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Abstract. In applications such as landscape ecology, computermodeling is used to assess habitat fragmentation and its ecological implications.
Maps (2-D grids) of habitat clusters or patches are analyzed to determine the number, location, and sizes of clusters. Recently, improved
sequential and parallel implementations of theHoshen-Kopelman cluster identification algorithmhave beendesigned. These implementations
use a finite state machine to reduce redundant integer comparisons during the cluster identification process. The sequential implementation
for large-scalemapsperforms cluster identification bypartitioning the map along row boundaries andmerging the results of the partitions. The
parallel implementation on a 32-processor Thinking Machines CM–5 provides an efficient mechanism for performing cluster identification in
parallel. While the sequential implementation achieved promising speed improvements ranging from 1.39 to 2.00 over an existing Hoshen-
Kopelman implementation, the parallel implementation achieved a minimum speedup of 5.41 over the improved sequential implementation
executing on a Sun SPARCstation 10.
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1. Introduction

In landscape ecology, computermodeling canbe used to assesshabitat fragmentation, themigration
patterns of individuals or groups of competing animal species, and the impact of human activities
on ecosystems. In such applications, the primary data structure used within spatially explicit
landscape models are maps (2-dimensional grids). These maps typically reflect habitat clusters or
patches that can be analyzed to determine their numbers, sizes, and geometries. A core function
of map analysis is cluster identification—a process by which individual pixels in a map that have
been grouped in the samemap class are given the same cluster label.

Cluster identification algorithms can be classified by their approach to pixel labeling as holistic
or aggregate. Holistic-type algorithms find every pixel belonging to a particular cluster before
analyzing the next cluster. These algorithms can be implemented either recursively or by using a
working set to maintain a list of candidate pixels. In a working set implementation, each candidate
pixel on the list is labeled and in turn, each of the pixel’s neighbors is analyzed. If a neighboring
pixel is in the same cluster and is currently unlabeled, the pixel is added to the list. This process
continues until the list is exhausted signaling all pixels belonging to this cluster have been properly
labeled.

In a recursive implementation, the original call to the cluster identification function (CIF) will
accept a pointer to the first candidate pixel and will correctly label the pixel and its North-East-
West-South (NEWS) neighbors. The CIF function labels the NEWS neighbors by issuing recursive
calls to itself, one for each of the NEWS neighbors that are in the current map class and have not

* This author’s research was supported by the National Science Foundation under grant numbers NSF-ASC-92-03004 and NSF-CDA-91-
15428.
** This author’s research was supported by the National Science Foundation under grant number NSF-IRI-9111121.



2 M.W. BERRY, J.M. CONSTANTIN AND B.T. VANDER ZANDEN
already been labeled. When the original call to the CIF returns, the entire cluster will have been
correctly labeled. The process is repeated for each unique cluster found in the input map.

A recursive implementation requires the entire cluster to be in memory and large amounts of
memory to store the execution stack during the recursion which makes this approach impractical
for large dense maps. Aggregate-type algorithms traverse a map assigning pixels to temporary
clusters and apply merge rules when two temporary clusters overlap. Aggregate-type algorithms
are not subject to the highmemory requirements of the recursive algorithms and are better suited for
cluster identification on large-scale, dense maps. The Hoshen-Kopelman [6] cluster identification
algorithm is an aggregate-type algorithm.

1.1. Objectives/Overview

The objectives of this study are to supply a more efficient sequential implementationof theHoshen-
Kopelman [6] (HK) cluster identification algorithm for 2-dimensional binary maps and to provide
an efficient parallel implementation for cluster identification on the Thinking Machines CM–5 [7].
Optimizing the Hoshen-Kopelman sequential implementation involves the efficient use of pointers
and local variables which can significantly reduce the time spent in base-plus-offset array indexing
and redundant integer comparisons.

Before Section 2, which discusses the Hoshen-Kopelman one-pass cluster identification algo-
rithm, the input data set, the programming data structures, the cluster neighborhood rule and the
finite state machine used, the particular file format (ERDAS/Lan) used for test maps is briefly
discussed below. Following a discussion of the major components of the finite statemachine (FSM)
implementation in Section 2, the performance methodology used to evaluate the sequential and
parallel implementations and the computing environment are described in Section 3. Section 4
demonstrates the sequential and parallel performance of the FSM implementation, and Section 5
contains a brief summary and a discussion of future work.

1.2. Input File Format: ERDAS/Lan

The ERDAS/Lan file format consists of a 128-byte header containing selected map statistics as
shown in Table 1. The data pack type, the number of columns, the number of rows, and the number
of map classes are of particular interest to this research.

Following the ERDAS/Lan header are the pixel data values that are packed (pack type) in either
4 bits, 8 bits, or 16 bits and represent the pixel’smembership in amap class. Amap class is a collection
of one or more attributes, or pixel characteristics, and is usually assigned a unique integer value.
Map class membership is mutually exclusive; each pixel may belong to one and only one map class
at any given time. Map classes can be visualized by assigning a unique color or gray-scale to each
class and displaying the pixel data. The maximum number of map classes that can be represented
in a map is a function of the number of bits in the pack type where a pack type of b bits per pixel
can represent 2b map classes. Figure 1 illustrates a section of an ERDAS/Lan map illustrating 31
map classes that are represented by 31 different gray-scales and the Northern YellowstoneNational
Park map, shown in Figure 2, illustrates 10 map classes. In this study, a pack type of 8 bits per pixel
is used so that the number of map classes is limited to 256.
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Figure 1. 1=64 of a 7570� 7940 ERDAS/Lanmap illustrating 31 map classes (FORD map).

Figure 2. Map of Northern Yellowstone National Park illustrating 10 map classes (FIREmap).
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Table 1. Contents of ERDAS/Lan 128-byte file header.

