
A Supernodal Approach to Sparse Partial PivotingJames W. Demmel� Stanley C. Eisenstaty John R. GilbertzXiaoye S. Li� Joseph W. H. LiuxJuly 10, 1995AbstractWe investigate several ways to improve the performance of sparse LU factorization with partialpivoting, as used to solve unsymmetric linear systems. To perform most of the numericalcomputation in dense matrix kernels, we introduce the notion of unsymmetric supernodes. Tobetter exploit the memory hierarchy, we introduce unsymmetric supernode-panel updates andtwo-dimensional data partitioning. To speed up symbolic factorization, we use Gilbert andPeierls's depth-�rst search with Eisenstat and Liu's symmetric structural reductions. We haveimplemented a sparse LU code using all these ideas. We present experiments demonstratingthat it is signi�cantly faster than earlier partial pivoting codes. We also compare performancewith Umfpack, which uses a multifrontal approach; our code is usually faster.Keywords: sparse matrix algorithms; unsymmetric linear systems; supernodes; column elimi-nation tree; partial pivoting.AMS(MOS) subject classi�cations: 65F05, 65F50.Computing Reviews descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra| Linear systems (direct and iterative methods), Sparse and very large systems.
�Computer Science Division, University of California, Berkeley, CA 94720 (fdemmel,xiaoyeg@cs.berkeley.edu).The research of these authors was supported in part by NSF grant ASC{9313958, DOE grant DE{FG03{94ER25219,UT Subcontract No. ORA4466 from ARPA Contract No. DAAL03{91{C0047, DOE grant DE{FG03{94ER25206,and NSF Infrastructure grants CDA{8722788 and CDA{9401156.yDepartment of Computer Science, Yale University, P.O. Box 208285, New Haven, CT 06520-8285(sce@cs.yale.edu). The research of this author was supported in part by NSF grant CCR-9400921.zXerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304 (gilbert@xerox.com). Theresearch of this author was supported in part by the Institute for Mathematics and Its Applications at the Universityof Minnesota. Copyright c 1994, 1995 by Xerox Corporation. All rights reserved.xDepartment of Computer Science, York University, North York, Ontario, Canada M3J 1P3 (joseph@cs.yorku.ca).The research of this author was supported in part by the Natural Sciences and Engineering Research Council ofCanada under grant A5509. 1

for column j = 1 to n dof = A(: ; j);Symbolic factor: determine which columns of L will update f ;for each updating column r < j in topological order doCol-col update: f = f � f(r) � L(: ; r);end for;Pivot: interchange f(j) and f(k), where jf(k)j = max jf(j:n)j;Separate L and U : U(1: j; j) = f(1: j); L(j:n; j) = f(j:n);Divide: L(: ; j) = L(: ; j)=L(j; j);Prune symbolic structure based on column j;end for;Figure 1: LU factorization with column-column updates.1 IntroductionThe problem of solving sparse symmetric positive de�nite systems of linear equations on sequentialand vector processors is fairly well understood. Normally, the solution process is broken into twophases:� First, symbolic factorization to determine the nonzero structure of the Cholesky factor;� Second, numeric factorization and solution.Elimination trees [24] and compressed subscripts [30] reduce the time and space for symbolicfactorization to a low-order term. Supernodal [5] and multifrontal [11] elimination allow the use ofdense vector operations for nearly all of the oating-point computation, thus reducing the symbolicoverhead in numeric factorization to a low-order term. Overall, the megaop rates of modern sparseCholesky codes are nearly comparable to those of dense solvers [26].For unsymmetric systems, where pivoting is required to maintain numerical stability, progresshas been less satisfactory. Recent research has concentrated on two basic approaches: submatrix-based methods and column-based (or row-based) methods. Submatrix methods typically use someform of Markowitz pivoting, in which each stage's pivot element is chosen from the uneliminatedsubmatrix by criteria that attempt to balance numerical quality and preservation of sparsity. Recentsubmatrix codes include Ma48 from the Harwell subroutine library [10], and Davis and Du�'sunsymmetric multifrontal code Umfpack [6].Column methods, by contrast, typically use ordinary partial pivoting.1 The pivot is chosen fromthe current column according to numerical considerations alone; the columns may be preorderedbefore factorization to preserve sparsity. Figure 1 sketches a generic left-looking column LU fac-torization. Notice that the bulk of the numeric computation occurs in column-column updates, or,to use Blas terminology [8], in sparse Axpys.Column methods have the advantage that the preordering for sparsity is completely separatefrom the factorization, just as in the symmetric case. However, symbolic factorization cannot be1Row methods are exactly analogous to column methods, and codes of both sorts exist. We will use columnterminology; those who prefer rows may interchange the terms throughout the paper.2

separated from numeric factorization, because the nonzero structures of the factors depend on thenumerical pivoting choices. Thus column codes must do some symbolic factorization at each stage;typically this amounts to predicting the structure of each column of the factors immediately beforecomputing it. (George and Ng [14, 15] described ways to obtain upper bounds on the structure ofthe factors based only on the nonzero structure of the original matrix.)An early example of such a code is Sherman's Nspiv [31] (which is actually a row code).Gilbert and Peierls [20] showed how to use depth-�rst search and topological ordering to get thestructure of each factor column. This gives a column code that runs in total time proportional tothe number of nonzero oating-point operations, unlike the other partial pivoting codes. Eisenstatand Liu [13] designed a pruning technique to reduce the amount of structural information requiredfor the symbolic factorization, as we describe further in Section 4. The result was that the timeand space for symbolic factorization were in practice reduced to a low order term.In view of the success of supernodal techniques for symmetric matrices, it is natural to con-sider the use of supernodes to enhance the performance of unsymmetric solvers. One di�culty isthat, unlike the symmetric case, supernodal structure cannot be determined in advance but ratheremerges depending on pivoting choices during the factorization.In this paper, we generalize supernodes to unsymmetric matrices, and we give e�cient algo-rithms for locating and using unsymmetric supernodes during a column-based LU factorization. Wedescribe a new code called SuperLU that uses depth-�rst search and symmetric pruning to speedup symbolic factorization, and uses unsymmetric supernodes to speed up numeric factorization.The rest of the paper is organized as follows. Section 2 introduces the tools we use: unsymmetricsupernodes, panels, and the column elimination tree. Section 3 describes the supernodal numericfactorization. Section 4 describes the supernodal symbolic factorization. In Section 5, we presentexperimental results: we benchmark our code on several test matrices, we compare its performanceto other column and submatrix codes, and we investigate its cache behavior in some detail. Finally,Section 6 presents conclusions and open questions.2 Unsymmetric supernodesThe idea of a supernode is to group together columns with the same nonzero structure, so theycan be treated as a dense matrix for storage and computation. Supernodes were originally usedfor (symmetric) sparse Cholesky factorization; the �rst published results are by Ashcraft, Grimes,Lewis, Peyton, and Simon [5]. In the factorization A = LLT , a supernode is a range (r: s) ofcolumns of L with the same nonzero structure below the diagonal; that is, L(r: s; r: s) is full lowertriangular and every row of L(s:n; r: s) is either full or zero.2 (Columns of Cholesky supernodesneed not be contiguous, but we will consider only contiguous supernodes.)Ng and Peyton [26] analyzed the e�ect of supernodes in Cholesky factorization on modernuniprocessor machines with memory hierarchies and vector or superscalar hardware. All the updatesfrom columns of a supernode are summed into a dense vector before the sparse update is performed.This reduces indirect addressing, and allows the inner loops to be unrolled. In e�ect, a sequenceof column-column updates is replaced by a supernode-column update. The sup-col update can beimplemented using a call to a standard dense Blas-2 matrix-vector multiplication kernel. Thisidea can be further extended to supernode-supernode updates, which can be implemented usinga Blas-3 dense matrix-matrix kernel. This can reduce memory tra�c by an order of magnitude,2We use Matlab notation for integer ranges and submatrices: r: s or (r: s) is the vector of integers (r; r+1; : : : ; s).If I and J are vectors of integers, then A(I;J) is the submatrix of A with rows whose indices are from I and withcolumns whose indices are from J . A(:; J) abbreviates A(1 : n; J). nnz(A) denotes the number of nonzeros in A.3

T1 T2 T3 T4

Columns have same structure Rows have same structure DenseFigure 2: Four possible types of unsymmetric supernodes.because a supernode in the cache can participate in multiple column updates. Ng and Peytonreported that a sparse Cholesky algorithm based on sup-sup updates typically runs 2.5 to 4.5 timesas fast as a col-col algorithm. Indeed, supernodes have become a standard tool in sparse Choleskyfactorization [5, 26, 27, 32].To sum up, supernodes as the source of updates help because:1. The inner loop (over rows) has no indirect addressing. (Sparse Blas-1 is replaced by denseBlas-1.)2. The outer loop (over columns in the supernode) can be unrolled to save memory references.(Blas-1 is replaced by Blas-2.)Supernodes as the destination of updates help because:3. Elements of the source supernode can be reused in multiple columns of the destination super-node to reduce cache misses. (Blas-2 is replaced by Blas-3.)Supernodes in sparse Cholesky can be determined during symbolic factorization, before thenumeric factorization begins. However, in sparse LU, the nonzero structure cannot be predictedbefore numeric factorization, so we must identify supernodes on the y. Furthermore, since thefactors L and U are no longer transposes of each other, we must generalize the de�nition of asupernode.2.1 De�nition of unsymmetric supernodesWe considered several possible ways to generalize the symmetric de�nition of supernodes to un-symmetric factorization. We de�ne F = L + U � I to be the �lled matrix containing both Land U .T1. Same row and column structures: A supernode is a range (r: s) of columns of L and rowsof U , such that the diagonal block F (r: s; r: s) is full, and outside that block all the columnsof L in the range have the same structure and all the rows of U in the range have the samestructure. T1 supernodes make it possible to do sup-sup updates, realizing all three bene�ts.4

