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1 IntroductionPeople a�ect the environment in which they live in many subtle and com-plicated ways. In order to better understand the e�ects of human land-usedecisions on the environment, both ecological and socioeconomic factors mustbe considered. This multidisciplinary approach is taken by the Man and theBiosphere (MAB) project [3], which analyzes the environmental consequencesof alternative land-use management scenarios in two geographically distinctregions: the Little Tennessee River Basin (LTRB) in North Carolina and theOlympic Peninsula in Washington State.The MAB project integrates the diverse disciplines of ecology, economics, so-ciology, and computer science to evaluate the impacts of land-use. This inte-gration of ideas also requires that data from the various disciplines share acompatible representation. Such forms include tabular and spatial databases,results of mathematical models, spatial models and expert opinions [3]. A geo-graphic information system or GIS, such as the Geographic Resources Analy-sis Support System (GRASS), can be used to easily store and manipulate thespatially explicit representation of this data. The Land-Use Change AnalysisSystem (LUCAS) is a prototype computer application speci�cally designedto integrate the multidisciplinary data stored in GRASS and to simulate theland-use policies prescribed by the integration model.1.1 TerminologyFamiliarity with common terms from landscape ecology and geographic infor-mation systems helps to better understand the LUCAS model. The spatiallyexplicit multidisciplinary data is stored in raster maps. Raster maps, alsoknown as data layers, are matrices of integers. Each entry in the matrix iscalled a grid cell or pixel and corresponds to the value of an attribute, suchas elevation, for a particular parcel of land. Contiguous pixels with the samevalue are called patches or clusters. Many other geographic terms are discussedin Section 2 in which GRASS is introduced.The concept of transition is central to the LUCAS model. A transition is achange, usually in land cover, from a given state to a new state as dictated bythe land-use scenario. Transition probabilities are the probabilities of a tran-sition occurring for a particular grid cell. The generation of transition proba-bilities is discussed in Section 3. A scenario is a prede�ned land managementpolicy. LUCAS de�nes many scenarios for each watershed it simulates. Twowatersheds, distinct geographic regions, are currently supported: the LTRBand the Hoh River on the Olympic Peninsula.2



As discussed in Section 3, a stochastic simulation requires multiple replicates,repeated trials, to statistically verify the simulation. Usually many time steps,�ve year intervals, are simulated for each replicate to model change over anextended period of time.1.2 Sample Scenario and ValidationIn LUCAS, scenarios describe particular land-use policies to be simulated. Asan example, suppose that a natural resource manager in the LTRB would liketo determine the impact of not logging any trees for 25 years on the habitatof the Wood Thrush (Hylocichla mustelina). The scenario is formally de�nedto use the historical transition probabilities based on existing map layers from1975, 1980 and 1986 along with the restriction that once a grid cell of landis forested, it will remain forested. For example, the land manager may runLUCAS with 10 replicates for 5 time steps each to simulate the change over25 years. She can quickly examine the graphical statistics plotted on the screenor more carefully analyze the statistics saved to a SAS [30] �le. Other scenarioswith di�erent constraints can be investigated and their results compared. Inthis way the investigator can better understand the e�ects of potential land-use decisions. The simulation and resulting statistics produced by LUCAS arediscussed in Section 3.To validate the LUCAS model, historical data are compared against the sim-ulated data. Starting with the oldest existing map, the period of time up tothe year for which the newest map exists must be simulated. The degree towhich the statistics for the simulated and historical land cover layers agreedetermines the accuracy of the model for this period. Section 5 addresses thisvalidation procedure and explains the results.1.3 Development and ParallelizationAs a solution to the problem of modeling landscape change, LUCAS was im-plemented as an \object-oriented" C++ application to promote modularity.It was envisioned that di�erent or additional software modules could easily beadded to existing code as the needs of investigators changed. Section 5 dis-cusses this future expansion and Section 4 examines the details of the modularimplementation along with the development of a parallel version of LUCAS.The creation of a distributed version of LUCAS, Parallel LUCAS (pLUCAS),was motivated by the ever more demanding and time consuming calculationsnecessary to extend the LUCAS model to other larger regions. pLUCAS uti-lizes the Parallel Virtual Machine (PVM) [12], an applications which allows anetwork of arbitrary workstations to behave as a single computational unit.3



This \virtual machine" can then simulatemany land-use scenarios in a fractionof the time required on a single processor.2 Geographic Information SystemThe Geographic Resources Analysis Support System (GRASS) [37], developedby the United States Army Construction Engineering Research Laboratory(USACERL), was selected to be the Geographic Information System (GIS) forLUCAS. Like many GISs, GRASS provides the tools necessary to manipulateand display spatially explicit data and presents a standard format for datarepresentation.2.1 GRASS and LUCASGRASS was chosen to be the GIS used in the development of LUCAS forseveral reasons:First, GRASS is able to import a variety of data types. The remote satelliteimagery used to generate the GRASS vegetation map layers used in LUCASwas purchased from EOSAT, a company which distributes Thematic Mapping(TM) and Multi-spectral Scanner (MSS) satellite data. These images wereinterpreted for land cover using a software package called ERDAS [7]. Thisformat could readily be converted to a native GRASS format with the GRASSutility r.in.erdas. Other geographical map layers, such as slope, aspect, andelevation, were originally in Digital Elevation Model (DEM) format and wereimported via m.dem.extract. The land ownership data was in ARC/INFO 1format and was imported using v.in.arc. Finally, the population densitymaps were originally in TIGER/lineTM format and were subsequently con-verted to ARC/INFO and imported into GRASS in the same manner. Theecologist preparing these maps also used many of GRASS's map manipulationtools to create data layers, such as the distance from each point to the nearestroad, which required a simple distance calculation for each grid cell.Second, the source code for GRASS is provided in the software distribution. Indeveloping LUCAS, there were many instances in which features or techniqueswere not fully documented which made the availability of the GRASS sourcecode invaluable. A greater understanding of the functionality of GRASS wasthus also gained. The source code also enabled a few GRASS routines to be1ARC/INFO is a registered trademark of ESRI, Environmental Systems ResearchInstitute, Inc. 380 New York Street, Redlands, CA 92373.4



