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Stability of the Diagonal Pivoting Methodwith Partial PivotingNicholas J. Higham�July 16, 1995AbstractLAPACK and LINPACK both solve symmetric inde�nite linear systemsusing the diagonal pivoting method with the partial pivoting strategy of Bunchand Kaufman (1977). No proof of the stability of this method has appearedin the literature. It is tempting to argue that the diagonal pivoting method isstable for a given pivoting strategy if the growth factor is small. We show thatthis argument is false in general, and give a su�cient condition for stability.This condition is not satis�ed by the partial pivoting strategy, because themultipliers are unbounded. Nevertheless, using a more speci�c approach weare able to prove the stability of partial pivoting, thereby �lling a gap in thebody of theory supporting LAPACK and LINPACK.Key words. symmetric inde�nite matrix, diagonal pivoting method,LDLT factorization, partial pivoting, growth factor, numerical stability, round-ing error analysis, LAPACK, LINPACK.AMS subject classi�cations. primary 65F05, 65G051 IntroductionLAPACK is renowned for the numerical reliability of the algorithms it employs. TheLAPACK Users' Guide [1] states that \almost all the algorithms in LAPACK (aswell as LINPACK and EISPACK) are [normwise backward] stable" [1, p. 74], andthe algorithms not covered by this statement are known to be stable in appropri-ately weakened senses. The analyses to back up these claims of stability are spread�Department of Mathematics, University of Manchester, Manchester, M13 9PL, England(na.nhigham@na-net.ornl.gov). This work was supported by Engineering and Physical SciencesResearch Council grants GR/H5213 and GR/H/94528.1



throughout the research literature of the last 35 years. While writing the book Ac-curacy and Stability of Numerical Algorithms [14] we realised that there is no proofin the literature of the stability of the method used in LAPACK and LINPACK forsolving symmetric inde�nite linear systems. Furthermore, the stability is not a directconsequence of existing results. The purpose of this paper is to prove the stability ofthe method and thereby to �ll a gap in the body of theory supporting LAPACK andLINPACK.In the remainder of the introduction we briey describe the method to be anal-ysed: the diagonal pivoting method with the partial pivoting strategy of Bunch andKaufman [5].Let A 2 IRn�n be symmetric. If A is nonzero, we can �nd a permutation � andan integer s = 1 or 2 so that �A�T = � s n�ss E CTn�s C B �;with E nonsingular. Then we can compute the factorization�A�T = � Is 0CE�1 In�s � �E 00 B � CE�1CT � � Is E�1CT0 In�s � : (1.1)This process can be repeated recursively on the (n� s)� (n� s) Schur complementS = B �CE�1CT :The result is a factorization PAP T = LDLT ; (1.2)where L is unit lower triangular and D is block diagonal with each diagonal blockhaving dimension 1 or 2. This factorization is essentially a symmetric block formof Gaussian elimination, with pivoting, and it costs n3=3 ops1 (the same cost asCholesky factorization of a positive de�nite matrix) plus the cost of determining thepermutations �. This method for computing a block LDLT factorization is called thediagonal pivoting method. Given the factorization (1.2) of a nonsingular A, a linearsystem Ax = b is readily solved by substitution, and by solving 2 � 2 linear systemscorresponding to any 2� 2 diagonal blocks of D.The strategy for choosing � is crucial for achieving stability. Bunch and Parlett[7] proposed a complete pivoting strategy, which requires the whole active submatrixto be searched on each stage of the factorization and therefore requires up to n3=6comparisons. Bunch [3] proved that the diagonal pivoting method with complete piv-oting satis�es a backward error bound almost as good as that for Gaussian eliminationwith complete pivoting. Bunch and Kaufman [5] devised a partial pivoting strategy1A op is a oating point addition, subtraction, multiplication or division.2