T1 T2 T3 T4median 0.236 0.345 0.326 0.006mean 0.284 0.365 0.342 0.052Table 1: Fraction of nonzeros not in �rst column of supernode.T2. Same column structure in L: A supernode is a range (r: s) of columns of L with full triangulardiagonal block and the same structure below the diagonal block. T2 supernodes allow sup-colupdates, realizing the �rst two bene�ts.T3. Same column structure in L, full diagonal block in U : A supernode is a range (r: s) of columnsof L and U , such that the diagonal block F (r: s; r: s) is full, and below the diagonal blockthe columns of L have the same structure. T3 supernodes allow sup-col updates, like T2. Inaddition, if the storage for a supernode is laid out as for a two-dimensional array (for Blas-2or Blas-3 calls), T3 supernodes do not waste any space in the diagonal block of U .T4. Same column structure in L and U : A supernode is a range (r: s) of columns of L and Uwith identical structure. (Since the diagonal is nonzero, the diagonal block must be full.)T4 supernodes allow sup-col updates, and also simplify storage of L and U .T5. Supernodes of ATA: A supernode is a range (r: s) of columns of L corresponding to a Choleskysupernode of the symmetric matrix ATA. T5 supernodes are motivated by George andNg's observation [14] that (with suitable representations) the structures of L and U in theunsymmetric factorization PA = LU are contained in the structure of the Cholesky factorof ATA. In unsymmetric LU, these supernodes themselves are sparse, so we would waste timeand space operating on them. Thus we do not consider them further.Figure 2 is a schematic of de�nitions T1 through T4.Supernodes are only useful if they actually occur in practice. The occurrence of symmetricsupernodes is related to the clique structure of the chordal graph of the Cholesky factor, which arisesbecause of �ll during the factorization. Unsymmetric supernodes seem harder to characterize, butthey also are related to dense submatrices arising from �ll. We measured the supernodes accordingto each de�nition for 126 unsymmetric matrices from the Harwell-Boeing sparse matrix library [9]under various column orderings. Table 1 shows, for each de�nition, the fraction of nonzeros of Lthat are not in the �rst column of a supernode; this measures how much row index storage issaved by using supernodes. Corresponding values for symmetric supernodes for the symmetricHarwell-Boeing structural analysis problems usually range from about 0.5 to 0.9. Larger numbersare better, indicating larger supernodes. We reject T4 supernodes as being too rare to make up forthe simplicity of their storage scheme. T1 supernodes allow Blas-3 updates, but as we will see inSection 3.2 we can get most of their cache advantage with the more common T2 or T3 supernodesby using sup-panel updates. Thus we conclude that either T2 or T3 is the de�nition of choice. Ourcode uses T2, which gives slightly larger supernodes than T3 at a small extra cost in storage.Figure 3 shows a sample matrix, and the nonzero structure of its factors with no pivoting. Usingde�nition T2, this matrix has four supernodes: f1; 2g, f3g, f4; 5; 6g, and f7; 8; 9; 10g. For example,in columns 4, 5, and 6 the diagonal blocks of L and U are full, and the columns of L all havenonzeros in rows 8 and 9. By de�nition T3, the matrix has �ve supernodes: f1; 2g, f3g, f4; 5; 6g,f7g, and f8; 9; 10g. Column 7 fails to join f8; 9; 10g as a T3 supernode because u78 is zero.5

0BBBBBBBBBBBBBBBB@ 1 � � �� 2 � �3 � �4 � � �� �� 6 �7 � �� � � � 9� � � 10
1CCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBB@ 1 � � �� 2 � � � �3 � �4 � � �� 5 � � �� � � � � 6 � � �7 � �� � � � � � � 8 � �� � � � � 9 �� � � � 10

1CCCCCCCCCCCCCCCCAOriginal matrix A Factors F = L+ U � IFigure 3: A sample matrix and its LU factors. Diagonal elements a55 and a88 are zero.2.2 Storage of supernodesA standard way to lay out storage for a sparse matrix is a one-dimensional array of nonzero valuesin column major order, plus integer arrays giving row numbers and column starting positions. Weuse this layout for both L and U , but with a slight modi�cation: we store the entire square diagonalblock of each supernode as part of L, including both the strict lower triangle of values from L andthe upper triangle of values from U . We store this square block as if it were completely full (it isfull in T3 supernodes, but its upper triangle may contain zeros in T2 supernodes). This allows usto address each supernode as a two-dimensional array in calls to Blas routines. In other words, ifcolumns (r: s) form a supernode, then all the nonzeros in F (r:n; r: s) are stored as a single densetwo-dimensional array. This also lets us save some storage for row indices: only the indices ofnonzero rows outside the diagonal block need be stored, and the structures of all columns withina supernode can be described by one set of row indices. This is similar to the e�ect of compressedsubscripts in the symmetric case [30].We represent the part of U outside the supernodal blocks with a standard sparse structure: thevalues are stored by columns, with a companion integer array the same size to store row indices;another array of n integers indicates the start of each column.Figure 4 shows the structure of the factors in the example from Figure 3, with sk denotinga nonzero in the k-th supernode and uk denoting a nonzero in the k-th column of U outside thesupernodal block. Figure 5 shows the storage layout. (We omit the indexing vectors that point tothe beginning of each supernode and the beginning of each column of U .)2.3 The column elimination treeSince our de�nition requires the columns of a supernode to be contiguous, we should get largersupernodes if we bring together columns of L with the same nonzero structure. But the columnordering is �xed, for sparsity, before numeric factorization; what can we do?In symmetric Cholesky factorization, the so-called fundamental supernodes can be made con-tiguous by permuting the matrix (symmetrically) according to a postorder on its elimination tree [4].This postorder is an example of what Liu calls an equivalent reordering [24], which does not changethe sparsity of the factor. The postordered elimination tree can also be used to locate the super-6

12345678910
0BBBBBBBBBBBBBBBB@ s1 s1 u3 u6s1 s1 u3 u4 u6 u8s2 u7 u8s3 s3 s3 u9s3 s3 s3 u7 u9s1 s1 s2 s3 s3 s3 u7 u8 u9s4 s4 s4s1 s1 s2 s3 s3 s3 s4 s4 s4 s4s3 s3 s3 s4 s4 s4 s4s2 s4 s4 s4 s4

1CCCCCCCCCCCCCCCCAFigure 4: Supernodal structure (by de�nition T2) of the factors of the sample matrix.
1 268 0BBB@ s1 s1s1 s1s1 s1s1 s1 1CCCA 36810 0BBB@s2s2s2s21CCCA 4 5 689 0BBBBB@ s3 s3 s3s3 s3 s3s3 s3 s3s3 s3 s3s3 s3 s3 1CCCCCA 7 8 9 100BBB@ s4 0 s4 s4s4 s4 s4 s4s4 s4 s4 s4s4 s4 s4 s4 1CCCASupernodal blocks (stored in column-major order)u3 u3 u4 u6 u6 u7 u7 u7 u8 u8 u8 u9 u9 u91 2 2 1 2 3 5 6 2 3 6 4 5 6O�-supernodal nonzeros in columns of URowSubscriptsFigure 5: Storage layout for factors of the sample matrix, using T2 supernodes.7

nodes before the numeric factorization.We proceed similarly for the unsymmetric case. Here the appropriate analog of the symmetricelimination tree is the column elimination tree, or column etree for short. The vertices of thistree are the integers 1 through n, representing the columns of A. The column etree of A is the(symmetric) elimination tree of the column intersection graph of A, or equivalently the eliminationtree of ATA provided there is no cancellation in computing ATA. See Gilbert and Ng [19] forcomplete de�nitions. The column etree can be computed from A in time almost linear in thenumber of nonzeros of A by a variation of an algorithm of Liu [24].The following theorem says that the column etree represents potential dependencies amongcolumns in LU factorization, and that (for strong Hall matrices) no stronger information is obtain-able from the nonzero structure of A. Note that column i updates column j in LU factorization ifand only if uij 6= 0.Theorem 1 (Column Elimination Tree) [19] Let A be a square, nonsingular, possibly unsym-metric matrix, and let PA = LU be any factorization of A with pivoting by row interchanges. LetT be the column elimination tree of A.1. If vertex i is an ancestor of vertex j in T , then i � j.2. If lij 6= 0, then vertex i is an ancestor of vertex j in T .3. If uij 6= 0, then vertex j is an ancestor of vertex i in T .4. Suppose in addition that A is strong Hall (that is, A cannot be permuted to a nontrivial blocktriangular form). If vertex j is the parent of vertex i in T , then there is some choice of valuesfor the nonzeros of A that makes uij 6= 0 when the factorization PA = LU is computed withpartial pivoting.Just as a postorder on the symmetric elimination tree brings together symmetric supernodes,we expect a postorder on the column etree to bring together unsymmetric supernodes. Thus, beforewe factor the matrix, we compute its column etree and permute the matrix columns according toa postorder on the tree. We now show that this does not change the factorization in any essentialway.Theorem 2 Let A be a matrix with column etree T . Let � be a permutation such that whenever�(i) is an ancestor of �(j) in T , we have i � j. Let P be the permutation matrix such that� = P � (1:n)T . Let �A = PAPT .1. �A = A(�; �).2. The column etree �T of �A is isomorphic to T ; in particular, relabeling each node i of �T as �(i)yields T .3. Suppose in addition that �A has an LU factorization without pivoting, �A = �L �U . Then PT �LPand PT �UP are respectively unit lower triangular and upper triangular, so A = (PT �LP)(PT �UP)is also an LU factorization.Remark: Liu [24] attributes to F. Peters a result similar to part (3) for the symmetric positivede�nite case, concerning the Cholesky factor and the (usual, symmetric) elimination tree.8

Proof: Part (1) is immediate from the de�nition of P . Part (2) follows from Corollary 6.2 inLiu [24], with the symmetric structure of the column intersection graph of our matrix A takingthe place of Liu's symmetric matrix A. (Liu exhibits the isomorphism explicitly in the proof of hisTheorem 6.1.)Nowwe prove part (3). We have a�(i)�(j) = �aij for all i and j. Write L = PT �LP and U = PT �UP ,so that l�(i)�(j) = �lij and u�(i)�(j) = �uij . Then A = LU ; we need only show that L and U aretriangular.Consider a nonzero u�(i)�(j) of U . In the triangular factorization �A = �L �U , element �uij is equalto u�(i)�(j) and is therefore nonzero. By part (3) of Theorem 1, then, j is an ancestor of i in �T .By the isomorphism between �T and T , this implies that �(j) is an ancestor of �(i) in T . Thenit follows from part (1) of Theorem 1 that �(j) � �(i). Thus every nonzero of U is on or abovethe diagonal, so U is upper triangular. A similar argument shows that every nonzero of L is onor below the diagonal, so L is lower triangular. The diagonal elements of L are a permutation ofthose of �L, so they are all equal to 1. 2Since the triangular factors of A are just permutations of the triangular factors of PAPT , theyhave the same sparsity. Indeed, they require the same arithmetic to compute; the only possibledi�erence is the order of updates. If addition for updates is commutative and associative, thisimplies that with partial pivoting (i; j) is a legal pivot in �A i� (�(i); �(j)) is a legal pivot inA. In oating-point arithmetic, the di�erent order of updates could conceivably change the pivotsequence. Thus we have the following corollary.Corollary 1 Let � be a postorder on the column elimination tree of A, let P1 be any permutationmatrix, and let P2 be the permutation matrix with � = P2 � (1:n)T . If P1APT2 = LU is an LUfactorization, then so is (PT2 P1)A = (PT2 LP2)(PT2 UP2). In exact arithmetic, the former is an LUfactorization with partial pivoting of APT2 if and only if the latter is an LU factorization with partialpivoting of A.This corollary says that an LU code can permute the columns of its input matrix by postorderon the column etree, and then fold the column permutation into the row permutation on output.Thus our SuperLU code has the option of returning either four matrices P1, P2, L, and U (withP1APT2 = LU), or just the three matrices PT2 P1, PT2 LP2, and PT2 UP2, which are a row permutationand two triangular matrices. The advantage of returning all four matrices is that the columns ofeach supernode are contiguous in L, which permits the use of a Blas-2 supernodal triangular solvefor the forward-substitution phase of a linear system solver. The supernodes are not contiguous inPT2 LP2.2.4 Relaxed supernodesWe have explored various ways of relaxing the denseness of a supernode. We experimented with bothT2 and T3 supernodes, and found that T2 supernodes (those with only nested column structuresin L) give slightly better performance.We observe that, for most matrices, the average size of a supernode is only about 2 to 3 columns(though a few supernodes are much larger). A large percentage of supernodes consist of only asingle column, many of which are leaves of the column etree. Therefore we have devised a schemeto merge groups of columns at the fringe of the etree into arti�cial supernodes regardless of theirrow structures. A parameter r controls the granularity of the merge. Our merge rule is: node iis merged with its parent node j when the subtree rooted at j has at most r nodes. In practice,9