adapted and integrated into LUCAS, avoiding the unnecessary rewriting ofprograms. Another bene�t of the availability of the source code is the relativeease of software portability.The �nal reason GRASS was selected was one of sheer economics. BecauseGRASS was developed with governmental funds, it and its source code arefreely available from USACERL. If a commercial package such as ARC/INFOwere selected, the source code would not necessarily be included in the dis-tribution and licensing fees would e�ectively make each copy of LUCAS cost-prohibitive.GRASS is not a perfect tool, however. As a non-commercial package, manybugs persist in the code. For example, the GRASS X-windows monitor oftenfunctions properly under SunOS 4.1.3, but not under Solaris 2.3. Some of thefeatures of GRASS are not well documented, which again made the availabilityof the source code invaluable. The GRASS environment works well for someonewith knowledge of UNIX and programming but would be rather challengingfor an ecologist or land manager without such skills. In spite of its manyfoibles, GRASS is a useful environment in which to work and program.LUCAS was built on top of the GRASS libraries, so switching to anotherGIS would be di�cult, but not impossible. Replacing the map access routineswould be straight forward, but the graphical display code would need to becompletely rewritten. Naturally the algorithms and methods comprising theessence of the LUCAS simulations would remain the same, regardless of theGIS being used.
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2.2 GRASS StructureThe GRASS data hierarchy is illustrated in Figure 1. The root of the GRASS�le system is de�ned by the UNIX environment variable GISDBASEwhich is thepath name of the GRASS database. Specifying which database to use is there-fore trivial, making the parallel implementation much easier (see Section 4.2).Within the database there are many GRASS locations, which correspond towatersheds in LUCAS. A location is an independent set of data, usually as-sociated with a distinct geographic region. Within a given location there aremanymapsets. Mapsets are private repositories for maps and their supporting�les. Users may write only to mapsets which they own, but they may accessinformation in any mapsets which they have permission to read. Within eachlocation there is a special mapset called PERMANENT which holds speci�c in-formation about that location. All users must be able to access PERMANENT,therefore this is the mapset in which all of the original LUCAS maps arestored.Each mapset contains a series of �les and directories (called elements) shownin Table 1 which correspond to map components. For a particular map, eachelement will contain a �le with the same name as that map.Table 1Table of selected GRASS mapset elementsElement Functioncell Binary raster �lecellhd Header �les for raster mapscats Category value information for raster mapscolr Color table for raster mapscolr2 Secondary color table for raster mapscell misc Miscellaneous raster map support �leshist History information for rater mapsdig Binary vector datadig ascii ASCII vectory datadig att Vector attribute supportdig cats Vector category label supportdig plus Vector topology supportreg Digitizer point registrationwindows Prede�ned regionsWIND Current regionAll of the input maps used in the LUCAS simulations are raster �les; discretegrids (or matrices) of numeric values each corresponding to a square parcelof land called a grid cell. In GRASS these raster maps are accessed by row.6



Any row may be read independently, but each row must be written sequen-tially because each row is usually compressed using a row-oriented compressionscheme, run-length encoding (RLE) [27]. For raster maps, the cell directory iswhere the actual binary map is stored. Maps can be stored in an uncompressed(32-bit) format for each grid cell (pixel) or in the RLE compressed format.The GRASS header contains such information as the map resolution, its ge-ographic coordinates, and the number of rows and columns of grid cells con-tained in the map. It is assumed that all of the maps used in LUCAS will haveidentical headers so that the maps can be assured of being properly overlayed.If the maps do not have the same region, the map may be resampled withinthe correct region using the GRASS utility r.resample.The category values are the names of the categories assigned to each numericvalue found in a map. For example, in the Dungeness Watershed land covermap, the value (1) corresponds to coniferous forest; (2) corresponds to de-ciduous or mixed forest; (3) to grassy, brushy or new growth regions; (4) tounvegatated areas; (5) to water and (6) to snow, ice or clouds. The value of(0) is reserved to indicate that no data is present for that grid cell.The color table of each map assigns a speci�c color to each category value. Ifthese are not speci�ed, GRASS will assign arbitrary colors automatically.The region contains the geographic boundaries of the area being examined byGRASS as well as the sampling resolution for this area. There is one currentregion which must be speci�ed (via g.region) before running LUCAS. Forinformation on installing GRASS for use with LUCAS see Appendix B and[13].2.3 Programming InterfaceUSACERL provides a series of full{featured C libraries with GRASS whichare carefully documented in the GRASS Programmer's Manual [31]. Thereare numerous major libraries with several smaller support libraries as shownin Table 2. The existence of these GRASS libraries meant that many low-level I/O, graphics and map processing routines already existed and could beincorporated into LUCAS. The GIS, Raster Graphics, Display Graphics, andD libraries were the only ones used in the development of LUCAS.GRASS programs can specify information about the current state of GRASSby using environment variables. These are separate from UNIX environmentvariables and are actually stored in a �le, usually $HOME/.grassrc, where$HOME designates the user's default home directory. This technique is used bythe LUCAS graphical user interface (GUI) to communicatewith the simulation7



Table 2C libraries provided by GRASSLibrary Name DescriptionBinary Tree Simple contiguous-memory binary tree routinesBitmap Basic support for the creation and manipulation of two di-mensional bitmap arraysConvert Coordinates Converts from one cartographic coordinate system toanotherD Wrapper functions for some of the Display library routinesDLG Reads and writes U. S. Geological Survey DLG-3 formatmapsDigitizer Allows control of external digitizerDisplay Graphics Graphics display routines; higher level than Raster GraphicslibraryGIS General-purpose GRASS routinesIcon Simple manipulation of bitmapped iconsImagery Integrated image processing routinesLinked List Generic linked list memory manager; more e�cient thanmalloc() and free() implementationsLock Provision for advisory locking mechanismProjection Cartographic projection �ltersRaster Graphics Video graphics display utilitiesRowio Routines to access multiples rows of large input mapsSegment Utilities to allow for random access of large mapsVask Virtual ask ; allows for Curses-like text I/OVector Routines to process binary vector �lesprogram.GRASS is written in traditional Kernighan and Ritchie C (K&R C) [15] forportability, but LUCAS is written in C++, which required a few adjustmentsto be made to the programming interface. C++ is a strongly typed languageand therefore all functions must be prototyped before they are used. K&R C,on the other hand, does not impose this requirement and consequently GRASSheader �les are devoid of type information. Therefore, before any GRASSroutines could be used in LUCAS, they �rst had to be prototyped. This isanother reason why the availability of GRASS's source code was so crucial.GRASS also allows for hardware-independent graphical displays, called mon-itors, using MIT's X-windows, Sun's OpenWindows, Silicon Graphics' IRIS,Tektronix 4105, raster �le or other formats. GRASS monitors are used to col-lect user input regarding which impacts should be examined and to graphicallydisplay resulting maps. The GRASS library routines allow for the complex dis-playing of spatially explicit data without additional laborious programming.8



3 Functional Design of LUCASLUCAS was designed to model landscape change stochastically using historicaldata as a basis for prediction. Its modular design is intended to increase theprogram's 
exibility and to allow for future modi�cations or additions.3.1 Stochastic ModelingThe econometric model used in LUCAS is a dynamic, stochastic model which,by de�nition, has at least one random variable, namely land cover, and dealsexplicitly with time-variable interaction. A stochastic simulation 2 uses a sta-tistical sampling of multiple replicates, repeated simulations, of the samemodel. Simulations are used when the systems being modeled are too complexto be described by a set of mathematical equations for which an analytic solu-tion is attainable. Simulation is, however, an imprecise technique and providesonly statistical estimates and not exact results. The LUCAS computer simu-lation serves as a tool to help evaluate land-use management policies beforeactually implementing them on the real system.An e�ective model need only have a high correlation between its predictionand the actual outcome in the real system, not necessarily approximate thereal system, so statistical results are su�cient to understand the results of thesimulated model [29]. Therefore, the primary output produced by LUCAS arestatistics collected during the simulation which can be viewed as a graph oranalyzed with a statistical package, such as SAS [30]. Figure 2 outlines themodular model implemented in LUCAS; the validation of which is discussedin Section 5.1. Aside from predicting future behavior, models also allow in-vestigators to explore the nature of potential scenarios. Each module of theLUCAS model is described in detail in the following sections.3.2 Socioeconomic Model Module and TPMLUCAS takes a multidisciplinary approach to simulate change in a landscape.Ecologists and economists used knowledge from both disciplines to developa land management simulation. Many discrete and continuous ecological andsociological variables were used empirically in calculating the probability ofchange in land cover (a discrete variable): land-cover type (vegetation), slope,aspect, elevation, land ownership, population density, distance to nearest road,2 Such simulations are also sometimes referred to as Monte Carlo simulations be-cause of their use of random variables [23,29].9



distance to nearest economic market center (town), and the age of trees. Foran analysis of the in
uence of these economic and environmental factors onlandscape change see [36]. Each variable corresponds to a spatially explicitmap layer stored in the GIS (see Section 2). A vector of all of these valuesfor a given grid cell is called the landscape condition label [8,9]. An examplelandscape condition label (LCL) is shown in Table 3.
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Fig. 2. Relationship among LUCAS modulesTable 3Example Landscape Condition Label in the Hoh Watershed on the Olympic Penin-sula ` x` Meaning Attribute1 2 Public Lands Land ownership2 73 73 years old Tree age (Olympic Peninsula only)3 4 Unvegetated Land cover (vegetation)4 19 19� incline Slope5 1 True Steep slope (> 17� incline; Olympics only)6 1531 1531 meters Elevation7 1089 1089 meters Distance along roads to nearest market center8 21 1890 meters Distance to nearest roadEach element of the LCL ~x = (x1; x2; : : : ; x8)T is used to determine the prob-ability of change using the multinomial logit equation found in Equation (1)10



