
Message-Passing Performance of VariousComputers �yJack J. Dongarraz Tom Dunigan xAbstractThis report compares the performance of di�erent computer systems for basic mes-sage passing. Latency and bandwidth are measured on Convex, Cray, IBM, Intel, KSR,Meiko, nCUBE, NEC, SGI, and TMC multiprocessors. Communication performanceis contrasted with the computational power of each system. The comparison includesboth shared and distributed memory computers as well as networked workstation clus-ters.1 Introduction and Motivation1.1 The Rise of the MicroprocessorThe past decade has been one of the most exciting periods in computer development that theworld has ever experienced. Performance improvements, in particular, have been dramatic;and that trend promises to continue for the next several years.In particular, microprocessor technology has changed rapidly. Microprocessors have be-come smaller, denser, and more powerful. Indeed, microprocessors have made such progressthat, if cars had made equal progress since the day they were invented, we would now be ableto buy a car for a few dollars, drive it across the country in a few minutes, and not worryabout parking because the car would �t into one's pocket. The result is that microprocessor-based supercomputing is rapidly becoming the technology of preference in attacking someof the most important problems of science and engineering.These processors are now the main stay of the workstation market.�This work was supported in part by the Applied Mathematical Sciences subprogram of the O�ce ofEnergy Research, U.S Department. of Energy, under Contract DE-AC05-84OR21400.yThis version is dated August 4, 1995zUniversity of Tennessee and Oak Ridge National LaboratoryxOak Ridge National Laboratory 1

The vendors of high-performance computing have turned to RISC microprocessors forperformance.Collections of these processors are interconnected by hardware and software to attackvarious applications. The physical interconnection of these processors may be contained inone or more cabinets as part of a multiprocessor, or the processors may be standalone work-stations dispersed across a building or campus interconnected by a local area network. Thee�ectiveness of using a collection of processors to solve a particular application is constrainedby the amount of parallelism in the application, compiler technology, message passing soft-ware, amount of memory, and by the speed of the processors and of the interconnectingnetwork.1.2 Communications and Parallel Processing SystemsThis report compares the results of a set of benchmarks for measuring communication timeon a number of NUMA computers ranging from a collection of workstations using PVM [5]to machines like the IBM SP-2 and the Cray T3D using their native communication library,MPI [4], or PVM. We are interested in the communication performance for a number ofreasons. First, our main interest is to obtain fundamental parameters on a given hardwareplatform to help in building models of execution. Second to compare machines and help inevaluating new machines and architectures as they become available.The following section describes the critical parameters in evaluating message passing sys-tems. The techniques to measure these parameters are described. In section 3, the messagepassing performance of several multiprocessors and networks are presented. Communicationand computational performance are contrasted. Section 4 provides details for obtaining thetest software.2 Message Passing2.1 Programming ModelProcesses of a parallel application distributed over a collection of processors must communi-cate problem parameters and results. In distributed memorymultiprocessors or workstationson a network, the information is typically communicated with explicit message-passing sub-routine calls. To send data to another process, a subroutine is usually provided that requiresa destination address, message, and message length. The receiving process usually providesa bu�er, a maximum length, and the senders address. The programming model is often ex-tended to include both synchronous and asynchronous communication, group communication(broadcast and multicast), and aggregate operations (e.g., global sum).Message passing performance is usually measured in units of time or bandwidth (bytesper second). In this report, we choose time as the measure of performance for sending a small2

