
Continuous Formal Systems:A Unifying Model in Language and CognitionBruce J. MacLennanComputer Science DepartmentUniversity of Tennessee, Knoxville�July 3, 19951 IntroductionThe idea of a calculus or discrete formal system is central to traditional models oflanguage, knowledge, logic, cognition and computation, and it has provided a unify-ing framework for these and other disciplines. Nevertheless, research in psychology,neuroscience, philosophy and computer science has shown the limited ability of thismodel to account for the 
exible, adaptive and creative behavior exhibited by muchof the animal kingdom. Promising alternate models replace discrete structures bystructured continua and discrete rule-following by continuous dynamical processes.However, we believe that progress in these alternate models is retarded by the lackof a unifying theoretical construct analogous to the discrete formal system.In this paper we outline the general characteristics of continuous formal systems(simulacra), which we believe will be a unifying element in future models of lan-guage, knowledge, logic, cognition and computation.1 Therefore, we discuss syntax,semantics, inference and computation in the context of continuous formal systems.In addition, we address an issue that the discrete models were inadequate to address:the gradual emergence of (approximately) discrete structures from a continuum. Thisis relevant to the emergence of linguistic structures, including semantics and syntax,and to the emergence of rule-like regularities in behavior.�Email: maclennan@cs.utk.edu, URL: http://www.cs.utk.edu/~mclennan. To appear in theproceedings of the IEEE Workshop on Architectures for Semiotic Modeling and Situation Analysisin Large Complex Systems, August 27{29, 1995, Monterey, CA.1The reasons for our de�nitions of continuous formal systems are presented in earlier publications,including MacLennan (1993a, 1994a, 1994b, 1994c, 1994d)1



2 Characteristics of Continuous Formal SystemsSince it is easiest to understand continuous formal systems (CFSs, simulacra) in con-trast to the traditional, discrete formal systems (DFSs, calculi), for each characteristicI will describe the discrete system �rst and then the continuous. The two descriptionsare parallel, so far as that is possible.Overall, DFSs are de�nite: de�nite in syntax, semantics and computation. Incontrast, continuous formal systems may be characterized, for the most part, byreplacing \de�nite" by \continuous" in the description of DFSs. Continuity may bede�ned as follows: In�nitesimal changes have in�nitesimal e�ects. Therefore:A continuous formal system (simulacrum) is continuous in syntax, se-mantics and computation.The following sections explain the consequences of continuity in each of these domains.2.1 SyntaxIn a DFS an expression (or formula) is a de�nite arrangement of de�nite tokens.The de�niteness of the tokens implies that they are discrete and may be de�nitelyclassi�ed as to type. The de�niteness of the expression means that we know de�nitelyhow the tokens are arranged and whether the arrangement is syntactically correct.All matters of syntax are de�nite; that is, they may be answered true or false.As expressions are the concrete representational vehicles of a DFS, so images arethe concrete representational vehicles of a CFS.2An image displays a continuous pattern of bounded variation over a boundedcontinuum. The well-formedness (syntactic correctness) of an image de-pends continuously on its pattern of variation. All matters of syntax arecontinuous; that is, they are matters of degree.We will consider some examples of images. In the realm of written communicationthere are pictures, written language, and diagrams, such as graphs and maps, in whichcontinuous variation has signi�cance. In the foregoing examples variations of intensity,color and texture extend over a two-dimensional region. In other images, such asauditory signals (including speech), variations of intensity and pitch extend over aninterval of time. Gestures are three-dimensional images that extend over time and2This terminology is generally consistent with Peirce's semiotics, wherein he distinguishes threekinds of signs: icons, indices and symbols. Icons refer by virtue of their own character or form, that is,by some similarity with their referent. Peirce distinguishes three subkinds of icons: images, diagramsand metaphors. Many of what I call images are images in Peirce's sense, since they correspond totheir referents in a direct way; other representations, which I call images (such as Fourier or wavelettransforms), might be better classi�ed as diagrams, since their relationships to their referents aremore abstract. See Peirce's Collected Papers (2.243{52, 274{302), Buchler (1955, pp. 101{7), andGoudge (1969, pp. 141{3). 2



