
The Performance of PVMon MPP SystemsHenri Casanova � Jack Dongarra? y Weicheng Jiang?August 9, 1995AbstractPVM (Parallel Virtual Machine) is a popular standard for writing parallel programs so thatthey may execute over a network of heterogeneous machines. This paper presents some perfor-mance results of PVM on three massively parallel processing systems: the Thinking MachinesCM-5, the Intel Paragon, and the IBM SP-2. We describe the basics of the communicationmodel of PVM and its communication routines. We then compare its performance with nativemessage-passing systems on the MPPs.
�Department of Computer Science, University of Tennessee, TN 37996yMathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 378311

1 IntroductionPVM (Parallel Virtual Machine) is a software system that allows programmers to use a networkof heterogeneous computers, some of which may be massively parallel processing (MPP) systems,as a single multicomputer. In this paper we briey describe the message-passing features of PVMand discuss PVM's performance on several MPP systems. See [1] for more details on this software.All the timings in this report have been obtained with the current version of PVM available at theUniversity of Tennessee. Speci�cally, we used version 3.3.8 of PVM on the CM-5, the Intel Paragonand on the IBM SP-2. Performance results are summarized in table 2 at the end of this paper anddetails of the tests are given in appendix A.2 The Semantics of PVM Message PassingThis section focuses on the message-passing features of PVM.2.1 TerminologyWe de�ne several terms that will be used in this paper to discuss message passing.Synchronous Send : A synchronous send returns only when the receiver has posted a receive.Asynchronous Send : An asynchronous send does not depend on the receiver calling a matchingreceive.Blocking Send : A blocking send returns as soon as the send bu�er is free for reuse, that is, assoon as the last byte of data has been sent or placed in an internal bu�er.Non-blocking Send : A non-blocking send returns as soon as possible, that is, as soon as it hasposted the send. The bu�er might not be free for reuse.Blocking Receive : A blocking receive returns as soon as the data is ready in the receive bu�er.Non-blocking Receive : A non-blocking receive returns as soon as possible, that is, either witha ag that the data has not arrived yet or with the data in the receive bu�er.2

2.2 The Communication ModelThe PVM communication model assumes that any task can send a message to any other PVM task.There is no limit to the number of messages and no limit to their size. The communication doesnot restrict itself to a particular machine's limitations and always assume that su�cient memoryis available. The message bu�ers are allocated dynamically. Therefore, the maximum message sizethat can be sent or received is limited only by the amount of available memory on a given host.PVM may give the user a cannot get memory error when the sum of incoming messages exceedsthe available memory, but PVM doesn't stop its execution and doesn't remove the host from thecon�guration.According to our terminology, the PVM communication model provides only asynchronous blockingsends. Therefore, the PVM user does not have to worry either about any deadlocks for nonmatchingpairs of send-receive or about rewriting into a bu�er after it has been sent. PVM provides blockingreceives and non-blocking receives.In PVM3, the option PvmRouteDirect requests that data be transferred directly from task to taskby-passing the PVM demon. However this option is ignored on the MPPs, on which PVM is builton the native message passing. The PVM model also guarantees that message order is preserved.2.3 The Message-Passing Functions in PVMUntil PVM3.3, the only message-passing functions available in PVMwere pvm send() and pvm recv().Several additional functions have now been added, as discussed below.2.3.1 pvm send(), pvm recv, pvm nrecv()Sending a message requires three steps. First, a PVM bu�er must be initialized by a call topvm initsend(). Second, the message must be \packed" from the user data space into the PVMbu�er by using any combination of the pvm pk*() routines. PVM takes care of any data encodingand fragmentation. Third, the complete message is sent to another process with pvm send().Receiving a message involves two steps. First, the incoming message must be accepted by pvm recv(),the blocking receive, or by pvm nrecv(), the non-blocking receive. Second, once the message hasarrived, it must be \unpacked" into the user data space with a combination of the pvm upk*()functions.During the initialization of the PVM bu�er, the user can chose between three di�erent ways ofpacking the data in this bu�er, depending on the parameter passed to pvm initsend(). Thedefault packing mode is PvmDataDefault. The data is packed from the user space into the PVM-bu�er and is encoded according to the XDR format. This mode allows communication over aheterogeneous network (by heterogeneous, we mean a set of computers at least two of which do nothave the same data format). A second mode is PvmDataRaw. This mode is similar to the default,but the encoding step is skipped. Thus, PvmDataRaw can be used only between hosts of compatibledata formats. It is always more e�cient to use PvmDataRaw when running PVM on a single MPP.3