[39,38,3].Pr(i! j) = exp(�i;j + ~zT ~�j)1 + nXk 6=i exp(�i;k + ~zT ~�k) ; (1)where n is the number of cover types, ~z is a 5 � 1 column vector composedof elements x4; : : : ; x8 of the LCL ~x in Table 3, ~�j = (�1;j; �2;j; : : : ; �5;j)T isa vector of logit coe�cients, �i;j is a scalar intercept, and Pr(i ! j) is theprobability of unvegetated land cover remaining the same (i = x3 = 4 = j)at time t + 1 or changing to another cover class (i.e., j = 1; 2; 3). The landownership (x1) determines which table of logit coe�cients should be used andthe tree age (x2), used only for coniferous forest cover types, determines ifthe trees have aged su�ciently to be harvested, i.e., change to another covertype. The null-transition or probability of no land cover change is de�ned byEquation 2.Pr(i! i) = 11 + nXk 6=i exp(�i;k + ~zT ~�k) ; (2)where the symbols have the same meaning as in Equation (1). Example vectorsof coe�cients for the Hoh Watershed are shown in Table 4.Table 4Example Multinomial Logit Equation Coe�cients for unvegetated land cover in theHoh Watershed on the Olympic PeninsulaPixel Transition toAttribute Conifer Deciduous/Mixed Grassy/Brushyintercept �1;1 = �3:14560 �1;2 = �3:22460 �1;3 = �1:81020slope �1;1 = 0:03760 �1;2 = 0:00496 �1;3 = 0:03180steep slope �2;1 = �0:51363 �2;2 = 0:47170 �2;3 = �1:18990elevation �3;1 = �0:00018 �3;2 = �0:00237 �3;3 = 0:00488distance to town �4;1 = 0:00245 �4;2 = 0:00490 �4;3 = 0:03040distance to road �5;1 = �3:14560 �5;2 = �3:22460 �5;3 = �1:80200The multinomial logit coe�cients and intercept values were calculated empir-ically by Wear et al. [39] from existing historical data stored in the GRASSdatabase (see Figure 2). The table of all probabilities generated by apply-ing Equation (1) to all cover types is called the transition probability matrix(TPM), an example of which can be found in Table 5. If the TPM in Table 5were used, for example, a random number from the closed interval [0; 1] less11



than 0.5839 would change the land cover to grass/brushy, otherwise the landcover would remain unvegetated. For a discussion of logistic regression and abasis for Equation (1) see [34].Table 5Example Transition Probability Matrix based on the example multinomial logitcoe�cients.From Unvegetated Changing to Probability4! 1 Coniferous < 1� 10�30 � 04! 2 Deciduous/Mixed < 1� 10�30 � 04! 3 Grassy/Brushy 0.58394! 4 Unvegetated 0.41613.3 Landscape Change ModuleThe Landscape Change Module in Figure 2 is the heart of the LUCAS soft-ware.It takes the multinomial logit coe�cients generated in Socioeconomic ModelModule, implements the actual landscape change, and produces new land covermaps and statistics as output. The �rst step in designing LUCAS was todevelop the method to simulate one time step, a �ve year period, of landscapechange over multiple replicates. Figure 3 shows the general algorithm used byLUCAS to simulate a given scenario.3.3.1 Pixel-Based TransitionsTwo types of transitions are simulated by LUCAS: grid cell (or pixel-based)and patch-based. The determination of the pixel-based landscape transitions isrelatively trivial because each grid cell changes independently. The transitionprobabilities from the initial cover type to all other cover types are calculatedusing Equation (1) and the value of the landscape condition label of a grid cell.A pseudorandom number is then drawn from a uniform distribution betweenzero and one (see Section 3.3.3). This number, in turn, determines the newland cover type for this grid cell via the calculated probabilities.3.3.2 Patch-Based TransitionsPatch-based transitions are considerably more di�cult because of the task ofpatch identi�cation. A patch (or cluster) is a group of contiguous grid cells withidentical landscape condition labels. The North-East-West-South (NEWS)12
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beginfor row := 1 to NumberOfRows do beginfor column := 1 to NumberOfColumns do beginif this cell <> cell to left and above then beginStart a new patch and determine new value after transitionend;else if this cell = cell to left, not above then beginContinue the patch to the leftend;else if this cell = cell above, not left then beginContinue the patch in the row aboveend;else if this cell = cell above and left then beginif number of patch above = number of patch to the leftthen beginContinue the patchend;else beginUnify the two patchesend;end;end;if second pass then beginWrite out row of new land coverend;end. Fig. 4. Patch-based landscape transition algorithm3.3.3 Random Number GenerationTo implement the stochastic model mentioned in Section 3.1, uniformly dis-tributed pseudorandom numbers are needed to accurately predict a new land-cover value for a cell based on the the transition probabilities. Unfortunately,most vendor-provided random number generators (RNGs) are not su�cientfor such modeling [26,4]. \Good" random numbers should be uniformly dis-tributed, statistically independent and reproducible [29,24]. Truly randomnumbers are not reproducible without storing them, so pseudorandom num-bers are more suitable for simulations. Repeating a sequence of random num-bers is desirable to debug simulations and two policies can be more accuratelycompared statistically if both use the same \random" sequence [4].According to Knuth and others [4,17,26,29], a very standard technique forgenerating pseudorandom numbers is the use of linear congruential generators(LCG) which were �rst introduced by Lehmer in 1949 [18]. LCGs compute theith integer in a pseudorandom sequence by the recursion found in Equation (3).14