three spatial dimensions. Images are also found in the brain: consider the continuousvariation of electrochemical activity over the neuropil. (Even if we take discretesynapses to be the sites of activity, the distribution is practically continuous, sincethere are approximately a billion (109) synapses per mm2 for cortex.) In general, anycontinuous quantity extended over space, time or other dimensions (e.g. frequency,energy) may serve as the substrate for an image.2.1.1 FinitenessFiniteness is an important characteristic of formal systems, whether discrete or con-tinuous, because formal systems are abstractions of mechanical information process-ing. Such a process is physically realizable only if it uses �nite resources (matterand energy). Thus, in a DFS for example, the formulas are required to be �nite inlength, and the computations should terminate (comprise a �nite number of steps).(Consider Turing machines and context-free grammars for examples of the �nitenessrequirement.)A reasonable standard for physically realizable images is to require that they be�nite energy functions (i.e. functions with a �nite L2 norm: R
 �2(x)dx <1). Thisis a mathematically convenient de�nition since it means that images are elements ofHilbert spaces. In fact, more restricted de�nitions are adequate in most cases. Forexample, images will be �nite energy if we require that: (1) the extent of an imageis �nite (i.e., either it is de�ned over a bounded continuum, or if it de�ned over anunbounded continuum, then it is 0 outside of some bounded region of that continuum);and (2) the image has bounded variation over its extent. These requirements eliminateimages that are either in�nitely extended or unbounded in value. The requirementsensure that images can be represented with �nite matter or energy. (The �nitenessof continuous computation will be taken up later.)2.1.2 DimensionAnother issue relevant to the physical realizability of images is their dimension (thedegrees of freedom of their extent). Mathematically, images can extend over anynumber of dimensions, but practically they are limited to a few dimensions. Physicalimages can extend over time, over at most three space dimensions, or over variousother physical dimensions (frequency, energy, orientation, color, etc.), either singlyor in combination. Analogously, although in principle the formulas of a DFS maybe of any dimension, in practice they are one-dimensional strings or occasionallytwo-dimensional arrays of characters. In the discrete case we know this is not a fun-damental limitation, since higher-dimensional formulas can be represented as strings,so long as corresponding changes are made to the computational processes.So also higher-dimensional images may be represented by lower dimensional im-ages without loss of information. Speci�cally, a band-limited �nite-energy image ofany dimension can be represented by a �nite number of zero-dimensional images,3



that is, by its generalized Fourier coe�cients (or, equally well, by Gabor coe�cients,wavelet coe�cients, etc.). (If necessary this �nite set of zero-dimensional images canbe embedded in a single one-dimensional image.) Of course, the computational pro-cesses must be altered to operate on this indirect representation. This can always bedone in principle, but, compared to the original process, the altered process may beeither more or less amenable to mechanical implementation.In conclusion, the dimensionality of the representational medium does not limitthe dimensionality of the images that can be represented in it (perhaps indirectly). Forexample, human primary visual cortex (area V1), which is physically two-dimensional,represents images extended over at least four dimensions (two spatial, one spatialfrequency and one orientation; see MacLennan 1991 for a survey).2.2 SemanticsThe issue of syntactic correctness is one of interpretability. In traditional logic onlythe syntactically correct expressions are interpretable. In continuous logic, images areinterpretable to the extent that they are well-formed. Continuity does not precludethere being some images that are entirely uninterpretable and others that are entirelyinterpretable, but there must also be intermediate images with intermediate degreesof interpretability. So also for well-formedness.In a DFS every well-formed expression has a de�nite meaning. In particular, eachtoken type has a de�nite meaning, and the meaning of an expression is a de�nitefunction of the arrangement and meanings of the constituent tokens. In contrast:The meaning of an image depends continuously on the form of the image,and an image has a meaning to the degree that it is well-formed (syntac-tically correct).For example, normalized two-dimensional vectors might be interpreted to repre-sent orientations, but the degree of well-formedness, and hence interpretability, mustdrop continuously to zero as the vector's magnitude deviates from 1 (Fig. 1).3For a less abstract example, suppose