In the experiments described in this paper, we used PvmDataDefault once on the CM-5, only toshow that it is always highly ine�cient to use this data format (see Figure 3(b)). A third option,PvmDataInPlace, leaves the data \in place" in the user data space. During the packing step, PVMsimply keeps track of where and how much data is speci�ed. When pvm send() is called, the datais fetched from the user space and sent over the network (the data is in fact never packed). UsingPvmDataInPlace reduces the pack time dramatically and reduces memory requirements. However,care must be taken when using this method as the data should not be modi�ed between the packcall and the send call. Indeed, since PVM keeps only pointers to the data, the data can be modi�edany time before the send. This situation cannot occur with PvmDataDefault or PvmDataInPlace.2.3.2 pvm psend(), pvm precv()With PVM 3.3, it is possible to send and receive messages in a single step using pvm psend()and pvm precv(). The messages processed by these routines must be exchanged between hosts ofcompatible data format. Moreover, since there is no packing, the data sent must be contiguous inthe sender memory space. In other words, pvm psend() can be used to send one array of a givendata type to one destination, which is a very common type of message in a parallel application.Nevertheless, this feature cannot be used between hosts with incompatible data format, because itinvolves no data encoding.2.4 SummaryThe Table 1 shows the limitations and possibilities of the di�erent point-to-point systems in PVM3.2.5 Implementation on MPPsFigure 1 shows the way the pvm psend(), pvm precv(), PvmDataInPlace, and PvmDataRaw areimplemented on the MPPs. In the rest of this paper, we will frequently refer to this �gure in orderto discuss its impact on the performance of PVM. Note that in the �gure, we have presented thesteps of pvm send() and pvm recv() for two noncontiguous data in the user space. We have alsorepresented the possible extra bu�ering in the native system on the receiving end. This is the waybu�ering is done on the Intel Paragon. On the CM-5 and the SP2, however, the bu�ering is doneon the sending end for the native asynchronous blocking send.3 The CM-53.1 The Native Message-Passing SystemThe CMMD library on the CM-5 enables the user to write message-passing programs. It providesdi�erent ways of sending and receiving messages, as we now describe. See [2] for more details.4

pvm_psend

pvm_precv

pvm_send

pvm_recv

PvmDataInPlace

pvm_send

pvm_recv

PvmDataRaw

User Level

PVM Level

System Level

User Level

PVM Level

System Level

User Level

PVM Level

System Level

Buffer

Network communication

Data copy

Pointer

header

SENDER RECEIVER

Unpack

Pack Unpack

Build a buffer

1

2

Possible buffering
involving a possible
data copyFigure 1: PVM implementation on MPPs5

PVM Works onmessage-passing heterogeneous Portability Functionality Motivationroutines systems call must Can be used only -Direct use ofpvm psend() No be modi�ed to to exchange one native systempvm precv() run on a hetero- contiguous piece of -No packinggeneous system data of one type -No unpackingVery easy Can send and -No real packingpvm send() No modi�cation receive -Memory savingpvm recv() to switch to packed data on the senderPvmDataInPlace PvmDataDefaultVery easy Can send andpvm send() No modi�cation receive -Skip the XDRpvm recv() to switch to packed data encoding phase ofPvmDataRaw PvmDataDefault PvmDataDefaultCan send andpvm send() Yes Portable receive -Heterogeneouspvm recv() packed data communicationPvmDataDefault -uses XDRTable 1: Summary table of PVM message-passing featuresCMMD send block(), CMMD receive block() :According to the terminology de�ned in 2.1, CMMD send block() is a synchronous blocking sendand CMMD receive block() is a blocking receive.CMMD send async(), CMMD receive async() :CMMD send async() is an asynchronous non-blocking send and CMMD receive async() is a non-blocking receive. CMMD provides functions to check the completion of the sending and receivingoperations.CMMD send noblock() :CMMD send noblock() is an asynchronous blocking send.3.2 Comparison of the Native RoutinesTo assess the native bandwidth and latency, we used CMMD send block() and CMMD receive block().We could also have used CMMD send async() and CMMD receive async(), which would have giventhe same performance. The main advantage of these routines is that they provide the user with the6