xi=(axi�1 + c) mod m; (3)where multiplier a, increment c, and modulus m determine the statisticalquality of the generator. This generator meets many of the criteria establishedfor a \good" RNG including the fact that it requires very little memory toimplement.The problem with LCGs is that their period is limited tom [29]. Allpseudorandom number generators su�er because the sequences they generateare periodic, i.e., there exists an integer t such that yn+t = yn for all n �0, where yn is the nth number in a random sequence [24]. Without usingcostly multiple-precision arithmetic, the cycle generated by LCGs is boundedby the length of the machine word. Thus on a machine with 32-bit integerarithmetic (31-bit with the sign bit), this means that a maximum of 231�1 =2,147,483,647 numbers can be generated before the sequence repeats itself.Two billion may seem su�cient for a single simulation, but if the transitionsfor large maps with millions of cells are to be calculated for many time stepsand replicates, this period could be exhausted.Park and Miller propose that Lehmer's LCG with a = 75 = 16807, c = 0and m = 231 � 1, the Mersenne prime, be adopted as a minimal standardrandom number generator because it has been exhaustively tested and itscharacteristics are well understood [26].Another revolutionary generator using a feedback shift register (FSR) wasintroduced in 1965 by Tausworthe [32]. It could generate arbitrarily long se-quences of random numbers without the multidimensional non-uniformitiesfound in LCGs. The kth bit, ak, of a random bit sequence is de�ned to beak = c1ak�1 + c2ak�2 + : : :+ cp�1ak�p+1 + ak�p (mod 2) (4)and has its maximum possible cycle length if and only if the polynomial 1 +c1x+ c2x2+ : : :+ cp�1xp�1+xp is primitive over GF[2]. 3 However, Toothill etal. discovered negative results running a statistical test of the Tausworthe FSRmethod in 1971 [33]. Two years later Lewis and Payne re�ned Tausworthe'sgenerator to create a generalized FSR (GFSR) [19]. Because this algorithmuses base two, the addition operation without carry is the same as the binaryexclusive OR (XOR, denoted �). Thus Equation (4) for integers (groups ofbits) is equivalent toxk = c1xk�1 � c2xk�2 � : : :� cp�1xk�p+1 � xk�p: (5)Using primitive trinomials, 1 + xq + xp, p > q, Equation (5) reduces toxk =xk�q � xk�p: (6)3For more information about Galois Fields, see [10].15



This requires only one XOR operation and some address calculations for eachinteger generated by the GFSR and therefore is just as fast, if not faster thanLCGs. It also requires careful initialization of the vector before generating newrandom numbers. Kirkpatrick and Stoll presented a speci�c implementationof the generator described by Equation (6) (denoted R250) using q = 103and p = 250 [16]. In 1994 Carter created a C++ class library [5] of R250 4which uses Park and Miller's minimal standard LCG to initialize the R250'sbit vector. LUCAS uses Carter's C++ implementation of R250 as its RNG. Ithas an extremely long period (2249) and is faster than an LCG. It does requiremore memory, i.e., the storage of 250 integers, but this cost is negligible.3.3.4 StatisticsOnce the map of new land cover has been generated, the ecologist or landmanager can use the results to determine the impact of the policy de�ned inthe Socioeconomic Model Module. As stated in Section 3.1, statistics are theonly true metric for analyzing a stochastic simulation. They also provide aconvenient method for understanding the impact of the particular land man-agement policy or scenario. The statistics in Table 6 are collected by LUCASfor each time step.The stack-based, non-recursive algorithm in Figure 5 is used to identify patchesfor statistics purposes. This method di�ers from the one used for patch-basedtransitions, because the statistics algorithm requires the entire map layer tobe in memory at one time, which is not feasible for the composite map usedin Section 3.3.2. This routine was originally developed by Gardner [11] andlater modi�ed by Minser [2].
4The source code is available on the World Wide Web at URLhttp://taygeta.oc.nps.navy.mil/random.html.5This is the corrected patch perimeter/area metric: (0:282�perimeter=parea) [1].16



Table 6Statistics collected by LUCAS StatisticProportion of landscape in each cover typePixel Area (ha) of landscape in each cover typeStatistics Edge:area ratio for each cover typeAmount of edge (km) for each pair of cover typesTotal edge (km) in the whole landscapeNumber of patchesMean patch sizePatch Standard deviation of patch sizeStatistics Size of largest patchCumulative frequency distribution of number of patches by sizeMean patch shape (normalized shape index) 5beginfor row := 1 to NumberOfRows do beginfor column := 1 to NumberOfColumns do beginif cell is type being analyzed then beginPush cell onto stack of cells in patchrepeatPop cell o� top of patch stackMark cell as visitedDesignate cell as center of a new patchif neighbors of cell are same type then beginPush neighbors onto patch stackIncrement patch size, perimeter valuesend;until patch stack is emptyend;end;end;end.Fig. 5. Patch-based statistics collection algorithm for a given land cover type17



3.4 Impacts ModuleThe land cover map produced by the Landscape Change Module (see Sec-tion 3.3) is analyzed by the Impacts Module. This module may determine thee�ect the changed landscape has on species habitats, water quality, or otherenvironmental impacts. Currently LUCAS is designed to perform only specieshabitat suitability analyses. Dr. Scott M. Pearson at Mars Hill College (MarsHill, NC) created a list of species and habitat identi�cation algorithms for eachof the watersheds currently simulated by LUCAS in Table 7 [28]. The outputfrom this module is a binary map; either a grid cell is suitable for a species orit is not. The statistics in Table 6 are again collected for each impact map.Table 7Species habitats impacts modeled by LUCASWatershed SpeciesCatawba Rhododendron Rhododendron catawbienseCrane
y Orchid Tipularia discolorEuropean Starling Sturnus vulgarisLittle Tennessee Mountain Dusky Salamander Desmognathus ochrophaeusRiver Basin Northern Flying Squirrel Glaucomys sabrinusPrincess Tree Paulownia tomentosaSoutheastern Shrew Sorex longirostrisWood Thrush Hylocichla mustelinaCascade Oregon Grape Berberis nervosaHeather Vole Phenacomys intermediusHoneysuckle Lonicera ciliosaOlympic Horsetail Equisetum telmateiaPeninsula: Licorice Fern Polypodium glycyrhizaHoh and Mountain Alder Alnus sinuataDungeness Mountain Huckleberry Vaccinium membranaceumRed Squirrel Tamiasciurus hudsonicusTwin
ower Linnaea borealis3.5 Parallel/Distributed DesignThe parallel version of LUCAS (pLUCAS) uses the same model as the serialversion, but is designed to run on a network of high-end workstations via theParallel Virtual Machine (PVM) software package [22]. This implementationtakes a very coarse-grained approach to parallelism. For accuracy purposes,the stochastic simulation of LUCAS requires multiple independent replicateswhich can easily be run independently on separate machines. The di�cultyarises in managing the interprocessor communication, the scheduling of tasks18



