The Performance of PVM
on MPP Systems

Henri Casanova * Jack Dongarra* T Weicheng Jiang*

August 9, 1995

Abstract

PVM (Parallel Virtual Machine) is a popular standard for writing parallel programs so that
they may execute over a network of heterogeneous machines. This paper presents some perfor-
mance results of PVM on three massively parallel processing systems: the Thinking Machines
CM-5, the Intel Paragon, and the IBM SP-2. We describe the basics of the communication
model of PVM and its communication routines. We then compare its performance with native
message-passing systems on the MPPs.

*Department of Computer Science, University of Tennessee, TN 37996
"Mathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831

1 Introduction

PVM (Parallel Virtual Machine) is a software system that allows programmers to use a network
of heterogeneous computers, some of which may be massively parallel processing (MPP) systems,
as a single multicomputer. In this paper we briefly describe the message-passing features of PVM
and discuss PVM’s performance on several MPP systems. See [1] for more details on this software.

All the timings in this report have been obtained with the current version of PVM available at the
University of Tennessee. Specifically, we used version 3.3.8 of PVM on the CM-5, the Intel Paragon
and on the IBM SP-2. Performance results are summarized in table 2 at the end of this paper and
details of the tests are given in appendix A.

2 The Semantics of PVM Message Passing
This section focuses on the message-passing features of PVM.

2.1 Terminology

We define several terms that will be used in this paper to discuss message passing.

Synchronous Send : A synchronous send returns only when the receiver has posted a receive.

Asynchronous Send : An asynchronous send does not depend on the receiver calling a matching

receive.

Blocking Send : A blocking send returns as soon as the send buffer is free for reuse, that is, as
soon as the last byte of data has been sent or placed in an internal buffer.

Non-blocking Send : A non-blocking send returns as soon as possible, that is, as soon as it has
posted the send. The buffer might not be free for reuse.

Blocking Receive : A blocking receive returns as soon as the data is ready in the receive buffer.

Non-blocking Receive : A non-blocking receive returns as soon as possible, that is, either with
a flag that the data has not arrived yet or with the data in the receive buffer.

2.2 The Communication Model

The PVM communication model assumes that any task can send a message to any other PVM task.
There is no limit to the number of messages and no limit to their size. The communication does
not restrict itself to a particular machine’s limitations and always assume that sufficient memory
is available. The message buffers are allocated dynamically. Therefore, the maximum message size
that can be sent or received is limited only by the amount of available memory on a given host.
PVM may give the user a cannot get memory error when the sum of incoming messages exceeds
the available memory, but PVM doesn’t stop its execution and doesn’t remove the host from the
configuration.

According to our terminology, the PVM communication model provides only asynchronous blocking
sends. Therefore, the PVM user does not have to worry either about any deadlocks for nonmatching
pairs of send-receive or about rewriting into a buffer after it has been sent. PVM provides blocking
receives and non-blocking receives.

In PVM3, the option PvmRouteDirect requests that data be transferred directly from task to task
by-passing the PVM demon. However this option is ignored on the MPPs, on which PVM is built
on the native message passing. The PVM model also guarantees that message order is preserved.

2.3 The Message-Passing Functions in PVM

Until PVM3.3, the only message-passing functions available in PVM were pvm_send () and pvm_recv().
Several additional functions have now been added, as discussed below.

2.3.1 pvmsend(), pvm_recv, pvmnrecv()

Sending a message requires three steps. First, a PVM buffer must be initialized by a call to
pvm_initsend(). Second, the message must be “packed” from the user data space into the PVM
buffer by using any combination of the pvm_pk*() routines. PVM takes care of any data encoding
and fragmentation. Third, the complete message is sent to another process with pvm_send().

Receiving a message involves two steps. First, the incoming message must be accepted by pvm_recv(),
the blocking receive, or by pvmnrecv(), the non-blocking receive. Second, once the message has
arrived, it must be “unpacked” into the user data space with a combination of the pvm_upk*()
functions.

During the initialization of the PVM buffer, the user can chose between three different ways of
packing the data in this buffer, depending on the parameter passed to pvm_initsend(). The
default packing mode is PvmDataDefault. The data is packed from the user space into the PVM-
buffer and is encoded according to the XDR format. This mode allows communication over a
heterogeneous network (by heterogeneous, we mean a set of computers at least two of which do not
have the same data format). A second mode is PvmDataRaw. This mode is similar to the default,
but the encoding step is skipped. Thus, PvmDataRaw can be used only between hosts of compatible
data formats. It is always more efficient to use PvmDataRaw when running PVM on a single MPP.