that searches only two columns at each stage and so requires only O(n2) comparisons.The LAPACK driver routines xSYSV (simple) and xSYSVX (expert) and the LINPACKroutines xSIFA/xSISL all use the diagonal pivoting method with partial pivoting tosolve a linear system with a symmetric (inde�nite) coe�cient matrix.To describe the partial pivoting strategy it su�ces to de�ne the pivot choice forthe �rst stage of the factorization. Recall that s denotes the size of the pivot block.Algorithm 1 (Bunch{Kaufman Partial Pivoting Strategy) This algorithm de-termines the pivot for the �rst stage of the diagonal pivoting method with partialpivoting applied to a symmetric matrix A 2 IRn�n.�: = (1 +p17)=8 (� 0:64)� := kA(2:n; 1)k1If � = 0 there is nothing to do on this stage of the elimination.r := minfi � 2: jai1j = �gif ja11j � ��(1) s = 1, � = Ielse�: = �A(1: r � 1; r)A(r + 1:n; r) �1if ja11j� � ��2(2) s = 1, � = Ielse if jarrj � ��(3) s = 1 and choose � to swap rows and columns 1 and r.else(4) s = 2 and choose � to swap rows and columns 2 and r,so that j(�A�T )21j = �.endendTo understand the partial pivoting strategy it helps to consider the matrix266666664 a11 : : : � : : : : : : : : :... ...� : : : arr : : : � : : :... ...... �... ... 377777775 ;and to note that the pivot is one of a11, arr and �a11� �arr � (or, rather, since � = jar1j,this matrix with � replaced by ar1).The value of the constant � = (1+p17)=8 is determined by regarding � as a freeparameter and equating a bound for the element growth over two s = 1 stages to abound for the element growth over one s = 2 stage; see [5] or [14] for the details.3



A growth factor can be de�ned for the diagonal pivoting method in just the sameway as for Gaussian elimination:�n = maxi;j;k ja(k)ij jmaxi;j jaijj ;where the a(k)ij are the elements of the Schur complements arising in the course ofthe factorization. From the derivation of the constant � it is easy to show that�n � (1 + 1=�)n�1 = (2:57)n�1 for partial pivoting, which is larger than the bound2n�1 for Gaussian elimination with partial pivoting (GEPP). But, it seems that asfor GEPP, large element growth is rare in practice [5], [9].2 Stability of the Diagonal Pivoting MethodSince the growth factor for the diagonal pivoting method with partial pivoting isbounded, and is usually small in practice, does it not follow that the method is stablein the same sense as for GEPP? This is a tempting argument, and one that is neitherused nor warned against in the existing literature. However, it is easy to show thatthe argument is false, by exhibiting an example where the diagonal pivoting methodhas a small growth factor but is unstable. An example (not produced by partialpivoting) is, with n = 3 and with a 2 � 2 pivot followed by a 1� 1 pivot,A = 24 1 �(1 + �2) ���(1 + �2) 1 ���� �� �135= 24 10 1��1 ��1 13524 1 �(1 + �2)�(1 + �2) 1 13524 1 0 ��11 ��11 35 = LDLT ; (2.1)where � > 0. The growth factor �n is 1, yet kLk1=kAk1 is unbounded as �! 0, whichsuggests that the factorization, however it is computed, may not provide a stableway to solve linear systems Ax = b in �nite precision arithmetic. The instability iscon�rmed by a Matlab experiment, in which the unit roundo� u = 2�53 � 1:1 �10�16. We solved a linear system Ax = b, where b = A [1 2 3]T , in two di�erent ways.First, we computed the factorization in (2.1) using the diagonal pivoting method, asspeci�ed in (1.1) (with � = I), taking a 2�2 pivot on the �rst step and using GEPPto solve linear systems involving this pivot. For comparison, we evaluated the explicitformulae for the LDLT factors in (2.1), and used the explicit inverse of D(1: 2; 1: 2)when solving the linear system involving D. Table 2.1 shows the normwise relativebackward error of the computed solution bx,�1(bx) := minf � : (A+�A)bx = b+�b; k�Ak1 � �kAk1; k�bk1 � �kbk1 g= kb�Abxk1kAk1kbxk1 + kbk1 4