Bit Position Data Type Data Description

0–5 char “HEADER” or “HEAD74”
6–7 integer pack type of data
8–9 integer number of bands per line

10–15 unused at this time
16–19 integer width of the map in pixels
20–23 integer length of the map in pixels
24-27 integer database X-coordinate of the first pixel
28-31 integer database Y-coordinate of the first pixel
32–87 unused at this time
88-89 integer indicator for the type of map units
90–91 integer the number of map classes
92-105 unused at this time
106–107 integer the unit of area associated with each pixel
108–111 real the number of area units represented by each pixel in the units given
112–115 real the mapX-coordinate for the center of the upper left corner pixel in the

map
116–119 real the Y-coordinate for the center of the upper left corner pixel in the map
120–123 real the X-size of each pixel
124–127 real the Y-size of each pixel

2. Hoshen-Kopelman Algorithm

This section introduces the Hoshen-Kopelman [6] cluster identification algorithm with particular
emphasis given to the input datasets, programming data structures, the cluster neighborhood rule,
and the finite-state-machine (FSM) implementation. The discussion of the FSM implementation
focuses on the three major implementation components: the temporary label assignment, the
search path compression, and the formal finite state machine.

2.1. Pre-Processing the ERDAS/LanMaps

AnERDAS/Lanmap is comprisedof integer values ranging fromzero to the number ofmap classes
contained in the map. Each pixel contains either a zero or an integer representing the pixel’s map
class. The HK algorithm uses one data structure to store the map pixel values and as a working
set to store temporary pixel label values. This dual purpose will not allow different map classes to
be stored in the same structure without altering the cluster identification process. Thus, the finite-
state-machine implementation of the Hoshen-Kopelman algorithm requires the input ERDAS/Lan
map to be pre-processed in a way which alters the original data by filtering out the pixel data values
not belonging to the selected map class. Only one map class can be represented in the input map
for the finite state machine implementation. For example, to analyze map class 2, all of the map’s
pixel values equal to 2 would be changed to -1, and the rest of the pixel values in the map would
be changed to 0. Figure 3 shows the results of pre-processing map class 2 of a simple ERDAS/Lan
map file containing two map classes. The result is an input map containing only -1’s and 0’s where
the -1’s distinguish pixels belonging to the chosen map class.

2.2. Data Structures

The Hoshen-Kopelman (HK) algorithm [6] is a one-pass approach to cluster identification that
utilizes two working arrays, matrix and csize, to store the post-processed input map1 and
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Figure 3. Explanation of pre-processing map class 2 of a simple ERDAS/Lan map. Pixels assigned to map class 2 have a pixel value of 2 as
seen in the before image (left). Pre-processing the map will change the pixel values, currently 2, to a -1 in the post-processed image (right)
substituting zero for the rest of the values.

interim cluster statistics. The algorithm traverses the map from left to right, and then from top
to bottom, assigning a temporary cluster label to each non-zero pixel and recording any pixel
label or cluster membership changes in the two working arrays. Temporary label assignment is a
function of the enforced neighborhood rule and the algorithm implementation,which are explained
in detail in Sections 2.3 and 2.4, respectively. Matrix is a two dimensional integer array of size(n+1)�(m+1), where n is thewidth (columns) andm is the height (rows) of themap in pixels. The
dimensions n and m are increased by 1 to accommodate boundary columns and rows, containing
unique boundary integer values, that are necessary for this implementation. Six integer pointers
(firstRow, secondRow, lastRow, current, west, and north) are maintained to traverse the
array and make changes when necessary. Pointers are used to index the matrix array and to
minimize the overhead of base-plus-offsetarray indexing. Integer storage (32 bits/pixel) is required
because thematrix array serves a dual purpose. First, matrixholds the post-processedmapdata,
and second, it serves as a working array for the pixels’ temporary cluster label. If it is impossible
to store the entire matrix array in memory, a divide-and-conquer approach can be implemented
whereby cluster identification is performed by partitioning the map along row boundaries and
merging the results of each partition. Each partition is of size k�mwhere k is the number of rows
in each partition. If n is not evenly divisible by k, the last partition would have less than k rows.

An integer array (csize) is used to store either the running total of cluster size or an index
value for another entry in the csize array. If the stored value is positive, it is the running total of
the pixel membership in that cluster. If it is negative, the absolute value of the stored number is an
index to the true cluster label. Negative indexes can follow a non-circular, recursive path for a finite
number of steps. Figure 4 illustrates the csize working array displaying the positive or negative
entries for each index in the array. Temporary cluster 1 shows a membership of 12 pixels whereas
temporary cluster 2 is the beginning of a 5-step pointer path (2 ! 4 ! 7 ! 6 ! 3) pointing
to temporary cluster 3 containing 22 pixels. The existence of the path signifies that the temporary
cluster at the head of the path had been previously merged into the temporary cluster at the tail
of the path. For example, as the result of four independent merge operations, temporary cluster 2
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Figure 4. The csize working array illustrating either a positive or negative value for each index in the array. Positive values are a count of
the pixels in the cluster labeled with the array index value and negative values are pointers to other indexes in the array. Negative indexes
can follow a non-circular, recursive path for a finite number of steps.

had previously beenmerged into temporary cluster 3. Compression of this path is significant to the
overall efficiency of the FSM implementation and is discussed in more detail in Section 2.5.2.

2.3. Neighborhood Rule

A pixel’s membership in a cluster depends on the neighborhood rule used. This research employs
the North-East-West-South (NEWS) neighborhood rule in which two pixels are included in the
same cluster if both the pixels are in the same class and the pixels are neighbors according to the
neighborhood rule. NEWS neighbors share a pixel boundary on the north, east, west, or south.
Consider themap as a 2-dimensionalmatrix of size n�m and the current pixel is map(i,j)where
0 � i � n and 0 � j � m. The north, east, west, and south neighbors would have the coordinates
map(i,j-1), map(i+1,j), map(i-1,j), and map(i,j+1), respectively (see Figure 5).
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Figure 5. North, east, west, south relationship to pixel(i,j).