that the well-formed images are the TimesRoman letters `T' and `F', which are interpreted as true and false, respectively. Asan image deviates more from these archetypes, it becomes progressively less inter-pretable, and may not be interpretable at all (Fig. 2). It will be apparent that thewell-formed images are a fuzzy set (which may be de�ned by a \continuous grammar,"which is described below.)Given the membership functions �T and �F for the T and F sets (assumed dis-joint), we can de�ne a formal interpretation function. Suppose that the domain of3Of course, there is nothing that stops us from interpreting any nonzero vector as an orientation.The point is that we may, for some reason, choose to limit the well-formed vectors to normalizedvectors; for example, a computational process might require normalized input.4
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Figure 2: Inherent fuzziness of syntactic well-formedness. Just as the degree of well-formedness decreases continuously from 1 to 0, so also the interpretation must varycontinuously from a de�ned interpretation to an unde�ned interpretation.interpretation includes true, false and undef, as well as linear combinations of undefwith the other two (Fig. 2). The interpretation of an image � is de�ned:I(�) = �T(�)true+ �F(�)false+ [1� �T(�)� �F(�)]undef :As required, this function satis�es:I(`T') = true, since �T(`T') = 1;I(`F') = false, since �F(`F') = 1;I(�) = undef, if �T(�) = 0 and �F(�) = 0:For imperfectly-formed images (e.g., 0 < �(�) < 1) the interpretation will be betweenundef and the interpretation of the corresponding perfectly-formed image.If D is the domain of interpretation of a DFS, it can be made the domain ofinterpretation of a CFS as follows. Let the unit interval U = [0; 1] represent degreesof well-formedness. Then a pair (x; y) 2 U�D combines a degree of interpretability xand the interpretation y of a perfectly-formed image. Since all uninterpretable imagesare equivalent, de�ne an equivalence relation on U�D:E[(x1; y1); (x2; y2)] � (x1 = x2) ^ (x1 = 0 _ y1 = y2):Thus all pairs (interpretations) with a zero �rst component are equivalent, no matterwhat their second component. Finally we may de�ne D, the continuous domain of6



interpretation corresponding to D, as the quotient set D = (U�D)=E of equivalenceclasses under E. Then undef = [(0; y)], the equivalence class of interpretations ofcompletely ill-formed images. We can see that D has a continuum of interpretationsbetween undef and each of the members of D (the interpretations of perfectly-formedimages).If I(`x') is the interpretation of `x' in a DFS, and if in a corresponding CFS `x'has a fuzzy set with membership function �x, then the interpretation of an image �in this set (i.e., �x(�) 6= 0) is I(�) = [(�x(�); I(`x'))]:Note that a \propositional image," that is, an image with a truth value, musthave a continuous domain of interpretation, but this is not the same as saying ithas a continuous truth value (as in fuzzy logic). As depicted in Fig. 2, there maybe only two truth values (true and false), but varying degrees of interpretability(corresponding, for example, to con�dence of interpretation). The interpretation isundef in the absence of any con�dence.2.3 ComputationIn a DFS the computational process, by which one expression is derived from another,is de�nite; that is, the computation comprises a de�nite sequence of discrete stepsof de�nite type. At each step it is de�nite which rule (type of computation) may beapplied, which is de�nitely constrained by the syntax of the expression, and the resultof the step is a de�nite result of the expression to which the rule is applied. On theother hand:In a CFS the computational process, by which one image is derived fromanother, is continuous; that is, the computation comprises a continuousprocess of continuously changing direction. At each point the in�nitesimalchange e�ected by the process is a continuous function of the form (shape)of the image, and the result of the change is a continuous function of theimage at that time.As in a DFS, computation depends on the form, but not the meaning, of the image.Examples of continuous computations include: continuous approximations, con-tinuous optimization processes (such as hill-climbing), continuous control (e.g., robo-tics, sensory-motor coordination), continuous deformations and transformations, con-tinuous mental image manipulation (as in Roger Shepard's well-known experiments),gradual learning processes, and computation on analog computers.44A more detailed discussion of the relation of continuous (analog) and discrete (digital) com-putation, including an exploration of the philosophical issues, can be found in earlier publications(MacLennan 1993b, 1994b, 1994c, 1994d). 7



