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Iterative Re�nement and LAPACKNicholas J. Higham�September 29, 1995AbstractThe technique of iterative re�nement for improving the computed solutionto a linear system was used on desk calculators and computers in the 1940s andhas remained popular. In the 1990s iterative re�nement is well supported insoftware libraries, notably in LAPACK. Although the behaviour of iterative re-�nement in 
oating point arithmetic is reasonably well understood, the existingtheory is not su�cient to justify the use of �xed precision iterative re�nementin all the LAPACK routines in which it is implemented. We present analysisthat provides the theoretical support needed for LAPACK. The analysis coversboth mixed and �xed precision iterative re�nement with an arbitrary numberof iterations, makes only a general assumption on the underlying solver, and isrelatively short. We identify some remaining open problems.Key words. iterative re�nement, rounding error analysis, backward error,condition number, LAPACKAMS subject classi�cations. primary 65F05, 65G051 IntroductionThe technique of iterative re�nement for improving the computed solution to a linearsystem was probably �rst used in a computer program by Wilkinson in 1948, duringthe design and building of the ACE computer at the National Physical Laboratory[15]. Iterative re�nement has achieved wide use ever since, and is exploited, forexample, by most of the linear system expert drivers in LAPACK [1].The re�nement process for a computed solution bx to Ax = b, where A 2 IRn�n isnonsingular, is simple to describe: compute the residual r = b�Abx, solve the systemAd = r for the correction d, and form the updated solution y = bx+ d. If there is not�Department of Mathematics, University of Manchester, Manchester, M13 9PL, England(na.nhigham@na-net.ornl.gov). This work was supported by Engineering and Physical SciencesResearch Council grants GR/H5213 and GR/H/94528.1



a su�cient improvement in passing from bx to y the process can be repeated, with bxreplaced by y.Intuition suggests that, since the residual r contains the crucial information thatenables bx to be improved, r should be computed as accurately as possible. In the earlyapplication and analysis of iterative re�nement r was computed in extended precisionand then rounded to working precision. This mixed precision iterative re�nement wasanalyzed by Wilkinson [16] and Moler [10]; they showed that, provided A is not tooill conditioned, it produces a computed solution correct to working precision. Mixedprecision iterative re�nement contrasts with �xed precision iterative re�nement, inwhich r is formed entirely in the working precision. In the late 1970s Skeel [12] provedthat, under certain conditions, just one step of �xed precision iterative re�nementis su�cient to yield a small componentwise relative backward error for Gaussianelimination with partial pivoting (GEPP) (the componentwise relative backward erroris de�ned below); Jankowski and Wo�zniakowski [9] had earlier shown that, again withcertain provisos, an arbitrary linear equation solver is made normwise backward stableby �xed precision iterative re�nement (possibly with more than one iteration).Skeel's analysis of �xed precision iterative re�nementwas generalized by Higham [4]to an arbitrary linear equation solver satisfying certain stability assumptions. Thisgeneral analysis can be used to show that \one step is enough" for GEPP and forsolvers based on QR factorization computed by any of the standard methods; theanalysis also has applications to methods for solving the least squares problem. Un-fortunately, Higham's analysis does not yield any useful conclusions about the com-ponentwise relative backward error resulting from �xed precision iterative re�nementapplied with the Cholesky factorization or the diagonal pivoting method. In LA-PACK, both these methods are implemented with the option of performing �xedprecision iterative re�nement, but there is no existing theory to prove that a smallcomponentwise relative backward error will usually be achieved.The purpose of this work is to present a general analysis that �lls the gaps in ourunderstanding of iterative re�nement and yields positive conclusions for the Choleskyfactorization and the diagonal pivoting method.In the rest of the introduction we present the required notions of stability andconditioning.We recall the de�nition of componentwise backward error for an approximatesolution y to a linear system Ax = b:!E;f(y) = minf� : (A+�A)y = b+�b; j�Aj � �E; j�bj � �fg; (1.1)where E and f are nonnegative matrices of tolerances. For E = jAj and f = jbj weobtain the componentwise relative backward error. A computationally simple formulaexists for !E;f(y), as shown in the following result. We adopt the convention that �=0is interpreted as zero if � = 0 and in�nity otherwise.2