In the experiments described in this paper, we used PvmDataDefault once on the CM-5, only to
show that it is always highly inefficient to use this data format (see Figure 3(b)). A third option,
PvmDataInPlace, leaves the data “in place” in the user data space. During the packing step, PVM
simply keeps track of where and how much data is specified. When pvm_send() is called, the data
is fetched from the user space and sent over the network (the data is in fact never packed). Using
PvmDataInPlace reduces the pack time dramatically and reduces memory requirements. However,
care must be taken when using this method as the data should not be modified between the pack
call and the send call. Indeed, since PVM keeps only pointers to the data, the data can be modified
any time before the send. This situation cannot occur with PvmDataDefault or PvmDatalInPlace.

2.3.2 pvmpsend(), pvmprecv()

With PVM 3.3, it is possible to send and receive messages in a single step using pvm_psend()
and pvm_precv(). The messages processed by these routines must be exchanged between hosts of
compatible data format. Moreover, since there is no packing, the data sent must be contiguous in
the sender memory space. In other words, pvm_psend() can be used to send one array of a given
data type to one destination, which is a very common type of message in a parallel application.
Nevertheless, this feature cannot be used between hosts with incompatible data format, because it
involves no data encoding.

2.4 Summary

The Table 1 shows the limitations and possibilities of the different point-to-point systems in PVM3.

2.5 Implementation on MPPs

Figure 1 shows the way the pvm_psend(), pvm precv(), PvmDataInPlace, and PvmDataRaw are
implemented on the MPPs. In the rest of this paper, we will frequently refer to this figure in order
to discuss its impact on the performance of PVM. Note that in the figure, we have presented the
steps of pvm_send() and pvm_recv() for two noncontiguous data in the user space. We have also
represented the possible extra buffering in the native system on the receiving end. This is the way
buffering is done on the Intel Paragon. On the CM-5 and the SP2, however, the buffering is done
on the sending end for the native asynchronous blocking send.

3 The CM-5

3.1 The Native Message-Passing System

The CMMD library on the CM-5 enables the user to write message-passing programs. It provides
different ways of sending and receiving messages, as we now describe. See [2] for more details.

SENDER

RECEIVER

pvm_psend

pvm_precv

User Level

pvm_send -
pvm_recv \\
PvmDatalnPlace header] (kﬁ:l
I R W
— R
L 2 j

)
pvm_send 1
pvm_recv

PvmDataRaw

PVM Level

System Level

User Level

PVM Level

System Level

User Level

PVM Level

System Level

Possi bl e buffering
i nvol ving a possible
dat a copy

] Buffer

— — — — Data copy

——— Network communication

Figure 1: PVM implementation on MPPs

- =

— - Pointer

Build a buffer

PVM Works on
message-passing || heterogeneous Portability Functionality Motivation
routines systems
call must Can be used only -Direct use of
pvm_psend() No be modified to to exchange one native system
pvm_precv/() run on a hetero- | contiguous piece of | -No packing
geneous system data of one type -No unpacking
Very easy Can send and -No real packing
pvm_send() No modification receive -Memory saving
pvm_recv() to switch to packed data on the sender
PvmDatalnPlace PvmDataDefault
Very easy Can send and
pvm_send() No modification receive -Skip the XDR
pvm_recv() to switch to packed data encoding phase of
PvmDataRaw PvmDataDefault PvmDataDefault
Can send and
pvm_send() Yes Portable receive -Heterogeneous
pvm_recv() packed data communication
PvmDataDefault -uses XDR

CMMD_send_block(), CMMD_receive_block()

Table 1: Summary table of PVM message-passing features

According to the terminology defined in 2.1, CMMD_send block() is a synchronous blocking send
and CMMD_receive block() is a blocking receive.

CMMD_send_async(), CMMD_receive_async()

CMMD_send_async() is an asynchronous non-blocking send and CMMD receive_async() is a non-
blocking receive. CMMD provides functions to check the completion of the sending and receiving

operations.

CMMD_send noblock()

CMMD_send noblock() is an asynchronous blocking send.