Diagonal Explicit� pivoting factors10�1 9e-17 6e-1610�2 5e-17 2e-1410�3 3e-15 5e-1110�4 7e-14 4e-910�5 6e-13 6e-810�6 1e-13 1e-610�7 4e-11 1e-7Table 2.1: Backward error for computed solution of inde�nite system of order 3.(see [16] or [14, Th. 7.1] for a proof of the latter equality), which would be of orderu for a stable solution method. As � decreases the computations become unstable.We note that stability is obtained if, in (1.1), we take the natural 1 � 1 pivot a11instead of the ill conditioned 2� 2 pivot A(1: 2; 1: 2); interestingly, though, the 2� 2pivot shares with those chosen by the Bunch{Kaufman partial pivoting strategy theproperty that it is inde�nite. Partial pivoting is stable on this example.We conclude that a small growth factor is not, by itself, enough to guaranteestability of the diagonal pivoting method. A su�cient condition for stability canbe obtained by regarding the block LDLT factorization computed by the diagonalpivoting method as a special case of a block LU factorization. Error analysis forblock LU factorization is given by Demmel, Higham and Schreiber [8], and a suitablemodi�cation of this analysis gives the following result: if linear systems involving 2�2pivots are solved in a normwise backward stable fashion then the conditionkLk1kDk1kLTk1 � cnkAk1; (2.2)for a modest constant cn, is su�cient to ensure that the diagonal pivoting method pro-duces a factorization with a small relative residual and provides computed solutionsto linear systems that have a small backward error. Unfortunately, condition (2.2)does not hold for the partial pivoting strategy of Bunch and Kaufman, as is shown bythe following example. For � > 0, the diagonal pivoting method with partial pivotingproduces the factorization, with P = I,A = 24 0 � 0� 0 10 1 135 = 24 10 11=� 0 13524 0 �� 0 13524 1 0 1=�1 01 35 = LDLT :As �! 0, kLk1kDk1kLTk1=kAk1 !1, and indeed the multipliers are unbounded.Even 1�1 pivots can lead to arbitrarily large elements in L, as the following example5



with 0 < � < � shows (again, partial pivoting selects P = I):A = 24 �2 � �� 0 1� 1 035 = 24 11=� 11=� 0 13524 �2 �1 �13524 1 1=� 1=�1 01 35 = LDLT :It is worth emphasizing that large elements in a factor of a matrix do not nec-essarily imply that the factorization is unstable. For example, in the (point) LDLTfactorization of a symmetric positive de�nite matrix A with D = diag(dii), dii > 0,the ratio kLk1=kAk1 can be arbitrarily large, yet the factorization is guaranteed tobe stable. One such example is, with � > 0,A = � �2 �� 2 � = � 1 0��1 1 � � �2 00 1 � � 1 ��10 1 � :Our conclusion is that existing results for LU factorization and block LU factoriza-tion do not directly imply the stability of the diagonal pivoting method with partialpivoting. Any proof of stability must make use of the particular properties of thepartial pivoting strategy.The only claims of stability that we have found in the literature are in the paperby Bunch, Kaufman and Parlett [6] and in the LINPACK Users' Guide [9, p. 5.19];in both cases, residual bounds of the form kA� bL bDbLTk1 � p(n)�nkAk1u are statedwithout proof, where p is a polynomial; we prove a result of this form and, in The-orem 4.2, a backward error result for the computed solution of Ax = b. We notethat much of Bunch's analysis of the diagonal pivoting method in [3] is speci�c tocomplete pivoting, so his analysis does not readily yield results for partial pivoting.In the rest of the paper we present a new analysis to show that partial pivoting isindeed a stable pivoting strategy for the diagonal pivoting method.3 Background Results from Error AnalysisWe collect in this section some standard error analysis results that will be neededlater. For our model of oating point arithmetic we takefl(x op y) = (x op y)(1 + �); j�j � u; op = +;�; �; =; (3.1)where u is the unit roundo�. All the results we quote remain true under a weakermodel that accommodates machines without a guard digit [14, x2.4], provided someof the constants are increased slightly.We introduce the constant n = nu1 � nu;which carries with it the implicit assumption that nu < 1. Useful properties are (a)m + n + mn � m+n and (b) if c � 1 then cn � cn.6