Theorem 1.1 The componentwise backward error is given by!E;f (y) = maxi jrij(Ejyj+ f)i ; (1.2)where r = b�Ay.Proof. See Oettli and Prager [11], or Higham [7, Th. 7.3].We introduce the condition numberscond(A;x) := k jA�1jjAjjxj k1kxk1 ;cond(A) := cond(A; e) = k jA�1jjAj k1 � kA�1k1kAk1 = �1(A);where e = [1; 1; : : : ; 1]T . The term \condition number" is used advisedly here. If wede�ne the componentwise condition numbercondE;f(A;x) := lim�!0 supn k�xk1�kxk1 : (A+�A)(x+�x) = b+�b;j�Aj � �E; j�bj � �f o;then cond(A;x) is within a factor 2 of condjAj;jbj(A;x), and cond(A) di�ers from thecondition number corresponding to E = jAjeeT and f = jbj by at most a factor 2n[7, Problem 7.6].We will need a corollary of Theorem 1.1 in which x replaces y in the expressionEjyj+ f . First, we state a trivial lemma, which involves a function  that measureshow badly a vector is scaled.Lemma 1.2 For B 2 IRn�n and y 2 IRn we havejBjjyj � kBk1 (y)jyj;where  (y) = maxi jyijmini jyij :Proof. We have jBjjyj � kBk1kyk1e � kBk1 (y)jyj:Corollary 1.3 The componentwise backward error satis�es�1 + kEjA�1j k1 (Ejxj+ f)� � !E;f(y) � �1 � kEjA�1j k1 (Ejxj+ f)� ; (1.3)3



where � = maxi jrij(Ejxj+ f)i ;r = b�Ay, and the denominators are assumed to be positive.Proof. Dividing numerator and denominator in (1.2) by (Ejxj + f)i, and usingthe inequality Ejyj � Ejxj � Ejx� yj � Ejxj � EjA�1jjrj, we obtain the bound!E;f(y) � �maxi jrij(Ejxj+ f)i���1�maxi (EjA�1jjrj)i(Ejxj+ f)i � :Using Lemma 1.2 we haveEjA�1jjrj � � EjA�1j(Ejxj+ f)� � kEjA�1j k1 (Ejxj+ f)(Ejxj+ f);which gives the upper bound. The lower bound is proved similarly.Finally, we note that our backward error results in x4 are cast in terms of  (jbj+jAjjxj). This is related to the quantity  (jAjjxj) that appears in the analyses of Skeel[12] and Higham [4] by the inequalities12 (jAjjxj) �  (jbj+ jAjjxj) � 2 (jAjjxj):2 BasicsWe work with the standard model of 
oating point arithmetic:fl(x op y) = (x op y)(1 + �); j�j � u; op = +;�; �; =; (2.1)where u is the unit roundo�. (In fact, our results hold, with minor changes to theconstants, under a weaker model that accommodates machines without a guard digit[7, x2.4].) We will make use of the constant
n = nu1 � nu:As this notation suggests, we assume that nu < 1.Consider a linear system Ax = b, where A 2 IRn�n is nonsingular. We supposethat our solver produces a computed solution satisfying(A+�A)bx = b; j�Aj � uW; (2.2)where W is a nonnegative matrix depending on A, n and u (but not on b). Weinvariably have W � jAj. Note that at this stage we make no assumption about4