3.2 Comparison of the Native Routines

To assess the native bandwidth and latency, we used CMMD_send block() and CMMD_receive_block().
We could also have used CMMD_send_async() and CMMD_receive_async (), which would have given
the same performance. The main advantage of these routines is that they provide the user with the

possibility of overlapping some communications with some computations. It is clear, after some ex-
periments, that CMMD_send noblock() is quite inefficient. This result is surprising for a “ping-pong”
test, since normally the receive is always posted and CMMD_send noblock() should be able to send
the data without any buffering. Here, on the contrary, it buffers the data systematically, always
involving an extra data copy on the sending end. Nevertheless, CMMD _send noblock has several
advantages: it cannot lead to a deadlock (as can CMMD_send_block()), and the user can reuse its
buffer as soon as the call returns (unlike CMMD_send_async()). One pitfall in CMMD_send noblock
is that it could run out of message descriptors if packets pile up at the sending end.

3.3 The Bandwidth

Figures 2(a) and 2(b) show the bandwidth obtained between two nodes of the CM-5 for

e the native message passing system CMMD_send _block(), CMMD_receive_block()

pvm_psend(), pvm_precv()

pvm_send(), pvm_recv() with the PvmDataRaw format

pvm_send(), pvm_recv() with the PvmDatalnPlace format

The first point to notice in Figure 2(a) is that, as expected, the native message-passing library is the
most efficient, with an asymptotic bandwidth of 8.06 Mbytes/sec. Nevertheless, the pvm_psend(),
pvm_precv() bandwidth is fairly close to the performance of the native system. In fact, pvm_psend ()
is built on top of CMMD_send_async(), a configuration that explains the good performance (see
section 3.1).

We also see that pvm_send (), pvm_recv() with PvmDataInPlace is much less efficient than pvm_psend() ,
pvm_precv(). Two factors explain this inefliciency:
e Unlike pvm_psend(), pvm_precv(), it involves a real data unpacking on the receiving end
(see Figure 1).
e [t is built on top of CMMD_send noblock() which we showed much less efficient than CMMD_send_async ()

because of an extra data copy on the sending end (see section 3.2).

Of course, pvm_send(), pvm_recv() with PvmDataRaw is even less efficient. It is built on top of
CMMD_send_async but involves an actual data packing-unpacking.

3.4 The Latency

Figure 3(a) shows the transfer time between two nodes for small messages (up to 1024 bytes).

We computed the latencies from Figure 3 using a least squares interpolation. They are given in
the following table.

Time in seconds

Bandwidth in MB/sec

Connection Machine 5 - (a) Connection Machine 5 - (b)

131 B S A A 51 R S A I) S L AR R 6 T T T T
8k Lol . . /,,4,(——%*:;@/@ . o
+ * CMMD_send_block e
- + CMMD_block
0 - pvm_psend | : |
|] , 5110 “pvm’_psend=-pvm_precy
7 /
PvmDatalnPlace At
/ PvmDatalnPlace . f
X PvmDataRaw - A
6hl i | i 5 * PvmDataRaw */w’*
/ Q ol
// % Ar / 1
5 / J g
/ %]
/ 8
7 E‘ 3t
4 : 2
¥ £
s
/ k]
3k / i o
/ 2ot
: g
a i
2_ // 4
/
/
1t 7 ; 1 1 i
e A A S T T B R | \ ¥ ‘ ‘ ‘
1 2 3 4 5 6 0=
10 10 10 10 10 10 0 100 200 300 400 500 600 700 800 900 1000
Number of Bytes sent Number of bytes sent
Figure 2: Bandwidth on the CM-5: PVM3 - CMMD
x10° Connection Machine 5 (a) Connection Machine 5 - (h)
T T T T T ST T T
+ - PymDataRaw
PvmDataDefault
1
4
8]
08)
3 3
+ CMMD_send_block &
06- O pvm_psend-pvm_precv 1 E
X PvmDatalnPlace £
¥ PymDataRaw 32
c
04} 1 &
1
0 | | | | | | | | | | 0
0 100 200 300 400 500 600 700 800 900 1000
Number of bytes sent Number of bytes sent

Figure 3: (a) Latency on the CM-5 : PVM3 - CMMD - (b) Bandwidth : PvmDataDefault

H System ‘ Latency (u-sec) ‘

CMMD send _block 82

pvm _psend 190
PvmDatalnPlace 858
PvmDataRaw 737

We observe that the latency for CMMD_send block()-CMMD receive block() is the lowest. The
latency for pvm_psend () -pvm_precv() is higher, since these routines are built on top of the CMMD
routines. Moreover, pvm_psend() is much more complex than CMMD_send block(), since it uses
CMMD _send_async() and accepts incoming messages while waiting for its sending operation to be
completed, putting them into a queue (the semantics of pvm_psend() implies that no deadlock
should occur and that the buffer is ready for reuse when it returns).