Formally, a continuous computational process has at each time t a state  t, whichis an image drawn from a continuum. In a deterministic computation the state atany time interval u in the future is a continuous function of the current state, that is, t+u = P ( t; u):Clearly, the process function P satis�es the group properties:P ( ; 0) =  ;P [P ( ; u); v] = P ( ; u+ v):In all ordinary cases the state images will form a linear space, which means that wecan di�erentiate them with respect to time:_ t = limu!0  t+u �  tu = @P ( t; u)@u �����u=0 :Thus, a deterministic continuous computation can be expressed by a di�erential equa-tion, _ t = Q( t), where Q( ) = @P ( ; u)=@uju=0. Further, continuous computations(such as control processes) can depend, in addition, on one or more input signals(images) �t, e.g., _ t = Q( t; �t).2.3.1 TerminationThere are ordinarily two ways in which computation in a DFS can halt. First it mayenter a state to which no rules are applicable; thus no further state change is possible.Second, the computation may enter one of a designated set of terminal states, whichsignal the completion of the computation; no attempt is made to apply rules toterminal states. In a well-structured DFS the two kinds of termination ordinarilycoincide; that is, it is arranged so that a state is terminal if and only if no rulesare applicable to it. In any case, whether a computation has terminated is always ade�nite matter.In a CFS there are two ways a computation can terminate. First, thecomputation may asymptotically approach or reach a point attractor, inwhich case the computation is said to have stabilized. Second, the compu-tation may enter a designated subspace of terminal states, in which caseno further computation takes place; such a process is said to have com-pleted. Ordinarily the two methods of termination coincide; that is, thecomputation stabilizes if and only if it completes by reaching a terminalstate.In either case, the computation approaches termination continuously (andso, in e�ect, termination is a matter of degree).Figure 3 illustrates the two kinds of termination.8



stabilization completion
t tFigure 3: Kinds of termination of continuous computation. The diagram on the leftdepicts termination by stabilization: the state asymptotically approaches or reachesa point attractor. The diagram on the right depicts termination by completion: thestate enters a predesignated set of terminal states (in this example, those below thedotted line).2.3.2 ProgramsIn a DFS the permissible types of computation at each step are given by rules, whichtogether constitute an expression (as de�ned above); this expression is called a pro-gram for the computation. Further, there is a simple, mechanical relationship betweenthe rule set and each step of the computational process.It is di�cult to be more precise than this, when the variety of traditional formalsystems is considered. Take for examples the predicate calculus, Turing machines, thelambda calculus, Markov algorithms, Post productions, combinatory logic, recursivefunctions and digital computers. Almost any de�nite process is permissible providedit is mechanical, i.e. can be carried without the exercise of intelligence.In a CFS the moment-to-moment changes are guided continuously by animage, called a guiding image for the computation.There is a simple, mechanical relationship between the guiding image andthe trajectory of the computed image.The notion of a guiding image is especially interesting, since it amounts to a program\written" (better: \sculpted") in a continuous language. It is di�cult to be more pre-cise about the mechanical relationship, except that it should not require intelligence,and we should be able to see how, at least in principle, it could be implemented by amachine or physical process.A simple example of a guiding image is a potential surface. Gradient descent isa deterministic computation guided by the image. Formally, if the potential surfaceP is the guiding image, then the computation is given by _ = �rrP ( ). Of course,the trajectory of the computation also depends on its initial state  0, which mayrepresent the input to the computation.More interesting guiding images determine the trajectory in a less direct way,e.g., by de�ning Fourier coe�cients, the coe�cients of a di�erential equation, or the9