possibility of overlapping some communications with some computations. It is clear, after some ex-periments, that CMMD send noblock() is quite ine�cient. This result is surprising for a \ping-pong"test, since normally the receive is always posted and CMMD send noblock() should be able to sendthe data without any bu�ering. Here, on the contrary, it bu�ers the data systematically, alwaysinvolving an extra data copy on the sending end. Nevertheless, CMMD send noblock has severaladvantages: it cannot lead to a deadlock (as can CMMD send block()), and the user can reuse itsbu�er as soon as the call returns (unlike CMMD send async()). One pitfall in CMMD send noblockis that it could run out of message descriptors if packets pile up at the sending end.3.3 The BandwidthFigures 2(a) and 2(b) show the bandwidth obtained between two nodes of the CM-5 for� the native message passing system CMMD send block(), CMMD receive block()� pvm psend(), pvm precv()� pvm send(), pvm recv() with the PvmDataRaw format� pvm send(), pvm recv() with the PvmDataInPlace formatThe �rst point to notice in Figure 2(a) is that, as expected, the native message-passing library is themost e�cient, with an asymptotic bandwidth of 8.06 Mbytes/sec. Nevertheless, the pvm psend(),pvm precv() bandwidth is fairly close to the performance of the native system. In fact, pvm psend()is built on top of CMMD send async(), a con�guration that explains the good performance (seesection 3.1).We also see that pvm send(), pvm recv()with PvmDataInPlace is much less e�cient than pvm psend(),pvm precv(). Two factors explain this ine�ciency:� Unlike pvm psend(), pvm precv(), it involves a real data unpacking on the receiving end(see Figure 1).� It is built on top of CMMD send noblock()which we showedmuch less e�cient than CMMD send async()because of an extra data copy on the sending end (see section 3.2).Of course, pvm send(), pvm recv() with PvmDataRaw is even less e�cient. It is built on top ofCMMD send async but involves an actual data packing-unpacking.3.4 The LatencyFigure 3(a) shows the transfer time between two nodes for small messages (up to 1024 bytes).We computed the latencies from Figure 3 using a least squares interpolation. They are given inthe following table. 7

CMMD_send_block

pvm_psend

PvmDataInPlace

PvmDataRaw

10
1

10
2

10
3

10
4

10
5

10
6

0

1

2

3

4

5

6

7

8

Number of Bytes sent

B
a

n
d

w
id

th
 i
n

 M
B

/s
e

c

Connection Machine 5 − (a)

CMMD_block

pvm_psend−pvm_precv

PvmDataInPlace

PvmDataRaw

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

Number of bytes sent

B
a

n
d

w
id

th
 i
n

 M
b

y
te

s
 p

e
r

s
e

c
o

n
d

Connection Machine 5 − (b)

Figure 2: Bandwidth on the CM-5: PVM3 - CMMD
CMMD_send_block

pvm_psend−pvm_precv

PvmDataInPlace

PvmDataRaw

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

x 10
−3

Number of bytes sent

T
im

e
 i
n

 s
e

c
o

n
d

s

Connection Machine 5 (a)

PvmDataRaw
PvmDataDefault

10
1

10
2

10
3

10
4

10
5

10
6

0

1

2

3

4

5

Number of bytes sent

B
a

n
d

w
id

th
 i
n

 M
B

y
te

s
/s

e
c

Connection Machine 5 − (b)

Figure 3: (a) Latency on the CM-5 : PVM3 - CMMD - (b) Bandwidth : PvmDataDefault8