2.4. Implementing the Hoshen-Kopelman Algorithm

As each row of the map is traversed, the current pixel value is compared to the previous pixel
value in that row (west neighbor) and the pixel value in the same column of the previous row
(north neighbor). Abiding by the NEWS neighborhood rule, if all pixels are in the same cluster,
the smallest cluster label is assigned to all three pixels and any changes in the status of the west
and north neighbors are recorded in the working arrays. The smallest of the two values is chosen
to reduce the memory requirements of the csize array where the maximum size is a function of
the density of the map and the pixel clustering patterns. For the best use of memory by the csize
array, the best case scenario is a map entirely of 1’s or 0’s which would contain only 1 cluster of sizen � m. The csize array size would be 1. Conversely, the worst case scenario is a checkerboard
pattern, alternating 1’s and 0’s throughout the map, resulting in (n�m)=2 clusters each containing
only 1 pixel. The csize array size would be (n � m)=2. When the algorithm completes, each
index in the csize array holds one of three values: a zero, the number of pixels in the cluster
identified by the csize index value, or a pointer to another csize index. The last two values are
differentiated by the arithmetic sign of the value—positive represents the pixel count in the indexed
cluster whereas negative represents a pointer to another csize array index. De-referencing the
pointer, which could follow a non-circular, multi-step path, is accomplished by indexing into the
csize array using the absolute value of the pointer. The HK algorithm does not guarantee a
properly labeled map; however, relabeling, or adjusting pixel values to accurately reflect cluster
membership, can be accomplished in linear time using the working array produced by the HK
algorithm. Figure 6 illustrates the results of the working array csize after merging the temporary
cluster labeled 2 from the top row into the temporary cluster labeled 1. Before themerge, temporary
cluster 1 contained 9 pixels, and temporary cluster 2 contained 2 pixels. After the addition of the
current pixel (1 pixel) and the pixels from temporary cluster 2 (2 pixels), temporary cluster 1 now
contains 12 pixels (9 + 2 + 1), and temporary cluster 2 shows a pointer to temporary cluster 1 in
the csize working array. It is possible to process extremely large maps in linear time using a
divide-and-conquer approach to cluster identification because at a point in time, the algorithm only
requires access to the working array csize, the current pixel, the north neighboring pixel, and the
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Figure 6. Example of working arrays csize and matrix manipulation during the implementation of the Hoshen-Kopelman algorithm. The
After image of the csize array illustrates the results of merging the temporary cluster labeled 2 into the temporary cluster labeled 1.

pixel value of the west neighbor. In this work, both an improved sequential implementation of the
HK algorithm and a parallel implementation on the Thinking Machines CM–5 are presented.

2.5. Finite State Machine Implementation

The objective of the Hoshen-Kopelman finite state machine (FSM) implementation is to reduce the
number of integer comparison operations thus reducing the overall cluster identification time for
a particular map. Particular emphasis is given to the integer comparison operations found in the
temporary label determination and the cluster-merge functions of the algorithm. The objective
is reached by encapsulating the label value and cluster membership status of the west neighbor
in a state of the FSM and by compressing the recursive pointer path in the csize array formed
during the merge-cluster function of the algorithm implementation. Table 2 details the information
encapsulated in each state of the Hoshen-Kopelman finite state machine.
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Table 2. Cluster information encapsulated by each state of the FSM.

State Encapsulated InformationS0 Not currently in a clusterS1 Currently in a cluster on this lineS2 Currently in a cluster on previous lineS3 At a map boundaryS4 Finished

2.5.1. Temporary Label Determination

When evaluating a pixel formembership in a cluster, one must first determine if thewest and north
neighbors have already been assigneda temporarycluster label and, if so, determine theirminimum
cluster label. This requires at least two comparison operations: (1) is thewest neighbor’s pixel value
equal to 0, and (2) is the north neighbor’s pixel value equal to zero. Once the cluster membership
has been determined, the appropriate csize array values must be adjusted to reflect the changes
in the status (the pixel label value) of the west and north neighbors. In the FSM implementation,
the value of the west neighbor’s pixel is stored in a local variable and the west neighbor’s cluster
membership status is encapsulated in a state of the FSM.

2.5.2. Search Path Compression

The HK algorithm traverses the map assigning temporary cluster labels to non-zero pixels in the
order in which the pixels are encountered. Once it has been determined that two temporary
clusters are actually the same cluster, a merge operation is performed. Figure 7 illustrates the effects
ofmerging temporary cluster 2 into temporary cluster 1 and path compression on theworking array
csize. The resulting temporary cluster 1 then contains 34 pixels. Temporary cluster 1 contributed
12 pixels and temporary cluster 3 contributed 22 pixels. Temporary cluster 2 contains a pointer to
cluster 1 which is differentiated by the negative arithmetic sign. During the merge operation, the
algorithm followed a 5-step pointer path (2 ! 4 ! 7 ! 6 ! 3) to determine that temporary
cluster 2 had previously been merged into temporary cluster 3. Pointer paths are non-circular and
contain a finite number of steps. Path compression reduces the number steps in any given path
by replacing each pointer along the path with a pointer to the destination of the path. After path
compression, the next time the algorithm encounters a merge involving cluster 2 the algorithmwill
only have to follow a 1-step path. This approach will always reduce the steps of a given path to
only 1, which decreases the number of integer comparisons and overall cluster identification time.
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Figure 7. Example of search path compression in the csize array before (left) and after (right) a merge operation. The operation merged the
temporary cluster labeled 2 into the temporary cluster labeled 1. This operation followed a 5-step pointer path (2 ! 4! 7 ! 6 ! 3) to
determine that temporary cluster labeled 2 was actually temporary cluster labeled 3 and contains 22 pixels.