Proofs of the following results can be found in [14]. First, for matrix multiplication,fl(AB) = AB +�; j�j � njAjjBj; A 2 IRm�n; B 2 IRn�p:Second, if T 2 IRn�n is a nonsingular triangular matrix and the system Tx = b issolved by substitution then(T +�T )bx = b; j�T j � njT j: (3.2)Third, if a linear system Ax = b, where A 2 IRn�n, is solved without breakdown byGaussian elimination without pivoting, then the computed solution satis�es(A+�A)bx = b; j�Aj � 2njbLjjbU j; (3.3)where bL and bU are the computed LU factors.We will use the norm de�ned bykAkM = maxi;j jaijj(for which kABkM � nkAkMkBkM is the best bound of this form that holds for allA 2 IRm�n and B 2 IRn�p).4 Error Analysis4.1 2� 2 Linear SystemsCrucial to the error analysis that follows is a backward error result for the solutionof linear systems involving 2 � 2 pivots. Note that, in the notation of Algorithm 1,the pivot is E = � a11 ar1ar1 arr � ; jar1j = �:For this subsection and the later analysis, it is convenient to tabulate the condi-tions that must hold for a 2� 2 pivot to be selected:ja11j < ��; (4.1a)ja11j� < ��2; (4.1b)jarrj < ��; (4.1c)ja11jjarrj < �2�2; (4.1d)where the fourth inequality is a consequence of the previous two (note that (4.1c)implies � 6= 0). 7



Suppose, �rst, that linear systems Ex = b are solved by GEPP. By (4.1a),ja11j < �jar1j < jar1j, so GEPP interchanges rows 1 and 2 of E and computes the LUfactorizationPE = � ar1 arra11 ar1 � = 24 1 0a11ar1 1 3524 ar1 arr0 ar1 � a11arrar1 35 = LU:From (3.3), we have the backward error result(PE +�E)bx = Pb; j�Ej � 22jbLjjbU j:NowjLjjU j � 24 jar1j jarrjja11j ����a11arrar1 ����+ ����ar1 � a11arrar1 ���� 35 � � jar1j jarrjja11j (2�2 + 1)jar1j � ;using (4.1d). It follows that(E +g�E)bx = b; jg�Ej � 22 � ja11j 2jar1jjar1j jarrj � � 42jEj; (4.2)using the numerical value of � speci�ed in Algorithm 1. Strictly, we should append\+O(u2)" to this bound, to account for replacing jbLjjbU j by a bound for jLjjU j; weomit the second order term for the moment and reinstate it later. Note that the result(4.2) holds trivially for a 1� 1 pivot E.The main alternative to using GEPP to solve the systems Ex = b is to use theexplicit inverse of E, as is done in the implementations of the diagonal pivotingmethod with partial pivoting in LAPACK and LINPACK (see the auxiliary routinexLASYF in LAPACK and xSIFA in LINPACK). In both LAPACK and LINPACK,Ex = b is solved by evaluatingx = 1ar1�a11ar1 � arrar1 � 1� 24 arrar1 �1�1 a11ar1 35 b; (4.3)which corresponds to using an explicit formula for the inverse of a 2 � 2 matrix (or,equivalently, Cramer's rule), with scaling to avoid overow. The term� = a11ar1 � arrar1 � 1appears to be a potential source of instability, since for arbitrary a11, ar1 and arr therelative error in the computed b� is unbounded. However, by exploiting the condition(4.1d) for a 2� 2 pivot, which we rewrite asja11jjarrja2r1 � �2;8