System Latency (u-sec)CMMD send block 82pvm psend 190PvmDataInPlace 858PvmDataRaw 737We observe that the latency for CMMD send block()-CMMD receive block() is the lowest. Thelatency for pvm psend()-pvm precv() is higher, since these routines are built on top of the CMMDroutines. Moreover, pvm psend() is much more complex than CMMD send block(), since it usesCMMD send async() and accepts incoming messages while waiting for its sending operation to becompleted, putting them into a queue (the semantics of pvm psend() implies that no deadlockshould occur and that the bu�er is ready for reuse when it returns).The latency of pvm send()-pvm recv() is of course much higher than that of pvm psend()-pvm precv().This is because of the data packing-unpacking and the use of CMMD send noblock(). We noticethat the latency is higher with PvmDataInPlace than with PvmDataRaw, which can be seen fromFigure 1. With PvmDataInPlace, pvm send() has much more \work" to do than with PvmDataRaw.Before sending the �rst data to the receiver, a header must be sent, to inform the receiver aboutthe size of the messages to be expected. This header is built in the PVM space and must be sentseparately because it is not contiguous with the data. In the �gure, the sending of the headercorresponds to the blue arrow number 1. Once it has received the header, the receiver builds aPVM bu�er according to the information contained in the header, symbolized by the dashed blackarrow on the �gure. Then it begins accepting the data in this bu�er (blue arrows 2). This processis repeated with the next header if there is one. In our small program, we have only one header ofdata to transmit. Thus, pvm send() will send a header and then the data. The extra cost of theheader is the penalty for short messages.Note that if we use PvmDataInPlace to send n noncontiguous di�erent data, pvm send() actuallysends 2n messages. Hence, it is highly ine�cient to use PvmDataInPlace instead of PvmDataRaw tosend a large amount of noncontiguous small data.4 The Intel Paragon4.1 The Native Message-Passing SystemOn the Intel Paragon, the NX library enables the user to write message-passing programs. Wedescribe here shortly the di�erent protocols. See [3] for more details.isend -irecv :isend is an asynchronous non-blocking send and irecv is a non-blocking receive. NX providespolling functions to check the completion of the send and receive operations.csend()-crecv() : 9

csend() is an asynchronous blocking send and crecv() is a blocking receive.4.2 Comparison of the Native RoutinesThis system is similar to CMMD on the CM-5, but it has no synchronous calls (such as CMMD send block()).We have seen that on the CM-5, CMMD send noblock() is clearly less e�cient than the other sendingfunctions. On the Paragon, the performance of csend() is as high as the performance of isend()on a \ping-pong" test. In fact, in this kind of test, the receive is always posted when the data isto be sent. Thus, no extra bu�ering occurs. The Paragon in this respect is more e�cient than theCM-5, which always does an extra copy (see 3.2).In the following experiments, we used csend()-crecv() to asses the native bandwidth and latency.4.3 The BandwidthFigures 4(a) and 4(b) show the bandwidth obtained between two nodes of the Intel Paragon for� The native message passing system csend()-crecv()� pvm psend()-pvm precv()� pvm send()-pvm recv() with the PvmDataRaw format� pvm send()-pvm recv() with the PvmDataInPlace formatAs expected, the native message-passing library is the most e�cient, with an asymptotic bandwidthof 92 Mbytes/sec. However, the pvm psend()-pvm precv() bandwidth is essentially identical forlarge messages. In fact, pvm psend() is built on top of isend, a con�guration that explains its goodperformance (see 4.1). In Figure 1, we see that there can be an extra bu�ering if the message arrivesbefore the receive is posted. The system bu�ers any incoming message for which no receive hasbeen posted. In a \ping-pong" test, however, the receive is always posted, and this extra bu�eringnever occurs.As on the CM-5, pvm send(), pvm recv() with PvmDataInPlace is much less e�cient. First,unlike pvm psend(), pvm precv(), it involves an actual data-unpacking on the receiving end, asshown in Figure 1. Second, There may be an extra bu�ering on the receiving end. We should,however, realize better relative performance than on the CM-5 because csend() does not do asystematic extra data copy, as was the case on the CM-5 with CMMD send noblock(). However,there could be an extra data copy as a result of the PvmDataInPlace protocol. When the receiverreceives the header, it begins to build a PVM bu�er, as explained in section 3.4. Meanwhile, thedata may arrive before the receive is posted. In that case, the system does an extra bu�ering on thereceiving end. This is the reason that the relative performance of PvmDataInPlace compared withthat of pvm psend(), pvm precv() is roughly the same as it is on the CM-5. This also explainsthe sudden jump when the message size crosses over 106 Bytes (1 MB). The default size of theParagon system bu�er is 1 MB, and 3=4 of that is used to bu�er incoming messages. The 1-MB10