2.6. The Finite State Machine

A FSM, finite automaton, is a logical construct composed of a set of states, a finite input token alphabet,
and a transition function to map states � tokens to states. According to [5], a finite automaton is
formally denoted by

a 5-tuple (Q,�, �, q0, F ), whereQ is a finite set of states, � is a finite input alphabet, q0 inQ
is the initial state, F � Q is the set of final states, and � is the transition function mappingQ�� toQ. That is, �(q; a) is a state for each state q and input symbol a.

The transition function, �, is defined as a set of 3-tuples (Sc, a, Sn) where Sc is the current machine
state, a is an element of the token alphabet, and Sn is the newmachine state. Table 3 formally defines
the Hoshen-Kopelman finite state machine (FSM) used in this work. The FSM begins in S0 and
continues until a final state is reached. Section 7 of the Appendix lists the FSM cluster identifica-
tion (cluster id) and the cluster relabeling (reLabel) source code. The states in Q encapsulate
whether or not the west neighbor had been assigned a temporary cluster label eliminating the re-
dundant analysis of the west neighbor. Eliminating redundant conditionals increases the efficiency
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Table 3. Formal definition of the Hoshen-Kopelman
finite state machine.

FSM = (Q,�, �, q0 , F ) whereQ = f S0 , S1 , S2 , S3 , S4 g� = f -1,B g [ f 0,: : : ,Maximum Pixel Label g� = f(S0 , 0=x, S0), (S0 ,�1=0, S1),
(S0 ,�1=!0, S2), (S0 ,B=x, S3),
(S1 , 0=x, S0), (S1 ,�1=0, S1),
(S1 ,�1=!0, S2), (S1 ,B=x, S3),
(S2 ,�1=!0, S2), (S2 , 0=x, S0),
(S2 ,�1=0, S1), (S2 ,B=x, S3),
(S3 , !B=x, S0), (S3 ,B=x, S4) gq0 = f S0 gF = f S4 g

Assumptions:B is the pixel value of the map boundary,
! is the unary negation operator,x is north pixel value, andx 2 f0; : : : ;Maximum Pixel Label andBg

of the FSM implementation. Table 4 is a working example of the FSM implementation showing the
formal state changes for one row of a sample map.

3. Performance Methodology

This section presents the computing environment and performancemethodology for the sequential
and parallel implementation of the Hoshen-Kopelman cluster identification algorithm. Whenever
the sequential and parallel implementations differ significantly, they are discussed independently.

3.1. Computing Environment

Sequential results were obtained using a Sun Microsystems SPARCstation 10, model 30 with an
internal chip speed of 33 MHz and an on-chip cache of 36 KB. The processor architecture is the
SuperSPARCTM. The operating system was SunOS Release 4.1.3 and the machine had 128 Mb of
physical memory.

The multiple-instruction-multiple-data (MIMD) architecture used for parallelizing cluster iden-
tificationwas the ThinkingMachines 32-processorCM–5. TheCM–5 is a scalable parallel processing
computer using the CMOST operating systemwhich provides both time-sharing and space-sharing.
The CM–5 consists of groups of processing nodes (PNs) under the control of a control processor
(CP) also known as the partition manager (PM). The group of PNs and the PM are collectively
called a partition with a size ranging from tens to thousands of processors. The processors in a
32-node CM–5 are denoted as PN0, : : : , PN31. Each partition runs the CMOST operating system—an
enhanced version of UNIX where time-sharing is the natural mode. Although not exploited in this
study, each PN has four vector unit accelerators (VUs) for enhanced arithmetic performance.

Programming on the CM–5 utilizes one of two paradigms, host/node and hostless. In the
host/node paradigm, the CP acts as the host for the program controlling the program flow and the
workload assigned to each PN. The host is also responsible for message-passingcontrol and servic-
ing the input/output (I/O) requests generated by the PNs. Furthermore, access to the partition’s
PNs is only accomplished through the CP. In this paradigm the program is not limited to executing
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Table 4. Incremental state changes for the FSM working example.

Transition Function Matrix Array Values Csize

STEP 1
(S0, 0=x, S0) 1 1 0 0 2 2 0 1 2

0 -1 -1 -1 -1 -1 0 2 2
STEP 2

(S0, �1=!0, S2) 1 1 0 0 2 2 0 1 2
0 -1 -1 -1 -1 -1 0 2 2

STEP 3
(S2, �1=0, S1) 1 1 0 0 2 2 0 1 3

0 1 -1 -1 -1 -1 0 2 2
STEP 4

(S1, �1=0, S1) 1 1 0 0 2 2 0 1 4
0 1 1 -1 -1 -1 0 2 2

STEP 5
(S1, �1=!0, S2) 1 1 0 0 2 2 0 1 5

0 1 1 1 -1 -1 0 2 2
STEP 6

(S2, �1=!0, S2) 1 1 0 0 2 2 0 1 8
0 1 1 1 1 -1 0 2 -1

STEP 7
(S2, 0=x, S0) 1 1 0 0 2 2 0 1 9

0 1 1 1 1 1 0 2 -1

the same program on each of the PNs. A different program may be executing on independent data
on each of the PNs in the partition (MIMD).

In the hostless paradigm, the CM–5 is operating in SIMD mode. All of the PNs used by the
program will be executing the same code on either the same or different data. The actual amount
of work performed by each PN is determined either by data inconsistencies or direct programming
references. Because access to the PNs requires a CP, the CMOST operating systemprovides a limited
host program to control the message passing and I/O service request generated by the PNs.

