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1 BackgroundWe consider only �nite, undirected graphs. H is said to be immersed in G, written H �i G,i� a graph isomorphic to H can be obtained from G by lifting pairs of adjacent edges andtaking a subgraph. As an example, observe that C4 is immersed in K1 + 2K2.
lift

liftFigure 1: C4 �i K1 + 2K2Suppose a family F is closed in this order, that is, G 2 F and H �i G ) H 2 F .The obstruction set for F consists of the immersion-minimal elements in F 's complement.Accordingly, F has the following characterization: G is in F i� no obstruction for F isimmersed in G. It is known [RS1] that any such obstruction set is �nite. It is also known[FL3, RS2] that deciding whether H �i G is decidable in polynomial time for every �xed H.Thus, there exists a polynomial-time recognition algorithm for any immersion-closed familyof graphs. Such an algorithm is not constructively known, but possesses a time bound ofO(nh+3), where h denotes the order of the largest obstruction.One of the earliest and best-known applications of the immersion order is the min cutlinear arrangement problem. Though NP-complete in general, the �xed-parameter versionof this problem has been shown to be decidable in linear time with the aid of the immersionorder and special tools based on the treewidth metric [FL3, Bo]. Much less is known, however,about the vast majority of applications.2 Circuit PartitioningConsider the �eld programmable gate array (henceforth FPGA), a collection of logic blockswith programmable connections [MNSBS]. A given circuit is implemented by partitioning2



its logic into blocks and connecting the blocks as required.
Logic Block

I/O Cell

Interconnection Resources

Figure 2: The FPGASince circuits are frequently too large to �t on a single chip, they must be partitioned overseveral FPGA's. In building systems with multiple FPGA's, fabrication technology imposessevere restrictions: limits on pin counts (I/O cells) a�ect inter-chip connectivity; limits onchip area and density bound FPGA sizes.Such practical limitations motivate many interesting combinatorial problems. Consider,for example, the Min Degree Graph Partition problem. In this problem, we are given agraph G = (V;E) and two integers k and d, and are asked whether V can be partitionedinto disjoint subsets V1; V2; :::; Vm so that, for 1 � i � m, jVij � k and at most d edges haveexactly one end-point in Vi. In a multi-FPGA context, for example, G models the circuit tobe partitioned, k denotes the maximum number of logic blocks permitted on a chip, and drepresents the maximum degree or pin count of any chip.This problem is clearly very di�cult, in fact intractable without parameter bounds, viaa reduction from Multiway Cut [Go].Theorem Min Degree Graph Partition is NP-complete.3



Fortunately, however, the aforementioned fabrication limits can be used to advantage.As long as k and d are bounded, the family of \yes" instances is closed in the immersionorder.Theorem For any �xed k and d, Min Degree Graph Partition can be decided in polynomialtime.The last statement is of particular interest in light of the observation that, unlike Multi-way Cut, Min Degree Graph Partition has no known brute-force polynomial-time algorithmwhen k and d are �xed. This is in contrast to the super�cially-similar Graph Partition prob-lem, in which the cost of a solution is summed over all subsets rather than measured overeach, thus bounding the maximum number of partitions.Results such as this inherently rely on the existence of �nite lists of immersion-minimalobstructions. As of this writing, little is known about such obstructions in general or aboutpractical immersion tests in particular. As with the minor order, we expect that even partialsets can be useful [Ra]. It has been observed that complete graphs are often obstructionsto immersion-closed families. Testing for K1, K2 or K3 is easy. Testing for K4 turns out tobe quite complicated, however, though achievable in linear time. See [BGLR] for decision,search and parallel algorithms.Min Degree Graph Partition is an excellent example of the current state of the art. Wehave identi�ed a wide array of other problems, largely from the circuit partitioning domain,amenable to tools based on the immersion order. For most of these, just as with Min DegreeGraph Partition, we can at present say not muchmore than that they are (nonconstructively)decidable in polynomial time. Whether they are solvable in low-order polynomial time,perhaps even linear time, is an open question, and one we are actively pursuing. One mightbe tempted to employ the treewidth metric, useful for Min Cut Linear Arrangement. If thefamily of \yes" instances has bounded treewidth, linear time recognizability is assured. Butthat is not generally the case. To see this, consider Min Degree Graph Partition with k = 1and d = 4. Even this simple family of graphs contains the w�w grid for any w, a graph with4