message could not �t in the bu�er, so it was held up briey and then copied into the PVM bu�erdirectly. That, ironically, resulted in better performance.Of course, pvm send(), pvm recv() with PvmDataRaw is even less e�cient, because it also involvesdata packing and unpacking. In addition, the message must be bu�ered by the system, becausepvm recv polls to check the message length before accepting it.The little blip in the middle of the pvm send(), pvm recv() curve corresponds to the system pagesize.4.4 The LatencyFigure 5 shows the transfer time between two nodes for small messages (up to 1024 bytes).We computed the latencies from Figure 5 using a least squares interpolation. They are given inthe following table. System Latency (u-sec)csend 49pvm psend 54PvmDataInPlace 332PvmDataRaw 3205 The IBM SP-25.1 The Native Message-Passing SystemOn the IBM SP-2, there are basically three native ways of designing message-passing programs.One can use MPL, a classic message-passing library (see [4]); one can use the private IBM imple-mentation of MPI (Message Passing Interface) (see [6]); or one can use a private implementationof PVM, called PVMe, which corresponds to PVM 3.2.MPL o�ers two ways of exchanging messages:mpc bsend(), mpc brecv() :mpc bsend() is a synchronous blocking send and mpc brecv() is a blocking receive.mpc send(), mpc recv() :mpc send() is an asynchronous non-blocking send and mpc recv() is a non-blocking receive. MPLprovides polling function to check the completion of the send and receive operations.We used mpc bsend(), mpc brecv() to do our MPL bandwidth and latency measurements.11

csend

pvm_psend

pvm_send InPlace

pvm_send Raw

10
1

10
2

10
3

10
4

10
5

10
6

0

20

40

60

80

100

Number of Bytes sent

B
a

n
d

w
id

th
 i
n

 M
B

/s
e

c

Intel Paragon − (a)

csend−crecv

pvm_psend−pvm_precv

PvmDataInPlace

PvmDataRaw

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

Number of bytes sent

B
a

n
d

w
id

th
 i
n

 M
b

y
te

s
 p

e
r

s
e

c
o

n
d

Intel Paragon − (b)

Figure 4: Bandwidth on the Intel Paragon: PVM3 - NX
csend

pvm_psend

PvmDataInPlace

PvmDataRaw

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

Number of bytes sent

T
im

e
 i
n

 s
e

c
o

n
d

s

Intel Paragon

Figure 5: Latency on the Intel Paragon: PVM3, NX12

PVMe can be used exactly as PVM 3.2 (that is, without pvm psend() or pvm precv()). It canalso be used in two di�erent execution modes:� Interrupt: the CSS (switch) handler signals a task that a message is incoming.� No Interrupt: the CSS handler does not signal an incoming message, and hence may causedeadlock if a large number of messages is exchanged.The current version of PVM on the SP-2 is built on top of the private implementation of MPI byIBM. We also must note that MPI is implemented not on top of MPL, but at the same level (ontop of a common low-level library).5.2 The BandwidthIn Figures 6(a) and 6(b) we show the bandwidth obtained for� mpc bsend(), mpc brecv()� pvm psend(), pvm precv()� PVMe : PvmDataInPlace Interrupt/No Interrupt� PVMe : PvmDataRaw Interrupt/No Interrupt� pvm send(), pvm recv() with PvmDataInPlace� pvm send(), pvm recv() with PvmDataRawIn Figure 6(a), the measures for PVMe using PvmDataInPlace are the same regardless of whateverexecution mode is used. The measures for PVMe using PvmDataRaw in the \No Interrupt" modeare the same as the measures for PVMe using PvmDataInPlace.In Figure 6(b), the measures for PVMe using PvmDataRaw are exactly the same as the measuresPVMe using PvmDataInPlace.In Figure 6(a), we see that pvm psend, pvm precv is only slightly less e�cient than mpc bsend(),mpc brecv(), which is of course the most e�cient. As on the CM-5 and the Paragon, PvmDataInPlaceis better than PvmDataRaw.As with the Paragon, the little blip in the middle of the pvm send(), pvm recv() curve correspondsto the system page size.5.3 The LatencyFigure 7 shows the transfer time between two nodes for small messages (up to 1024 bytes). This�gure does not show the results for PVMe with PvmDataRaw, since they are the same as the resultsfor PvmDataInPlace. 13