message. The time for a small, or zero length, message is usually bounded by the speed ofthe signal through the media (latency) and any software overhead in sending/receiving themessage. Small message times are important in synchronization and determining optimalgranularity of parallelism. For large messages, bandwidth is the bounded metric, usuallyapproaching the maximum bandwidth of the media. Choosing two numbers to represent theperformance of a network can be misleading, so the reader is encouraged to plot communica-tion time as function of message length to compare and understand the behavior of messagepassing systems.Message passing time is usually a linear function of message size for two processors thatare directly connected. For more complicated a networks, a per-hop delay may increase themessage passing time. Message-passing time, tn, can be modeled astn = � + �n+ (h� 1)
with a start-up time, �, a per-byte cost, �, and a per-hop delay,
, where n is the numberof bytes per message and h the number of hops a message must travel. On most currentmessage-passing multiprocessors the per-hop delay is negligible due to \worm-hole" routingtechniques and the small diameter of the communication network [3]. The results reportedin this report re
ect nearest-neighbor communication. A linear least-squares �t can be usedto calculate � and � from experimental data of message-passing times versus message length.The start-up time, �, may be slightly di�erent than the zero-length time, and 1=� shouldbe asymptotic bandwidth. The message length at which half the maximum bandwidth isachieved, n1=2, is another metric of interest and is equal to �=� [6]. As with any metric thatis a ratio, any notion of \goodness" or \optimality" of n1=2 should only be considered in thecontext of the underlying metrics � and �.There are a number of factors that can a�ect the message passing performance. Thenumber of times the message has to be copied or touched (e.g., checksums) is probably mostin
uential and obviously a function of message size. The vendor may provide hints as to howto reduce message copies, for example, posting the receive before the send. Second ordere�ects of message size may also a�ect performance. Message lengths that are powers of twoor cache-line size may provide better performance than shorter lengths. Bu�er alignment onword, cache-line, or page may also a�ect performance. For small messages, context-switchtimes may contribute to delays. Touching all the pages of the bu�ers can reduce virtualmemory e�ects. For shared media, contention may also a�ect performance. There also maybe some �rst-time e�ects that can be identi�ed or eliminated by performing some \warmup" tests before collecting performance data.There are of course other parameters of a message-passing system that may a�ect per-formance for given applications. The aggregate bandwidth of the network, the amount ofconcurrency, reliability, scalability, and congestion management may be issues.3

2.2 Measurement MethodologyTo measure latency and bandwidth, we use a simple echo test between two adjacent nodes. Areceiving node simply echos back whatever it is sent, and the sending node measures round-trip time. Times are collected for some number of repetitions (100 to 1000) over variousmessages sizes (0 to 1,000,000 bytes). Times can be collected outside the repetition loop asillustrated in Figure 1. If the system has high resolution timers then a more detailed analysescan be made by timing each send-receive pair. The time for each send-receive is saved ina vector and printed at the end of the test. You can plot this vector of times, observingminimums and maximums. For small message sizes, clock resolution may not be adequate,and you will probably observe clock jitter from time-sharing interrupts in the underlying OS.The minimum send-receive time (divided by two) for zero-length messages is what we reportfor latency. Data rate, or bandwidth, is calculated from the number of bytes sent dividedby half the round-trip time.
Initialize

Start timer

Send M bytes

Recv M bytes

End DO

Stop timer

Print stats

Recv M bytes

Send M bytes

End DO

Do forever

Initialize

Echo ClientEcho Server

For N iterations

Figure 1: Echo test pseudo-code.2.3 Latency and BandwidthWe measured latency and bandwidth on a number of di�erent multiprocessors. Each ar-chitecture is brie
y summarized in Appendix A. Table 2.3 shows the measured latency,bandwidth, and n1=2 for nearest neighbor communication. The table also includes the peakbandwidth as stated by the vendor. For comparison, typical data rates and latencies arereported for several local area network technologies.Figure 2 details the message-passing times of various multiprocessors over a range ofmessage sizes. For small messages, the �xed overhead and latency dominate transfer time.4

Table 1: Multiprocessor Latency and Bandwidth.Latency Bandwidth n1=2 TheoreticalMachine OS n = 0 (�s) n = 106 (MB/s) bytes Bandwidth(MB/s)Convex SPP1000 (PVM) SPP-UX 3.0.4.1 76 11 1000 250Convex SPP1000 (sm 1-n) SPP-UX 3.0.4.1 82 2.5 1000 250Convex SPP1000 (sm m-n) SPP-UX 3.0.4.1 59 12 1000 250Convex SPP1200 (PVM) SPP-UX 3.0.4.1 63 15 1000 250Convex SPP1200 (sm 1-n) SPP-UX 3.0.4.1 92 2.2 1000 250Convex SPP1200 (sm m-n) SPP-UX 3.0.4.1 71 11 1000 250Cray T3D (sm) MAX 1.2.0.2 3 128 363 300Cray T3D (PVM) MAX 1.2.0.2 21 27 1502 300Intel Paragon OSF 1.0.4 29 154 7236 175Intel Paragon SUNMOS 1.6.2 25 171 5856 175Intel Delta NX 3.3.10 77 8 900 22Intel iPSC/860 NX 3.3.2 65 3 340 3Intel iPSC/2 NX 3.3.2 370 2.8 1742 3IBM SP-1 MPL 270 7 1904 40IBM SP-2 MPI 35 35 3263 40KSR-1 OSF R1.2.2 73 8 635 32Meiko CS2 (sm) Solaris 2.3 11 40 285 50Meiko CS2 Solaris 2.3 83 43 3559 50nCUBE 2 Vertex 2.0 154 1.7 333 2.5nCUBE 1 Vertex 2.3 384 0.4 148 1NEC Cenju-3 Env. Rel 1.5d 40 13 900 40NEC Cenju-3 (sm) Env. Rel 1.5d 34 25 400 40SGI IRIX 6.1 10 64 799 1200TMC CM-5 CMMD 2.0 95 9 962 10Ethernet TCP/IP 500 0.9 1.2FDDI TCP/IP 900 9.7 12ATM-100 TCP/IP 900 3.5 125