and the handling of data.
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Section 3.3.3 to create random number seeds which insure that the sequencesgenerated by the servant tasks' R250 random number generators are inde-pendent [6]. These seeds are passed to the servant tasks as they are spawned.4 Serial and Distributed ImplementationsAs mentioned in Section 3, stochastic simulations require multiple replicatesto create su�cient data for statistical analysis. These repeated simulationscan be very time consuming on a single workstation if the maps are large andmany scenarios are to be examined. To remedy this, a distributed version ofLUCAS was created using PVM on a network of workstations. This section�rst discusses the details of the serial C++ implementation of LUCAS andlater its evolution into a parallel version.4.1 C++ ClassesGRASS was written in K&R C [15] which necessitated LUCAS to be writtenin either C or C++ to use the GRASS libraries. C++ was chosen as the pro-gramming language for LUCAS to allow for an object-oriented solution. WhileC++ is not a fully-object oriented language, it provides the C-compatibilityand useful object-oriented extensions necessary for LUCAS.LUCAS consists primarily of objects which contain both data and methods(procedures) which operate on that data. Figure 7 shows all of the major C++classes found in LUCAS and their interaction.In the following sections, each class is carefully outlined and its relationshipto the other classes is described in more detail.4.1.1 DString ClassThe DString class is a general-purpose class developed to dynamically managestrings of text. C is notoriously awkward for performing string manipulations,so this class helps to make their usage more convenient. Many of the �lenames, GRASS variables, labels and similar information used in LUCAS aretext-based, therefore almost every instance of a string is a DString object.Instantiating a DString object will automatically claim a portion of the systemheap to store the string; actually an array of characters.20
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Aside from automatic storage allocation and release of memory, the DStringclass also provides much superior operators for string manipulation. In orderto concatenate strings or other objects the insertion operator << is used. Tocompare two strings, the intuitive == operator is used. For example:DString some_string;DString other_string = "Something else";int intvalue = 5;some_string << "X has a value of " << intvalue << " now.";if ( some_string == other_string ) {cout << "The strings are equal.\n";}The only di�culty in using such objects is that the GRASS routines requirechar* arguments, instead of DString objects, to be passed to them. Thisproblem is overcome by creating an operator to return the internal characterarray.4.1.2 Parameters ClassOne of the few global objects in LUCAS is an instance of the Parameters classcalled globals. This object provides an interface between the GUI and the restof LUCAS. All of the information gathered from the user in the GUI is storedin GRASS variables which are read by the Parameters object. This objectstores those values and makes them available for other objects, thus creatinga central repository for user-selected parameters. These values are stored in aheight-balanced AVL tree, implemented by the AVL class, providing O(log2 n)access of global parameters.The Parameters class also reads the impacts �le (Section A.2), which describeseach impact module, and the scenario �le (Section A.1) prescribed by the uservia the GUI. All of the multinomial logit equation coe�cients of the TransitionProbability Matrix (TPM) are read in from the scenario �le and stored in aninternal matrix. This matrix is then used to construct the instance of theComposite class (Section 4.1.3) which in turn constructs its internal Matrixclass object (Section 4.1.5). As each of the input map layers speci�ed in thescenario �le are read, a new OldRaster object (Section 4.1.7) is created, andan array of these objects is then used to initialize the Composite class.4.1.3 Composite ClassThe Composite class is really the heart of the LUCAS program, containingboth input maps and the TPM. It creates a virtual \composite map" of land-22



scape condition labels (LCLs) by forming an array of RasterFile objects. Thecomposite is then used to calculate transitions and produce a new land covermap object.Instances of the LandscapeConditionLabel class (Section 4.1.4) are used by theComposite object to access individual LCLs. Within each LCL, the values areextracted by the Composite object's Matrix object (Section 4.1.5) to generatethe necessary transition probabilities.4.1.4 LandscapeConditionLabel ClassThe LandscapeConditionLabel class allows a grid cell on multiple maps to beviewed as a single vector (see Figure 8 and Table 3). The LandscapeCondi-tionLabel class is actually a virtual class, i.e., it is never instantiated.
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bu�ers; vectors each containing a row of grid cells. Because GRASS uses row-oriented access to raster maps, all of the map I/O for LUCAS is performedthrough the use of row bu�ers.4.1.5 Matrix ClassThe matrix of multinomial logit coe�cients of the TPM are kept in the Matrixclass. The primary function of this class is to calculate transition probabilitiesfor a grid cell using the logit coe�cients and the LCL corresponding to thatgrid cell. Once the transition probabilities have been calculated, a randominteger is generated by the R250 class object (Section 4.1.6). This determineswhich value the new grid cell should be assigned. The method for calculat-ing transition probabilities to determine transitions is discussed at length inSection 3.2.4.1.6 R250 ClassThis class for random number generation was created by Carter [5]. Detailson the implementation of this class can be found in Section 3.3.3. The seed forthe random number generator is the system clock for the serial version and anumber from a random sequence in the parallel version (see Section 3.5 andSection 4.2.5).4.1.7 RasterFile ClassThe RasterFile class is another virtual base class. Two classes are derived fromthis class: the OldRaster class and the NewRaster class, each used to read orwrite GRASS raster maps. GRASS di�erentiates between existing raster �lesand new raster �les. This fact along with the di�erent methods required forthe two types of maps motivated two separate classes.The OldRaster class deals with the �le management of existing raster �les.It does not have any internal row bu�ers, rather it relies on external RowBufobjects (Section 4.1.4). This is because the existing raster objects are accessedfrom a number of other objects. The OldRaster class also stores other infor-mation about existing map layers, such as the GRASS header, category valuesand the color map (Section 2.2). These GRASS parameters are used by theStats (Section 4.1.8), Graphics (Section 4.1.10) and NewRaster classes whenanalyzing the raster map.The NewRaster class deals with newly created maps (either land cover or treeage) and manages its own RowBuf object to write out new map rows. Thecolor map and category values are copied from an OldRaster object to insure24



the new map is properly displayed.4.1.8 Stats ClassThe Stats Class is responsible for analyzing an existing OldRaster object (seeSection 4.1.8) and reporting various statistics about its associated map (Sec-tion 3.3.4). These statistics are stored in two forms: A SAS-formatted [30]text �le and a special format for XGraph. 8 The graphics �le is actually manysmaller graph �les in one, with each graph �le having each line preceded bya unique keyword. This way the GUI is able to scan a single �le and create amenu of graphs to be displayed on the GRASS monitor.4.1.9 Impacts ClassThe function of this class is to determine the suitability of regions as habitatsfor various species. Other impacts, such as water quality, could be incorporatedinto this class. Table 7 shows which species' habitats are modeled for eachwatershed in LUCAS. A grid cell is deemed suitable habitat for a particularspecies if it meets certain criteria. For example, the habitat for the CatawbaRhododendron in the Little Tennessee River Basin is de�ned as balds (grassy)with an elevation of more than 900m or on the edge of forests with the sameelevation. Each species has its own statically (as opposed to dynamically)de�ned routine because of performance considerations.4.1.10 Graphics ClassThe Graphics Class is responsible for managing the GRASS monitor window.When LUCAS is run, the monitor window in Figure 9 allows the user tochoose the format for the output during the simulation. Figure 10 shows thetwo formats for the monitor. Each time step the monitor displays either theoriginal land-cover map next to the permuted land cover map or it displaysthe permuted land cover map next to a species impact map.4.2 Distributed ImplementationThe distributed version of LUCAS, Parallel LUCAS or pLUCAS, is derivedfrom the existing serial version. Modi�cations were required to integrate the8XGraph version 11.3.2 was written in 1989 by David Harrison at the Universityof California, Berkeley. 25



Fig. 9. GRASS monitor used to select output formatParallel Virtual Machine 9 (PVM) software environment [22] for distributinginformation across a network of workstations. Measures were also taken tomanage the tasks on independent machines and collect results from the hostscomprising the virtual machine.4.2.1 PVMPVM allows tasks to be spawned on independent, heterogeneous workstationsand permits them to communicate over a network via message passing. Ithandles such problems as guaranteed message delivery, the correct sequenceof message delivery, and di�erences in internal data representations on dis-similar architectures, thus freeing the programmer from such concerns. PVMguarantees delivery by using the TCP/IP protocol suite. This also aids inportability as any machine connected to the Internet must communicate viaTCP/IP.The developer is presented with a simple programming interface to createmessages of a speci�ed type. First a message bu�er is initialized, next themessage components are packed according to type and �nally the message is9PVM version 3.3.7 was used in pLUCAS.26