1. for column j = 1 to n do2. f = A(: ; j);3. Symbolic factor: determine which supernodes of L will update f ;4. Determine whether j belongs to the same supernode as j � 1;5. for each updating supernode (r: s) < j in topological order do6. Apply supernode-column update to column j:7. f(r: s) = L(r: s; r: s)�1 � f(r: s);8. f(s+ 1:n) = f(s + 1:n)� L(s+ 1:n; r: s) � f(r: s);9. end for;10. Pivot: interchange f(j) and f(k), where jf(k)j = max jf(j:n)j;11. Separate L and U : U(1: j; j) = f(1: j); L(j:n; j) = f(j:n);12. Divide: L(: ; j) = L(: ; j)=L(j; j);13. Prune symbolic structure based on column j;14. end for;Figure 6: LU factorization with supernode-column updates.the best values of r are generally between 4 and 8, and yield improvements in running time of 5%to 15%.Arti�cial supernodes are a special case of relaxed supernodes, which Ashcraft and Grimes haveused in the context of multifrontal methods for symmetric systems [4]. Ashcraft and Grimes allowa small number of nonzeros in the structure of any supernode, thus relaxing the condition thatthe columns must have strictly nested structures. It would be possible to use this idea in theunsymmetric code as well, though we have not experimented with it. Relaxed supernodes couldbe constructed either on the y (by relaxing the nonzero count condition described in Section 4.3below), or by preprocessing the column etree to identify small subtrees that we would merge intosupernodes.3 Supernodal numeric factorizationNow we show how to modify the column-column algorithm to use supernode-column updates andsupernode-panel updates. This section describes the numerical computation involved in the up-dates. Section 4 describes the symbolic factorization that determines which supernodes updatewhich columns, and also the detection of boundaries between supernodes.3.1 Supernode-column updatesFigure 6 sketches the supernode-column algorithm. The only di�erence from the column-columnalgorithm is that all the updates to a column from a single supernode are done together. Considera supernode (r: s) that updates column j. The coe�cients of the updates are the values from asegment of column j of U , namely U(r: s; j). The nonzero structure of such a segment is particularlysimple: all the nonzeros are contiguous, and follow all the zeros (as proved in Corollary 2 below).Thus, if k is the index of the �rst nonzero row in U(r: s; j), the updates to column j from supernode(r: s) come from columns k through s. Since the supernode is stored as a dense matrix, these10

updates can be performed by a dense lower triangular solve (with the matrix L(k: s; k: s)) and adense matrix-vector multiplication (with the matrix L(s+1:n; k: s)). As described in Section 4, thesymbolic phase determines the value of k, that is, the position of the �rst nonzero in the segmentU(r: s; j).The advantages of using supernode-column updates are similar to those in the symmetriccase [26]. E�cient Blas-2 matrix-vector kernels can be used for the triangular solve and matrix-vector multiply. Furthermore, all the updates from the supernodal columns can be collected ina dense vector before doing a single scatter into the target vector. This reduces the amount ofindirect addressing.3.2 Supernode-panel updatesWe can improve the supernode-column algorithm further on machines with a memory hierarchyby changing the data access pattern. The data we are accessing in the inner loop (lines 5{9 ofFigure 6) include the destination column j and all the updating supernodes (r: s) to the left ofcolumn j. Column j is accessed many times, while each supernode (r: s) is used only once. Inpractice, the number of nonzero elements in column j is much less than that in the updatingsupernodes. Therefore, the access pattern given by this loop provides little opportunity to reusecached data. In particular, the same supernode (r: s) may be needed to update both columns j andj + 1. But when we factor the (j + 1)-st column (in the next iteration of the outer loop), we willhave to fetch supernode (r: s) again from memory, instead of from cache (unless the supernodes aresmall compared to the cache).To exploit memory locality, we factor several columns (sayw of them) at a time in the outer loop,so that one updating supernode (r: s) can be used to update as many of the w columns as possible.We refer to these w consecutive columns as a panel, to di�erentiate them from a supernode; therow structures of these columns may not be correlated in any fashion, and the boundaries betweenpanels may be di�erent from those between supernodes. The new method requires rewriting thedoubly nested loop as the triple loop shown in Figure 7. This is analogous to loop tiling techniquesused in optimizing compilers to improve cache behavior for two-dimensional arrays with regularstride. It is also somewhat analogous to the supernode-supernode updates that Ng and Peyton [26],and Rothberg and Gupta [27] have used in symmetric Cholesky factorization.The structure of each supernode-column update is the same as in the supernode-column algo-rithm. For each supernode (r: s) to the left of column j, if ukj 6= 0 for some r � k � s, thenuij 6= 0 for all k � i � s. Therefore, the nonzero structure of the panel of U consists of densecolumn segments that are row-wise separated by supernodal boundaries, as in Figure 7. Thus, it issu�cient for the symbolic factorization algorithm to record only the �rst nonzero position of eachcolumn segment. As detailed in Section 4.4, symbolic factorization is applied to all the columns ina panel at once, outside the numeric-factorization loop over updating supernodes.In dense factorization, the entire supernode-panel update in lines 3{7 of Figure 7 would beimplemented as two Blas-3 calls: a dense triangular solve with w right-hand sides, followed bya dense matrix-matrix multiply. In the sparse case, this is not possible, because the di�erentsupernode-column updates begin at di�erent positions k within the supernode, and the submatrixU(r: s; j: j+ w � 1) is not dense. Thus the sparse supernode-panel algorithm still calls the level-2Blas. However, we get the similar cache bene�ts as the level-3 Blas, at the cost of doing theloop reorganization ourselves. Thus we sometimes call the kernel of this algorithm a \Blas-212"method.In the double loop nest (3{7), the ideal circumstance is that all w columns in the panel require11

1. for column j = 1 to n step w do2. Symbolic factor: determine which supernodes will update any of L(: ; j: j+ w � 1);3. for each updating supernode (r: s) < j in topological order do4. for column jj = j to j + w � 1 do5. Apply supernode-column update to column jj;6. end for;7. end for;8. Inner factorization: apply the sup-col algorithm to the panel;9. end for;
j:n J

W

j j+w-1

row j

sr

r

s

U

L

L

J J

J JFigure 7: The supernode-panel algorithm, with column-wise blocking. J = 1: j � 1.
12

updates from supernode (r: s). Then this supernode will be used w times before it is forced out ofthe cache. There is a trade-o� between the value of w and the size of cache. For this scheme towork e�ciently, we need to ensure that the nonzeros in the w columns do not cause cache thrashing.That is, we must keep w small enough that all the data accessed in this doubly nested loop �t incache. Otherwise, the cache cross-interference between the source supernode and the destinationpanel can o�set the bene�t of the new algorithm.3.2.1 Outer and inner factorizationAt the end of the supernode-panel update (line 7), columns j through j + w � 1 of L and Uhave received all their updates from columns to the left of j. We call this the outer factorization.What remains is to apply updates that come from columns within the panel. This amounts toforming the LU factorization of the panel itself (in columns (j: j + w � 1), and rows (j:n)). Thisinner factorization is performed by the supernode-column algorithm, almost exactly as shown inFigure 6. The inner factorization includes a columnwise symbolic factorization just as in thesupernode-column algorithm. The inner factorization also includes the supernode identi�cation,partial pivoting, and symmetric structure reduction for the entire algorithm.3.2.2 Reducing cache misses by row-wise blockingOur �rst experiments with the supernode-panel algorithm showed speedups for some medium-sizedproblems of around 20{30%. However, the improvement for large matrices was often only a fewpercent. We now study the reasons and remedies for this.To implement loops (3{7) of Figure 7, we �rst expand the nonzeros of the panel columnsof A into an n by w full working array, called the SPA (for sparse accumulator [18]). This allowsrandom access to the entries of the active panel. A temporary array stores the results of the Blasoperations, and the updates are scattered into the SPA. At the end of panel factorization, the datain the SPA are copied into storage for L and U . Although increasing the panel size w gives moreopportunity for data reuse, it also increases the size of the active data set that must �t into cache.The supernode-panel update loop accesses the following data:� the nonzeros in the updating supernode L(r:n; r: s).� the SPA data structure, consisting of an n by w full array and a temporary store of size n.By instrumenting the code, we found that the working sets of large matrices are much larger thanthe cache size. Hence, cache thrashing limits performance.We experimented with a scheme suggested by Rothberg [28], in which the SPA has only as manyrows as the number of nonzero rows in the panel (as predicted by symbolic factorization), and anextra indirection array of size n is used to address the SPA. Unfortunately, the cost incurred bydouble indirection is not negligible, and this scheme was not as e�ective as the two-dimensionalblocking method we now describe.We implemented a row-wise blocking scheme on top of the column-wise blocking in the supernode-panel update. The 2-D blocking adds another level of looping between the two loops in lines 3 and 4of Figure 7. This partitions the supernodes (and the SPA structure) into block rows. Then eachblock row of the updating supernode is used for up to w partial matrix-vector multiplies, whichare pushed all the way through into the SPA before the next block row of the supernode is ac-cessed. The active data set accessed in the inner loops is thus much smaller than in the 1-D scheme.The 2-D blocking algorithm is organized as in Figure 8. The key performance gains come from13