the size or structure of W . All standard direct solvers satisfy (2.2), and iterativesolvers may, too, depending on the convergence test (see, for, example, [8]). Althoughbackward error results for solution of Ax = b by QR factorization methods are usuallystated with a perturbation of b, these results can be reworked so that only A isperturbed (see [7, x18.3]). The advantage of perturbing only A in (2.2) is that weobtain an algebraically simpler analysis of iterative re�nement.Inevitably, our analysis requires A not to be too ill conditioned. We make aninitial assumption that uk jA�1jW k1 < 12 ; (2.3)which guarantees that A+�A in (2.2) is nonsingular and enables us to bound (I �ujA�1jW )�1 in x4.To make the analysis as general as possible we allow for the use of extendedprecision in calculating the residual. We de�ne x1 = bx (equivalently, x0 = 0) andconsider the following iterative re�nement process: ri = b� Axi (precision u), solveAdi = ri (precision u), xi+1 = xi + di (precision u), i = 1; 2;. . . . For traditionaliterative re�nement, u = u2.There are two stages in the calculation of ri. First, si = fl(b�Abxi) = b�Abxi+�siis formed in the (possibly) extended precision u. Standard results [7, x3.5] show thatj�sij � 
n+1(jbj+ jAjjbxij), where 
k � ku=(1 � ku). Second, the residual is roundedto the working precision: bri = fl(si) = si + fi, where jfij � ujsij. Hencebri = ri +�ri; j�rij � ujrij+ (1 + u)
n+1(jbj+ jAjjbxij): (2.4)3 Forward Error AnalysisWe begin by analyzing the behaviour of the forward error of bxi, namely, kx �bxik1=kxk1. The analysis in this section is a slightly rewritten version of the analysisin Higham [7, x11.1].By writing bxi = x+ (bxi � x) and ri = A(x� bxi) we obtain from (2.4) the boundj�rij � [u+ (1 + u)
n+1]jAjjx� bxij+ 2(1 + u)
n+1jAjjxj: (3.1)For the computation of di we have, by (2.2), (A+�Ai)bdi = bri, where j�Aij � uW .Now write (A+�Ai)�1 = �A(I +A�1�Ai)��1 =: (I + Fi)A�1;where jFij � ujA�1jW +O(u2): (3.2)Hence bdi = (I + Fi)A�1bri = (I + Fi)(x� bxi +A�1�ri): (3.3)5



The updated vector satis�esbxi+1 = bxi + bdi +�bxi;j�bxij � ujbxi + bdij � u(jx� bxij+ jxj+ jbdij):Using (3.3) we havebxi+1 � x = Fi(x� bxi) + (I + Fi)A�1�ri +�bxi:Hencejbxi+1 � xj � jFijjx� bxij+ (I + jFij)jA�1jj�rij+ ujx� bxij+ ujxj+ ujbdij� jFijjx� bxij+ (I + jFij)jA�1jj�rij+ ujx� bxij+ ujxj+ u(I + jFij)(jx� bxij+ jA�1jj�rij)= �(1 + u)jFij+ 2uI�jx� bxij+ (1 + u)(I + jFij)jA�1jj�rij+ ujxj:Substituting the bound for j�rij from (3.1) givesjbxi+1 � xj � �(1 + u)jFij+ 2uI�jx� bxij+ (1 + u)�u+ (1 + u)
n+1�(I + jFij)jA�1jjAjjx� bxij+ 2(1 + u)2
n+1(I + jFij)jA�1jjAjjxj+ ujxj=: Gijx� bxij+ gi: (3.4)Using (3.2), we estimateGi � jFij+ (u+ 
n+1)(I + jFij)jA�1jjAj<� ujA�1jW + (u+ 
n+1)(I + ujA�1jW )jA�1jjAj;gi � 2
n+1(I + jFij)jA�1jjAjjxj+ ujxj<� 2
n+1(I + ujA�1jW )jA�1jjAjjxj+ ujxj:Recall that we are assuming (2.3) holds. As long as A is not too ill conditioned(cond(A) is not too large) we have kGik1 < 1, which means that the error contractsuntil we reach a point at which the gi term becomes signi�cant. The limiting normwiseaccuracy, that is, the minimum size of kx � bxik1=kxk1, is roughly kgik1=kxk1 �2nu cond(A;x) + u. Moreover, if 2nu(I + ujA�1jW )jA�1jjAjjxj � �ujxj for some �,then we can expect to obtain a componentwise relative error of order �u, that is,mini jx � bxij <� �ujxj. Note that Gi is essentially independent of u, which suggeststhat the rate of convergence of mixed and �xed precision iterative re�nement will besimilar; it is only the limiting accuracy that di�ers.In the traditional use of iterative re�nement, u = u2, and one way to summarizeour �ndings is as follows. 6