In both situations communication between the CP and the PNs, or between individual PNs,
is accomplished through message-passing routines that are supplied in a communications library,
CMMD, as an enhancement to one of the supported programming languages. CMMD is pri-
marily used for interprocessor communication—message passing between nodes in the hostless
model and between host and nodes in the host/node mode [8]. Both the sequential and parallel
implementations use the C++ programming language and version 2.6.3 of the g++ compiler.
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3.2. PerformanceMethodology

The methodology used to asses the performance of cluster identification can be divided into three
phases: algorithm selection, algorithm implementation and verification, and data collection and
interpretation. The selection, verification, and data collection phases are applicable to both sequen-
tial and parallel implementations and are discussed simultaneously. Significant differences in the
sequential and parallel implementations, however, are discussed independently.

3.2.1. Algorithm Selection

In [2], the Hoshen-Kopelman (HK) algorithm was shown to be the most efficient sequential cluster
identification algorithm. The algorithm’s one-pass aggregate mechanism does not require access to
an entire inputmap at anygiven time,whichmakes itwell suited for a divide-and-conquer approach
for cluster identification on large-scale maps. A map can be partitioned along row boundaries al-
lowing the algorithm to operate on a map iteratively—as if viewing through a sliding window.
As the algorithm reaches the end of a partition, the sliding window reveals the next partition and
allows the algorithm to continue as though it had access to the entire map. Furthermore, cluster
identification on a partitioned map does not alter the performance nor the result of the algorithm
when compared to cluster identification on a non-partitioned map. This inherent aggregate mech-
anism can be exploited to accommodate sequential cluster identification on large-scale maps or
cluster identification using a coarse-grained, parallel approach on the CM–5. Hence, the inherent
aggregate mechanism was the determining factor for the selection of the HK algorithm.

3.2.2. Algorithm Verification

The accuracy of the sequential andparallel implementationswasverified using randomly generated
testmapswithknowncluster statistics including thenumberof clusters, the sizeof the largest cluster,
the average cluster size, and themap’snon-zero pixel density. The square testmaps contained either
64, 126, 256, 512, or 1024 rows and columns with a non-zero pixel density of 10%, 30%, 62%, or 85%.

3.2.3. Sequential Implementation

Thealgorithm implementation involvedreading theheader information fromthe inputERDAS/Lan
map file, partition size determination, reading the input map, performing cluster identification, and
tabulating the results. In the sequential implementation (SI), reading the header information and
map data were performed using the C++ language file input/output functions. The map header
contains sufficient information to determine the appropriate sizeof thedata structures for thecsize
and matrix working arrays. The number of rows read and processed by the SI was limited2 to
1024. If the number of rows exceeds 1024, the algorithmwill partition the map and perform cluster
identification on each of the partitions in sequential order. After the algorithm completes, the
csize array on PN0 contains the appropriate number of pixels in each cluster and the matrix
array contains the temporary cluster label for each non-zero pixel in the input map. Final cluster
statistics are obtained by traversing the csize array and tabulating the positive non-zero values.

3.2.4. Parallel Implementation

The algorithm was parallelized by partitioning the map across the PNs of the CM–5, performing
cluster identification on each partition, and merging the cluster results of the partitions. The
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parallel mechanism for cluster identification involved four processes: mutually exclusive cluster
identification on a partition assigned to each PN, building a list of clusters that intersect partition
boundaries, merging the partitions’ cluster information, and performing final cluster merges and
statistics calculations.

Partitioning the map across the PNs of the CM–5 involved the basic input/output functions of
the operating system. In the parallel implementation (PI), I/O functions were performed in either
Synchronous Broadcast Mode (SBM) or Synchronous Sequential Mode (SSM). SBM requires all
PNs to issue a synchronized I/O function call, that is implemented by having one PN perform
the physical I/O operation followed by a global message broadcast to the other PNs using the
CM–5’s internal message passing facilities. This procedure results in each PN receiving/writing
the same information and helps to avoid physical disk contention.3 SSM allows an input data set to
be sequentially divided across the PNs. For example, given 32 PNs and 32� b bytes to read: PN0

would read the first b bytes, PN1 would read the next b bytes, etc., so that PN31 would read the lastb bytes. While SBM was used to read and distribute the 128-byte header to all PNs, SSMwas used
to read and partition the input map file across all PNs.

Cluster identification on each PN was a mutually exclusive process—totally independent of
other PNs and partitions. Each PN, using a csize array that is sufficient to hold the statistics for
the entire map, is allowed access to a specific range of indexes in their csize array. The beginning
cluster label number for each PNmust agreewith the starting index of the assigned range. Mapping
PN numbers to a unique range of indexes in the csize array protects against the assignment of
duplicated temporary cluster labels across partitions. The absence of duplicate label numbers is
significant in order for the CMOST’s global integer reduction operation (GIRO) to yield meaningful
results. The GIRO reduces 1 object on each PN returning the result of the operation to the object on
each PN. The GIRO requires access to the object on each PN and a binary operator to apply during
the reduction operation. For example, given an integer object i on p PNs, each with a value of 1
and a binary operator of addition, the result of the GIRO would have been i = p on each PN. If the
binary operatorwasmultiplication, the result would have been i = 1 on each PN. The effective result
of cluster identification is a csize array on each PN containing the complete map’s temporary
cluster statistics. Figure 8 illustrates a simple example of index range assignment on a 4-processor
system. PN0 is assigned the first 25% of the csize indexes, PN1 is assigned the second 25%, PN2 is
assigned the third 25%, and PN3 is assigned the last 25%. After the CMMD global integer reduction
operation, all of the csize arrays contain the union of all of the csize arrays.