1. for j = 1 to n step w do2. � � �3. for each updating supernode (r: s) < j in topological order do4. Apply triangular solves to A(r: s; j: j+ w � 1) using L(r: s; r: s);5. for each row block B in L(s+ 1:n; r: s) do6. for jj = j to j + w � 1 do7. Multiply B � U(r: s; jj), and scatter into SPA(: ; jj);8. end for;9. end for;10. end for;11. � � �12 end for; Figure 8: The supernode-panel algorithm, with 2-D blocking.the loops (5{9), where each row block is reused as much as possible before the next row block isbrought into the cache. The innermost loop is still a dense-matrix vector multiply, performed by aBlas-2 kernel.3.2.3 Combining 1-D and 2-D blockingThe 2-D blocking works well when the rectangular supernodal matrix L(r:n; r: s) is large in bothdimensions. If all of L(r:n; r: s) can �t into cache, then the row-wise blocking gives no bene�t,but still incurs overhead for setting up loop variables, skipping the empty loop body, and so on.This overhead can be nearly 10% for some of the sparser problems in our test suite. Thus we havedevised a hybrid update algorithm that uses either the 1-D or 2-D partitioning scheme, dependingon the size of each updating supernode. The decision is made at run-time, as shown in Figure 9.The overhead is limited to the test at line 4 of Figure 9. It turns out that this hybrid scheme worksbetter than either 1-D or 2-D codes for many problems. Therefore, this is the algorithm that weuse in the performance analysis in Section 5. In Section 5.5.3 we will discuss in more detail whatwe mean by \large" in the test on line 4.4 Symbolic factorizationSymbolic factorization is the process that determines the nonzero structure of the triangular factorsL and U from the nonzero structure of the matrix A. This in turn determines which columns of Lupdate each column j of the factors (namely, those columns r for which urj 6= 0), and also whichcolumns of L can be combined into supernodes.Without numeric pivoting, the complete symbolic factorization can be performed before anynumeric factorization. Partial pivoting, however, requires that the numeric and symbolic factor-izations be interleaved. The supernode-column algorithm performs symbolic factorization for eachcolumn just before it is computed, as described in Section 4.1. The supernode-panel algorithmperforms symbolic factorization for an entire panel at once, as described in Section 4.4.14

1. for j = 1 to n step w do2. � � �3. for each updating supernode (r: s) < j in topological order do4. if (r: s) is large then /* use 2-D blocking */5. Apply triangular solves to A(r: s; j: j+ w � 1) using L(r: s; r: s);6. for each row block B in L(s+ 1:n; r: s) do7. for jj = j to j + w � 1 do8. Multiply B �U(r: s; jj), and scatter into SPA(: ; jj);9. end for;10. end for;11. else /* use 1-D blocking */12. for jj = j to j + w � 1 do13. Apply triangular solve to A(r: s; jj);14. Multiply L(s+ 1:n; r: s) �U(r: s; jj), and scatter into SPA(: ; jj);15. end for;16. end if;17. end for;18. � � �19. end for;Figure 9: The supernode-panel algorithm, with both 1-D and 2-D blocking.4.1 Column depth-�rst searchFrom the numeric factorization algorithm, it is clear that the structure of column F (: ; j) dependson the structure of column A(: ; j) of the original matrix and on the structure of L(: ; J), whereJ = 1: j�1. Indeed, F (: ; j) has the same structure as the solution vector for the following triangularsystem [20]: @@@@@@@@@@L(: ; J) I F (: ; j) = A(: ; j)A straightforward way to compute the structure of F (: ; j) from the structures of L(: ; J) andA(: ; j) is to simulate the numerical computation. A less expensive way is to use the followingcharacterization in terms of paths in the directed graph of L(: ; J).For any matrixM , the notation i M! j means that there is an edge from i to j in the directedgraph of M , that is, mij 6= 0. The notation i M=) j means that there is a directed path from i to jin the directed graph of M . Such a path may have length zero; that is, i M=) i always holds.Theorem 3 [16] fij is nonzero (equivalently, i F! j) if and only if i L(:;J)=) k A! j for some k � i.15

This result implies that the symbolic factorization of column j can be obtained as follows.Consider the nonzeros in A(: ; j) as a subset of the vertices of the directed graph G = G(L(: ; J)T),which is the reverse of the directed graph of L(: ; J). The nonzero positions of F (: ; j) are then givenby the vertices reachable by paths from this set in G. We use the graph of LT here because of theconvention that edges are directed from rows to columns. Since L is actually stored by columns,our data structure gives precisely the adjacency information for G. Therefore, we can determinethe structure of column j of L and U by traversing G from the set of starting nodes given by thestructure of A(: ; j).The traversal of G determines the structure of U(: ; j), which in turn determines the columnsof L that will participate in updates to column j in the numerical factorization. These updatesmust be applied in an order consistent with a topological ordering of G. We use depth-�rst search toperform the traversal, which makes it possible to generate a topological order (speci�cally, reversepostorder) on the nonzeros of U(: ; j) as they are located [20].Another consequence of the path theorem is the following corollary. It says that if we divideeach column of U into segments, one per supernode, then within each segment the column of Ujust consists of a consecutive sequence of nonzeros. Thus we need only keep track of the positionof the �rst nonzero in each segment.Corollary 2 Let (r: s) be a supernode (of either type T2 or T3) in the factorization PA = LU .Suppose ukj is nonzero for some j with r � k � s. Then uij 6= 0 for all i with k � i � s.Proof: Let k � i � s. Since ukj 6= 0, we have k L(:;J)=) A�! j by Theorem 3. Now lik is in thediagonal block of the supernode, and hence is nonzero. Thus i L(:;J)�! k, so i L(:;J)=) A�! j, whence uijis nonzero by Theorem 3. 24.2 Pruning the symbolic structureWe can speed up the depth-�rst search traversals by using a reduced graph in place of G, thereverse of the graph of L(: ; J). We have explored this idea in a series of papers [12, 13, 17]. Anygraph H can be substituted for G, provided that i H=) j if and only if i G=) j. The traversals aremore e�cient if H has fewer edges; but any gain in e�ciency must be traded o� against the costof computing H .An extreme choice of H is the elimination dag [17], which is the transitive reduction of G, orthe minimal subgraph of G that preserves paths. However, the elimination dag is expensive tocompute. The symmetric reduction [12] is a subgraph that has (in general) fewer edges than G butmore edges than the elimination dag, and that is much less expensive to compute. The symmetricreduction takes advantage of symmetry in the structure of the �lled matrix F ; if F is completelysymmetric, it is just the symmetric elimination tree. The symmetric reduction of L(: ; J) is obtainedby removing all nonzeros lrs for which ltsust 6= 0 for some t < min(r; j). Eisenstat and Liu [13] givean e�cient method to compute the symmetric reduction during symbolic factorization, and demon-strate experimentally that it signi�cantly reduces the total factorization time with an algorithmthat does column-column updates.Our supernodal code uses symmetric reduction to speed up its symbolic factorization. Theexample in Figure 10 illustrates symmetric reduction in the presence of supernodes. We use S torepresent the supernodal structure of L(: ; J)T , and R to represent the symmetric reduction of S. Itis this R that we use in our code. Note that the edges of the graph of R are directed from columnsof L to rows of L. 16

0BBBBBBBBBBBBBBBB@ 1 � � �� 2 � � �3 �4 � �� 5 � �� � � � � 6 �7� � � � � � �� � � �� �
1CCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBB@ 1� 2 3 4� 5� � � � � 6 7� � � � � � �� � � �� �

1CCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBB@ 12 3 45� � 6 7� � � �� �� �
1CCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBB@ 12 3 45� � 6 7� � � �� �� �

1CCCCCCCCCCCCCCCCAFilled matrix Lower triangle Supernodal ReducedF (: ; J) G S RFigure 10: Supernodal and symmetrically reduced structures.0BBBBBBBBBBBBBBBB@ 12 3 45� � 6 7� � � �� �� �
1CCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBB@ ������

1CCCCCCCCCCCCCCCCA =) 0BBBBBBBBBBBBBBBB@ 12 3 45� � 6 7� � � � 8� � �� � �
1CCCCCCCCCCCCCCCCAFigure 11: One step of symbolic factorization in the reduced structure.In the �gure, the small dot \�" indicates an entry in S that was pruned from R by symmetricreduction. The (8; 2) entry was pruned due to the symmetric nonzero pair (6; 2) and (2; 6). The�gure shows the current state of the reduced structure based on the �rst seven columns of the �lledmatrix.It is instructive to follow this example through one more column to see how symbolic factoriza-tion is carried out in the reduced supernodal structure. Consider the symbolic step for column 8.Suppose a28 and a38 are nonzero. The other nonzeros in column 8 of the factor are generated bypaths in the reduced supernodal structure (we just show one possible path for each nonzero):8 AT! 2 R! 6;8 AT! 3 R! 8;8 AT! 2 R! 6 R! 9;8 AT! 3 R! 10;17

Figure 11 shows the reduced supernodal structure before and after column 8. In column 8 of A,the original nonzeros are shown as \�" and the �ll nonzeros are shown as \�". Once the structureof column 8 of U is known, more symmetric reduction is possible. The entry l10;3 is pruned due tothe symmetric nonzeros in l83 and u38. Also, l96 is pruned by l86 and u68. Figure 11 shows the newstructure.The supernodal symbolic factorization relies on the path characterization in Theorem 3 and onthe path-preserving property of symmetric reduction. In e�ect, we use the modi�ed path conditioni AT! R=) jon the symmetrically-reduced supernodal structure R of L(: ; J)T .4.3 Detecting supernodesSince supernodes consist of contiguous columns of L, we can decide at the end of each symbolicfactorization step whether the new column j belongs to the same supernode as column j � 1.For T2 supernodes, the test is straightforward. During symbolic factorization, we test whetherL(: ; j) � L(: ; j � 1) (where the containment applies to the set of nonzero indices). At the end ofthe symbolic factorization step, we test whether nnz(L(: ; j)) = nnz(L(: ; j � 1)) � 1. Column jjoins column j � 1's supernode if and only if both tests are passed.T3 supernodes also require the diagonal block of U to be full. To check this, it su�ces to checkwhether the single element urj is nonzero, where r is the �rst column index of the supernode. Thisfollows from Corollary 2: urj 6= 0 implies that uij 6= 0 for all r � i � j. Indeed, we can evenomit the test L(: ; j) � L(: ; j � 1) for T3 supernodes. If urj 6= 0, then uj�1;j 6= 0, which meansthat column j � 1 updates column j, which implies L(: ; j)� L(: ; j� 1). Thus we have proved thefollowing.Theorem 4 Suppose a T3 supernode begins with column r and extends at least through column j�1.Column j belongs to this supernode if and only if urj 6= 0 and nnz(L(: ; j)) = nnz(L(: ; j � 1))� 1.For either T2 or T3 supernodes, it is straightforward to implement the relaxed versions discussedin Section 2.4. Also, since the main bene�ts of supernodes come when they �t into the cache, weimpose a maximum size for a supernode.4.4 Panel depth-�rst searchThe supernode-panel algorithm consists of an outer factorization (applying updates from super-nodes to the active panel) and an inner factorization (applying supernode-column updates withinthe active panel). Each has its own symbolic factorization. The outer symbolic factorization hap-pens once per panel, and determines two things: (1) a single column structure, which is the unionof the structures of the panel columns, and (2) which supernodes update each column of the panel,and in what order. This is the information that the supernode-panel update loop in Figure 7 needs.The inner symbolic factorization happens once for each column of the panel, interleaved columnby column with the inner numeric factorization. In addition to determining the nonzero structureof the active column and which supernodes within the panel will update the active column, theinner symbolic factorization is also responsible for forming supernodes (that is, for deciding whetherthe active column will start a new supernode) and for symmetric structural pruning. The innersymbolic factorization is, therefore, exactly the supernode-column symbolic factorization describedabove. 18