Theorem 3.1 (Mixed precision iterative re�nement) Let iterative re�nementbe applied to the nonsingular linear system Ax = b, using a solver satisfying (2.2)and with residuals computed in double the working precision. Let � = uk jA�1j(jAj+W ) k1. Then, provided � is su�ciently less than 1, iterative re�nement reduces theforward error by a factor approximately � at each stage, until kx� bxik1=kxk1 � u.For LU factorization we can takeuW � 2
njbLjjbU j (3.5)[7, Th. 9.3], where bL and bU are the computed LU factors. In this case Theorem 3.1is stronger than the standard results in the literature, which have �1(A)u in place of� � uk jA�1j(jAj+2njbLjjbU j) k1. For we can have � � �1(A)u, since � is independentof the row scaling of A (modulo changes in the pivot sequence). For example, ifjbLjjbU j � jAj then � � 2n cond(A)u, and cond(A) can be arbitrarily smaller than�1(A).Consider now �xed precision iterative re�nement, in which u = u. We have thefollowing analogue of Theorem 3.1, which refutes claims in some textbooks that foriterative re�nement to improve the accuracy it is necessary to compute the residualin extra precision.Theorem 3.2 (Fixed precision iterative re�nement) Let iterative re�nement in�xed precision be applied to the nonsingular linear system Ax = b of order n, using asolver satisfying (2.2). Let � = uk jA�1j(jAj+W ) k1. Then, provided � is su�cientlyless than 1, iterative re�nement reduces the forward error by a factor approximately� at each stage, until kx� bxik1=kxk1 <� 2n cond(A;x)u.The key di�erence between mixed and �xed precision iterative re�nement is thatin the latter case a relative error of order u is no longer ensured. But we do have arelative error bound of order cond(A;x)u. This is a stronger bound than holds forthe original computed solution bx, for which we can say only thatkx� bxk1kxk1 <� uk jA�1jW jxj k1kxk1 :In fact, a relative error bound of order cond(A;x)u is the best we can possibly expectif we do not use higher precision, because it corresponds to the uncertainty introducedby making componentwise relative perturbations to A of size u. This level of uncer-tainty is often present in the problem as it is given, because of errors in computingA or in rounding its elements to 
oating point form.7



4 Backward Error AnalysisWe now turn to the backward error. The analysis in this section generalizes that ofSkeel [12] by applying to any solver satisfying (2.2), rather than just GEPP, and itgeneralizes the analysis of Higham [4] by applying to both mixed and �xed precisioniterative re�nement with an arbitrary number of steps, rather than just one step of�xed precision re�nement.In the analysis we endeavour to obtain bounds containing terms that are multiplesof jAjjxj. To this end, we make frequent use of the following trivial inequality:jAjjbxij � jAjjxj+ jAjjx� bxij� jAjjxj+ jAjjA�1jjb�Abxij= jAjjxj+ jAjjA�1jjrij: (4.1)For later use we note that, from (2.4),j�rij � ujrij+ (1 + u)
n+1(jbj+ jAjjbxij)� �uI + (1 + u)
n+1jAjjA�1j�jrij+ (1 + u)
n+1(jbj+ jAjjxj)= C1jrij+ (1 + u)
n+1(jbj+ jAjjxj); (4.2)where C1 = uI + (1 + u)
n+1jAjjA�1j:Then jbrij �M1jrij+ (1 + u)
n+1(jbj+ jAjjxj); (4.3)where M1 = I + C1:For the solution of the correction equation we haveAbdi = bri + f1; jf1j � uW jbdij; (4.4)and the updated vector satis�esbxi+1 = bxi + bdi + f2; jf2j � ujbxi + bdij: (4.5)We have b�Abxi+1 = b�Abxi �Abdi �Af2= bri ��ri �Abdi �Af2= �f1 ��ri �Af2:8