During cluster identification, all PNs have relabeled the first row (firstRow) and last row
(lastRow) in its partition. Afterwards, each PN can then send a copy of lastRow to the PN
with the next higher number. The relabel process uses the pixel value as an index into the csize
working array and checks the arithmetic sign of the array stored value. If the stored value is
positive, the pixel is correctly labeled. Otherwise, the correct label value is at the tail of the linked
list createdwith the negative array values (see Figure 7). Each PN compares the row it receives to its
relabeled firstRow and generates a list of merge-clusters ordered pairs. A merge-clusters ordered
pair contains two temporary cluster labels and is maintained in an integer array, mergeArray, with
each ordered pair occupying 2 successive array slots. Figure 9 illustrates themerge-clusters ordered
pair generation by PN1 after receiving lastRow from PN0. PN1 receives lastRow from PN0 into
messageRow, and then compares messageRow and firstRow on PN1. Temporary clusters 12
and 13 from PN0 overlap with temporary cluster 24 from PN1; therefore, PN1 would insert 12, 24,
13, and 24 respectively into mergeArray’s next four available array slots. Figure 10 illustrates
the resulting mergeArray on PN1 for the example in Figure 9. Zero entries in indexes 4 and 5 are
termination indicators that signal PN0 to stopprocessing this arrayduring thefinalmerge operation.
Using CMMDmessage receiving function (CMMD receive block), PN0 receives the mergeArray
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Figure 8. Illustration of index ranges in the csize array on a 4-PN system and the results of a global integer reduction operation (GIRO).

of merge-clusters ordered pairs from all other PNs and then performs a merge operation on the
csize array for eachmerge-clustered ordered pair. For example, when PN0 receives mergeArray
from PN1 containing 12, 24, 13, and 24, PN0 will merge temporary cluster 12 into temporary cluster
24 and temporary cluster 13 into temporary cluster 24. The result of the identification process is a
csize array on PN0 containing the cluster statistics for the entire input map.

4. Performance Results

In this section, the performance of the sequential and parallel implementations of the FSM-based
Hoshen-Kopelman algorithm is presented. Actual timing results obtained on a Sun SPARCstation
10 and Thinking Machines CM-5 are provided. The FSM sequential implementation is compared to
the Hoshen-Kopelman cluster identification textbook implementation from [1], which was coded
verbatim from the algorithm presented in [6]. The FSM sequential and parallel performance
results will be compared for accuracy and speedup—the reduction in execution time due to the
code parallelization.



16 M.W. BERRY, J.M. CONSTANTIN AND B.T. VANDER ZANDEN
PN Row Pointer matrix Array

...
PN0 12 12 12 0 13 0 10
PN0 lastRow 0 12 12 0 13 13 0# CMMD send block #
PN1 messageRow 0 12 12 0 13 13 0# is compared to #
PN1 firstRow 0 0 24 24 24 0 0
PN1 26 0 24 0 0 0 27

...

Figure 9. Illustration of the merge-clusters ordered pair generation. LastRow is passed from PN0 and received by PN1 into messageRow.
messageRow is then compared to firstRow to determine overlapping clusters.

Index Entry
0 12
1 24
2 13
3 24
4 0
5 0
...

...

Figure 10. Illustration of the merge-clusters ordered-pair array, mergeArray.

4.1. Comparison Maps

Two input maps were used for comparing the FSM sequential implementation to the HK imple-
mentation in [1] and to the FSM parallel implementation on the CM–5. The first map is a 454� 454
ERDAS/Lan map (FIRE) containing fire patterns from the Northern Yellowstone National Park.
The FIREmap is composed of ten map classes each with different pixel densities, number of clus-
ters, and cluster sizes. Table 7 in Section 6 of the Appendix lists the map class statistics of the FIRE
map which was supplied by Dr. Robert Gardner of the Oak Ridge National Laboratory, Environ-
mental Science Division [4]. The second map is a 7570� 7940 ERDAS/Lan map (FORD) containing
pre-classification values, obtained from applying a classification function on four or five of the inputs
from thematic mapper imagery [3]. The original inputs are sensor readings (wavelengths) from
different parts of the light spectrum. The pixel values in the input map are artificial values that
represent map class membership. The values are logically significant, but not numerically. A data
value of 8 is not necessarily closer to a data value of 9 than it is to any other value (0–31). Table
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8 in Section 6 of the Appendix lists the map class statistics for the FORDmap, which was supplied
by Dr. Ray Ford from the Department of Computer Science at the University of Montana and the
Wildlife Spatial Analysis Lay directed by Dr. Roland Redmond at the University of Montana.

4.2. Sequential Performance Results

As stated in Section 1.1, the primary objective of the FSM sequential implementation (SI) was to
optimize a sequential cluster identification algorithm for a subsequent parallel implementation (PI)
on the CM–5. This objective was accomplished by implementing the HK cluster identification
algorithm with efficient use of pointers and utilizing a finite state machine to eliminate redundant
integer comparison operations. The FSM implementation was compared to the HK implementa-
tion in [1] and Figure 11 illustrates the time improvements for the FSM implementation. The time
improvement is the ratio of the execution time for the original HK implementation in [1] to the
FSM execution time and is attributed to the efficient use of pointers during array indexing, com-
pression of the search path during cluster merge operations, and using a finite state machine to
reduce redundant integer comparison operations by encapsulating the previous comparison result
in a machine state. The FSM implementation achieved a minimum time improvement of 1.39 and
a maximum time improvement of 2.00 on the FIRE map. Table 9 in Section 6 of the Appendix
lists the time improvement for each map class of the FIREmap. The FORDmap was not used for
sequential comparisons because the previous implementation in [1] was designed to handle maps
smaller than 1024� 1024 pixels.