boundary conditions of partial di�erential equations. For another example, considerany one-dimensional image � such that x�x > 0 for x 6= 0. It is the guiding image ofthe computation �x = ��(x), which causes x to oscillate in a manner determined by�. For a �nal example, Jonathan Mills (1995) has developed Kirkho� machines,which solve the two-dimensional di�usion equation (@ =@t = a2r2 ) given guidingimages in the form of boundary conditions, sources and sinks. The computationis implemented by the actual di�usion of charge carriers in a spatially-continuoussemiconducting mass.2.3.3 Nondeterministic ComputationIn a DFS a nondeterministic computational process de�nes sequences of allowed (dis-crete) changes to an expression, which permit one expression to be derived fromanother, in accord with a rule set. In the usual formulation, inference rules constrain,but do not determine, the steps of a (valid) derivation (computation).In a CFS a nondeterministic computational process associates degrees offacility with possible in�nitesimal changes in an image; the facilities ofchanges are determined by the guiding image. The probabilities of variouscomputational trajectories depend on their cumulative facilities.Notice that continuity requires that there be a continuum between allowed and dis-allowed trajectories. For example, a nondeterministic computation might permit anyenergy-decreasing trajectory, with facility being determined by the rate of decrease.Speci�cally, suppose the potential surface P is the guiding image of the computa-tion. The in�nitesimal energy change _P resulting from an in�nitesimal state change_ is given by _P ( ) = rP ( ) � _ . Since we require _P ( ) < 0 whenever _ 6= 0, we cande�ne the facility of change _ from state  as follows:F ( ; _ ) = h�rP ( ) � _ i+ ;that is, the positive part of �rP ( ) � _ . Thus, F ( ; _ ) > 0 to the extent that _ decreases energy, and F ( ; _ ) = 0 if _ would increase energy or leave it unchanged(Fig. 4). Indeed, we can see that the facility of an in�nitesimal change is proportionalto the angle between the change and the negative gradient of the guiding image:F ( ; _ ) = hk �rP ( )k k _ k cos �i+ ;/ krP ( )k cos �, for � �=2 � � � �=2:2.4 GrammarsIn a DFS a generative grammar is a rule set describing a nondeterministic computa-tional process capable of generating from a single token of �xed type any and only10



+

−Figure 4: Nondeterministic computation by descent on potential surface. The facilityof change in a given direction is shown by the length of the arrow (which is propor-tional to the cosine of its angle with the negative gradient. The dotted line separatesimpossible changes to the left from possible changes to the right.the well-formed expressions, which are among the set of terminal states. The processmay be made deterministic by specifying, by an expression, the choice of rule to beapplied at each step. A recognitive grammar is an computational process that reducesany arrangement of tokens of the allowed types to a single token of one of two types,meaning that the arrangement is or is not well-formed.A continuous generative grammar is the guiding image of a nondetermin-istic computational process capable of generating, with varying facility,terminal images from a �xed starting image. There will be a continuumbetween images generated by the grammar and those not so generated, sowell-formedness is a matter of degree. The process may be made determin-istic by specifying, by an image, the direction of change at each instant.A continuous recognitive grammar is a computational process that re-duces an image to a real number in [0; 1] representing its degree of well-formedness.A continuous recognitive grammar is an example of a guiding image (continuousprogram) for a (fuzzy) decision problem.A simple example of a continuous grammar uses the nondeterministic descenton the potential surface in Fig. 5 to generate normalized two dimensional vectorsfrom the starting image (0; 0). In a simple example such as this the well-formednesssurface can be used directly as the guiding image, that is, as the \grammar." The\energy" of the terminal image represents its degree of well-formedness (zero energy= perfectly-formed, higher energy = less-well-formed).A more complex continuous grammar, comparable to a regular expression, isshown in Fig. 6. The state  t = (yt; at) circles at a constant rate _a = r, and any11
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yFigure 6: Continuous grammar for generating damped sinusoids.12
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Figure 7: Typical damped sinusoid generated by simple continuous grammarpotential-decreasing path is allowed (i.e., _y � 0, and _y = 0 only if y = 0). The termi-nal images are at the bottom of the cylinder. Thus this nondeterministic computationsequentially generates damped sinusoids of the form �t = yt sin at where 0 � y and_y � 0 (Fig. 7). Similar techniques can be used for generating nested images.There are of course many mechanisms by which nondeterministic computationcan generate terminal images under the control of guiding images, just as there aremany di�erent discrete grammatical formalisms (e.g., regular expressions, context-free grammars, various \normal forms"). So also, important classes of continuous\languages" (fuzzy sets of well-formed images) may have di�erent grammatical mech-anisms that generate them.3 Objects, Time and ChangeCertainly, language and cognition sometimes resemble a DFS, and the dominantparadigm in linguistics, cognitive science and arti�cial intelligence has been that theyare DFSs. Although this paper is based on the premise that CFSs provide bettermodels of language and cognition, we must nevertheless ask how it is that a CFS canlook enough like a DFS that investigators have been fooled into thinking that language13