we can obtain a very satisfactory error bound for b�. Using the model (3.1) we haveb� = �a11ar1 � arrar1 (1 + �1)(1 + �2)(1 + �3)� 1� (1 + �4);where j�ij � u, i = 1: 4, which implies [14, Lemma 3.1]b� = a11ar1 � arrar1 (1 + �4)� (1 + �4); j�4j � 4:Hence j�� b�j � 4� ja11arrja2r1 + 1� � 4(�2 + 1)� 4�1 + �21� �2� j�j < 34j�j:It is then straightforward to show that, denoting the matrix in (4.3) by Z,bx = (ar1�)�1(Z +�Z)b; j�Zj � 30jZj:Thus b� Ebx = �E((ar1�)�1�Z)b, so thatjb� Ebxj � 30jEjjE�1jjbj� 30jEjjE�1jjEjjxj� 180jEjjxj; (4.4)using (A.3). The Oettli{Prager theorem [15], [14, Th. 7.3] then implies that(E +�E)bx = b; j�Ej � 180jEj:Again, strictly a second order term should be added to the bound, this time to accountfor the fact that jxj rather than jbxj appears on the right-hand side of (4.4).The conclusion is that whether the linear system Ex = b involving the 2�2 pivotis solved by GEPP or by using the explicit inverse, we have(E +�E)bx = b; j�Ej � cjEj; (4.5)for an integer constant c. It is worth stressing that such a result does not hold for anarbitrary 2�2 (symmetric) matrix E|we have fully exploited the pivoting conditionsin the derivation. 9



4.2 Componentwise Backward Error AnalysisNow we carry out a componentwise backward error analysis of the diagonal pivotingmethod. We make only one assumption about the pivoting strategy: that (4.5) holdsfor the 2� 2 pivots. For convenience, we assume, without loss of generality, that nointerchanges are needed, which amounts to rede�ning A := PAP T in (1.2).To begin, we consider the �rst stage of the factorization, using the notation of(1.1). The submatrix L21 = CE�1 2 IR(n�s)�s satis�es L21E = C or ELT21 = CT . Iflj is the jth column of LT21 and cj is the jth column of CT , then, from (4.5),(E +�Ej)blj = cj; j�Ejj � cjEj:Hence, overall, bL21E = C +�C; j�Cj � cjbL21jjEj: (4.6)We assume that the Schur complement is computed as S = B � L21CT , so that2bS = B � bL21CT +�S; j�Sj � s+1�jBj+ jbL21jjCT j�: (4.7)The remaining stages of the diagonal pivoting method factorize the Schur com-plement as S = LSDSLTS , and we assume, inductively, that the computed factorssatisfy bLS bDS bLTS = bS +�S; j�Sj � d(n� s; u)�jbSj+ jbLSjj bDS jjbLTS j�;where d(n�s; u) is a constant depending on n�s and u. We therefore have computedfactors bL and bD of A that satisfybL bDbLT := � I 0bL21 bLS � �E 00 bDS � � I bLT210 bLTS �= � E EbLT21bL21E bL21EbLT21 + bLS bDS bLTS �= � E (C +�C)TC +�C bL21EbLT21 + bS +�S �= � E (C +�C)TC +�C B + (bL21EbLT21 � bL21CT ) +�S +�S � :Now, from (4.6) we have the inequalitiesjbL21EbLT21 � bL21CT j � cjbL21jjEjjbLT21jand jbL21jjCT j � (1 + c)jbL21jjEjjbLT21j: (4.8)2If the Schur complement is computed as S = B � L21ELT21 then the same bound (4.9) ensues.10