For large message, the transfer time rises linearly with message size. Figure 3 illustrates theasymptotic behavior of bandwidth for large message sizes. It is possible to reduce latency onthe shared-memory architectures by using shared-memory copy operations. These operationsusually involve only one-processor and assume that the message is ready to be retrievedon the other processor. Figure 4 compares the message transfer times for shared-memoryget's and explicit message passing for the Cray T3D, Meiko, and NEC. Current research in\active messages" is seeking ways to reduce message-passing overhead by eliminating contextswitches and message copying. Finally, Figure 5 graphically summarizes the communicationperformance of the various multiprocessors in a two-dimensional message-passing metricspace. The upper-left region is the high performance area, lower performance and LANnetworks occupy the lower performance region in the lower right.

10 100 1000 10000 100000 1e+06

10

100

1000

10000

100000

1e+06

Message size (bytes)

T
ra

n
sf

er
 t

im
e

(u
s)

i iPSC/860
S SP2
M Meiko
P Paragon/Sunmos
T Cray T3D
X SGI
N NEC
C Convex SPP1200

C C C C C C C C
C

C
C

CC

C

C

N N N N
N N N N N

N
NN

NNN

N

X X X X X
X X X

X
X

X
XX

X

X

T T T T T T T T
T

T
T

TT

T

T

M M M M M M M M M M
M

MM

M

M

P
P P P P P P P P P P

PP

P

P

S S S S S S S S S
S

S
SS

S

S

i i i i i

i i
i

i
i

i
i i

i

i

Figure 2: Message-passing transfer time in microseconds for various multiprocessors andmessages sizes.Since clusters of workstations on a network are often used as a virtual parallel machine,it is interesting to compare latency and bandwidths for various local area networks. Mostcommunications over local area networks is done with the TCP/IP protocols, though propri-etary API's may exist. We measured latency for small messages using a UDP echo test. TCPbandwidth was measured at the receiver with the ttcp program using 50,000 byte messagesand 50,000 byte window sizes. Some newer operating systems support even larger windowsizes, which could provide higher bandwidths. Most high-end workstations can transmit6

10 100 1000 10000 100000 1e+06

0.1

1

10

100

Message size (bytes)

B
an

d
w

id
th

 (
M

B
/s

)

T3D
Paragon/Sunmos

Meiko

SP2

iPSC/860
SGI

NEC Convex

C

C

C

C

C

C

C
C

C C CC C C

N

N

N
N

N

N

N
N

N
NN NNN N

X

X

X

X
X

X
X

X
X X XX X X

T

T

T

T

T
T

T
T T T TT T T

P

P

P

P

P

P

P

P

P

P
PP

P P

M

M

M

M

M

M

M

M

M
M

MM
M M

I

I

I

I I
I

I
I I I I I I I

S

S

S

S

S
S

S
S

S
S SS

S S

Figure 3: Bandwidth in megabytes/second for various multiprocessors and messages sizes.network data at or near media data rates (e.g., 12 MB/second for FDDI). Data rates of 73MB/second for UDP have been reported between Crays on HiPPI (and even over a wide-area using seven OC3's) [1]. Latency and bandwidth will depend as much on the e�ciencyof the TCP/IP implementation as on the network interface hardware and media. As withmultiprocessors, the number of times the message is touched is a critical parameter as iscontext-switch time. Latencies for local area networks (Ethernet, FDDI, ATM, HiPPI) aretypically on the order of 500 �s. For wide-area networks, latency is usually dominated bydistance (speed of light) and is on the order of tens of milliseconds.3 Computation and Communication3.1 PerformanceThe performance of a computer is a complicated issue, a function of many interrelatedquantities. These quantities include the application, the algorithm, the size of the problem,the high-level language, the implementation, the human level of e�ort used to optimize theprogram, the compiler's ability to optimize, the age of the compiler, the operating system,the architecture of the computer, and the hardware characteristics. The results presented7