Hence, using (4.4), (4.2), (4.5), and (4.1) we havejb�Abxi+1j � uW jbdij+ C1jrij+ (1 + u)
n+1(jbj+ jAjjxj) + ujAj(jbxij+ jbdij)� uW jbdij+ (C1 + ujAjjA�1j)jrij+ (1 + u)
n+1(jbj+ jAjjxj) + ujAj(jxj+ jbdij)= u(W + jAj)jbdij+ C2jrij+ (1 + u)
n+1(jbj+ jAjjxj) + ujAjjxj; (4.6)where C2 = C1 + ujAjjA�1j:Our aim is to bound !jAj;jbj(bxi+1) using Corollary 1.3, so we need to bound (W +jAj)jbdij by multiples of jrij and jbj+ jAjjxj. From (4.4) and (4.3),jbdij � jA�1j(jbrij+ uW jbdij)� jA�1j�M1jrij+ (1 + u)
n+1(jbj+ jAjjxj) + uW jbdij�; (4.7)that is, (I � ujA�1jW )jbdij � jA�1j�M1jrij+ (1 + u)
n+1(jbj+ jAjjxj)�:In view of the assumption (2.3) we havejbdij �M2jA�1j�M1jrij+ (1 + u)
n+1(jbj+ jAjjxj)�; (4.8)where M2 = (I � ujA�1jW )�1 � 0; kM2k1 � 2:Substituting into (4.6) givesjri+1j � u(W + jAj)M2jA�1j�M1jrij+ (1 + u)
n+1(jbj+ jAjjxj)�+ C2jrij+ (1 + u)
n+1(jbj+ jAjjxj) + ujAjjxj� �C2 + u(W + jAj)M2jA�1jM1�jrij+ �(u+ (1 + u)
n+1)I + u(1 + u)
n+1(W + jAj)M2jA�1j�(jbj+ jAjjxj)=: Gjrij+ g: (4.9)Note that kC2k1 = O(u cond(A�1)) and Mi = I + O(u), i = 1: 2. As long as A isnot too ill conditioned and the solver is not too unstable we have kGk1 < 1. Then,solving the recurrence, we �nd thatjri+1j � Gijr1j+ (I +G+ � � � +Gi�1)g:Writing g := (�I + �H)(jbj+ jAjjxj) and applying Lemma 1.2 we obtainj(I +G + � � �+Gi�1)gj � ��+ ��kGk1(1 � kGk1)�1 + �kHk1(1� kGk1)�1��  (jbj+ jAjjxj)�(jbj+ jAjjxj):We summarize our �ndings in a theorem.9



Theorem 4.1 Let iterative re�nement be applied to the nonsingular linear systemAx = b of order n, using a solver satisfying (2.2). There are matrices Mi = I+O(u),i = 1: 2, such that if Gijr1j � max(u; 
n+1)(jbj+ jAjjxj) (4.10)andu+ (1 + u)
n+1 + (1 � kGk1)�1�(u+ (1 + u)
n+1)kGk1 + (1 + u)
n+1kHk1��  (jbj+ jAjjxj) � 2max(u; 
n+1);whereH = u(W + jAj)M2jA�1j; G = uI + (u+ (1 + u)
n+1)jAjjA�1j+HM1;then !jAj;jbj(bxi+1) � 3max(u; 
n+1)1� 3 cond(A�1) (jbj+ jAjjxj)max(u; 
n+1) :The gist of this result is that iterative re�nement yields a small componentwiserelative backward error provided that the solver is not too unstable (kWk1 is nottoo large), A is not too ill conditioned (cond(A�1) is not too large), and the vectorjbj + jAjjxj is not too badly scaled. The condition (4.10) is a necessary assumptionthat can fail to be satis�ed for su�ciently large i only if jbj+ jAjjxj has zero elements.Note that, roughly, kGk1 � max(u; 
n+1)k (W + jAj)jA�1j k1, and the residual ismultiplied by a matrix of norm at most kGk1 on each iteration.Theorem 4.1 suggests that the only advantage of mixed precision iterative re�ne-ment over �xed precision iterative re�nement for achieving a componentwise relativebackward error of order u is that it tolerates a greater degree of instability, ill con-ditioning and bad scaling. The dependence of G on u is minor, as for the forwarderror analysis, so the theorem does not predict any signi�cant di�erence in the ratesof convergence of iterative re�nement in mixed and �xed precision.We turn our attention now to analyzing one step of �xed precision iterative re-�nement. From (4.9) and the inequality jr1j = jb � Abx1j � uW jbx1j, from (2.2), wehave jb�Abx2j � uGW jbx1j+ g: (4.11)By considering the forms of G and g, we can glean a useful piece of insight immediatelyfrom (4.11): iterative re�nement works because after just one step the matrix Woccurring in the backward error bound for the solver is multiplied by u2 in the residualbound; in other words, any instability in the solver is relegated to a second order termby the re�nement process.It is not possible to deduce a useful bound on !jAj;jbj(bx2) without making furtherassumptions on W . The most natural and useful assumption is thatW = Y jAj;10