0BBBBBBBBBBBBBBBB@ 12 3 45� � 6 7� � �� �� �
1CCCCCCCCCCCCCCCCA 0BBBBBBBBBBBBBBBB@ �� ��� ��� �� �� �

1CCCCCCCCCCCCCCCCAReduced supernodal R A(: ; 8: 9) [7]

[1,2] [3]

[4,5,6]Figure 12: The supernodal directed graph corresponding to L(1: 7; 1: 7)T .The outer symbolic factorization must determine the structures of columns j to j + w� 1, i.e.,the structure of the whole panel, and also a topological order for U(1: j; j: j+w� 1) en masse. Tothis end, we developed an e�cient panel depth-�rst search scheme, which is a slight modi�cationof the column DFS. The panel depth-�rst search algorithm maintains a single postorder DFS listfor all w columns of the panel. Let us call this the PO list, which is initially empty. The algorithminvokes the column depth-search procedure for each column from j to j + w � 1. In the columnDFS, each time the search backtracks from a vertex, that vertex is appended to the PO list. Inthe panel DFS, however, the vertex is appended to the PO list only if it is not already on the list.This gives a single list that includes every position that is nonzero in any panel column, just once;and the entire list is in (reverse) topological order. Thus the order of updates speci�ed by the listis acceptable for each of the w individual panel columns.We illustrate the idea in Figure 12, using the sample matrix from Figure 11 and a panel of widthtwo. The �rst seven columns have been factored, and the current panel consists of columns 8 and 9.In the panel, nonzeros of A are shown as \�" and �ll in F is shown as \�". The depth-�rst searchfor column 8 starts from vertices 2 and 3. After that search is �nished, the panel postorder list isPO = (6; 2; 3). Now the depth-�rst search for column 9 starts from vertices 6 and 7 (not 4, since 6 isthe representative vertex for the supernode containing column 4). This DFS only appends 7 to thePO list, because 6 is already on the list. Thus, the �nal list for this panel is PO = (6; 2; 3; 7). Thepostorder list of column 8 is (6; 2; 3) and the postorder list of column 9 is (6; 7), which are simplytwo sublists of the panel PO list. The topological order is the reverse of PO, or (7; 3; 2; 6). In theloop of line 3 of Figure 7, we follow this topological order to schedule the updating supernodes andperform numeric updates to columns of the panel.5 EvaluationIn this section, we apply our algorithms to practical matrices from various sources. We will comparethe performance of SuperLU, our supernode-panel code, with its predecessors, and with otherapproaches to sparse LU factorization. 19

Matrix Name s Rows Nonzeros Nonzeros/row1 Memplus .983 17758 99147 5.62 Gemat11 .002 4929 33185 6.73 Rdist1 .062 4134 9408 2.34 Mcfe .709 765 24382 31.85 Sherman5 .780 3312 20793 6.36 Lnsp3937 .869 3937 25407 6.57 Lns3937 .869 3937 25407 6.58 Sherman3 1.000 5005 20033 4.09 Jpwh991 .947 991 6027 6.110 Orani678 .073 2529 90158 35.611 Orsreg1 1.000 2205 14133 6.412 Saylr4 1.000 3564 22316 6.313 Shyy161 .769 76480 329762 4.314 Venkat01 1.000 62424 1717792 27.515 Goodwin .642 7320 324772 44.416 Inaccura 1.000 16146 1015156 62.917 Dense1000 1.000 1000 1000000 100018 Raefsky3 1.000 21200 1488768 70.219 Wang3 1.000 26064 177168 6.820 Raefsky4 1.000 19779 1316789 66.621 Vavasis3 .001 41092 1683902 41.0Table 2: Benchmark matrices. Structural symmetry s is de�ned to be the fraction of the nonzerosmatched by nonzeros in symmetric locations. None of the matrices are numerically symmetric.5.1 Experimental setupTable 2 lists 21 matrices with some characteristics of their nonzero structures. The matrices aresorted in increasing order of flops=nnz(F), the ratio of the number of oating point operations tothe number of nonzeros nnz(F) in the factored matrix F = U + L � I . The reason for this orderwill be described in more detail in section 5.5. Some of the matrices are from the Harwell-Boeingcollection [9]. Most of the larger matrices are from the ftp site maintained by Tim Davis of theUniversity of Florida.3 Those matrices are as follows. Goodwin is a �nite element matrix ina nonlinear solver for a uid mechanics problem, provided by Ralph Goodwin of the Universityof Illinois at Urbana-Champaign. Memplus is a circuit simulation matrix from Steve Hamm ofMotorola. Inaccura, Raefsky3/4, and Venkat01 were provided by Horst Simon of SiliconGraphics. Raefsky3 is from a uid structure interaction turbulence problem. Raefsky4 is froma buckling problem for a container model. Venkat01 comes from an implicit 2-D Euler solver foran unstructured grid in a ow simulation. Wang3 is from solving a coupled nonlinear PDE systemin a 3-D (30� 30� 30 uniform mesh) semiconductor device simulation, as provided by Song Wangof the University of New South Wales, Sydney. Shyy161 is derived from a direct, fully-coupledmethod for solving the Navier-Stokes equations for viscous ow calculations, provided by Wei Shyyof the University of Florida. Vavasis3 is an unsymmetric augmented matrix for a 2-D PDE withhighly varying coe�cients [33]. Dense1000 is a dense 1000� 1000 matrix.In this paper, we do not address the performance of preordering for sparsity. Matrices 1, 14 and19 were symmetrically permuted by Matlab's symmetric minimum degree ordering on A+AT . For3ftp.cis.u.edu, in pub/umfpack/matrices 20

IBM RS/6000-590 Fraction of time Fraction of opsMatrix nnz(F) nnz(F)nnz(A) #ops (106) Seconds Mflops in numeric in Dgemv1 140388 1.4 1.8 0.59 2.98 19% 78%2 93370 2.8 1.6 0.27 5.97 34% 81%3 338624 36.0 12.9 0.98 13.04 41% 85%4 118717 4.8 11.7 0.44 24.91 58% 95%5 281876 13.6 30.4 0.94 32.30 55% 92%6 534229 21.0 59.6 2.01 28.77 55% 95%7 559043 22.0 66.4 2.19 30.04 55% 96%8 433376 21.6 61.7 1.41 44.41 51% 87%9 161334 26.7 23.5 0.62 37.34 56% 94%10 623806 6.9 103.9 4.47 22.97 63% 97%11 453112 32.1 76.6 1.46 52.81 57% 89%12 774310 34.7 144.7 2.78 51.67 56% 90%13 7635773 23.2 1578.5 28.89 54.58 52% 91%14 12785320 7.4 2730.9 40.06 66.62 59% 92%15 3109585 9.6 665.6 12.66 51.75 65% 92%16 10016266 9.9 4126.1 68.65 60.17 62% 97%17 1000000 1.0 666.7 5.74 116.06 70% 95%18 17631651 11.8 12128.7 112.27 109.03 74% 96%19 13287108 74.9 14559.4 116.94 124.50 78% 98%20 26714111 20.3 31307.1 257.88 120.47 79% 98%21 49687658 29.5 89865.1 789.65 113.81 80% 98%Table 3: Performance of SuperLU on an IBM RS/6000-590.all other matrices, the columns were permuted by Matlab's minimum degree ordering of ATA [18].We performed the numerical experiments on an IBM RS/6000-590. The CPU clock rate is66.5 MHz. The processor has two branch units, two �xed-point units, and two oating-point units,which can all operate in parallel if there are no dependencies. In particular, each FPU can performtwo operations (a multiply and an add or subtract) at every cycle. Thus, the peak oating-pointperformance is 266 Mflops. The data cache is of size 256 KB with 256-byte lines, and is 4-wayset-associative with LRU replacement policy. There is a separate 32 KB instruction cache. Thesize of the main memory is 768 MB. The SuperLU algorithm is implemented in C; we use the AIXxlc compiler with -O3 optimization.5.2 Performance of the codeTable 3 presents the performance of the SuperLU code on this system. All oating point compu-tations are in double precision.In the inner loops of our sparse code, we call the two dense Blas-2 routines Dtrsv (triangularsolve) and Dgemv (matrix-vector multiply) provided in the IBM ESSL library [23], whose Blas-3 matrix-matrix multiply routine (Dgemm) achieves about 250 Mflops when dimension of thematrix is larger than 60 [1]. In our sparse algorithm, we �nd that Dgemv typically accountsfor more than 80% of the oating-point operations. As shown in the last column of Table 3,this percentage is higher than 95% for many matrices. Our measurements reveal that for typicaldimensions arising from the benchmark matrices,Dgemv achieves roughly 235Mflops if the data21

IBM RS/6000-590GP GP-Mod SupCol-F SupCol-C SuperLUMatrix xlf -O3 xlf -O3 xlf -O3 xlc -O3 xlc -O31 1.00 1.48 1.18 1.05 .682 1.00 1.69 1.23 1.29 1.003 1.00 2.75 2.60 2.24 1.944 1.00 3.44 4.31 3.52 3.525 1.00 3.43 5.04 4.57 4.236 1.00 3.39 4.21 3.86 3.547 1.00 3.39 4.29 3.85 3.558 1.00 3.54 6.19 5.99 5.279 1.00 3.61 4.71 4.21 4.4810 1.00 3.55 3.88 2.98 3.1011 1.00 3.64 5.98 5.86 5.9812 1.00 3.67 6.39 5.99 6.3013 1.00 3.65 6.71 6.46 5.6714 1.00 3.86 8.49 8.33 8.8715 1.00 3.84 6.91 6.46 7.1616 1.00 4.17 7.55 7.24 7.9417 1.00 4.21 10.22 9.78 14.5418 1.00 4.30 11.70 11.54 14.0019 1.00 4.34 12.32 12.23 15.7520 1.00 4.35 12.18 11.89 15.3921 1.00 4.79 13.11 13.12 15.63GeometricMean 1.00 3.46 5.56 5.19 5.29Table 4: Speedups achieved by each enhancement over the GP column-column code, on the RS/6000.are from cache. If the data are fetched from main memory, this rate can drop by a factor of 2 or 3.The Blas speed is clearly an upper bound on the overall factorization rate. However, becausesymbolic manipulation usually takes a nontrivial amount of time, this bound could be much higherthan the actual sparse code performance. Table 3 also presents the percentage of the total executiontime spent in numeric computation. For matrices 1 and 2, the program spent less than 35% of itstime in the numeric part. Compared to the others, these two matrices are sparser, have less �ll, andhave smaller supernodes, so our supernodal techniques are less applicable. Matrix 2 is also highlyunsymmetric, which makes the symmetric structural reduction technique less e�ective. However,it is important to note that the execution times for these two matrices are small.For larger and denser matrices such as 17{21, we achieve between 110 and 125 Mflops, whichis about half of the machine peak. These matrices take much longer to factor, which could be aserious bottleneck in an iterative simulation process. Our techniques are successful in reducing thesolution times for this type of problem.For a dense 1000 � 1000 matrix, our code achieves 116 Mflops. This compares with 168Mflops reported in the Lapack manual [2] on a matrix of this size, and 236 Mflops reported inthe online Linpack benchmark �les [25]. 22