10 100 1000 10000 100000 1e+06

10

100

1000

10000

100000

Message size (bytes)

T
ra

n
sf

er
 t

im
e

(u
s)

M Meiko shared memory
m Meiko MPI
T Cray T3D shared memory
t Cray T3D PVM
N NEC shared memory
n NEC MPI
C Convex SPP1200 shared memory
c Convex SPP1200 PVM

c c c c c c c c
c

c
c

cc

c

c

C

C C C C C
C

C
C

C
C

CC

C

C

n n n n
n n n n

n
n

nn
nn

n

n

N N N

N N N N
N

N
N

N

NN

N

N

N

T T T T T T T
T

T
T

T

TT

T

T

t
t t t t t t t

t
t

t

t t

t

t

M
M M

M M M M
M

M
M

M

MM

M

M

m m m m m m m m m m
m

mm

m

m

Figure 4: Transfer time in microseconds for both shared-memory operations and explicitmessage passing.
8

10

1

100

B
an

dw
id

th
 (

M
B

/s
)

Latency (us)
100 10001 10

iPSC/2(370,3)

Delta(70,8)

Ether(500,1)

CM5 (95,9)

Ncube2 (154,2)

Message-passing Space

Paragon (25,171)

(70,3)iPSC/860

T3D(3,128)

SP2(38,34)
CS2(11,40) CS2(87,43)

T3D(21,27)
NEC(33,25)

NEC Cenju-3(40,13)

SPP1200(3,90)
SGI(10,64)

SPP1200(60,16)

Figure 5: Latency/bandwidth space for 0-byte message (latency) and 1 MB message (band-width). Block points represent shared-memory copy performance.
9

for benchmark suites should not be extolled as measures of total system performance (unlessenough analysis has been performed to indicate a reliable correlation of the benchmarks tothe workload of interest) but, rather, as reference points for further evaluations.Performance is often measured in terms of Mega
ops, millions of
oating point operationsper second (M
op/s). We usually include both additions and multiplications in the count ofM
op/s, and the reference to an operation is assumed to be on 64-bit operands.The manufacturer usually refers to peak performance when describing a system. Thispeak performance is arrived at by counting the number of
oating-point additions and mul-tiplications that can be a period of time, usually the cycle time of the machine. As anexample, the IBM SP-1 processor, has a cycle time of 62.5 MHz. During a cycle the resultsof the multiply/add instruction can be completed giving:2 operations=1 cycle � 1 cycle=16nsec = 125 Mflop=s:Table 2 displays the peak performance for a single processor of various parallel comput-ers. By peak theoretical performance we mean only that the manufacturer guarantees thatprograms will not exceed these rates, sort of a speed of light for a given computer. At onetime, a programmer had to go out of his way to code a matrix routine that would not run atnearly top e�ciency on any system with an optimizing compiler. Owing to the proliferationof exotic computer architectures, this situation is no longer true.The LINPACK Benchmark [2] illustrates this point quite well. In practice, as Table 2shows, there may be a signi�cant di�erence between peak theoretical and actual performance3.2 The LINPACK BenchmarkThe LINPACK benchmark features solving a system of linear equation, Ax = b. The bench-mark results examined here are for two distinct benchmark problems. The �rst problem usesFortran software from the LINPACK software package to solve a matrix problem of order100. That is, the matrix A has 100 rows and columns and is said to be of size 100 � 100.The software used in this experiment is based on two routines from the LINPACK col-lection: DGEFA and DGESL. DGEFA performs the decomposition with partial pivoting,and DGESL uses that decomposition to solve the given system of linear equations. Mostof the time - O(n3)
oating-point operations - is spent in DGEFA. Once the matrix hasbeen decomposed, DGESL is used to �nd the solution; this requires O(n2)
oating-pointoperations.DGEFA and DGESL in turn call three BLAS routines: DAXPY, IDAMAX, and DSCAL.For the size 100 benchmark, the BLAS used are written in Fortran. By far the majorportion of time - over 90% at order 100 - is spent in subroutine DAXPY. DAXPY is usedto multiply a scalar, �, times a vector, x, and add the results to another vector, y. It iscalled approximately n2=2 times by DGEFA and 2n times by DGESL with vectors of varyinglength. The statement yi yi + �xi, which forms an element of the DAXPY operation,10