The latency of pvm_send () -pvm_recv () is of course much higher than that of pvm_psend()-pvm_precv().
This is because of the data packing-unpacking and the use of CMMD_send noblock(). We notice
that the latency is higher with PvmDataInPlace than with PvmDataRaw, which can be seen from
Figure 1. With PvmDataInPlace, pvm_send() has much more “work” to do than with PvmDataRaw.
Before sending the first data to the receiver, a header must be sent, to inform the receiver about
the size of the messages to be expected. This header is built in the PVM space and must be sent
separately because it is not contiguous with the data. In the figure, the sending of the header
corresponds to the blue arrow number 1. Once it has received the header, the receiver builds a
PVM buffer according to the information contained in the header, symbolized by the dashed black
arrow on the figure. Then it begins accepting the data in this buffer (blue arrows 2). This process
is repeated with the next header if there is one. In our small program, we have only one header of
data to transmit. Thus, pvm_send() will send a header and then the data. The extra cost of the
header is the penalty for short messages.

Note that if we use PvmDataInPlace to send n noncontiguous different data, pvm_send () actually
sends 2n messages. Hence, it is highly inefficient to use PvmDataInPlace instead of PvmDataRaw to
send a large amount of noncontiguous small data.

4 The Intel Paragon

4.1 The Native Message-Passing System

On the Intel Paragon, the NX library enables the user to write message-passing programs. We
describe here shortly the different protocols. See [3] for more details.

isend -irecv
isend is an asynchronous non-blocking send and irecv is a non-blocking receive. NX provides

polling functions to check the completion of the send and receive operations.

csend()-crecv()

csend() is an asynchronous blocking send and crecv() is a blocking receive.

4.2 Comparison of the Native Routines

This system is similar to CMMD on the CM-5, but it has no synchronous calls (such as CMMD_send_block()).
We have seen that on the CM-5, CMMD_send noblock() is clearly less efficient than the other sending
functions. On the Paragon, the performance of csend() is as high as the performance of isend ()

on a “ping-pong” test. In fact, in this kind of test, the receive is always posted when the data is

to be sent. Thus, no extra buffering occurs. The Paragon in this respect is more efficient than the

CM-5, which always does an extra copy (see 3.2).

In the following experiments, we used csend()-crecv() to asses the native bandwidth and latency.

4.3 The Bandwidth

Figures 4(a) and 4(b) show the bandwidth obtained between two nodes of the Intel Paragon for

e The native message passing system csend()-crecv()
e pvm_psend()-pvm_precv()
e pvm_send()-pvmrecv() with the PvmDataRaw format

e pvm_send()-pvm_recv() with the PvmDatalnPlace format

As expected, the native message-passing library is the most efficient, with an asymptotic bandwidth
of 92 Mbytes/sec. However, the pvm_psend()-pvm_precv() bandwidth is essentially identical for
large messages. In fact, pvm_psend() is built on top of isend, a configuration that explains its good
performance (see 4.1). In Figure 1, we see that there can be an extra buffering if the message arrives
before the receive is posted. The system buffers any incoming message for which no receive has
been posted. In a “ping-pong” test, however, the receive is always posted, and this extra buffering
never occurs.

As on the CM-5, pvm_send(), pvm_recv() with PvmDataInPlace is much less efficient. First,
unlike pvm_psend(), pvm_precv(), it involves an actual data-unpacking on the receiving end, as
shown in Figure 1. Second, There may be an extra buffering on the receiving end. We should,
however, realize better relative performance than on the CM-5 because csend() does not do a
systematic extra data copy, as was the case on the CM-5 with CMMD_send noblock(). However,
there could be an extra data copy as a result of the PvmDataInPlace protocol. When the receiver
receives the header, it begins to build a PVM buffer, as explained in section 3.4. Meanwhile, the
data may arrive before the receive is posted. In that case, the system does an extra buffering on the
receiving end. This is the reason that the relative performance of PvmDataInPlace compared with
that of pvm_psend(), pvm_precv() is roughly the same as it is on the CM-5. This also explains
the sudden jump when the message size crosses over 10° Bytes (1 MB). The default size of the
Paragon system buffer is 1 MB, and 3/4 of that is used to buffer incoming messages. The 1-MB

10

message could not fit in the buffer, so it was held up briefly and then copied into the PVM buffer
directly. That, ironically, resulted in better performance.

