but patch-based modeling
would be much more challenging. Issues such as patch unification, I/0, and
data reassembly would be other major hurdles.

Currently, the Integrated Modeling System (IMS) for the Southern Global
Change Program (sponsored by the USDA Forest Service) is adapting LUCAS
for the study of forest response to environmental stress, disturbances, and land
use changes in the southeastern United States. The study region is orders of
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magnitude larger than the initial test watersheds already implemented, so
parallelism may be the only solution to challenges on this scale.

5.4  Conclusions

The Land-Use Change Analysis System is a valuable prototype tool for mod-
eling changes in a landscape to better understand human influence on the
environment. LUCAS has already been used by several investigators to better
understand land management and change in the LTRB and the Hoh water-
sheds [28,36,38,39]. Based on the validation results, the environmental scien-
tists working on the project have confirmed their model. Future development of
the LUCAS concept will be facilitated by other projects such as the Strategic
Environmental Research and Development Program (SERDP) at Oak Ridge
National Laboratory (ORNL) and the IMS for the Southern Global Change

Program.

As a computer application, LUCAS takes an object-oriented approach to sim-
ulation in hopes of promoting code-reusability and versatility for future adap-
tations. It addresses the problem of efficiently managing a large quantity of
spatially explicit data, applying a stochastic model (both pixel- and patch-
based), and collecting meaningful statistics. pLUCAS offers a distributed so-
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lution to the same problem, thus opening the door for larger, more complex
simulations on a network of workstations or a supercomputer.
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Appendices

A Support Files

Two files are required to run a LUCAS simulation: the scenario file, which
defines all of the parameters of a particular land management policy and
the impacts file, which lists the available impacts. This allows the GUI to
determine which impacts are supported.

A.1 Scenario File

The graphical user interface (GUI) allows the user to select which scenario she
would like to run. Each scenario is defined by a specific scenario file in the
SCENARIOS directory. The scenario file specifies:

— the name of the scenario

— the dependent variable (currently only land cover)

— the watershed in which to run the scenario

— the year in which the starting map was created

~ the maps required for the scenario

— the types of the above maps (e.g. impacts map, land cover, etc.)

~ the number of values the dependent variable can assume

— the number of independent variables, i.e. the columns in the table of multi-
nomial logit coefficients

— the logit coefficients of the Transition Probability Matrix (TPM)

An example scenario for the Little Tennessee River Basin uses historical tran-
sitions for both public and private lands over the period 1975-1986. The de-
pendent variable is land cover and the year of the original map is 1980. The
following maps are required:

LAYER slandcover80.r901rcm cover
LAYER  spubprivate.r90rcm matrix
LAYER sslope.r90m slope
LAYER selevation.r90m elevation
LAYER  spopden80.r90m indep
LAYER sdistfranklin.r90m indep
LAYER sdistroads.r90m indep
IMPACT saspect.r90m aspect
IMPACT shyd.r90m hydro

The first column is the type of map layer (either standard map LAYER or
impacts map IMPACT), the second column is the name of the map and the
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third column is the type of map (cover is a land cover map, matrix deter-
mines which table of coefficients is to be used, indep are general independent
variables and slope, elevation, aspect and hydro are specific independent
variables). Land cover can change to one of three cover types and there are
six rows of coefficients:

# Private Lands ( 1975-1980 )

# slope elevation popdens disttown distroads intercept
11 0.0 0.0 0.0 0.0 0.0 0.0
12 -0.125 -0.00163 0.0017 -0.0019 -0.0242 -0.2845
13 -0.10794 -0.0025 -0.0001 -0.00533 -0.0114 1.623
21 -0.0028 0.0012 -0.0034 0.0066 -0.064 -1.446

The first column is the starting land cover type and the second column is the
ending land cover type. The transition probability matrix and the multinomial
logit equations are discussed in Section 3.2.

A.2  Impacts File

The impacts file contains a colon-delimited list of parameters for each impact
module in LUCAS. For each module the following information is specified: the
watershed to which it belongs, the module number, the name of the module
and the name of the output file associated with the module. Currently only
the impact of land cover change on the habitats of certain species is modeled.

littlet:0:Catawba Rhododendron:rhodo
littlet:1:Cranefly Orchid:orchid

hoh:8:Twinflower:flower
hoh:9:Horsetail:tail

Module numbers are necessary to indicate which hard-coded routine should be
used to simulate the desired impact. While it would be much more desirable to
have the impacts file itself define the impact routine, the predefined routines
are necessary because of performance considerations.

B Installation of LUCAS

First GRASS must be installed on the local UNIX system. GRASS 4.1 is freely
available from USACERL via anonymous FTP at
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ftp://moon.cecer.army.mil /lucas/grass4.1. Information about GRASS,
the GRASS User’s Reference Manual and an installation guide can be found
at URL http://www.cecer.army.mil/lucas/ on the World Wide Web. If
LUCAS is to be compiled, the Motif Developer’s Library version 1.2 or later,
GNU g++ version 2.5.8 or later (or equivalent C++ compiler) must be installed
on the system.