Using (4.7) and (4.8) we havejbSj � (1 + s+1)(jBj+ (1 + c)jbL21jjEjjbLT21j):Overall, then, we have bL bDbLT = A+�A;where �A11 = 0, j�A21j � cjbL21jjEj, andj�A22j � cjbL21jjEjjbLT21j+ s+1�jBj+ (1 + c)jbL21jjEjjbLT21j�+ d(n � s; u)�(1 + s+1)(jBj+ (1 + c)jbL21jjEjjbLT21j) + jbLSjj bDS jjbLTS j�� (c + d(n � s; u)(1 + c))jBj+ �c(2 + c) + d(n � s; u)(1 + c)2�jbL21jjEjjbLT21j+ d(n � s; u)jbLSjj bDSjjbLTS j� (c(2 + c) + d(n � s; u)(1 + c)2)�jBj+ jbL21jjEjjbLT21j+ jbLS jj bDSjjbLTS j�:Hence bL bDbLT = A+�A; j�Aj � d(n; u)�jAj+ jbLjj bDjjbLT j�; (4.9)where d(n; u) is clearly of the form p(n)u+O(u2), where p is a linear polynomial.Now we analyse the substitution stages when the LDLT factorization is used tosolve a linear system Ax = b. From (3.2) and (4.5), the computed solutions to thethree systems Ly1 = b, Dy2 = y1, LTx = y2 satisfy(bL+�L1)by1 = b; j�L1j � njbLj;( bD +�D)by2 = by1; j�Dj � cj bDj;(bL +�L2)Tbx = by2:Thus b = (bL+�L1)( bD +�D)(bL +�L2)Tbx = (A+�A+�A2)bx;where j�Aj is bounded in (4.9) andj�A2j � 2n+c jbLjj bDjjbLT j+O(u2):On bringing back into account the row and column interchanges, we obtain the fol-lowing result.Theorem 4.1 Let A 2 IRn�n be symmetric and let bx be a computed solution to thelinear system Ax = b produced by the diagonal pivoting method with any pivotingstrategy. If for all linear systems involving 2� 2 pivots (4.5) holds, then(A+�A)bx = b; j�Aj � p(n)u�jAj+ P T jbLjj bDjjbLT jP �+O(u2); (4.10)where p is a linear polynomial and PAP T � bL bDbLT is the factorization computed bythe diagonal pivoting method. 11



The bound in (4.10) is analogous to the bound in (3.3) that holds for Gaussianelimination. We have already seen that the assumption (4.5) in Theorem 4.1 holdsfor the partial pivoting strategy of Bunch and Kaufman, provided linear systemsEx = b are solved by GEPP or by using the explicit inverse. It is easy to show thatthis assumption also holds for the complete pivoting strategy of Bunch and Parlett[7] under the same conditions (interestingly, for the 2 � 2 pivots E that arise withthe Bunch{Parlett strategy, GEPP applied to a Ex = b is identical to Gaussianelimination with complete pivoting).4.3 Normwise Analysis for Partial PivotingTo show that the diagonal pivoting method is stable for a particular pivoting strategy,we need to show that the matrix jbLjj bDjjbLT j is suitably bounded. We now specialiseto partial pivoting. For partial pivoting, bL can be arbitrarily large, so stability is notan immediate consequence of Theorem 4.1. We therefore need to look closely at theelements of the matrix jbLjj bDjjbLT j. For simplicity, we bound the matrix jLjjDjjLT jcontaining the exact factors, which makes only a second order change to the overallbounds, since jbLjj bDjjbLT j = jLjjDjjLT j.Initially, we examine the contribution from the blocks of L and D produced bythe �rst stage of the factorization. For this more delicate part of the analysis we takefull account of the interchanges in our notation. Note thatjLjjDjjLT j = � IjL21j jLSj � � jEj jDS j � � I jLT21jjLTS j �= � jEj jEjjLT21jjL21jjEj jL21jjEjjLT21j+ jLSjjDS jjLTS j � : (4.11)We �rst bound F := jL21jjEj = jCE�1jjEj 2 IR(n�s)�s:For a 1 � 1 pivot, F is a vector with elements jcie�111 jje11j, each of which is triviallybounded by maxi;j jaijj.Now consider a 2� 2 pivot. Algorithm 1 dictates that � in (1.1) swaps rows andcolumns 2 and r so that, as noted earlier,E = � a11 ar1ar1 arr � ; jar1j = �:Using (A.1) and (4.1a), we haveeTi F � (eTi jCj)jE�1jjEj 12