Of course, pvm_send(), pvm_recv() with PvmDataRaw is even less efficient, because it also involves
data packing and unpacking. In addition, the message must be buffered by the system, because
pvm_recv polls to check the message length before accepting it.

The little blip in the middle of the pvm_send(), pvm_recv() curve corresponds to the system page
size.

4.4 The Latency

Figure 5 shows the transfer time between two nodes for small messages (up to 1024 bytes).

We computed the latencies from Figure 5 using a least squares interpolation. They are given in
the following table.

H System ‘ Latency (u-sec) ‘
csend 49
pvm _psend 54
PvmDatalnPlace 332
PvmDataRaw 320

5 The IBM SP-2

5.1 The Native Message-Passing System

On the IBM SP-2, there are basically three native ways of designing message-passing programs.
One can use MPL, a classic message-passing library (see [4]); one can use the private IBM imple-
mentation of MPl (Message Passing Interface) (see [6]); or one can use a private implementation
of PVM, called PVMe, which corresponds to PVM 3.2.

MPL offers two ways of exchanging messages:

mpc_bsend(), mpc_brecv()

mpc_bsend() is a synchronous blocking send and mpc_brecv() is a blocking receive.

mpc_send(), mpc_recv()

mpc_send() is an asynchronous non-blocking send and mpc_recv() is a non-blocking receive. MPL
provides polling function to check the completion of the send and receive operations.

We used mpc_bsend(), mpc brecv() to do our MPL bandwidth and latency measurements.

11

Bandwidth in MB/sec

100

80

60

40

20

Intel Paragon - (a)

¥ X O +

csend

pvm_ psend
pvm:send InPlace
pvm_send Raw

il

16

14

=
N

=
o

(=2

Bandwidth in Mbytes per second
oo

~

Intel Paragon - (b)

csend-crecv
pvm_psend-pvm_precv
PvmDatalnPlace

X X O +

PvmDataRaw

s E— EEE— EEE— ¥ | | | | | | | |
10° 10° 10° 10° 0 100 200 300 400 500 600 700 800 900
Number of Bytes sent Number of bytes sent
Figure 4: Bandwidth on the Intel Paragon: PVM3 - NX
X107 Intel Paragon
5 T T T T
45+ .

N
T

Time in seconds

csend

pvm_psend |
PvmDatalnPlace

* X0t

PvmDataRaw b

0 100 200 300

400 500 600
Number of bytes sent

700 800 900 1000

Figure 5: Latency on the Intel Paragon: PVM3, NX

12

PVMe can be used exactly as PVM 3.2 (that is, without pvm_psend() or pvm_precv()). It can
also be used in two different execution modes:

e Interrupt: the CSS (switch) handler signals a task that a message is incoming.

e No Interrupt: the CSS handler does not signal an incoming message, and hence may cause
deadlock if a large number of messages is exchanged.

The current version of PVM on the SP-2 is built on top of the private implementation of MPI by
IBM. We also must note that MPI is implemented not on top of MPL, but at the same level (on
top of a common low-level library).

5.2 The Bandwidth

In Figures 6(a) and 6(b) we show the bandwidth obtained for

e mpc_bsend(), mpc_brecv()

pvm_psend(), pvm_precv()

PVMe : PvmDataInPlace Interrupt/No Interrupt

PVMe : PvmDataRaw Interrupt/No Interrupt

pvm_send(), pvm_recv() with PvmDataInPlace

pvm_send(), pvm_recv() with PvmDataRaw

In Figure 6(a), the measures for PVMe using PvmDataInPlace are the same regardless of whatever
execution mode is used. The measures for PVMe using PvmDataRaw in the “No Interrupt” mode
are the same as the measures for PVMe using PvmDataInPlace.

In Figure 6(b), the measures for PVMe using PvmDataRaw are exactly the same as the measures
PVMe using PvmDataInPlace.