Once GRASS and LUCAS have been installed and the LUCAS mapsets have
been placed in the GRASS database, the user will need to follow the following
procedure:

(i) Set the UNIX environment variable GISBASE to the path leading up to

the GRASS directory, e.g., in the user’s $HOME/ . cshrec file:
setenv GISBASE /coral/homes/lucas/gis.

(ii) Set the UNIX environment variable GISDBASE to the path leading up to
the GRASS database, e.g., in the user’s $HOME/ . cshrc file
setenv GISDBASE /coral/homes/lucas/data.

(iii) Set the UNIX environment variable GISRC to point to the user’s GRASS
resource file also in $HOME/ . cshrc. This file is usually $HOME/ . grassrc.

(iv) Run the grass4.1 shell. Set the name of the location, mapset, and
database path name.

(v) From within the GRASS shell, run g.region to set the current region
for the mapset. Select the “Set from a raster map” option and choose the
map for the appropriate location:

Location | Region Raster

dungeness | odunge.r90

hoh ohoh.r90
littlet littlet.mask
(vi) Exit the GRASS shell.
(vii) Run lucas to start the GUI.

Steps 1v—vi should be repeated for each location.

C Installation of pLUCAS

The serial version of LUCAS, outlined in Appendix B, should be installed,
as much of the same software is needed in both installations. Additionally,
TCL 7.4 and Tk 4.0 or later must be installed to use the parallel GUI. They
can be obtained via anonymous F'TP at ftp://ftp.cs.berkeley.edu/ucb/tcl.
Information about TCL/Tk, its use and installation can be found at URL
http://www.sco.com/Technology/tcl/Tcl.html. The Parallel Virtual Ma-
chine (PVM) version 3.3.7 or later also needs to be installed on each host
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participating in the virtual machine. PVM can be downloaded from
ftp://ftp.netlib.org/pvm3 and http://www.epm.ornl.gov/pvm/
pvim_home.html has on-line information.

Once the software is installed:

(i) Edit the first line of gui.tcl to point to the local installation of TCL.
(e.g., #!/home/lucas/local/bin/wish)
(ii) Make sure the PVM_ROOT and PVM_ARCH environment variables are set in
the user’s $HOME/ . cshrc file.
) Make sure each host is in the user’s .rhosts file.
iv) Insta ib directory under :
iv) Install PVM 1ib directory under pLUCAS
v ace analysis executables for each architecture in the appro-
(v) Place pLUCAS lysi tables f h architecture in the app
priate PVM bin directory
vi) Install the optiona .plucasrc file.
i) Install the optional $HOME/.pl fil
(vii) Run the pack script to create the export tar files.
(viii) Run the plucas_install script on the master node. This installs the
master node in /var/tmp.
(ix) Run the plucas script to launch pLUCAS.

NOTE: It is assumed that the host running the GUI will be the master node.
The $HOME/ . plucasrec file is filled with X resources:

*IconName: LUCAS
*background: LightSlateBlue
*foreground: NavajoWhite
*highlightBackground: LightSlateBlue
*activeBackground: SlateBlue
*activeForeground: Gold
*troughColor: LightSlateGrey
*sunkenBackground: MidnightBlue
*selectColor: Red
*3calexhighlightBackground: MidnightBlue

D Execution times of LUCAS and pLUCAS

The one-time setup overhead times, which include installing the files on the
remote nodes and starting and stopping PVM, are found in Table D.1. Ta-
ble D.2 shows the average elapsed wall-clock times for the calculation of the
the four pixel-based historical scenarios for the Hoh Watershed in Table 8 with
LUCAS running on a single host and pLUCAS running on 4, 8, 12, 16, and
20 hosts. The averages were taken over three independent timings. The cal-
culation of speedup and efficiency are discussed in Section 5.2. Timings were
taken using the UNIX utility /usr/5bin/time.
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Table D.1
Elapsed wall-clock time (minutes) for setting up pLUCAS

Nodes Setup times Average time

41 1:15.9 | 1:18.8 | 1:12.1 | 1:15.6
8 (| 1:30.2 | 1:23.5 | 1:27.2 | 1:27.0
12 || 1:34.9 | 1:37.7 | 1:37.3 | 1:36.8
16 || 1:44.2 | 1:48.6 | 1:48.8 | 1:47.2
20 || 2:10.2 | 2:17.2 | 2:08.0 | 2:11.8

Table D.2
Elapsed wall-clock time (minutes), speedup, and efficiency for Hoh historical sce-
narios

Actual Average
Nodes times time Speedup | Efficiency
1| 277:59.6 | 278:46.5 | 279:36.7 | 278:47 1.00 1.000
4 76:05.9 | 76:19.4 | 76:09.7 | 76:11 3.65 0.915
8 40:28.5 | 41:22.2 | 41:34.2 | 41:08 6.78 0.847
12 34:02.4 | 33:01.4 | 32:57.1 33:20 8.36 0.697
16 26:15.0 | 26:27.8 | 26:29.5 | 26:24 10.56 0.660
20 25:53.9 | 25:55.0 | 25:49.2 | 25:53 10.77 0.529
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