� 11� �2 [� � ]264 1 + �2 2jarrj�2ja11j� 1 + �2 375� 11� �2 [ (1 + �2)�+ 2�� 2jarrj+ (1 + �2)� ]� maxi;j jaijj1� �2 [�2 + 2� + 1 �2 + 3 ]� maxi;j jaijj [ 5 6 ] : (4.12)Next, we need to boundG := jL21jjEjjLT21j = jCE�1jjEjjE�1CT j:First, consider a 1� 1 pivot. In cases (1) and (2) of Algorithm 1 we havegij = jcie�111 jje11jje�111 cj j = jai+1;1jjaj+1;1jja11j � �2ja11j � 8><>: ��; case (1),��; case (2).In case (3), jgijj = jalrjjamrjjarrj (l;m 6= r)� �2jarrj � ��:For a 1� 1 pivot, then, jgijj � ��1maxi;j jaijj < 2maxi;j jaijj.For a 2 � 2 pivot (case (4) of Algorithm 1), using (A.2) we havejgijj � (eTi jCj)�jE�1jjEjjE�1j�jCT jej� 3 + �2(1 � �2)2�2 [� � ]" jarrj �� ja11j # � �� �= 3 + �2(1 � �2)2�2 ��2(jarrj+ �) + �(�2 + ja11j�)�= 3 + �2(1 � �2)2 �jarrj+ 2� + �2ja11j�2 �� 3 + �2(1 � �2)2 (3 + �)maxi;j jaijj (using (4.1b))= 36maxi;j jaijj: (4.13)13



The remaining blocks of jLjjDjjLT j are composed of blocks of L and D that makeup LDLT factors of Schur complements of A. But every Schur complement satis�eskSkM � �nkAkM ;where �n is the growth factor. Hence, applying the bounds above recursively to the(2; 2) block in (4.11), we deduce the (pessimistic) boundk jLjjDjjLT j kM � 36n�nkAkM : (4.14)We mention in passing that in early drafts of this paper we had a weaker versionof (4.5) in which jEj in the bound was replaced by jEj+ jar1je2eT2 . We were still ableto obtain a satisfactory bound for k jLjjDjjLT j kM , indicating that partial pivoting issomewhat more tolerant of how the 2 � 2 systems are solved than might be thoughtfrom the analysis above.Using the bound (4.14) in Theorem 4.1 we obtain the following normwise backwardstability result for partial pivoting.Theorem 4.2 Let A 2 IRn�n be symmetric and let bx be a computed solution tothe linear system Ax = b produced by the diagonal pivoting method with the partialpivoting strategy of Bunch and Kaufman, where linear systems involving 2� 2 pivotsare solved by GEPP or by use of the explicit inverse. Then(A+�A)bx = b; k�AkM � p(n)�nukAkM +O(u2); (4.15)where p is a quadratic.Theorem 4.2 has the same form as Wilkinson's result for GEPP applied to anonsymmetric system (see, e.g., [14, x9.2]), though of course the numerical value of�n is usually di�erent for the two methods.5 DiscussionThe backward error matrix �A in (4.9) is necessarily symmetric, but that in (4.15)is not, in general. However, we can take �A in (4.15) to be symmetric, at the cost ofincreasing the bound by a factor n, because of the following result of Bunch, Demmeland Van Loan [4]: if (A+G)y = b then there exists H = HT such that (A+H)y = bwith kHk2 � kGk2 and kHkF � p2kGkF .Sorensen and Van Loan [10, x5.3.2] modify the Bunch{Kaufman partial pivotingstrategy by rede�ning, in Algorithm 1,� = kA(:; r)k1This small change has the pleasing e�ect of ensuring that for a positive de�nite matrixno interchanges are done (and that, as for the Bunch{Kaufman strategy, only 1 � 114