Table 2: Computation Performance.Clock cycle Linpack 100 Linpack 1000 LatencyMachine OS MHz (nsec) M
s (ops/cl) M
s (ops/cl) us (cl)Convex SPP1000 (PVM) SPP-UX 3.0.4.1 100 (10) 48 (.48) 123 (1.23) 76 (7600)Convex SPP1000 (sm 1-n) 2.6 (260)Convex SPP1000 (sm m-n) 11 (1080)Convex SPP1200 (PVM) SPP-UX 3.0.4.1 100 (8.33) 65 (.54) 123 (1.02) 63 (7560)Convex SPP1200 (sm 1-n) 2.2 (264)Convex SPP1200 (sm m-n) 11 (1260)Cray T3D (sm) MAX 1.2.0.2 150 (6.67) 38 (.25) 94 (.62) 3 (450)Cray T3D (PVM) 21 (3150)Intel Paragon OSF 1.0.4 50 (20) 10 (.20) 34 (.68) 29 (1450)Intel Paragon SUNMOS 1.6.2 25 (1250)Intel Delta NX 3.3.10 40 (25) 9.8 (.25) 34 (.85) 77 (3080)Intel iPSC/860 NX 3.3.2 40 (25) 9.8 (.25) 34 (.85) 65 (2600)Intel iPSC/2 NX 3.3.2 16 (63) .37 (.01) { ({) 370 (5920)IBM SP-1 MPL 62.5 (16) 38 (.61) 104 (1.66) 270 (16875)IBM SP-2 MPI 66 (15.15) 130 (1.97) 236 (3.58) 35 (2310)KSR-1 OSF R1.2.2 40 (25) 15 (.38) 31 (.78) 73 (2920)Meiko CS2 (MPI) Solaris 2.3 90 (11.11) 24 (.27) 97 (1.08) 83 (7470)Meiko CS2 (sm) 11 (990)nCUBE 2 Vertex 2.0 20 (50) .78 (.04) 2 (.10) 154 (3080)nCUBE 1 Vertex 2.3 8 (125) .10 (.01) { ({) 384 (3072)NEC Cenju-3 Env Rev 1.5d 75 (13.3) 23 (.31) 39 (.52) 40 (3000)NEC Cenju-3(sm) Env Rev 1.5d 75 (13.3) 23 (.31) 39 (.52) 34 (2550)SGI Power Challenge IRIX 6.1 90 (11.11) 126 (1.4) 308 (3.42) 10 (900)TMC CM-5 CMMD 2.0 32 (31.25) { ({) { ({) 95 (3040)
11

is executed approximately n3=3 + n2 times, which gives rise to roughly 2=3n3
oating-pointoperations in the solution. Thus, the benchmark requires roughly 2/3 million
oating-pointoperations.The statement yi yi + �xi, besides the
oating-point addition and
oating-point mul-tiplication, involves a few one-dimensional index operations and storage references. Whilethe LINPACK routines DGEFA and DGESL involve two-dimensional arrays references, theBLAS refer to one-dimensional arrays. The LINPACK routines in general have been orga-nized to access two-dimensional arrays by column. In DGEFA, the call to DAXPY passesan address into the two-dimensional array A, which is then treated as a one-dimensionalreference within DAXPY. Since the indexing is down a column of the two-dimensional array,the references to the one-dimensional array are sequential with unit stride. This is a per-formance enhancement over, say, addressing across the column of a two-dimensional array.Since Fortran dictates that two-dimensional arrays be stored by column in memory, accessesto consecutive elements of a column lead to simple index calculations. References to consec-utive elements di�er by one word instead of by the leading dimension of the two-dimensionalarray.If we examine the algorithm used in LINPACK and look at how the data are referenced,we see that at each step of the factorization process there are operations that modify a fullsubmatrix of data. This update causes a block of data to be read, updated, and written backto central memory. The number of
oating-point operations is 2=3n3, and the number ofdata references, both loads and stores, is 2=3n3. Thus, for every add/multiply pair we mustperform a load and store of the elements, unfortunately obtaining no reuse of data. Eventhough the operations are fully vectorized, there is a signi�cant bottleneck in data movement,resulting in poor performance. To achieve high-performance rates, this operation-to-memory-reference rate must be higher.The bottleneck is in moving data and the rate of execution are limited by these quantities.We can see this by examining the rate of data transfers and the peak performance.3.3 Restructuring AlgorithmsAdvanced-architecture processors are usually based on memory hierarchies. By restructuringalgorithms to exploit this hierarchical organization, one can gain high performance.A hierarchical memory structure involves a sequence of computer memories ranging froma small, but very fast memory at the bottom to a large, but slow memory at the top. Sincea particular memory in the hierarchy (call it M) is not as big as the memory at the nextlevel (M 0), only part of the information in M 0 will be contained in M . If a reference is madeto information that is in M , then it is retrieved as usual. However, if the information is notin M , then it must be retrieved from M 0, with a loss of time. To avoid repeated retrieval,information is transferred from M 0 to M in blocks, the supposition being that if a programreferences an item in a particular block, the next reference is likely to be in the same block.12