(a) Land cover maps before and after simulation
(b) Maps of land cover and impacts after simulationFig. 10. GRASS monitor showing the two possible types of display formatssent with a designated message tag. On the receiving end, either a blockingor non-blocking receive can be used to retrieve any message or messages witha speci�c tag. The elements of the message are then unpacked by the receiver27



according to the same types in which they were packed.To initialize PVM, a pvmd daemon process must be started on each of themachines participating in the virtual machine. Once the virtual machine isrunning, all messages are communicated from the user process to the localpvmd daemon via TCP sockets, which then sends the messages across thenetwork to the remote pvmd daemon via UDP sockets. The remote pvmd thenrelays the information to the remote version of the user process again viaTCP. The PVM libraries [12] are required for a user program to be able tocommunicate with the local pvmd daemon.4.2.2 pLUCAS Graphical User InterfaceThe serial GUI was originally written by MacIntyre [21,20] in K&R C and Mo-tif 1.2 and was later converted to ANSI C and the Motif User Interface Lan-guage (UIL) by Levy [3]. The existing user interface requires the proprietaryMotif Developer's Libraries which are not available on all of the machines onwhich the parallel version was intended to be run. Instead, the public-domainpackages TCL 7.4b3 and Tk 4.0b3 were used.The Tool Command Language (TCL) [25] and its graphical Tool Kit (Tk)allow for the rapid development of MIT X11 Windows-based interfaces as wellas provide a rich variety of scripting commands. This made the ideal choicefor pLUCAS because its GUI is relatively simple and it primarily manipulates�les and strings; tasks which are more di�cult in C. Since TCL is a scriptinglanguage, changes made to the interface were immediate, without requiringtime-consuming recompiling. Developing a new interface in TCL/Tk requireda number of days, instead of months, to implement. The primary disadvantageof using TCL/Tk over Motif or the Xt libraries is that it is interpreted andtherefore slower and somewhat less robust, but the maintenance is simplerand the time required to learn the package is much less.4.2.3 Main WindowThe main window of pLUCAS is shown in Figure 11(a). The user can selectthe PVM host �le used to initialize the virtual machine as well as adding andremoving hosts from this list via the Con�gure menu. This menu also allowsthe user to copy the data �les to the remote hosts, remove these �les andstart and stop PVM. The large listbox in the center of the window displaysscenarios which have been selected in the Add Scenario Window. Once all ofthe scenarios have been selected, the Run Scenarios pushbutton starts thevirtual machine and calls the pLUCAS C++ program to manage the remotePVM tasks. 28



(a) Main interface window of pLUCAS GUI

(b) Add scenario window of pLUCAS GUIFig. 11. pLUCAS graphical user interface4.2.4 Add Scenario WindowThis window (See Figure 11(b)) is displayed when the Add Scenario pushbut-ton is selected in the main window. The design of this window was stronglyin
uenced by the existing serial LUCAS GUI. Each �eld has a menubuttonwhich pops up a list of radio buttons used to select the dependent variable,watershed, mapset, beginning year, and scenario name. The scales in the bot-29



tom left corner select the number of replicates and time steps to be run andthe number of maps to be saved per replicate. A scrollable listbox on the rightallows the user to select any impacts to be run each replicate.Once the scenario has been properly selected, the Add Scenario pushbuttonadds this current scenario to the list on the main window. The Reset push-button resets the window to the default values and the Dismiss pushbuttonunmaps the entire window.4.2.5 Modi�cations to LUCASIn the serial version of LUCAS, the main program directed the classes inFigure 7 to perform the desired number of replicates and time steps of simu-lation. In the parallel version, this responsibility is passed to the PVM class(Section 4.2.6) and the main program determines which incarnation of pLU-CAS is currently running. Under PVM it is typical to have a single executableperform many di�erent functions. pLUCAS has three major modes: master,servant and send data, each of which are examined in Section 4.2.6 in moredetail.The Stats class also had to be altered in the distributed version of LUCASbecause all of the statistics collected each time step were originally stored ina single �le. The implicit parallelism of pLUCAS required that each servantcreate its own, independent statistical �les which are later reassembled by themaster.The �nal major alteration necessary to make LUCAS a parallel applicationwas the creation and distribution of unique seeds for the random numbergenerator. As discussed in Section 3.3.3, the R250 generator uses the standardLehmer linear congruential generator to create seeds. This seed must be uniqueto each servant process to insure that a replicate is not repeated. Two hundred�fty integers are used to initialize the R250 generator, so a new seed for theLCG is generated simply by taking the value of the sequence after every 250iterations.4.2.6 PVM ClassAs discussed in the Section 3.5, there are three major states of the pLUCASexecutable (see Figure 6). Each serves a di�erent function which is outlinedin the following subsections. 30



4.2.7 Master modeThere is only onemaster task in the virtual machine. It is responsible primarilyfor task scheduling and result collecting. The master task is run directly fromthe GUI, but all other PVM tasks are spawned by the master task itself.Once the number of hosts running in the virtual machine has been determined,the master task spawns servant tasks to perform the jobs de�ned by the userin the GUI. Because the master task spends most of its time in a blockingwait state for the servant tasks to complete their jobs, a servant task also runson the master node to increase the overall throughput.Once the servant tasks have performed all of the desired simulations, a senddata task is spawned by the master on each host. After the results are all backon the host node, a single SAS and graphics output �le is generated for eachscenario from the many independently generated statistics �les. These �lesalong with any saved land cover maps are then installed in the permanentGIS. This �nal step is cumbersome and costly in terms of communicationbandwidth, but the results need to be centrally stored in order for them to beof any use.4.2.8 Servant modeA PVM task running in servant mode is essentially a scaled-down version ofthe serial version of LUCAS. It is responsible for simulating multiple timesteps of a single replicate. The only di�erence between this mode and theserial version is that the master task assigns a unique replicate number andrandom number seed to a particular servant task. It noti�es the master taskupon completion of its calculations.4.2.9 Send data modeThis mode copies data from the servant nodes to the master node and wascreated to reduce the amount of time spent relaying information back to themaster. One send data task is assigned to each servant node. If many replicatesare run on the same host, it is muchmore e�cient to send all of the informationback to the master at once, rather than piecemeal. The send data mode alsoperforms rudimentary housekeeping on the remote node, cleaning up after theservant tasks and preparing for the next time pLUCAS is run.31



5 Results and ConclusionsAlthough it is not necessary in land management for a model to closely ap-proximate the system being modeled, validation is useful to test the model'srealism. In Section 5.1 the validity of the implementation of the LUCAS modelis discussed. Such a simulation must be reasonably fast, as well as valid, toe�ciently investigate a large number of land use scenarios. In order to reducethe computational time to a minimum, a parallel version of LUCAS was cre-ated which is signi�cantly faster than its serial counterpart. To determine thebene�ts of this distributed implementation, both LUCAS and pLUCAS arecompared in Section 5.2. Although parallelization is a research advancement,much more is yet to be accomplished with this ecological simulation model.Potential future directions for LUCAS are outlined in Section 5.3.5.1 Validation of the LUCAS modelTo test the validity of the LUCAS model, ten pixel-based replicates of thehistorical transition simulations for the Little Tennessee River Basin were an-alyzed. Each replicate began with an initial land cover map for the year 1975.Two 5-year time steps using the historical transition probabilities from 1975{1986 were simulated followed by one time step using the 1986{1991 historicaltransition probabilities. The simulated 1980, 1985 and 1990 maps were thencompared against the historical 1980, 1986 and 1991 maps. 10Turner [35] reported that the proportion of land cover of each cover typesimulated by LUCAS corresponded closely to the actual historical land covertypes. The simulation for forest, which was the dominant land cover type,had little room to redistribute because it comprises 90% of the landscape andhence was spatially distributed accurately. For the other cover types, however,LUCAS simulated many more patches than were present in the historicalmaps, i.e., the landscape became more fragmented. This is not surprisingconsidering that the pixel-based model used in the simulation examines onlyindependent grid cells. For example, after one time step 3417 patches of grassyland cover with an average patch size of 1.09 cells were simulated, whereas theactual map contained 1583 grassy patches with an average patch size of 2.4cells. If a patch-based simulation were used, it would likely cause somewhat lessfragmentation. However, due to the strict de�nition of a patch in the currentimplementation, i.e., contiguous grid cells with identical landscape conditionlabels, many patches tend to degenerate into one-cell patches or pixels. This isbecause the chance of at least one of the components of the LCL di�ering from10Due to the availability of only a select number of land cover maps, historicalmaps are not available for each simulated year.32