In Figure 6(a), we see that pvm_psend, pvm_precv is only slightly less efficient than mpc_bsend(),
mpc_brecv(), which is of course the most efficient. Ason the CM-5 and the Paragon, PvmDataInPlace
is better than PvmDataRaw.

As with the Paragon, the little blip in the middle of the pvm_send(), pvm_recv() curve corresponds
to the system page size.

5.3 The Latency
Figure 7 shows the transfer time between two nodes for small messages (up to 1024 bytes). This

figure does not show the results for PVMe with PvmDataRaw, since they are the same as the results
for PvmDataInPlace.

13

35

30

= [) e
o (=3 (35

Bandwidth in MB/sec

=
o

+: mpc:bsend

0 . pvm_psend

- PVMe InPlace
— — PVMe Raw Int
X PvmDatalnPlace

* - PvmDataRaw

IBM SP2 - (3)

10 10 10
Number of Bytes sent

Figure 6: Bandwidth on

-4

x 10

10

IBM SP2

IBM SP2 - (b)

9 T T T
8 |-

+ ‘mpc_bsend
7L O :pvm_psend-pvm_precv

— - PVMe InPlace/Raw Int
— — PVMe InPlace/Raw Nolnt

(=2
T

X ‘PvmDatalnPlace

.- PvmDataRaw “

ol
T

o~
T

w
T

Bandwidth in Mbytes per second

N
T

L
0 100 200 300 400 500 600
Number of bytes sent

the IBM SP-2: PVM3 - PVMe - MPL

+

o]

X

*

4L |~ = PVMe InPlace (Nolnt)

mpc_bsend
pvm_psend
PVMe InPlace (Int)

PvmDatalnPlace

PvmDataRaw

Time in seconds

0
0

100 200 300 400

500

600 700 800 900 1000
Number of bytes sent

Figure 7: Latency on the IBM SP-2: PVM3, PVMe, MPL

14

700

800

1
900

1000

We computed the latencies from Figure 7 using a least squares interpolation. They are given in
the following table.

H System ‘ Latency (u-sec) ‘
mpc_bsend 53
pvm_psend 54
PvmDatalnPlace 224
PvmDataRaw 202
PVMe InPlace (Int) 259
PVMe InPlace (Nolnt) 804

The latency of pvm_psend, pvm_precv is roughly the same as that of mpc_bsend, mpc_ brecv.
For the same reason as on the CM-5 and the Paragon, PvmDataRaw gives a lower latency than
PvmDataInPlace.

6 Summary

We have assessed the costs of the different PVM routines in terms of memory-to-memory copy and
network communication. By network communication, we mean one sending of one message over
the network. This message is possibly fragmented by the system. These costs are given for one
send-receive operation during our “ping-pong” test, that is with the assumption that the receive
is always posted when the send is done. By memory-to-memory copy, we mean the copy of one
message from one local buffer to another local buffer. The number of memory-to-memory copies
includes the extra system buffering.

The following table gives these costs as illustrated in Figure 1.

PVM Memory-to-memory network
routines copies communications

pvm_psend() 0 on the sender

pvm_precv/() 0 on the receiver 1 communication
0 copies

pvm_send() 0 on the sender

pvm_recv() 2 on the receiver 2 communications

PvmDatalnPlace 2 copies

pvm_send() 1 on the sender

pvm_recv() 2 on the receiver 1 communication

PvmDataRaw 3 copies

The gap between pvm_send(), pvm_recv() and pvm_psend(), pvm_precv() seems surprising. To
see how much of that can be attributed to the extra data copies, we measure the costs of memory-
to-memory copies on all three systems, the results are shown in the following table. The time in
the beopy column is how long it takes to copy the message. The rest is the message roundtrip time

15

for the three encoding methods, divided by two. The message size is 800 Kbytes, and the time is
in microseconds.

| system | beopy | psend | send (InPlace) | send (Raw) ||

SP2 10528 | 24168 35720 53326
CM5 73729 | 97484 158790 192366
Paragon | 16341 | 11428 32742 60410

For the CM5, the becopy time accounted for most of the difference between pvm_send (), pvm_recv()
and pvm_psend(), pvm_precv(). For the SP2 and Paragon, it accounted for most of the difference
between pvm_psend(), pvm_precv() and pvm_send(), pvm_recv() PvmDataInPlace.