and cognition are discrete. In one sense the answer is trivial: one can design a CFSthat approximates a given DFS as closely as one likes; and vice versa, a DFS canbe found that approximates a given CFS to any desired degree. However, the moreinteresting issue is: How do (approximately) discrete formal systems emerge fromcontinuous representations by means of continuous computation? The answer to thisquestion is a step towards understanding the origin of apparently discrete faculties,such as language and formal reasoning, from the underlying continuous sensory-motorprocesses.3.1 ObjectsAn important part of this process is the perception of objects; indeed, objects are theprototypes of the tokens manipulated by calculi, as we can see even in the etymologyof the word (Latin calculus = small stone used in counting, voting, games, etc.). Anobject can be de�ned as a stable bundle of properties (cf. elementary particles inphysics as bundles of quantum numbers). That is, an object retains its propertieswhen its context is changed, which is what allows an object to be separated from itsbackground. In other terms, an object is equivalent to a set of invariances (MacLen-nan 1994b, 1994c). For example, the spatial relations among the parts of a rigid objectare invariant in spite of its motion; also, a melody has an invariant pitch-contour inspite of the key into which it's transposed. To understand how stable (or invariant)bundles of properties can be detected, we must consider how CFSs represent change(for invariance presupposes variation).3.2 Gabor RepresentationsI think there is a fallacy in attempting to reduce motion to space and time (or changeto some measurable property and time). Zeno showed us long ago the paradoxesinherent in the concept of instantaneous velocity (the derivative). More recentlyEinstein in his special theory of relativity showed the inseparability of space andtime; indeed, relative motion is the primary, from which the time and space axesderive their position.Consider a changing image such as a sound. In the time domain such a signal canbe considered a variation of amplitude extended over time, but in the frequency do-main it may be considered a spectrum: variations of amplitude (and phase) extendedover frequency.Gabor (1946) observed that neither view accurately re
ects our perception ofsound, which is simultaneously of pitch and duration (frequency and time). By ap-plying the mathematics of the Heisenberg Uncertainty Principle, he showed how any�nite signal (i.e. signal of �nite duration and bandwidth) could be decomposed into a�nite number of \elementary signals," now known as Gabor functions.5 Each elemen-5MacLennan (1991) provides an intuitive presentation of Gabor's proof.14



Figure 8: Gabor elementary function, which is a complex-valued function of time (orany other real quantity). The time axis extends from left to right through the centerof the spiral; the imaginary axis is vertical and the real axis is horizontal.tary signal represents the maximum localization in time and frequency permitted bythe uncertainty principle. That is, rather than reducing a signal to either the time orfrequency domain, Gabor reduces the signal to elementary conjuncts of time and fre-quency. Gabor's elementary functions di�er from other elementary functions in thatthey are localized in both time and frequency; in contrast sinusoidal basis functionsare not localized in time, and radial basis functions are not localized in frequency.To put it di�erently, Gabor's analysis shows us how a �nite sound is composed of a�nite number of \elementary sounds," which is more informative than either the timeor frequency domain descriptions. In a similar way we can decompose a time varyingimage into a set of \elementary changes" from which we may detect the covariancesand contravariances that separate an object from its context. Next we'll consider oneway of accomplishing this separation.As a starting point consider a one-dimensional image extended in time, �t. TheGabor transform of this will be a two-dimensional image extended in time and space(representing frequency), �tf . The magnitude of �tf measures the degree to whichat time near t the image contains frequencies near f . Formally, the Gabor transformis given by the inner product �tf = h�; 
(�)tf i, where 
(�)tf is a Gabor function spread(as determined by �) around t and f (Figs. 8-9):