its neighbor is great, thus creating small patches. A complete set of statisticsfrom the model validation is available in [13].5.2 Distributed ResultsTo test the relative speed of LUCAS and pLUCAS on a varying number ofhosts, 10 replicates of 20 time steps for each of the four historical, pixel-basedscenarios of the Hoh Watershed on the Olympic Peninsula shown in Table 8were used. Figure 12 shows the Hoh land cover map before and after a 100year simulation.Table 8Scenarios of land-cover change for Hoh Watershed according to historical transitionprobabilities Ownership TypeScenario Public Private1 1986{1991 1986{19912 1986{1991 1975{19863 1975{1986 1986{19914 1975{1986 1975{19865.2.1 Computing environmentBoth LUCAS and pLUCAS were tested on a shared 10 Mb/sec Ethernetnetwork of 20 dedicated 70 MHz Sun SPARCstation 5 machines each with32 Mb of memory. pLUCAS and a bare essential subset of the GIS werelocally installed in the /var/tmp directory, a local disk, on each machine whichrequired 6 Mb of disk space for the initial installation and approximately25 Mb during execution.5.2.2 Scalability, Speedup, and E�ciencyThree trials of the same set of scenarios were performed using one host forLUCAS and 4, 8, 12, 16, and 20 hosts for pLUCAS. The elapsed wall-clocktime for program execution found in Figure 13 and Appendix D were comparedand relative speedups are shown in Figure 14. These times do not include theminimal 1-2 minute one-time setup overhead for pLUCAS found in Table D.1.Speedup factor is de�ned as S(n) = T (1)=T (n), [14] where T (n) is the elapsedwall-clock time, and n is the number of nodes (or hosts in PVM). Figure 14shows an asymptotic behavior for speedup: for a small number of hosts thespeedup is very dramatic, but as more and more hosts are added, the relative33



(a) Before simulation of Scenario 4
(b) After simulation of Scenario 4

Conifer

Deciduous/mixed

Grassy/brushy

Unvegetated

Water

Snow, ice, clouds, surfFig. 12. Hoh Watershed maps before and after a 100-year simulationspeedup becomes increasingly less. The speedup appears to approach a factorof approximately 11 over the serial version. Naturally, a linear speedup wouldbe ideal, but is not realized due to increasing overhead and the communicationbottleneck inherent in a master-servant model of parallelism.From the speedup factors, the e�ciencies for the various number of proces-sors is easily determined. E�ciency is calculated by E = S(n)=n, where S isthe speedup factor and n is the number of hosts. Figure 15 shows that therelative average e�ciency steadily decreases as more hosts are added to thevirtual machine. As the speedup factor approaches its asymptote, the e�-ciency plummets. This means that small gains in speed come at the cost ofine�cient machine use. 34
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Fig. 13. Average wall-clock execution time for pLUCAS on multiple hostsClearly pLUCAS is scalable for a moderate number of hosts (� 20). RunningpLUCAS on a much larger number of machines, however, would not necessarilybe bene�cial as speed increases would likely be small. Porting the program inits current form to a supercomputer without concurrent I/O would also berather impractical because pLUCAS is an I/O-intensive application. It wouldbe reasonable, however, if each node had access to either a local disk or ashared, striped disk array with parallel I/O. This is why PVM made such anexcellent choice as a parallel platform for pLUCAS.5.3 Future DevelopmentAlthough the LUCAS Project has set a precedent for landscape change simu-lation, it is not the �nal solution to ecological landscape modeling. Much moreresearch needs to be done both ecologically and computationally in this �eld.An immediate addition to LUCAS could be the integration of the multino-mial logit coe�cients for the Dungeness Watershed, also on the the OlympicPeninsula. Data already exists and is in place, so these additional scenarioscould be immediately incorporated into the package.The �rst extension to the existing code itself could be the addition of other im-pact modules, such as water quality or additional species impacts. The species35
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Fig. 14. Average speedup factor for pLUCAS vs. serial LUCAShabitat module could also be reconstructed in such a way that the user couldeasily and dynamically de�ne a habitat, thereby alleviating the need for pre-de�ned routines. Naturally performance will continue to be an issue, makingthe migration to such a dynamic system more challenging. Similarly, othertransition probability modules could be created which would not require aneconomist to generate a table of coe�cients a priori, rather a land managercould simply de�ne a scenario and run it in the same sitting. The economist'sknowledge would then have to be encoded in some other fashion than is cur-rently employed.The next most obvious future need will be simulations on larger maps or athigher resolution which will increase the already sizeable demand on the com-puter's resources. A natural solution would be to spatially distribute portionsof the maps across many processors of a supercomputer or a network of work-stations, having each node calculate a portion of the map. For pixel-basedsimulations this would be fairly straightforward, but patch-based modelingwould be much more challenging. Issues such as patch uni�cation, I/O, anddata reassembly would be other major hurdles.Currently, the Integrated Modeling System (IMS) for the Southern GlobalChange Program (sponsored by the USDA Forest Service) is adapting LUCASfor the study of forest response to environmental stress, disturbances, and landuse changes in the southeastern United States. The study region is orders of36
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Fig. 15. Average e�ciency of pLUCAS vs. serial LUCASmagnitude larger than the initial test watersheds already implemented, soparallelism may be the only solution to challenges on this scale.5.4 ConclusionsThe Land-Use Change Analysis System is a valuable prototype tool for mod-eling changes in a landscape to better understand human in
uence on theenvironment. LUCAS has already been used by several investigators to betterunderstand land management and change in the LTRB and the Hoh water-sheds [28,36,38,39]. Based on the validation results, the environmental scien-tists working on the project have con�rmed their model. Future development ofthe LUCAS concept will be facilitated by other projects such as the StrategicEnvironmental Research and Development Program (SERDP) at Oak RidgeNational Laboratory (ORNL) and the IMS for the Southern Global ChangeProgram.As a computer application, LUCAS takes an object-oriented approach to sim-ulation in hopes of promoting code-reusability and versatility for future adap-tations. It addresses the problem of e�ciently managing a large quantity ofspatially explicit data, applying a stochastic model (both pixel- and patch-based), and collecting meaningful statistics. pLUCAS o�ers a distributed so-37
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AppendicesA Support FilesTwo �les are required to run a LUCAS simulation: the scenario �le, whichde�nes all of the parameters of a particular land management policy andthe impacts �le, which lists the available impacts. This allows the GUI todetermine which impacts are supported.A.1 Scenario FileThe graphical user interface (GUI) allows the user to select which scenario shewould like to run. Each scenario is de�ned by a speci�c scenario �le in theSCENARIOS directory. The scenario �le speci�es:{ the name of the scenario{ the dependent variable (currently only land cover){ the watershed in which to run the scenario{ the year in which the starting map was created{ the maps required for the scenario{ the types of the above maps (e.g. impacts map, land cover, etc.){ the number of values the dependent variable can assume{ the number of independent variables, i.e. the columns in the table of multi-nomial logit coe�cients{ the logit coe�cients of the Transition Probability Matrix (TPM)An example scenario for the Little Tennessee River Basin uses historical tran-sitions for both public and private lands over the period 1975{1986. The de-pendent variable is land cover and the year of the original map is 1980. Thefollowing maps are required:LAYER slandcover80.r901rcm coverLAYER spubprivate.r90rcm matrixLAYER sslope.r90m slopeLAYER selevation.r90m elevationLAYER spopden80.r90m indepLAYER sdistfranklin.r90m indepLAYER sdistroads.r90m indepIMPACT saspect.r90m aspectIMPACT shyd.r90m hydroThe �rst column is the type of map layer (either standard map LAYER orimpacts map IMPACT), the second column is the name of the map and the41