Sparc 20GP GP-Mod SupCol-F SupCol-C SuperLUMatrix f77 -O3 f77 -O3 f77 -O3 cc -xO3 cc -xO31 1.00 1.19 .98 1.25 .752 1.00 1.32 1.26 1.71 1.093 1.00 1.64 1.75 1.65 1.584 1.00 1.80 2.36 2.16 2.325 1.00 1.82 2.74 2.74 2.816 1.00 1.82 2.49 2.36 2.337 1.00 1.84 2.58 2.47 2.278 1.00 1.90 3.11 3.19 3.099 1.00 1.85 2.41 2.39 2.5810 1.00 1.86 2.08 1.78 1.8111 1.00 1.89 3.02 3.09 3.2012 1.00 1.95 3.03 3.09 3.3213 1.00 2.08 3.48 3.47 3.5515 1.00 1.89 3.05 3.02 3.9117 1.00 1.96 3.56 3.13 4.89GeometricMean 1.00 1.77 2.38 2.40 2.39Table 5: Speedups achieved by each enhancement over the GP column-column code, on a Sparc 20. TheCPU is rated at 60.0 MHz, and there is a 1 MB external cache. This system does not provide a Blas library,so we use our own C Blas routines. Some large problems could not be tested because of physical memoryconstraints.5.3 Comparison with previous row or column LU algorithmsIn this section, we compare the performance of SuperLU with several of its predecessors, includingthe partial pivoting code by Gilbert and Peierls [20] (referred to as GP), Eisenstat and Liu'simproved GP code that incorporates symmetric reduction [13] (referred to as GP-Mod), andtwo versions of our supernode-column code (referred to as SupCol-F and SupCol-C). GP,GP-Mod, and SupCol-F are written in Fortran; SupCol-C and SuperLU are written in C. Wetranslated SupCol-F literally into C to produce SupCol-C; no changes in algorithms or datastructures were made. SupCol-F, SupCol-C and SuperLU use ESSL Blas. (Matlab containsa C implementation of GP [18], which we did not test here.)Tables 4 through 6 present the speedups achieved by various enhancements over the originalGPcolumn-column code on high-end workstations from three vendors. Thus, for example, a speedupof 2 means that the running time was half that of GP. The numbers in the last row of eachtable are obtained by averaging the speedups in the corresponding column. We make the followingobservations about the results on the IBM RS/6000:� Symmetric structure pruning (GP-Mod) is very e�ective in reducing the graph search time.This signi�cantly decreases the symbolic time in the GP code. It achieves speedup in allproblems.� Supernodes (SupCol) restrict the search to the supernodal graph, and allow the numerickernels to employ dense Blas-2 operations. The e�ects are not as dramatic as the pruningtechnique. For some matrices, such as 1{3, the results are not as good as GP-Mod. This is23

DEC AlphaGP GP-Mod SupCol-F SupCol-C SuperLUMatrix f77 -O2 f77 -O2 f77 -O2 cc -O2 cc -O21 1.00 1.19 .96 .98 .552 1.00 1.31 1.10 1.10 .783 1.00 1.65 1.76 1.37 1.274 1.00 1.90 2.20 2.12 2.095 1.00 1.81 2.60 2.63 2.796 1.00 1.84 2.38 2.25 2.357 1.00 1.81 2.32 2.24 2.338 1.00 1.84 2.33 3.23 3.549 1.00 1.92 2.65 2.46 2.7910 1.00 1.80 2.05 1.61 1.8511 1.00 1.82 3.04 3.09 2.6412 1.00 1.78 3.15 3.13 4.1913 1.00 1.80 3.33 3.43 3.8415 1.00 1.77 2.84 2.82 4.1917 1.00 1.83 4.47 3.60 6.45GeometricMean 1.00 1.72 2.38 2.24 2.40Table 6: Speedups achieved by each enhancement over the GP column-column code, on a DEC Alpha. TheCPU is rated at 200 MHz, and there is a 512 KB external cache. We use the Blas routines from DEC'sDXML library. Some large problems could not be tested because of physical memory constraints.because the supernodes are often small, especially for sparser problems.� Supernode-panel updates (SuperLU) reduce the cache miss rate and exploit dense substruc-tures in the factor F . For problems without much structure, the gain is often o�set by variousoverheads. However, the bene�ts become evident for larger or denser problems.� The Fortran compiler produces slightly faster code than the C compiler (for SupCol) onboth the IBM and DEC machines. The di�erence is about 5% to 15% for small problems,and is less for large problems where most of the time is spent in Blas routines. We haveseen smaller runtime di�erences between the codes generated by the SunOS 5.4 Fortran andC compilers on the Sun Sparc 20.Matrix 10 is an exception: the Fortran code is about 25% faster on the IBM RS/6000, 17%faster on the Sun Sparc 20, and 27% faster on the DEC Alpha.As more and more sophisticated techniques are introduced, the overhead cost of the code is alsoincreased to some extent. This overhead can show up prominently in small problems. For example,on the IBM RS/6000, GP-Mod works better than any of the subsequent codes for problems 1{3.5.4 Comparison with other approaches to LU factorizationIn this section we compare our supernode-panel algorithm with other popular algorithms to solvethe unsymmetric linear system Ax = b, using the matrices from our benchmark suite. The right-hand side vector b is constructed so that the solution is xi = 1 + i=n.24

1 3 5 7 9 11 13 15 17 19 21
10−1

100

101

Matrix number

(a) time(UMF) / time(LU)

1 3 5 7 9 11 13 15 17 19 21
10−1

100

101

Matrix number

(b) fill(UMF) / fill(LU)

1 3 5 7 9 11 13 15 17 19 21
10−1

100

101

Matrix number

(c) mem(UMF) / mem(LU)

1 3 5 7 9 11 13 15 17 19 21
10−10

10−5

100

105

1010

1015

Matrix number

(d) condition number and error

Figure 13: Comparison of SuperLU algorithm with unsymmetric multifrontal algorithm imple-mented in Umfpack on an IBM RS/6000-590, with Blas routines from the ESSL library. In (d),we plot the estimated condition number �1(A) labeled with \x", err(Umfpack)=(�1(A) � �) la-beled with \o", and err(SuperLU)=(�1(A) � �) labeled with \+". These plots do not show Matrix8 and 13, because their condition numbers are larger than 1=�.25

In particular, we consider the unsymmetric multifrontal algorithm implemented in Umfpackversion 1.0 [7]. Umfpack is implemented in Fortran, so we use the AIX xlf compiler with -O3optimization, and link with the IBM ESSL library for Blas calls. We use the parameter settingsfor Umfpack suggested by its authors [6].Figure 13 compares several aspects of the two implementations. We plot the ratio of eachindividual measure from Umfpack to that of our SuperLU code. The memory requirement onlycounts the amount of memory actually used, excluding any external fragmentation.Neither code is always faster than the other. For six problems, Umfpack is faster thanSuperLU, by at most a factor of two. For the rest of problems, SuperLU is faster than Umfpack.For seven out of the 21 matrices, SuperLU runs more than twice as fast as Umfpack.Figure 13(d) compares the solution accuracy and stability of the two approaches, without usingiterative re�nement. SuperLU consistently delivers more accurate solutions, because Umfpackuses a threshold pivoting strategy to trade o� stability and sparsity. In particular, for stablealgorithms we expect the normalized error to bekx� ~xk1k~xk1 � 1�1(A) � � = �(1) :But very frequently, this error from Umfpack is much larger than �(1). For Matrix 19, thebackward error is as large as 105 �. To mitigate the instability, we experimented with working-precision iterative re�nement in Umfpack, and found that in many cases one iteration can reducethe backward error to a level comparable to that of SuperLU. The re�nement process normallytakes less than 2% of the factorization time. We recommend that Umfpack incorporate thisinexpensive technique to guarantee backward stability. The iteration can be terminated when thescaled residual k~rk1=kAk1k~xk1 is acceptable, say less than machine precision �.In our SuperLU software, equilibration and re�nement are options for the user. We computethe componentwise relative backward error ! = maxi(j~rji=(jAjj~xj + jbj)i), and stop re�ning when! � � or ! does not decrease by at least a factor of two. See Arioli, Demmel, and Du� [3] fordetails. In practice, most of the test matrices take only one or two re�nement steps to meet thiscriterion.The time for SuperLU does not include the time to reorder the columns. Umfpack is lesssensitive to the initial column ordering, because it dynamically permutes the columns for spar-sity. Surprisingly, Figure 13(b) seems to suggest that for large matrices the dynamic �ll-reducingapproach used in Umfpack is less e�ective than the minimum degree ordering algorithms.5.5 Understanding cache behavior and parametersIn this subsection, we analyze the behavior of SuperLU in detail. We wish to understand whenour algorithm is signi�cantly faster than other algorithms. We would like performance-predictingvariable(s) that depend on \intrinsic" properties of the problem, such as the sparsity structure,rather than algorithmic details and machine characteristics. We begin by analyzing the speedupsof our enhanced codes over the base GP implementation. Figures 14, 15 and 16 depict the speedupsand the characteristics of the matrices, with panel size w = 8.5.5.1 How much cache reuse can we expect?As discussed in Section 3.2, the supernode-panel algorithm gets its primary gains from improveddata locality, by reusing a cached supernode several times. To understand how much cache reuse26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