Programs having this property are said to have locality of reference. Typically, there is acertain startup time associated with getting the �rst memory reference in a block. Thisstartup is amortized over the block move.Processors such as the IBM RS/6000, DEC Alpha, Intel 860, etc all have an additionallevel of memory between the main memory and the registers of the processor. This memory,referred to as cache. To come close to gaining peak performance, one must optimize the useof this level of memory (i.e., retain information as long as possible before the next access tomain memory), obtaining as much reuse as possible.In the second benchmark, the problem size is larger (matrix of order 1000), and modifyingor replacing the algorithm and software is permitted to achieve as high an execution rateas possible. The algorithm used for the n = 1000 problem makes better use of the memoryhierarchy by utilizing the data in cache. Thus, the hardware had more opportunity forreaching near-asymptotic rates. An important constraint, however, is that all optimizedprograms maintain the same relative accuracy as standard techniques, such as Gaussianelimination used in LINPACK.We have converted the
oating point execution rates observed for each problem to oper-ations per cycle and also calculated the number of cycles consumed, as overhead (latency),during communication.For the LINPACK 100 test, many processors achieve one
oating point operation everyfour cycles, even though the process has the ability to deliver much more than this. Theprimary reason for this lack of performance relates to the poor compiler generated code andthe algorithm's ine�ective use of the memory hierarchy. There are a few exceptions, mostnotably the IBM SP-2's processor. The RS/6000-590 processor is able to achieve two
oatingpoint operations per cycle for the LINPACK 100 test. The compiler and the cache structurework together on the RS/6000-590 and is able to achieve this rate.There are also examples of poor performance on some of the �rst generation parallelmachines, such as the nCUBE 1 and 2 and the Intel iPSC/2. These processors are able toachieve only .01 to .04
oating point operations per cycle.For the larger test case, LINPACK 1000, most of the processors achieve 70 to 80 % oftheir peak.4 Summary4.1 Rules for Running the TestsThe software intentionally has been kept simple so that it will be easy for an experiencedprogrammer to adapt the program, or parts of it, to a speci�c architecture with only amodest e�ort. In running the tests, the user is allowed to change the message passing callsto the appropriate call on the speci�c system the program is to be run on. We have providedboth PVM and MPI [4] implementations in netlib.13

4.2 Obtaining the SoftwareThe software used to generate the data for this report can be obtained by sending electronicmail to netlib@www.netlib.org .To receive the single-precision software for this benchmark, in the mail message tonetlib@www.netlib.org type send comm.shar from benchmark .To receive the double-precision software for this benchmark, type send comm.shar frombenchmark .A web browser can be used as well. With the url http://www.netlib.org/benchmark/index.htmlclick on \benchmark/comm.shar".References[1] HPCwire No. 4912 12/2/94, 1994. Email exchange.[2] J. Dongarra. Performance of various computers using standard linear equations softwarein a Fortran environment. Technical Report CS-89-85, University of Tennessee, 1995.[3] T. H. Dunigan. Early experiences and performance of the intel paragon. Technical report,Oak Ridge National Laboratory, 1993. ORNL/TM-12194.[4] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard . In-ternational Journal of Supercomputer Applications and High Perf ormance Comput-ing, 8(3/4), 1994. Special issue on MPI. Also available electronically, the url isftp://www.netlib.org/mpi/mpi-report.ps.[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: AUsers' Guide and Tutorial for Networked Parallel Computing. MIT Press, 1994.[6] Roger Hockney. The communication challenge for mpp. Parallel Computing, 20:389{398,1994.
14