third column is the type of map (cover is a land cover map, matrix deter-mines which table of coe�cients is to be used, indep are general independentvariables and slope, elevation, aspect and hydro are speci�c independentvariables). Land cover can change to one of three cover types and there aresix rows of coe�cients:# Private Lands ( 1975-1980 )# slope elevation popdens disttown distroads intercept1 1 0.0 0.0 0.0 0.0 0.0 0.01 2 -0.125 -0.00163 0.0017 -0.0019 -0.0242 -0.28451 3 -0.10794 -0.0025 -0.0001 -0.00533 -0.0114 1.6232 1 -0.0028 0.0012 -0.0034 0.0066 -0.064 -1.446...The �rst column is the starting land cover type and the second column is theending land cover type. The transition probability matrix and the multinomiallogit equations are discussed in Section 3.2.A.2 Impacts FileThe impacts �le contains a colon-delimited list of parameters for each impactmodule in LUCAS. For each module the following information is speci�ed: thewatershed to which it belongs, the module number, the name of the moduleand the name of the output �le associated with the module. Currently onlythe impact of land cover change on the habitats of certain species is modeled.littlet:0:Catawba Rhododendron:rhodolittlet:1:Cranefly Orchid:orchid...hoh:8:Twinflower:flowerhoh:9:Horsetail:tail...Module numbers are necessary to indicate which hard-coded routine should beused to simulate the desired impact. While it would be much more desirable tohave the impacts �le itself de�ne the impact routine, the prede�ned routinesare necessary because of performance considerations.B Installation of LUCASFirst GRASS must be installed on the local UNIX system. GRASS 4.1 is freelyavailable from USACERL via anonymous FTP at42



ftp://moon.cecer.army.mil/lucas/grass4.1. Information about GRASS,the GRASS User's Reference Manual and an installation guide can be foundat URL http://www.cecer.army.mil/lucas/ on the World Wide Web. IfLUCAS is to be compiled, the Motif Developer's Library version 1.2 or later,GNU g++ version 2.5.8 or later (or equivalent C++ compiler)must be installedon the system.Once GRASS and LUCAS have been installed and the LUCAS mapsets havebeen placed in the GRASS database, the user will need to follow the followingprocedure:(i) Set the UNIX environment variable GISBASE to the path leading up tothe GRASS directory, e.g., in the user's $HOME/.cshrc �le:setenv GISBASE /coral/homes/lucas/gis.(ii) Set the UNIX environment variable GISDBASE to the path leading up tothe GRASS database, e.g., in the user's $HOME/.cshrc �lesetenv GISDBASE /coral/homes/lucas/data.(iii) Set the UNIX environment variable GISRC to point to the user's GRASSresource �le also in $HOME/.cshrc. This �le is usually $HOME/.grassrc.(iv) Run the grass4.1 shell. Set the name of the location, mapset, anddatabase path name.(v) From within the GRASS shell, run g.region to set the current regionfor the mapset. Select the \Set from a raster map" option and choose themap for the appropriate location:Location Region Rasterdungeness odunge.r90hoh ohoh.r90littlet littlet.mask(vi) Exit the GRASS shell.(vii) Run lucas to start the GUI.Steps iv{vi should be repeated for each location.C Installation of pLUCASThe serial version of LUCAS, outlined in Appendix B, should be installed,as much of the same software is needed in both installations. Additionally,TCL 7.4 and Tk 4.0 or later must be installed to use the parallel GUI. Theycan be obtained via anonymous FTP at ftp://ftp.cs.berkeley.edu/ucb/tcl.Information about TCL/Tk, its use and installation can be found at URLhttp://www.sco.com/Technology/tcl/Tcl.html.The Parallel Virtual Ma-chine (PVM) version 3.3.7 or later also needs to be installed on each host43



participating in the virtual machine. PVM can be downloaded fromftp://ftp.netlib.org/pvm3 and http://www.epm.ornl.gov/pvm/pvm home.html has on-line information.Once the software is installed:(i) Edit the �rst line of gui.tcl to point to the local installation of TCL.(e.g., #!/home/lucas/local/bin/wish)(ii) Make sure the PVM ROOT and PVM ARCH environment variables are set inthe user's $HOME/.cshrc �le.(iii) Make sure each host is in the user's .rhosts �le.(iv) Install PVM lib directory under pLUCAS.(v) Place pLUCAS analysis executables for each architecture in the appro-priate PVM bin directory(vi) Install the optional $HOME/.plucasrc �le.(vii) Run the pack script to create the export tar �les.(viii) Run the plucas install script on the master node. This installs themaster node in /var/tmp.(ix) Run the plucas script to launch pLUCAS.NOTE: It is assumed that the host running the GUI will be the master node.The $HOME/.plucasrc �le is �lled with X resources:*IconName: LUCAS*background: LightSlateBlue*foreground: NavajoWhite*highlightBackground: LightSlateBlue*activeBackground: SlateBlue*activeForeground: Gold*troughColor: LightSlateGrey*sunkenBackground: MidnightBlue*selectColor: Red*Scale*highlightBackground: MidnightBlueD Execution times of LUCAS and pLUCASThe one-time setup overhead times, which include installing the �les on theremote nodes and starting and stopping PVM, are found in Table D.1. Ta-ble D.2 shows the average elapsed wall-clock times for the calculation of thethe four pixel-based historical scenarios for the Hoh Watershed in Table 8 withLUCAS running on a single host and pLUCAS running on 4, 8, 12, 16, and20 hosts. The averages were taken over three independent timings. The cal-culation of speedup and e�ciency are discussed in Section 5.2. Timings weretaken using the UNIX utility /usr/5bin/time.44



Table D.1Elapsed wall-clock time (minutes) for setting up pLUCASNodes Setup times Average time4 1:15.9 1:18.8 1:12.1 1:15.68 1:30.2 1:23.5 1:27.2 1:27.012 1:34.9 1:37.7 1:37.3 1:36.816 1:44.2 1:48.6 1:48.8 1:47.220 2:10.2 2:17.2 2:08.0 2:11.8
Table D.2Elapsed wall-clock time (minutes), speedup, and e�ciency for Hoh historical sce-narios Actual AverageNodes times time Speedup E�ciency1 277:59.6 278:46.5 279:36.7 278:47 1.00 1.0004 76:05.9 76:19.4 76:09.7 76:11 3.65 0.9158 40:28.5 41:22.2 41:34.2 41:08 6.78 0.84712 34:02.4 33:01.4 32:57.1 33:20 8.36 0.69716 26:15.0 26:27.8 26:29.5 26:24 10.56 0.66020 25:53.9 25:55.0 25:49.2 25:53 10.77 0.529
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