where, ideally, Y is of modest norm. Using this assumption we can derive a modi�edform of (4.11) that leads to a cleaner result. The trick is to bound jAjjbdij directly.From (4.7) we havejAjjbdij � jAjjA�1j�M1jrij+ (1 + u)
n+1(jbj+ jAjjxj) + uY jAjjbdij�;or (I � ujAjjA�1jY )jAjjbdij � jAjjA�1j�M1jrij+ (1 + u)
n+1(jbj+ jAjjxj)�:Hence, provided uk jAjjA�1jY k1 � 1=2, we havejAjjbdij �M3jAjjA�1j�M1jrij+ (1 + u)
n+1(jbj+ jAjjxj)�; (4.12)where M3 = (I � ujAjjA�1jY )�1 � 0 and kM3k1 � 2. The bene�t of (4.12) is thatit leads to a term M3jAjjA�1j in the bound instead of jAjM3jA�1j, and the norm ofthe former term is independent of the row scaling of A. Now, using (4.1) and (4.3)we have jr1j � uY jAjjbx1j � uY (jAjjxj+ jAjjA�1jjr1j);which implies jr1j � uM4Y jAjjxj;where M4 = (I � uY jAjjA�1j)�1 with kM4k1 � 2 if cond(A�1)kY k1u � 1=2. From(4.6) and (4.12) we havejb�Abx2j � u(Y + I)M3jAjjA�1j�uM1M4Y jAjjxj+ (1 + u)
n+1(jbj+ jAjjxj)�+ uC2M4Y jAjjxj+ (1 + u)
n+1(jbj+ jAjjxj) + ujAjjxj� �u+ (1 + u)
n+1 + u(Y + I)M3jAjjA�1j(uM1M4Y + (1 + u)
n+1)+ uC2M4Y �(jbj+ jAjjxj):On invoking Lemma 1.2 and Corollary 1.3 we obtain the following result, which,in the special case where u = u2, is essentially Theorem 2.2 of Higham [4].Theorem 4.2 Let iterative re�nement be applied to the nonsingular linear systemAx = b of order n, using a solver satisfying (2.2) with W = Y jAj. There is afunction f(u; kY k1) � q(u2kY k21 +max(u; 
n+1)kY k1);where q is a modest integer constant, such that ifcond(A�1)f(u; kY k1) (jbj+ jAjjxj) < 1then !jAj;jbj(bx2) � 3max(u; 
n+1):11



5 Practical Implications and LAPACKWe now discuss the implications of the results of the previous two sections for practicalcomputation, with particular reference to LAPACK.Mixed precision iterative re�nement (MPIR) is relatively little used nowadaysbecause it cannot be implemented in a portable manner in a double precision Fortrancode. The main results are that as long as the solver is not too unstable, the matrixA is not too ill conditioned, and jbj+ jAjjxj is not too badly scaled, MPIR yields aforward error of order u (Theorem 3.1) and a componentwise relative backward errorof order u (Theorem 4.1). It is interesting to note that a componentwise relativebackward error of order u does not imply a forward error of order u, but merely aforward error bound of order cond(A;x)u, and neither does the reverse implicationhold; therefore both the forward error analysis and the backward error analysis areneeded.Fixed precision iterative re�nement (FPIR) is implemented in LAPACK by rou-tines whose names end -RFS, which are called by the expert drivers (whose names end-SVX). FPIR is available in conjunction with LU-type factorizations for all the stan-dard matrix types except triangular matrices, for which the original computed solutionalready has a componentwise relative backward error of order u. The -RFS routinesterminate the re�nement if the componentwise relative backward error ! = !jAj;jbj(bxi)satis�es1. ! � u,2. ! has not decreased by a factor of at least 2 during the current iteration, or3. �ve iterations have been performed.These criteria were chosen to be robust in the face of di�erent BLAS implementationsand machine arithmetics. To justify the criteria we note that all the factorizationsused in LAPACK are known to satisfy (2.2) with a reasonable bound onW (for proofs,see [7], for example). Theorem 4.1 therefore implies that FPIR will converge in all the-RFS routines provided A is not too ill conditioned and the vector jbj+ jAjjxj is nottoo badly scaled. The second and third convergence criteria perform the practicalnecessity of terminating the re�nement if convergence is not su�ciently fast. Wemention that large or in�nite values of  (jbj+ jAjjxj) can occur when aijxj = 0 formany i and j, as is most likely in sparse problems. Some possible ways to modify ! inthe LAPACK stopping criterion in such situations are described by Arioli, Demmeland Du� [2].An interesting question that remains is whether a single step of FPIR guaran-tees that !jAj;jbj(bxi) � u. Theorem 4.2 gives a positive answer for solvers for whichW = Y jAj with a modestly normed Y , with the usual provisos that A is not tooill conditioned and the vector jbj + jAjjxj is not too badly scaled. Such solvers in-clude those based on a QR factorization computed by Householder transformations,12