4.3. Parallel Performance Results

The success of the parallel implementation (PI) was evaluated by comparisons with the sequential
implementation (SI) in two categories: accuracy and execution time speedup. Speedup is defined
as the ratio of the sequential time to the parallel time and was calculated using the 7570 � 7940
FORD map. Because the HK algorithm’s working arrays (csize and matrix) were distributed
across the PNs of the CM–5, the PI functions SEND, IDROWS, REDUCTION, MERGEFUN, ROW1, and
CALCSIZE were necessary to duplicate the functionality of the sequential HK algorithm. Table
5 details the responsibility of each of the functions involved in cluster identification in the FSM
parallel implementation. The total time spent in cluster identification in the PI is the sum of the
time spent in the SEND, IDROWS, REDUCTION, MERGEFUN, ROW1, and CALCSIZE functions (see
Table 6).

The PI was able to achieve a speedup ranging from 5.41 to 5.90 on the FORDmap. The average
speedup was 5.71 for the 31 layers of the FORD map. Given the parallel potential of the HK
algorithm, the performance of the PI met expectations. The HK algorithm only requires access to
a small portion of the input map and the process of merging overlapping clusters is well defined.
The PI takes advantage of the PN’s local memory to partition the input map which enables cluster
identification to work entirely in parallel. However, the separation of the data and working sets
became a hindrance during the MERGEFUN process. The combination process, merging information
from each PN, turned out to be more expensive than the cluster identification process.

The combination process consumes 48% of the total cluster identification time compared to the
cluster identification’s 35%. Future research concerning the combination process is discussed in the
next and final section. The SI and PI results for the 31 map classes of the FORD map, which are
detailed in Table 10 (see Section 6 in the Appendix) and Figure 12, demonstrate a constant speedup
factor near 6.
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Table 5. Functional responsibilities of the functions involved in cluster identification in the FSM parallel
implementation on the CM–5.

Function Responsibility

ROW1 correctly labels the first row of the PN’s partition
CLUSTER performs cluster identification of the PN’s partition
SEND sends a copy of the last row in each PN to the next PN
IDROWS compares the row received during the SEND function to the first row in the current PN’s

partition and generates a list of merge-cluster ordered pairs (see Section 3.2.4)
REDUCTION combines the individual csize arrays located on each PN into one csize array on PN0 and

is implemented using a CMMD global integer reduction operation
MERGEFUN is responsible for resolving the list of merge-cluster ordered pairs generated by the PNs and is

performed entirely on PN0

CALCSIZE uses the csize array to calculate the cluster statistics for the entire map and is performed
entirely on PN0
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Figure 11. Cluster identification time for the previous implementation in [1] vs. the FSM implementation. All times are in CPU seconds.
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Table 6. Functional profile of
the Parallel Implementation (PI)
of the FSM cluster identification
algorithm applied to the FORD
map.

Function Elapsed Time

CLUSTER 1.30545
SEND 0.00961

IDROWS 0.00607
REDUCTION 1.80424
MERGEFUN 0.12524

ROW1 0.00423
CALCSIZE 0.44157

Total Cluster Id 3.69641

0 10 20 30
Map Class (FORD)

0

5

10

15

20

Id
en

ti
fi

ca
it

on
 T

im
e 

(C
P

U
 s

ec
on

ds
) 

Sequential Time 
Parallel Time 

Figure 12. Comparison of parallel and sequential cluster identification times for 31 map classes of the FORD map. All times are elapsed CPU
seconds.
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5. Summary and Future Work

In this work, a faster sequential implementation (SI) of the Hoshen-Kopelman cluster identification
algorithm and a parallel implementation (PI) on the CM–5 have been presented. The implementa-
tions involved using a finite statemachine to maintain results of prior integer comparisons in order
to reduce redundant comparison. The SI achieved a time improvement ranging from 1.39 to 2.00 over
the sequential HK implementation in [1] and the PI achieved an average speedup of 5.71 over the
fastest SI. Future optimizationof particular PI functions, REDUCTION and MERGEFUN, is possible by
examining the message passing mechanism in the CMOST operating systemwith a goal of reducing
the total time spent in inter-processor communication.

Improving the combination mechanism for the FSM parallel implementation is another future
concern. Since the PI creates a csize working array on each PN, the range of indexes into the
array (based on the PN number) is limited. For example, in a 32 PN system, PN0 would have
access to the first 1=32 indexes in the csize array on PN0. The rest of the indexes would remain
unused. This mechanism was chosen to make use of the global reduction operations available in
the CMOST operating system. The global reduction operation is responsible for 48% of the overall
cluster identification time which is more expensive than the actual cluster identification function.
Furthermore, the extra memory allocated in the csize working array on each of the PN could be
better used to process larger input maps.

A possible solution could be to switch to a host/node paradigm whereas the host PN would
allocate a csize working array large enough to support the entire map; but, the PNs would only
allocate enough memory to support the PN’s portion of the input map. The MERGEFUNwould then
be performed entirely on the host processor. The REDUCTION process would be more complicated
because the host would have to map the individual csize array index numbers to a specific range
of indexes; but, it should reduce the time spent passing messages.
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Notes

1. Post-processed refers to the map resulting from pre-processing—filtering data values not corresponding to the
chosen map class. The original input ERDAS/Lanmap is read into a holding buffer, filtered, andmoved into the
matrix array for final processing. This three-step process is referred to as pre-processing.

2. This limitation is due to limited physical memory resources, i.e., random access memory and virtual memory
swap space on the Sun SPARCstation’s local hard disk drive.

3. Physical disk contention is a phenomenon observed when the number of read or write operations targeted at a
physical hard disk drive are more than can be serviced simultaneously.
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Appendices

6. Data Tables

Table 7. Statistics for the 9 map classes of the FIREmap (454� 454 pixels).