pivots are used in this case). At the same time it leaves the growth factor boundunchanged, and all our analysis remains valid for this variant.For sparse symmetric matrices, Du�, Reid and co-authors compute the blockLDLT factorization using a pivoting strategy very di�erent from that of Bunch andKaufman [11], [12], [13]. We describe the strategy in [13] as it applies to the �rststage of the factorization: a11 is de�ned to be an acceptable 1 � 1 pivot, from thepoint of view of numerical stability, ifja11j � �maxi>1 jai1j; (5.1)where � 2 (0; 1=2] is a tolerance; the matrixD1 = � a11 ar1ar1 arr �is an acceptable 2 � 2 pivot ifkD�1k k1maxf jaijj : i 6= 1; r; j = 1; r g � ��1: (5.2)From among the acceptable pivots one is chosen that best preserves sparsity, accordingto some particular sparsity criterion. The conditions (5.1) and (5.2) ensure that kLk1is bounded by a multiple of ��1, which then implies bounds on the growth factor,and hence on kDk1. The stability of this pivoting strategy is therefore immediate,since (2.2) is satis�ed. An interesting contrast is that the Bunch{Kaufman strategyinvolves a �xed amount of searching for a pivot, and the reasons for its stability aresubtle, whereas the Du� et al. strategy more directly forces stability by boundingthe multipliers, but gives up the �xed amount of searching of the Bunch{Kaufmanstrategy.Finally, we emphasize that the aim of this work was to obtain a rigorous back-ward error bound for the diagonal pivoting method with partial pivoting. The actualperformance of the method is a�ected by the size of the growth factor. More work isneeded to investigate the behaviour of the growth factor, about which less is knownthan the growth factor for Gaussian elimination with partial pivoting. Although theunboundedness of kLk1 does not preclude backward stability, it does have implica-tions for the practical behaviour of the method; see Ashcraft, Grimes and Lewis [2]for a thorough study for both dense and sparse matrices.A AppendixIn this appendix we bound three matrix expressions involving a 2 � 2 pivot frompartial pivoting, E = � a11 ar1ar1 arr � jar1j = �:15



First, we note thatjdet(E)j = ja2r1 � a11arrj � �2 � �2�2 = (1� �2)�2;using (4.1d). HencejE�1jjEj � 1(1 � �2)�2 � jarrj �� ja11j � � ja11j �� jarrj �= 11 � �2 264 ja11jjarrj�2 + 1 2jarrj�2ja11j� ja11jjarrj�2 + 1 375� 11 � �2 264 1 + �2 2 jarrj�2 ja11j� 1 + �2 375 ; (A.1)using (4.1d) again. Next,jE�1jjEjjE�1j � 1(1 � �2)2�2 264 1 + �2 2 jarrj�2 ja11j� 1 + �2 375� jarrj �� ja11j �= 1(1 � �2)2�2 264 (3 + �2)jarrj (1 + �2)�+ 2 ja11jjarrj�2 ja11jjarrj� + (1 + �2)� (3 + �2)ja11j 375� 1(1 � �2)2�2 � (3 + �2)jarrj (1 + 3�2)�(1 + 3�2)� (3 + �2)ja11j �� 3 + �2(1 � �2)2�2 � jarrj �� ja11 � : (A.2)Finally,jEjjE�1jjEj � 11� �2 � ja11j �� jarrj �264 1 + �2 2 jarrj�2 ja11j� 1 + �2 375= 11� �2 264 (3 + �2)ja11j 2 ja11jjarrj� + (1 + �2)�(1 + �2)�+ 2 ja11jjarrj� (3 + �2)jarrj 37516



� 11� �2 � (3 + �2)ja11j (1 + 3�2)�(1 + 3�2)� (3 + �2)jarrj �� �3 + �21 � �2� jEj � 6jEj: (A.3)AcknowledgementsIt is a pleasure to thank Philip Gill and Michael Saunders for valuable comments,particularly at early stages of this work. I also thank Jim Bunch, Des Higham andJohn Lewis for suggesting improvements to draft manuscripts.
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