treewidth w. One might also ask about eliminating nonconstructivity. We have developedsome techniques for that task, although they are mainly of theoretical interest and beyondthe scope of this brief review. We refer the reader to [FL4] for details.3 Search Algorithms and Self-ReducibilityIt is sometimes possible to solve a search problem by reducing it to a related decision problem.For example, one might seek to �nd a satisfying subset assignment for Min Degree GraphPartition with the aid of a routine that merely tells whether such an assignment exists.This approach to algorithm design is called self-reducibility, and has been formulated inmany ways in the literature. In its most limited form, an assortment of restrictions are placedon the decision algorithm, its input and the lexicographic position of the output produced(see, for example, [Sc]). In more general forms, input/output limitations are eliminated anddecision algorithms quite distant from the original problem are permitted (see, for example,[FL2]). Additional variations exist, some even incorporating randomness or parallelism (see,for example, [FF, KUW]).It is not di�cult to see that, for any �xed k and d, Min Degree Graph Partition is self-reducible in polynomial time. That is, one can construct a satisfying subset assignment, ifany exist, with at most a polynomial number of calls to a decision algorithm, known fromthe last section also to run in polynomial time.It can in fact be self-reduced with only a linear number of calls. No vertex in a \yes"instance has d+k or more neighbors (a star with d+k rays is an obstruction). Furthermore, insuch an instance, there must exist some satisfying assignment in which each subset induces aconnected subgraph. From this it can be shown that, no matter the rest of the partition, twovertices not connected by a su�ciently short path need never share the same subset. Thuswe know in advance that, as a solution is recursively constructed, a vertex v need share asubset only with candidates from a bounded-size neighborhood. Each such candidate, u, canbe tested for suitability by adding d+1 copies of the edge uv, calling the decision algorithm5



and retaining the extra edges only when the resulting graph is also a \yes" instance.Theorem For any �xed k and d, the search version of Min Degree Graph Partition can besolved in O(np(n)) time, where p(n) denotes the time required to solve the decision versionof the problem.A number of interesting self-reducibility issues remain open for this order, though noneyet are perhaps as noteworthy as embedding reducibilities are for the minor order [FL4].4 Closure-Preserving OperatorsIn the case of a \no" instance, some sort of approximation scheme is often required. Butincreasing the size of problem parameters may not be desirable or even possible in manysettings. An approach with some practical appeal then is to ask instead whether one canmodify the graph (simplify the underlying circuit) so that it becomes a \yes" instance.More generally, we seek systematic methods for making such modi�cations so as to preserveimmersion closure.Let F denote a family of graphs, and let Fv(h) denote those graphs for which thereexists some set of h or fewer vertices whose removal creates a graph in F . When h is�xed, recognizing Fv(h) can of course be reduced to recognizing F by brute force in timeproportional to nh, a polynomial. If F is minor-closed, however, there is a more e�cienttechnique. It is known [FL1] that if F is minor-closed, then so is Fv(h).Unfortunately, this operator does not work for the immersion order. To see this, let Fdenote the family of edgeless graphs, and let h = 1. The star graph with three rays is inFv(1), but the graph obtained by lifting a pair of edges yields a matching of size two, whichis not in Fv(1).So consider edges instead, and let Fe(h) denote those graphs for which there exists someset of h or fewer edges whose removal creates a graph in F .6



Theorem For any �xed h, if F is immersion-closed, then so is Fe(h).This operator, plus self-reducibility, therefore yields a polynomial-time approach for solv-ing the decision and search versions of Fe(h) when, for example, F denotes Min Degree GraphPartition. Other operators exist, but this is perhaps the most natural from an algorithmicstandpoint.5 In ClosingMuch is known about complexity-theoretic issues for subgraph, topological and even minorcontainment [BL]. In contrast, we have thus far really only scratched the surface in under-standing some of the range and depth of algorithmic applications of the immersion order.Many challenging open questions beckon, several of which we have attempted to illuminatehere. References[BGLR] H. Booth, R. Govindan, M. A. Langston, and S. Ramachandramurthi, \Sequentialand Parallel Algorithms for K4 Immersion Testing," Technical Report, University ofTennessee, 1995.[BL] D. Bienstock and M. A. Langston, \Algorithmic Implications of the Graph MinorTheorem," in Handbook of Operations Research and Management Science: NetworkModels (M. O. Ball, T. L. Magnanti, C. L. Monma and G. L. Nemhauser, editors),North{Holland, 1995, 481{502.[Bo] H. L. Bodlaender, \A Linear Time Algorithm for Finding Tree-Decompositions ofSmall Treewidth," Technical Report, Utrecht University, 1992.[FF] J. Feigenbaum and L. Fortnow, \Random Self-reducibility of Complete Sets," SIAMJournal on Computing 22 (1993), 994{1005.7
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