2

4

6

8

10

12

14

16

SuperLU

SupCol−C

GP−Mod

GP

Matrix number

Speedups on a RS/6000 Model 590

Figure 14: Speedups of each enhancement over GP code, on the RS/6000we can hope for, we computed two statistics: ops-per-nz and ops-per-ref . After de�ning thesestatistics carefully, we discuss which more successfully measures reuse.Ops-per-nz is simply calculated as #flops=nnz(F), the total number of oating point operationsper nonzero in the �lled matrix F . If there were perfect cache behavior, i.e., one cache miss perdata item (ignoring the e�ect of cache line size), then ops-per-nz would exactly measure the amountof work per cache miss. In reality, ops-per-nz is an upper bound on the reuse. Note that ops-per-nzdepends only on the fact that we are performing Gaussian elimination with partial pivoting, not onalgorithmic or machine details. Ops-per-nz is a natural measure of potential data reuse, because ithas long been used to distinguish among the di�erent levels of Blas.In contrast, ops-per-ref provides a lower bound on cache reuse, and does depend on the details ofthe SuperLU algorithm. Ops-per-ref looks at each supernode-panel update separately, and assumesthat all the associated data is outside the cache before beginning the update. This pessimisticassumption limits the potential reuse to twice the panel size, 2w.Now we de�ne ops-per-ref more carefully. Consider a single update from supernode (r: s)to panel (j: j + w � 1). Depending on the panel's nonzero structure, each entry in the updatingsupernode is used to update from 0 to w panel columns. Thus each entry in the updating supernodeparticipates in between 0 and 2w oating point operations during a sup-panel update. We assumethat the supernode entry is brought into cache from main memory exactly once for the entire sup-panel update, if it is used at all. Thus, during a single sup-panel update, each entry accessed inthe updating supernode accounts for between 2 and 2w operations per reference. The ops-per-refstatistic is the average of this number over all entries in all sup-panel updates. It measures howmany times the average supernode entry is used each time it is brought into cache from mainmemory. Ops-per-ref ranges from 2 to 2w, with larger values indicating better cache use. If there islittle correlation between the row structures of the columns in each panel, ops-per-ref will be small;if there is perfect correlation, as in a dense matrix, it will be close to 2w.27

1 3 5 7 9 11 13 15 17 19 21
100

101

102

103

104

Matrix number

(a) ops−per−nz(F)

1 3 5 7 9 11 13 15 17 19 21
0

5

10

15

Matrix number

(b) ops−per−ref

1 3 5 7 9 11 13 15 17 19 21
100

101

102

103

104

105

Matrix number

(c) Flop count

1 3 5 7 9 11 13 15 17 19 21
104

105

106

107

108

Matrix number

(d) nnz(F)

Figure 15: Some characteristics of the matrices.
28

1 3 5 7 9 11 13 15 17 19 21
0

5

10

15

Matrix number

(a) Mean supernode size

1 3 5 7 9 11 13 15 17 19 21
10−3

10−2

10−1

100

Matrix number

(b) Structural symmetry

1 3 5 7 9 11 13 15 17 19 21

103

104

105

Matrix number

(c) Dimension n

1 3 5 7 9 11 13 15 17 19 21
10−5

10−4

10−3

10−2

10−1

100

Matrix number

(d) Density

Figure 16: Some intrinsic properties of the matrices.
29

Now we describe how we compute the average ops-per-ref for the entire factorization. For eachupdating supernode (r: s) and each panel (j: j + w � 1) (see Figure 7), de�neksmin = minj�jj<j+w;r�i�sfijA(i; jj) 6= 0g:Then nnz(L(r:n; ksmin: s)) entries of the supernode are referenced in the sup-panel update. Thedense triangular solve in column jj of the update takes (s � ks + 1)(s � ks) ops, where ks =minr�i�sfijA(i; jj) 6= 0g. The matrix-vector multiply uses 2(s � ks + 1)nnz(L(s + 1:n; s)) ops.We count both additions and multiplications. For all panel updates, we sum the memory referencecounts and the op counts, then divide the second sum by the �rst to arrive at an average ops-per-ref.Now we compare the predictive powers of ops-per-nz (Figure 15 (a)) and ops-per-ref (Fig-ure 15 (b)) in predicting speedup (Figure 14). The superiority of ops-per-nz is evident; it is muchmore strongly correlated with the speedup of SuperLU than ops-per-ref . This is good news, be-cause ops-per-nz measures the best case reuse, and ops-per-ref the worst case. But neither statisticcaptures all the variation in the performance. In future work, we hope to use a hardware monitorto measure the exact cache reuse rate. (This data could also be obtained from a simulator, but thematrices we are interested in are much too large for a simulator to be viable.)5.5.2 How large are the supernodes?The supernode size determines the size of the matrix to be passed to matrix-vector multiply andother Blas-2 routines in our algorithm. Figure 16(a) shows the average number of columns inthe supernodes of the matrices, after amalgamating the relaxed supernodes at the bottom of thecolumn etree. The average size is usually quite small.More important than average size is the distribution of supernode sizes. In sparse Gaussianelimination, more �ll tends to occur in the later stages. Usually there is a large percentage of smallsupernodes corresponding to the fringe of the column etree, even after amalgamation. Larger super-nodes appear at the higher levels of the tree. In Figure 17 we plot the histograms of the supernodesize for four matrices chosen to exhibit a wide range of behavior. Matrix 1 has 16378 supernodes,all but one of which have less than 12 columns; the single large supernode, with 115 columns, is thedense submatrix at the bottom right corner of F . Matrix 15 has more supernodes distributed overa wider spectrum; it has 13 supernodes with 54 to 59 columns. This matrix gives greater speedupsover the non-supernodal codes.Figure 16 also plots three other properties of each matrix: structural symmetry, dimension, anddensity. None of them have any signi�cant correlation with the performance. The e�ectiveness ofsymmetric reduction depends on F being structurally symmetric, which depends on the choice ofpivots. So, structural symmetry of A does not gives any useful information.We note that the speedups achieved by the dense 1000� 1000 problem (matrix 17) show thebest performance gains, because this matrix has large supernodes and exhibits ideal data reuse. Itachieves speedups of 49% to 79% on the three platforms. The gains for any sparse matrix shouldbe smaller than this.5.5.3 Blocking parametersIn our hybrid blocking algorithm (Figure 9), we need to select appropriate values for the parametersthat describe the two-dimensional data blocking: panel width w, maximum supernode size t, androw block size b. The key considerations are that the active data we access in the inner loop (the30

(a) Matrix 1: 17758 rows, 16378 supernodes
1 12 24 35 47 58 70 81 93 104

1

2

3

4

Supernode size

L
O

G
_

1
0

 (
 n

u
m

b
e

r
o

f
o

cc
u

rr
e

n
ce

s
)

(b) Matrix 2: 4929 rows, 2002 supernodes
1 4 8 12 16 20 23 27 31 35

1

2

3

Supernode size

L
O

G
_

1
0

 (
 n

u
m

b
e

r
o

f
o

cc
u

rr
e

n
ce

s
)

(c) Matrix 3: 4134 rows, 2099 supernodes
1 4 8 12 16 20 23 27 31 35

1

2

3

Supernode size

L
O

G
_

1
0

 (
 n

u
m

b
e

r
o

f
o

cc
u

rr
e

n
ce

s
)

(d) Matrix 15: 7320 rows, 893 supernodes
1 6 12 18 24 30 36 42 48 54

1

2

3

Supernode size

L
O

G
_

1
0

 (
 n

u
m

b
e

r
o

f
o

c
c
u

rr
e

n
c
e

s
)

Figure 17: Distribution of supernode size for four matrices. The number at the bottom of eachbar is the smallest supernode size in that bin. The mark \o" at the bottom of a bin indicates zerooccurrences. Arti�cial supernodes of granularity r = 4 are used (see Section 2.4).31

1 9 14 22 30 38 46 54 62 70

2

4

6

8

10

12

14

16

18

20

 100
 125

 125

 125 125 125

 150

 150

 150

 150

 175

 175

 175

 175
 175

 200

 225

column dimension n

ro
w

 d
im

e
n

s
io

n
 m

(1

0
^
2

)
contour of DGEMV(m, n) MFLOPS

m*n = 32 K doubles

20 40 60 80 100 120 140

50

100

150

200

250

300

350

400

450

500

550

max supernode size t
ro

w
 b

lo
c
k
 s

iz
e

 b

contour of working set size; 256 KB cache size

o (120,200)

w = 8

w = 16

Figure 18: (a) Contour plot of Dgemv performance. (b) Contour plot of working set in 2-D algorithm.working set) should �t into the cache, and that the matrices presented to the Blas-2 routineDgemvshould be the sizes and shapes for which that routine is optimized. Here we describe in detail themethodology we used to choose parameters for the IBM RS/6000.� Dgemv optimization. As indicated in the last column of Table 3, the majority of theoating-point operations are in the matrix-vector multiply. The dimensions (m;n) of thematrices in calls to Dgemv vary greatly depending on the supernode dimensions. Very often,the supernode is a tall and skinny matrix, that is,m� n. We measured the Dgemv Mflopsrate for various m and n, and present a contour plot in the (m;n) plane in Figure 18(a).Each contour represents a constant Mflops rate. The dashed curve represents mn = 32Kdouble oats, or a cache capacity of 256 KB. In the optimum region, we achieve more than200 Mflops; outside this region, performance drops either because the matrices exceed thecache capacity, or because the column dimension n is too small.� Working set. By studying the data access pattern in the inner loop of the 2-D algorithm,lines (7{9) in Figure 9, we �nd that the working set size is the following function of w, t,and b, as shown in Figure 19:WS = b� t| {z }row block from supernode + (t+ b)� w| {z }vectors in matrix-vector multiply+ b� w| {z }part of SPA structure :In Figure 18(b), we �x two w values, and plot the contour lines for WS = 32K in the(t; b) plane. If the point (t; b) is below the contour curve, then the working set can �t in acache of 32K double oats, or 256 kilobytes.Based on this analysis, we use the following rules to set the parameters.32

*J

*JL’

U*J

L
b

W

t

t

bFigure 19: Parameters of the working set in the 2-D algorithm.First we choose w, the width of the panel in columns. Larger panels mean more reuse of cacheddata in the outer factorization, but also mean that the inner factorization (by the sup-col algorithm)must be applied to larger matrices. We �nd empirically that the best choice for w is between 8and 16. Performance tends to degrade for larger w.Next we choose b, the number of rows per block, and t, the maximum number of columns ina supernode. Recall that b and t are upper bounds on the row and column dimensions of the callto Dgemv. We choose t = 120 and b � 200, which guarantees that the working set �ts in cache(per Figure 18(b)), and that we can hope to be near the optimum region of Dgemv performance(per Figure 18(a)).Recall that b is relevant only when we use row-wise blocking, that is, when the test \if (r: s) islarge" succeeds at line 4 of Figure 9. This implies that the 2-D scheme adds overhead only if theupdating supernode is small. In the actual code, the test for a large supernode isif ncol > 40 and nrow > b then the supernode is large,where nrow is the number of dense rows below the diagonal block of the supernode, ncol is thenumber of actual dense columns of the supernode updating the panel. In practice, this choiceusually gives the best performance.The best choice of the parameters w, t, and b depends on the machine architecture and on theBlas implementation, but it is largely independent of the matrix structure. Thus we do not expecteach user of SuperLU to choose values for these parameters. Instead, our library code provides aninquiry function that returns the parameter values, much in the spirit of the Lapack environmentroutine Ilaenv. The machine-independent defaults will often give satisfactory performance. Themethodology we have described here for the RS/6000 can serve as a guide for users who want tomodify the inquiry function to give optimal performance for particular computer systems.6 Remarks6.1 The rest of the packageIn addition to the LU factorization kernel described in this paper, we have developed a suite ofsupporting routines to solve linear systems. The complete SuperLU package includes conditionnumber estimation, iterative re�nement of solutions, and componentwise error bounds for there�ned solutions. These are all based on the dense matrix routines in Lapack [2]. In addition,33