Givens rotations, or the modi�ed Gram-Schmidt method (see [7, Ch. 18]). For an LUfactorization with computed LU factors bL and bU we have, from (3.5),uW � 2
njbLjjbU j � 2
njbLjjbL�1Aj � uY jAj; Y � 2njbLjjbL�1j: (5.1)Without pivoting, kY k1 can be arbitrarily large. With partial pivoting we havejlijj � 1, and although k jbLjjbL�1j k1 can be as large as 2n�1, it is typically of order n inpractice [13]. We can summarize by saying that for Gaussian elimination with partialpivoting one step of FPIR will usually be enough to yield a small componentwiserelative backward error as long as A is not too ill conditioned and jbj+ jAjjxj is nottoo badly scaled, which, of course, is Skeel's main result from [12].The other two factorizations for which LAPACK supports FPIR are Choleskyfactorization and the block LDLT factorization computed by the diagonal pivot-ing method. For the Cholesky factorization A = RTR, where R is upper triangu-lar with positive diagonal elements, we can take uW = 2
n+1j bRT jj bRj in (2.2) [7,Th. 10.4]. If we bound W � Y jAj using the same approach as in (5.1) we �nd thatY � 2n(j bR�1jj bRj)T , which is unbounded. However, for the Cholesky factorizationwith complete pivoting, �TA� = RTR, the pivoting causes R to satisfy inequalitiesthat imply k jR�1jjRj k1 � 2n � 1 [7, Lem. 8.6], so we have a similar result as forGEPP. Interestingly, our practical experience is that complete pivoting in Choleskyfactorization has little e�ect on the performance of iterative re�nement.The diagonal pivoting method computes a factorization PAP T = LDLT , whereL is unit lower triangular, D is block diagonal with 1� 1 and 2� 2 diagonal blocks,and P is a permutation matrix. LAPACK uses the partial pivoting strategy of Bunchand Kaufman [3], for which the backward error result (2.2) holds withuW = p(n)u�jAj+ P T jbLjj bDjjbLT jP �+O(u2);and, furthermore, kuWk1 � p(n)u�nkAk1, where p is a quadratic and � is the growthfactor; see Higham [5]. Attempting to bound W � Y jAj using the approach in (5.1)does not give a useful bound for kY k1.In conclusion, we are not able to guarantee that \one step of FPIR is enough"for Cholesky factorization or for the diagonal pivoting method, but LAPACK's useof FPIR with these factorizations is, nevertheless, justi�ed by Theorem 4.1.6 Numerical ExperimentsWe give two numerical examples to illustrate some of the salient features of mixed and�xed precision iterative re�nement. The computations were performed in Matlab,using simulated IEEE single precision arithmetic in which we rounded the result ofevery arithmetic operation to 24 signi�cant bits; therefore u = 2�24 � 5:96 � 10�8.To implement MPIR we simply computed residuals usingMatlab's double precisionarithmetic. 13



The �rst example is for Gaussian elimination (GE) without pivoting, applied to thescaled 15�15 orthogonal matrixA1 with aij = di(2=(n+1))1=2 sin(ij�=(n+1)), whered(1:n) = �i, with �n = 10�5. (This matrix is a row-scaled version of orthog(15)from the Test Matrix Toolbox [6], which is the eigenvector matrix for the seconddi�erence matrix.) The right-hand side b is generated as b = A[1; 2; : : : ; 15]T .The second example applies Gaussian elimination with partial pivoting (GEPP)to a random 10 � 10 matrix A2 with �2(A) = 106. (This matrix is generatedas randn('seed',1); A = randsvd(10, 1e6), using the Test Matrix Toolbox [6].)The right-hand side is selected as in the �rst example.The results are shown in Tables 6.1{6.2. For the matrix W we take 2nP T jbLjjbU j,where PA � bLbU is the computed LU factorization (P = I for GE). We make severalobservations.1. In the �rst example, GE yields a moderately large componentwise relativebackward error, partly because the growth factor �15 � 3112. FPIR achieves!jAj;jbj � u after 3 iterations, even though the product cond(A�1) (jbj+ jAjjxj)exceeds u�1, so that the conditions in Theorem 4.1 are not satis�ed. Thisis a common occurrence: iterative re�nement often works well even for prob-lems that are so extreme that the analysis does not guarantee success. Sincecond(A;x) is of order 1, the forward error matches the behaviour of the com-ponentwise relative backward error. Note that MPIR is no more e�ective thanFPIR at achieving !jAj;jbj � u, though the !jAj;jbj values do converge for MPIR,unlike for FPIR.2. The �rst example emphasizes how FPIR can overcome the e�ects of poor scaling.The standard condition number �1(A) is of order 105 due to the bad row scalingof A, while cond(A) and cond(A;x) are of order 1. FPIR produces a solutionwith forward error of order u, as we would hope in view of Theorem 3.2, eventhough the theorem is not strictly applicable since � > 1. (If we use GEPPinstead of GE in the �rst example, the behaviour is broadly the same.)3. For the second example, GEPP achieves a componentwise relative backwarderror of order u, so FPIR is not worthwhile. MPIR is bene�cial, however: itreduces the forward error to order u, as predicted by Theorem 3.1. This exampleshows how the convergence test must be chosen to re
ect the desired bene�ts ofiterative re�nement, for if the iteration were terminated when !jAj;jbj � u thenMPIR would not be performed at all.7 Concluding RemarksThe analysis we have presented is su�ciently general to cover all existing applicationsof iterative re�nement for linear systems|-in mixed or �xed precision, with one or14