(�)tf (� ) = e��(��t)2=�2e2�if� :The �rst exponential is a Gaussian with standard deviation �=2p�; that is, � is pro-portional to its spread. The second, complex exponential is the conjugate exponentialform of the trigonometric functions, and is periodic with frequency f .The Gabor transform is not limited to temporal images. If �x were an imageextended in space (or some other dimension), then its Gabor transform �xu representsthe presence in the image at locations near x of spatial frequencies near u.Now suppose we have a two-dimensional image �xt extended over space andtime, that is, a time-varying one-dimensional image. Its Gabor transform is a four-dimensional image �xutf , where x is spatial location, u is spatial frequency, t is time15
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Figure 10: Object detection example. An image of an object with a high spatialfrequency moving in front of a background with a low spatial frequency.and f is (temporal) frequency. Thus the magnitude of �xutf measures the degree towhich at locations near x and times near t there is a grating of frequency near u os-cillating at a rate near f . The two-dimensional Gabor transform is given by the innerproduct �xutf = h�; 
(��)xutf i, where the two-dimensional Gabor elementary function isde�ned: 
(��)xutf (�; � ) = 
(�)xu (�) 
(�)tf (� ):To see how the Gabor transform facilitates object detection, consider the Gaborrepresentation of an image of an object with spatial frequency uo moving at a velocityvo across a background with a spatial frequency ub (Fig. 10). The background willcause energy to be concentrated in �xubt0 for any places x and times t where it is notoccluded by the moving object. The object will cause energy to be concentrated near�xuotfv, where fv = uov, for all locations x and times t where the object occludes thebackground. Figure 11 depicts �xuotf at �xed t; it shows how the Gabor representation� separates the moving object from its background.I have said vaguely that �xutf measure movement \near" x, u, t and f . Hownear? This is given by the Gabor Uncertainty Principle, which is just the HeisenbergUncertainty Principle applied to arbitrary �nite signals. If �x represents any func-tion's localization in space, �t its localization in time, �u its localization in spatial17
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0Figure 11: Depiction of Gabor representation of object moving across background.Activity at fv represents the moving object, activity at f = 0 represents the back-ground.frequency, and �f its localization in temporal frequency, then we must have (Fig. 12):�x�u � 1=4�;�t�f � 1=4�:Thus, if change is better localized in time, it is more poorly localized in temporalfrequency (and hence velocity), and vice versa; the same applies for space and spatialfrequency. We can trade localization in one variable for localization in its conjugatevariable, but the joint minimum uncertainty cannot be better than 1=4�.6The uncertainties �x, �t, �u and �f , are determined by the shape parameters,� and �, of the Gabor elementary function:�x = �=2p�;�u = ��1=2p�;�t = �=2p�;�f = ��1=2p�:Thus � determines the most something can be localized in space and therefore theminimum size objects that can be detected; conversely it determines how acurately\textures" (spatial frequencies) are distinguishable, which a�ects its ability to sep-arate objects from the background. In e�ect the choice of � and � determines themesh of the perceptual �sh-net, and therefore the size of the �sh that inevitably slipthrough it.76MacLennan (1991) provides an intuitive presentation of Gabor's proof.7Speci�cally �x, �t, �u and �f are the standard deviations of the Gabor elementary functionover each of its dimensions (both extension and frequency).18
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Figure 12: Minimum joint localization in time and frequency domain given by GaborUncertainty Principle.3.3 Multiresolution RepresentationsOne solution to the �xed resolution of the Gabor representation is to use a mul-tiresolution representation, which uses di�erent tradeo�s between conjugate variablesat di�erent scales. In particular, smaller scale features are associated with higherfrequencies and therefore with a wider tolerance in uncertainty in the frequency do-main. Figure 13 compares the division of \Fourier space" by the Gabor transformand multiresolution analyses. Wavelet analysis produces such a multiresolution rep-resentation by scaling a single \mother wavelet," usually by factors of 2, to achievedi�ering scale sensitivities. One common mother wavelet, the Morlet wavelet, whichis a slight modi�cation of the Gabor elementary function, is de�ned: xu(�) = 14p� �e2�iu� � e�u2=2� e�(��x)2=2The one-dimensional Morlet transform is then given by the inner product �xu =h�; xui.4 Emergence of RulesCertainly, people and other animals sometimes exhibit rule-like behavior, and untilrecently both cognitive science and arti�cial intelligence made the assumption that19