SuperLU includes a Matlab mex-�le interface, so that our factor and solve routines can be calledas alternatives to those built into Matlab.6.2 E�ect of the matrix on performanceThe supernodal approach reduces both symbolic and numeric computation time. But unsymmet-ric supernodes tend to be smaller than supernodes in symmetric matrices. The supernode-panelmethod is most e�ective for large problems with enough dense submatrices to use dense blockoperations and exploit data locality. In this regard, the dense 1000� 1000 example illustrates thelargest possible gains. Dense blocks are necessary for top performance in all modern factorizationalgorithms, whether left-looking, right-looking, multifrontal, or any other style.Our goal has been to develop sparse LU software that works well for problems with a widerange of characteristics. It is harder to achieve high op rates on problems that are very sparseand have no structure to exploit; it is easier on problems that are denser or become so duringelimination. Fortunately, the \hard" matrices by this de�nition generally take many fewer oatingpoint operations than the \easy" ones, and hence take much less time to factor. Our combinationof 1-D and 2-D blocking techniques gives a good performance compromise for all the problems wehave studied, and with particularly good performance on the largest problems.6.3 E�ect of the computer system on performanceWe have studied several characteristics of the computing platform that can a�ect the overall perfor-mance, including the Blas-2 speed and the cache size. Based on these factors, we can systematicallymake a good choice of the blocking parameters in the code so as to maximize the speed of the nu-meric kernel. Although we have empirical evidence only for the IBM RS/6000, we expect thismethodology to be applicable to other systems (and Blas implementations) as well.6.4 Possible enhancementsWe are considering several possible enhancements to the SuperLU code. One is to switch toa dense LU code at a late stage of the factorization. It would be di�cult to implement this ina supernode-column code, because that code is strictly left-looking, and only one column of thematrix is factored at a time. However, this would be much easier in the supernode-panel code. Atthe time we decide to switch, we simply treat the rest of the matrix columns (say d of them) as onepanel, and perform the panel update to A(1:n; n�d+1:n). (One might want to split this panel upfor better cache behavior.) Then the reduced matrix at the bottom right corner can be factored bycalling an e�cient dense code, for example, from Lapack [2]. The dense code does not spend timeon symbolic structure prediction and pruning, thus streamlining the numeric computation. Webelieve that, for large problems, the �nal dense submatrix will be big enough to make the switchbene�cial. For example, for a 2-D k � k square grid problem ordered by nested dissection, thedimension of the �nal dense submatrix is 32k � 32k; for a 3-D k � k � k cubic grid, it is 32k2 � 32k2,if pivots come from the diagonal.To enhance SuperLU's performance on small problems, it would be possible to make a choiceat runtime whether to use supernode-panel, supernode-column, or column-column updates. Thechoice would depend on the size of the matrix A and the expected properties of its supernodes; itmight be based on an e�cient symbolic computation of the density and supernode distribution ofthe Cholesky factor of ATA [21]. 34

Could we make supernode-panel panel updates more e�ective by improving the similarity be-tween the row structures of the columns in a panel? We believe this could be accomplished with amore sophisticated column permutation strategy. We could partition the nodes of the column etreeinto connected subtrees, grouping together nodes that have common descendants (and thereforethe potential for updates from the same supernodes). Then the overall column order would be atwo-level postorder, �rst within the subtrees (panels) and then among them. Again, it might bepossible to use information about the Cholesky supernodes of ATA to guide this grouping.We are also developing a parallel sparse LU algorithm based on SuperLU. In this context, wetarget large problems, especially those too big to be solved on a uniprocessor system. Therefore,we plan to parallelize the 2-D blocked supernode-panel algorithm, which has very good asymptoticbehavior for large problems. The 2-D block-oriented layout has been shown to scale well for parallelsparse Cholesky factorization [22, 29].AcknowledgementsWe thank Rob Schreiber and Ed Rothberg for very helpful discussions during the developmentof SuperLU. Rob pushed us to �nd a way to do the supernode-panel update; Ed suggested theops-per-ref statistic. We are also grateful to Tim Davis and Steve Vavasis for making their testproblems available to us. The Institute for Mathematics and Its Applications at the University ofMinnesota provided the fertile environment in which this work began.References[1] R.C. Agarwal, F.G. Gustavson, P. Palkar, and M. Zubair. A performance analysis of thesubroutines in the ESSL/LAPACK call conversion interface (CCI). IBM T.J. Watson ResearchCenter, Yorktown Heights, 1994.[2] E. Anderson et al. LAPACK User's Guide, Second Edition. SIAM, Philadelphia, 1995.[3] M. Arioli, J. W. Demmel, and I. S. Du�. Solving sparse linear systems with sparse backwarderror. SIAM J. Matrix Anal. Appl., 10(2):165{190, April 1989.[4] C. Ashcraft and R. Grimes. The inuence of relaxed supernode partitions on the multifrontalmethod. ACM Trans. Mathematical Software, 15:291{309, 1989.[5] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and H. Simon. Progress in sparse matrix meth-ods for large sparse linear systems on vector supercomputers. Intern. J. of SupercomputerApplications, 1:10{30, 1987.[6] T. A. Davis. User's guide for the unsymmetric-pattern multifrontal package (UMFPACK).Technical Report TR-93-020, Computer and Information Sciences Department, University ofFlorida, June 1993.[7] T. A. Davis and I. S. Du�. An unsymmetric-pattern multifrontal method for sparse LU fac-torization. Technical Report RAL 93-036, Rutherford Appleton Laboratory, Chilton, Didcot,Oxfordshire, 1994.[8] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of basic linearalgebra subroutines. ACM Trans. Mathematical Software, 14:1{17, 18{32, 1988.35

[9] I. S. Du�, R. Grimes, and J. Lewis. Sparse matrix test problems. ACM Trans. MathematicalSoftware, 15:1{14, 1989.[10] I. S. Du� and J. K. Reid. MA48, a Fortran code for direct solution of sparse unsymmetriclinear systems of equations. Technical Report RAL{93{072, Rutherford Appleton Laboratory,Oxon, UK, 1993.[11] I.S. Du� and J.K. Reid. The multifrontal solution of inde�nite sparse symmetric linear equa-tions. ACM Trans. Mathematical Software, 9:302{325, 1983.[12] S. C. Eisenstat and J. W. H. Liu. Exploiting structural symmetry in sparse unsymmetricsymbolic factorization. SIAM J. Matrix Analysis and Applications, 13:202{211, 1992.[13] S. C. Eisenstat and J. W. H. Liu. Exploiting structural symmetry in a sparse partial pivotingcode. SIAM J. Scienti�c and Statistical Computing, 14:253{257, 1993.[14] J. A. George and E. Ng. An implementation of Gaussian elimination with partial pivoting forsparse systems. SIAM J. Scienti�c and Statistical Computing, 6:390{409, 1985.[15] J. A. George and E. Ng. Symbolic factorization for sparse Gaussian elimination with partialpivoting. SIAM J. Scienti�c and Statistical Computing, 8:877{898, 1987.[16] J. R. Gilbert. Predicting structure in sparse matrix computations. SIAM J. Matrix Analysisand Applications, 15:62{79, 1994.[17] J. R. Gilbert and J. W. H. Liu. Elimination structures for unsymmetric sparse LU factors.SIAM J. Matrix Analysis and Applications, 14:334{352, 1993.[18] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in Matlab: Design and implemen-tation. SIAM J. Matrix Analysis and Applications, 13:333{356, 1992.[19] J. R. Gilbert and E. Ng. Predicting structure in nonsymmetric sparse matrix factorizations.In Alan George, John R. Gilbert, and Joseph W. H. Liu, editors, Graph Theory and SparseMatrix Computation. Springer-Verlag, 1993.[20] J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to arithmetic oper-ations. SIAM J. Scienti�c and Statistical Computing, 9:862{874, 1988.[21] John R. Gilbert, Esmond G. Ng, and Barry W. Peyton. An e�cient algorithm to computerow and column counts for sparse Cholesky factorization. SIAM J. Matrix Analysis and Ap-plications, 15:1075{1091, 1994.[22] A. Gupta and V. Kumar. Optimally scalable parallel sparse cholesky factorization. In The 7thSIAM Conference on Parallel Processing for Scienti�c Computing, pages 442{447, 1995.[23] International Business Machines Corporation Engineering and Scienti�c Subroutine Library,Guide and Reference. Version 2 Release 2, Order No. SC23-0526-01, 1994.[24] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matrix Analysisand Applications, 11:134{172, 1990.[25] PDS: The performance database server, http://performance.netlib.org/performance/, May1995. 36

[26] E. G. Ng and B. W. Peyton. Block sparse Cholesky algorithms on advanced uniprocessorcomputers. SIAM J. Scienti�c and Statistical Computing, 14:1034{1056, 1993.[27] E. Rothberg and A. Gupta. E�cient sparse matrix factorization on high-performance work-stations { exploiting the memory hierarchy. ACM Trans. Mathematical Software, 17:313{334,1991.[28] E. Rothberg and A. Gupta. An evaluation of left-looking, right-looking and multifrontalapproaches to sparse Cholesky factorization on hierarchical-memory machines. Int. J. HighSpeed Computing, 5:537{593, 1993.[29] E. E. Rothberg and A. Gupta. An e�cient block-oriented approach to parallel sparse choleskyfactorization. In Supercomputing, pages 503{512, November 1993.[30] A. H. Sherman. On the e�cient solution of sparse systems of linear and nonlinear equations.PhD thesis, Yale University, 1975.[31] A. H. Sherman. Algorithm 533: NSPIV, a FORTRAN subroutine for sparse Gaussian elimi-nation with partial pivoting. ACM Trans. Mathematical Software, 4:391{398, 1978.[32] H. Simon, P. Vu, and C. Yang. Performance of a supernodal general sparse solver on theCRAY Y-MP: 1.68 GFLOPS with autotasking. Technical Report TR SCA-TR-117, BoeingComputer Services, 1989.[33] S. A. Vavasis. Stable �nite elements for problems with wild coe�cients. Technical Report93{1364, Department of Computer Science, Cornell University, Ithaca, NY, 1993. To appearin SIAM J. Numerical Analysis.

37