Table 6.1: Result for GE with orthogonal matrix A1.cond(A) = 1:26e1, cond(A;x) = 6:72e0, �1(A) = 1:81e5cond(A�1) = 1:65e5,  (jbj+ jAjjxj) = 1:98e5uk jA�1j(jAj+W ) k1 = 3:89e0.FPIR: Iteration !jAj;jbj(bxi) kx� bxik1=kxk10 9.85e-3 1.34e-21 4.04e-5 4.38e-52 5.16e-8 9.75e-83 1.43e-8 2.35e-84 1.54e-8 3.75e-85 2.78e-8 7.02e-86 1.65e-8 4.72e-87 2.52e-8 6.14e-88 1.55e-8 2.74e-89 2.31e-8 4.68e-8MPIR: Iteration !jAj;jbj(bxi) kx� bxik1=kxk10 9.85e-3 1.34e-21 3.26e-5 3.91e-52 1.05e-7 1.39e-73 1.06e-8 2.35e-84 1.06e-8 2.35e-85 1.06e-8 2.35e-8
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Table 6.2: Result for GEPP with random, ill conditioned matrix A2.cond(A) = 1:04e6, cond(A;x) = 5:62e5, �1(A) = 2:38e6cond(A�1) = 1:30e6,  (jbj+ jAjjxj) = 8:29e0uk jA�1j(jAj+W ) k1 = 3.86e-1.FPIR: Iteration !jAj;jbj(bxi) kx� bxik1=kxk10 2.34e-8 2.79e-31 3.66e-8 3.59e-32 2.11e-8 1.33e-33 4.71e-8 9.38e-34 3.95e-8 2.49e-35 2.49e-8 3.07e-36 3.42e-8 4.12e-37 1.88e-8 2.33e-38 2.81e-8 7.17e-49 2.45e-8 5.27e-3MPIR: Iteration !jAj;jbj(bxi) kx� bxik1=kxk10 2.34e-8 2.79e-31 1.73e-8 1.49e-52 1.94e-8 7.37e-83 2.30e-8 2.85e-84 2.30e-8 2.85e-8
16



more iterations|and it fully supports the use of iterative re�nement in LAPACK. Oneinteresting question remains: is one step of �xed precision iterative re�nement enoughfor Cholesky factorization to produce a small componentwise relative backward error?It seems to be generally true that any result for LU factorization has an analoguefor Cholesky factorization that is at least as strong, yet our analysis does not give a\one step is enough" result for Cholesky factorization. A scaling argument can beused to replace A in the bounds by H = D�1AD, where hii = 1, and a result of Vander Sluis [14] implies that �2(H) � nminf�2(FAF ) : F diagonal g; however, �2(H)can still be large and the scaling changes the term  (jbj+ jAjjxj). Therefore we posethe open problem: prove that \one step is enough" for Cholesky factorization, or �nda numerical counterexample (with cond(A�1)f(u; kY k1) (jbj + jAjjxj) su�cientlyless than 1, in the notation of Theorem 4.2). The corresponding problem for thefactorization produced by the diagonal pivoting method is also open.
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