Appendix: Machine Con�gurations for Echo TestsA summary of the various architectures and con�gurations used when these performance�gures were measured follows. Unless otherwise noted, the test programs were compiledwith cc -O.TheConvex SPP1000 and SPP1200 consist of SCI-ring connected nodes (160 MB/second).Each SPP1000 node consists of eight 100 MHz HP PA RISC 7100 processors with a cross-bar memory interconnect (250 MB/second). The tests were run under SPP-UX 3.0.4.1 andConvexPVM 3.3.7.1.The Cray T3D is 3-D-torus multiprocessor using the 150 MHz DEC Alpha processor.Communication channels have a peak rate of 300 MB/second. Tests were performed usingMAX 1.2.0.2. A special thanks to Majed Sidani of Cray for running our communication testson the T3D using PVM. The PVM communication was with pvm psend and pvm precv.The Intel iPSC/860 is Intel's third generation hypercube. Each node has a 40 MHzi860 with 8 KB cache and at least 8 MB of memory. Communication channels have a peakrate of 2.8 MB/second. Tests were performed using NX 3.3.2. The Intel iPSC/2 uses thesame communication hardware as the iPSC/860 but uses 16 MHz 80386/7 for computation.The Intel Delta is a 512-node mesh designed as a prototype for the Intel Paragon family.Each node has a 40 MHz i860 with 8 KB cache and 16 MB of memory. Communicationchannels have a peak rate of 22 MB/second. Tests were performed using NX 3.3.10.The Intel Paragon is a mesh-based multiprocessor. Each node has at least two 50 MHzi860XP processors with 16 KB cache and at least 16 MB of memory. One processor is usuallydedicated to communications. Communication channels have a peak rate of 175 MB/second.Test were run under OSF 1.0.4 Server 1.3/WW48-02 and SUNMOS 1.6.2 (using NX messagepassing).The IBM SP1 is an omega-switch-based multiprocessor using 62.5 MHz RS6000 pro-cessors. Communication channels have a peak rate of 40 MB/second. Tests were run usingMPL.The IBM SP2 is an omega-switch-based multiprocessor using 66 MHz RS6000 processorswith L2 cache. Communication channels have a peak rate of 40 MB/second. Tests were runusing MPI. The MPI communication was with mpi send and mpi recv.The Kendall Square architecture is a shared-memory system based on a hierarchyof rings using a custom 20 MHz processor. Shared-memory latency is about 7 �s, andbandwidth is about 32 MB/second. The message-passing performance was measured usingPaci�c Northwest Laboratory's tcgmsg library on one ring of a KSR1 running OSF R1.2.2.The Meiko CS2 uses SPARC processors with 200 M
op/s vector co-processors. Thecommunication topology is a fat tree with peak bandwidth of 50 MB/second. The MPSCmessage-passing library was used for the echo tests. Meiko notes that using point-to-pointbidirectional channels in the echo test reduces latency from 82 microseconds to 14 microsec-onds. A special thanks to Jim Cownie of Meiko for running our communication tests.15

The Ncube hypercube processors are custom processors with hypercube communicationintegrated into the chip. The �rst generation chip ran at 8 MHz, the second generation chipran at 20 MHz.The NEC Cenju-3 results are from a 75 MHz VR4400SC MIPS processor with 32KBytes of primary cache and 1 MByte of secondary cache using MPI under the CenjuEnvironment Release 1.5d. Communication channels have a peak rate of 40 MB/secondthrough a multistage interconnection network.The SGI results are from a 90 MHz PowerChallenge using MPI under IRIX 6.1. TheSGI is a shared-memory multiprocessor using a 1.2 GB/s bus.The TMC CM5 is hypertree multiprocessor using 32 MHz SPARC processors with fourvector units and 16 MB of memory per node. Communication channels have a peak rate of20 MB/second. Tests were run using the message passing library CMMD 2.0.

16