Map Class Clusters Max Cluster Avg. Cluster Density (%)

1 29 10525 666 9
2 55 15403 470 12
3 66 10329 530 16
4 107 67920 903 46
5 73 1443 137 4
6 19 5395 999 9
7 19 9 1 0
8 1 1 1 0
9 0 0 0 0
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Table 8. Statistics for the 31 map classes of the FORD map (7570� 7940
pixels).

Map Class Clusters Max Cluster Avg. Cluster Density (%)

1 18762 191247 41 1

2 12255 20354 50 1

3 166045 9983 24 6

4 35191 8480 17 1

5 156346 22971 27 7

6 235361 31644 18 7

7 184364 7337 12 3

8 84961 41615 48 6

9 71257 52544 29 3

10 217712 11838 12 4

11 212811 12576 11 4

12 102649 3255 11 2

13 35033 5357 21 1

14 64058 3079 9 1

15 32157 4202 15 0

16 33378 4400 13 0

17 23302 8859 22 0

18 44676 3767 16 1

19 31155 7394 11 0

20 29602 1434 5 0

21 108455 3660 9 1

22 7116 381 3 0

23 40589 5934 6 0

24 380 1199 20 0

25 18550 6868 11 0

26 24688 3677 4 0

27 209065 8800 10 3

28 18938 1146 4 0

29 25183 3337 5 0

30 1165 3495 39 0

31 0 0 0 0

Table 9. Comparison of cluster identification time:
original HK implementation in [1] vs. the FSM
implementation on the FIRE map.

Original HK FSM

Class (CPU sec.) (CPU sec.) Speedup

1 0.22 0.12 1.83

2 0.23 0.14 1.64

3 0.25 0.15 1.67

4 0.32 0.23 1.39

5 0.22 0.11 2.00

6 0.22 0.12 1.83

7 0.20 0.11 1.81

8 0.18 0.11 1.63

9 0.20 0.10 2.00
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Table 10. Comparison of cluster identification CPU time:
FSM sequential implementation vs. the FSM parallel
implementation on the FORD map.

FSM FSM Cluster

Map Sequential Time Parallel Time ID Time

Class (CPU seconds) (CPU seconds) Speedup

1 21.29 3.70 5.75

2 21.33 3.64 5.86

3 22.74 4.07 5.58

4 21.25 3.68 5.77

5 22.66 4.04 5.61

6 22.65 4.12 5.50

7 22.03 4.01 5.50

8 22.39 3.94 5.68

9 21.80 3.82 5.71

10 21.98 4.06 5.41

11 21.95 4.01 5.47

12 21.49 3.79 5.67

13 21.40 3.70 5.78

14 21.33 3.72 5.73

15 21.05 3.68 5.72

16 21.24 3.68 5.77

17 21.25 3.65 5.82

18 21.24 3.71 5.72

19 21.19 3.67 5.77

20 21.12 3.67 5.75

21 21.44 3.80 5.64

22 21.02 3.59 5.85

23 21.09 3.66 5.76

24 20.83 3.58 5.82

25 21.10 3.63 5.81

26 21.37 3.62 5.90

27 22.21 3.99 5.57

28 20.86 3.61 5.78

29 20.91 3.63 5.76

30 20.97 3.60 5.83

31 20.87 3.57 5.85
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7. Selected Procedures

Procedure cluster id – FSM version

void
Map::clusterId(int tempRows)
{

int *C, *N; // pixel pointers: current, north
int i, T1, T2; // loop index and temporary variables
int previous; // temp variables
int state = 0;

N = firstRow;
C = secondRow; // set to first of second row in matrix

for (i = 0; i < tempRows; i++) {
while (*C != OB) {

switch (state) {
case 0:

if (*C == -1) {
if (*N == 0) {

*C = labelNum++;
state = 1;
}

else {
if (csize[*N] < 0) {

T1 = csize[*N];
while (T1 < 0) { // chase negative

T2 = -T1;
T1 = csize[-T1];
}

*C = T2;
while (*N != *C) { // path compression

T1 = -csize[*N];
csize[*N] = -(*C);
*N = T1;
}

}
else // *N > 0

*C = *N;
state = 2;
}

previous = *C;
csize[*C]++;
}

break;

case 1:
if (*C == 0)

state = 0;
else {

if (*N == 0)
state = 1;

*C = previous;
csize[*C]++;
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}

break;

case 2:
if (*C == 0)

state = 0;
else if (*N != 0) {

state = 2;
*C = previous;
csize[*C]++;

// merge N into C operation
if (*N != *C && -csize[*N] != *C) {

if (csize[*N] >= 0) {
csize[*C] += csize[*N];
csize[*N] = -(*C);
}

else {
T1 = -csize[*N];
csize[*N] = -(*C);
while (T1 > 0) { // chase negative

T2 = T1;
T1 = -csize[T1];
csize[T2] = -(*C);
}

if (T2 == *C) // no merge necessary
csize[T2] = -T1; // restore csize

else
csize[*C] -= T1;

}
}

}
else {

*C = previous;
state = 1;
csize[*C]++;
}

break;
}

C++;
N++;
}

C +=2;
N +=2;
state = 0; // end of row return to state 0
}

} // end of cluster_id
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Procedure reLabel

void
Map::reLabel(int tempRows)
{

int *C; // pointer to current pixel
int i, j; // loop index variables
int T1, T2; // temp holding variables
C = matrix + cols + 3; // init tmp to first important value in matrix

for (i = 0; i < tempRows; i++) {
for (j = 0; j < cols; j++) {

if ((*C > 0) && (csize[*C] < 0)) {
T1 = csize[*C];
while (T1 < 0) { // chase negative

T2 = -T1;
T1 = csize[T2];
}

while (*C != T2) { // compress search path
T1 = -csize[*C];
csize[*C] = -(T2);
*C = T1;
}

}
C++; // move C pointer
} // inner while loop

C+= 2;
}

}