mpc_bsend

pvm_psend

PVMe InPlace

PVMe Raw Int

PvmDataInPlace

PvmDataRaw

10
1

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

25

30

35

Number of Bytes sent

B
a

n
d

w
id

th
 i
n

 M
B

/s
e

c

IBM SP2 − (a)

mpc_bsend

pvm_psend−pvm_precv

PVMe InPlace/Raw Int

PVMe InPlace/Raw NoInt

PvmDataInPlace

PvmDataRaw

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

Number of bytes sent

B
a

n
d

w
id

th
 i
n

 M
b

y
te

s
 p

e
r

s
e

c
o

n
d

IBM SP2 − (b)

Figure 6: Bandwidth on the IBM SP-2: PVM3 - PVMe - MPL
mpc_bsend

pvm_psend

PVMe InPlace (Int)

PVMe InPlace (NoInt)

PvmDataInPlace

PvmDataRaw

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

x 10
−4

Number of bytes sent

T
im

e
 i
n

 s
e

c
o

n
d

s

IBM SP2

Figure 7: Latency on the IBM SP-2: PVM3, PVMe, MPL14

We computed the latencies from Figure 7 using a least squares interpolation. They are given inthe following table. System Latency (u-sec)mpc bsend 53pvm psend 54PvmDataInPlace 224PvmDataRaw 202PVMe InPlace (Int) 259PVMe InPlace (NoInt) 804The latency of pvm psend, pvm precv is roughly the same as that of mpc bsend, mpc brecv.For the same reason as on the CM-5 and the Paragon, PvmDataRaw gives a lower latency thanPvmDataInPlace.6 SummaryWe have assessed the costs of the di�erent PVM routines in terms of memory-to-memory copy andnetwork communication. By network communication, we mean one sending of one message overthe network. This message is possibly fragmented by the system. These costs are given for onesend-receive operation during our \ping-pong" test, that is with the assumption that the receiveis always posted when the send is done. By memory-to-memory copy, we mean the copy of onemessage from one local bu�er to another local bu�er. The number of memory-to-memory copiesincludes the extra system bu�ering.The following table gives these costs as illustrated in Figure 1.PVM Memory-to-memory networkroutines copies communicationspvm psend() 0 on the senderpvm precv() 0 on the receiver 1 communication0 copiespvm send() 0 on the senderpvm recv() 2 on the receiver 2 communicationsPvmDataInPlace 2 copiespvm send() 1 on the senderpvm recv() 2 on the receiver 1 communicationPvmDataRaw 3 copiesThe gap between pvm send(), pvm recv() and pvm psend(), pvm precv() seems surprising. Tosee how much of that can be attributed to the extra data copies, we measure the costs of memory-to-memory copies on all three systems, the results are shown in the following table. The time inthe bcopy column is how long it takes to copy the message. The rest is the message roundtrip time15