7 Conclusion

The philosophy of PVM has always been to keep the user interface simple and to let PVM do the
hard work in order to improve the performance. This is why all sends in PVM are asynchronous
and blocking. On the other hand, MPP systems usually provide efflicient native communication
features. PVM’s goal is to use them to improve its performance while keeping its simple message-
passing semantic and interface. Therefore, in PVM 3.3, the routines pvm_psend() and pvm_precv()
have been added. The pvm_psend() routine combines the initialize, pack, and send steps into a
single call with an orientation toward performance, while pvm_precv() combines the unpacking and
the receive steps. The results in this paper clearly show that these new routines yield improved
performance and can survive the comparison with the native message-passing systems.

Users who build applications for a homogeneous configuration and have only contiguous data to
transmit should benefit from the pvm_psend() and pvm_precv() calls. These routines can provide
extremely high performance communication, as efficient as the native communication on MPP
systems.

16

CM-5

Protocol

Latency (u-sec)

Bandwidth (Mbytes/sec)

CMMD CMMD _send_block
PVM pvm _psend

PVM PvmDatalnPlace
PVM PvmDataRaw

82
190
858
737

8.25
8.21
5.01
4.17

Intel Paragon

Protocol Latency (u-sec) | Bandwidth (Mbytes/sec)
NX csend 49 92.05
PVM pvm _psend 54 91.85
PVM PvmDatalnPlace 332 79.82
PVM PvmDataRaw 320 13.45

IBM SP-2

Protocol Latency (u-sec) | Bandwidth (Mbytes/sec)
MPL mpc_bsend 53 34.07
PVM pvm _psend 54 33.30
PVM PvmDatalnPlace 224 23.16
PVM PvmDataRaw 202 15.47
PVMe PvmDatalnPlace (Int) 259 20.07
PVMe PvmDatalnPlace (Nolnt) 80 20.07
PVMe PvmDataRaw (Int) 259 15.96
PVMe PvmDataRaw (Nolnt) 80 20.61

Table 2: Summary table of the performance results

17

A Details on the tests

Test program : We used a very simple program exchanging message of given size between two
nodes of any MPP. We then measured an average round-trip time, based on 100 trials. From this

average were computed the latency and bandwidth given in this paper.

CM-5 : We used the CM-5 located at the University of Tennessee. It contains 32 processing
nodes. Each of these nodes is a 32 MHz Sparc processor with 32 MBytes of primary memory. The
interconnection network is a flat tree, theoretically capable of exchanging data between two nearby
nodes at rates up to 20 MBytes/sec.

Intel Paragon : We used the Intel Paragon XP/S 5 located at the Oak Ridge National Labora-
tory. It provides 66 i860 XP compute nodes arranged in a 11 row by 6 column rectangular mesh.
Each node has 16MB of memory.

IBM SP2 : We used the IBM SP2 located at the Cornell Theory Center. All the nodes run at
66.7 MHz The SP2 configuration includes two types of nodes, known as thin nodes and wide nodes.
Thin nodes, roughly equivalent to an RS/6000 Model 390, have 128 MBytes memory. Wide nodes
have memories that range from 256 MBytes to 2GBytes. The Theory Center’s configuration has
48 wide nodes and 464 thin nodes.

18

B References

References

[1] G. A. GEisT, A. L. BEGUELIN, J. J. DoNGARRA, W. JiaNG, R. J. MANCHEK, AND V. S.
SUNDERAM.,
PVM 3 User’s Guide and Reference Manual,
Technical Report ORNL/TM-12187, Oak Ridge National Laboratory, Oak Ridge, Tennessee,
May, 1993

[2] CMMD Reference Manual,
Thinking Machine Corporation, Cambridge, Massachussett, May, 1993

[3] Paragon OSF/1 User’s Guide,
Intel Supercomputer Systems Division, Beaverton, Oregon, April, 1993

[4] IBM AIX Parallel Environment, Parallel Programming Reference,
IBM, Kingston, New-York, September, 1993

[6] IBM AIX PVMe User’s Guide and Subroutine Reference, Release 3.1,
IBM, Kingston, New-York, March, 1995

[6] MESSAGE PASSING INTERFACE FORUM,
MPI A Message-Passing Interface Standard |
International Journal of Supercomputer Applications and High Performance Computing,
vol. 8,1994

19