Gabor multiresolutionFigure 13: Comparison of Gabor and multiresolution representations. The Gabortransform divides \Fourier space" (frequency cross time) into identical cells, whereasmultiresolution transforms, such as wavelet transforms, allow the frequency/time lo-calization tradeo� to scale with frequency. At larger scales, time resolution is worse,but frequency resolution is better, and vice versa.rule-like behavior is a consequence of following rules. Now connectionism has shownhow rule-like behavior can emerge from processes that are not following rules. Inaddition, it demonstrates the possibility of approximately rule-like behavior, whichexhibits rule-like behavior when it is appropriate, but is able to bend or adapt therules when that is more e�ective. In this way we can begin to understand and imitatethe 
exible rule-like behavior of the natural world. We'll take a brief look at theemergence of rule-like behavior from the perspective of CFSs.In typical rule-like behavior the situation (the \input") is classi�ed into one of asmall number of cases. From each of these cases a small amount of index informationis extracted, which is su�cient to identify the particulars to which the action for thatcase applies.8 Thus a rule takes the form: \If some things are in this kind of situation,then take this corresponding action regarding those things." Thus the response (or\output") depends only on the (low-dimensional) classi�cation of the situation andthe (low-dimensional) indices required to identify the objects to which it applies.In other words, a rule reduces a situation, with its (perhaps) complex internalrelationships, into a simple classi�cation and the indices. Aside from the particularsrepresented by the indices, the entire situation is reduced, in e�ect, to a point, so therule cannot be sensitive to any aspects of the situation not represented in its classi�-cation (i.e., in the low-dimensional features extracted from the situation). Thus a rulecannot be context-sensitive, that is, sensitive to aspects of the situation not explicitlyrepresented in the low-dimensional features. Other than the particularization of theactions by the indices, the number of possible actions (responses) is limited to the8An index is a sign that points at an object (Peirce's terminology; see footnote 2). For concrete-ness, think of it as the object's coordinates. 20



number of kinds of situations; there can be no continuous sensitive dependence of theresponse on the nuances of the situation.Behavior appears rule-like to the extent that the functional dependence of outputson inputs can be factored through a low-dimensional space (representing the kind ofsituation and the indices). However, it is not necessary that rule-like behavior actu-ally be generated in his way, that is, by means of an intermediate low-dimensionalrepresentation. Indeed, 
exibility depends on avoiding this representational bottle-neck, either by there being no intermediate representation, or by the intermediaterepresentation being of comparatively high dimension. Then we have the possibil-ity of 
exibility and adaptation for, as the situation demands, the representation canexpand beyond the low-dimensional subspace (which manifests in the rule-like behav-ior) of the intermediate space, perhaps later settling into a di�erent low-dimensionalsubspace (and therefore constellating as di�erent rule-like behavior).5 ConclusionsWe have shown that the concept of a continuous formal system (or simulacrum) isanalogous to a discrete formal system (or calculus), but that the former is continuouswhere the latter is de�nite. Nevertheless, the theory of CFSs forces revisions in ournotions of syntax, semantics, computation, program, grammar and rule. It promisesa new theory of representations in arti�cial intelligence, cognitive science, linguisticsand philosophy, which can better address the emergence of discrete entities, such asobjects and rules, from the underlying continuous processes. In particular, we haveconsidered how a multiresolution representation of change can aid the detection ofdiscrete structures. It is our hope that continuous formal systems will provide a the-oretical framework for understanding emergent and adaptive information processingin all its manifestations.6 ReferencesBuchler, Justus (ed.). (1955). Philosophical Writings of Peirce. New York, NY:Dover. (Previously published as The Philosophy of Peirce: Selected Writings.London: Routledge and Kegan Paul, 1940.)Gabor, D. (1946). Theory of Communication. Journal of the Institution of ElectricalEngineers, vol. 93 (III), pp. 429{457.Goudge, Thomas A. (1969). The Thought of C. S. Peirce New York: Dover. (Orig-inally published by University of Toronto Press, Toronto, 1950.)MacLennan, B. J. (1991). Gabor Representations of Spatiotemporal Visual Images.Technical report CS-91-144, University of Tennessee, Knoxville, Computer Sci-21
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