for the three encoding methods, divided by two. The message size is 800 Kbytes, and the time isin microseconds. system bcopy psend send (InPlace) send (Raw)SP2 10528 24168 35720 53326CM5 73729 97484 158790 192366Paragon 16341 11428 32742 60410For the CM5, the bcopy time accounted for most of the di�erence between pvm send(), pvm recv()and pvm psend(), pvm precv(). For the SP2 and Paragon, it accounted for most of the di�erencebetween pvm psend(), pvm precv() and pvm send(), pvm recv() PvmDataInPlace.7 ConclusionThe philosophy of PVM has always been to keep the user interface simple and to let PVM do thehard work in order to improve the performance. This is why all sends in PVM are asynchronousand blocking. On the other hand, MPP systems usually provide e�cient native communicationfeatures. PVM's goal is to use them to improve its performance while keeping its simple message-passing semantic and interface. Therefore, in PVM 3.3, the routines pvm psend() and pvm precv()have been added. The pvm psend() routine combines the initialize, pack, and send steps into asingle call with an orientation toward performance, while pvm precv() combines the unpacking andthe receive steps. The results in this paper clearly show that these new routines yield improvedperformance and can survive the comparison with the native message-passing systems.Users who build applications for a homogeneous con�guration and have only contiguous data totransmit should bene�t from the pvm psend() and pvm precv() calls. These routines can provideextremely high performance communication, as e�cient as the native communication on MPPsystems.
16

CM-5Protocol Latency (u-sec) Bandwidth (Mbytes/sec)CMMD CMMD send block 82 8.25PVM pvm psend 190 8.21PVM PvmDataInPlace 858 5.01PVM PvmDataRaw 737 4.17Intel ParagonProtocol Latency (u-sec) Bandwidth (Mbytes/sec)NX csend 49 92.05PVM pvm psend 54 91.85PVM PvmDataInPlace 332 79.82PVM PvmDataRaw 320 13.45IBM SP-2Protocol Latency (u-sec) Bandwidth (Mbytes/sec)MPL mpc bsend 53 34.07PVM pvm psend 54 33.30PVM PvmDataInPlace 224 23.16PVM PvmDataRaw 202 15.47PVMe PvmDataInPlace (Int) 259 20.07PVMe PvmDataInPlace (NoInt) 80 20.07PVMe PvmDataRaw (Int) 259 15.96PVMe PvmDataRaw (NoInt) 80 20.61Table 2: Summary table of the performance results
17

A Details on the testsTest program : We used a very simple program exchanging message of given size between twonodes of any MPP. We then measured an average round-trip time, based on 100 trials. From thisaverage were computed the latency and bandwidth given in this paper.CM-5 : We used the CM-5 located at the University of Tennessee. It contains 32 processingnodes. Each of these nodes is a 32 MHz Sparc processor with 32 MBytes of primary memory. Theinterconnection network is a at tree, theoretically capable of exchanging data between two nearbynodes at rates up to 20 MBytes/sec.Intel Paragon : We used the Intel Paragon XP/S 5 located at the Oak Ridge National Labora-tory. It provides 66 i860 XP compute nodes arranged in a 11 row by 6 column rectangular mesh.Each node has 16MB of memory.IBM SP2 : We used the IBM SP2 located at the Cornell Theory Center. All the nodes run at66.7 MHz The SP2 con�guration includes two types of nodes, known as thin nodes and wide nodes.Thin nodes, roughly equivalent to an RS/6000 Model 390, have 128 MBytes memory. Wide nodeshave memories that range from 256 MBytes to 2GBytes. The Theory Center's con�guration has48 wide nodes and 464 thin nodes.

18

B ReferencesReferences[1] G. A. Geist, A. L. Beguelin, J. J. Dongarra, W. Jiang, R. J. Manchek, and V. S.Sunderam.,PVM 3 User's Guide and Reference Manual,Technical Report ORNL/TM-12187, Oak Ridge National Laboratory, Oak Ridge, Tennessee,May, 1993[2] CMMD Reference Manual,Thinking Machine Corporation, Cambridge, Massachussett, May, 1993[3] Paragon OSF/1 User's Guide,Intel Supercomputer Systems Division, Beaverton, Oregon, April, 1993[4] IBM AIX Parallel Environment, Parallel Programming Reference,IBM, Kingston, New-York, September, 1993[5] IBM AIX PVMe User's Guide and Subroutine Reference, Release 3.1,IBM, Kingston, New-York, March, 1995[6] Message Passing Interface Forum,MPI A Message-Passing Interface Standard ,International Journal of Supercomputer Applications and High Performance Computing,vol. 8,1994

19

