Array Redistribution in ScaLAPACK using PVM

Jack Dongarra™
The University of Tennessee and Oak Ridge National Laboratory

Loic Prylli, Cyril Randriamaro and Bernard Tourancheau’
LIP, Ecole Normale Suprieure de Lyon, France

Abstract

Linear algebra on distributed-memory parallel computersraises the problem
of data distribution of matrices and vectors among the processes. Block-cyclic
distribution works well for most algorithms. The block size must be chosen
carefully, however, in order to achieve good efficiency and good load balancing.
This choice dependsheavily on each operation; hence, it is essential to be ableto
go from one distribution to another very quickly. We present here the algorithms
implemented in the ScaL APACK library,and we discusstiming resultson a network
of workstationsand on a Cray T3D using PVM.

1 Introduction

The problem of dataredistributionoccurswhen one deal swith arrays (from vectors
to multidimensional arrays) on parallel distributed-memory computers. Data redistri-
butionappliesbothto data-parall el languages such as High Performance Fortran (HPF)
and to single-process multiple-data (SPMD) programs with message passing. In the
first casetheredistributionisimplicitin array statementssuchas A = B, where A and
B aretwo matrices with different distributions. In the second case two approaches are
possible. A library function may be called to do the operation, or the redistribution
may be hidden (for instance, when aroutineis called to do an LU decomposition, the
routine can begin by checking whether the matrix passed has an optimal distribution;
if not, the routine can do a redistribution and then go back to theinitia distribution).

For alongtime, redistributionwas considered very difficult. Mostimplementations
restricted the possible distributionsto block or cyclic distributions[?, ?, 2, ?, ?]. In
some implementations, all block sizes had to be multiple of each other, in order to
reduce the memory access operations. Recent studiesshow that data redistributioncan
be done at compiletime[?, ?]. However, al of these studies address the compilation
techniquesfor redistribution of arrays with a fixed number of processes.

*Computer Science Department, Knoxville, TN 37996-1301, USA and also Oak Ridge National Labo-
ratory, Mathematical Sciences Section, PO. Box 2008, Oak Ridge, TN 37831-6367, USA.
146, alle d' Italie, 69364 LYON cedex 07, France (e-mail Iprylli@lip.ens-lyon.fr)

We present here an algorithm and implementation of the redistribution routinethat
isused in ScaLAPACK [?, ?]. We use a dynamic approach in order to construct
the communication sets and then efficiently communicate them. Our algorithm uses
several strategies depending of the amount of data to be communicated and the target
architecturecapabilities. Theresultisavery fast, scal able algorithmcapabl e of |oading
and downl oading from/to one process to/from many others.

The structure of the paper isas follow. Section 2 introducesthe ScaL APACK data
distribution models and notation used in this paper. Section 3 presents the algorithms
that were used for the redistributionof data. Section 4 discussestiming resultsobtained
on different machines running PVM.

2 SCALAPACK datadistribution and redistribution

TheSCALAPACK library usestheblock-cyclic datadistribution on avirtual grid of
processorsin order to reach good |oad-balance, good computation efficiency on arrays
and an equal memory usage between processors. Arrays are wrapped by block in all
dimensionscorrespondingtotheprocessor grid. Thefigurelillustratetheorganization
of the block-cyclic distribution of a 2D arrays on a 2D grid of P processors.

The distribution of a matrix is defined by four main parameters: a block width
size, r; ablock height size, s; the number of processor inarow, P, ; the number of
processors in acolumn, P.,; and few others to determine, when a sub-matrix is used,
which element of the global matrix is the the starting point and which processor it
belongsto.

Grid of Processors[2,3] Block - Matrix
0 1 2 ©9 | 01| 02 | 03] 09| ©5
©00) | 03 01| (04 02| (05 wl | | T |
0] 2o @3 @] 24 22| 25 (20) (23)
. . P T B
10) | 13 wy| @4 12| 15
1] 69| @E3 - BY| (34 - PP T S T

|:| Blocks owned by the processors[0,0]

Figurel: Theblock cyclic datadistributionof a2D array ona?2 x 3 grid of processors.

In SCALAPACK, the efficiency of redistributionis crucid asin any data parallel
approach because it should be negligibleor at least small compared to the computation
it was donefor. Thisis especialy difficult since the redistribution operation has to be
donedynamically, with no compile-timeor static information. Thisdynamic approach
implies that we deal from the beginning with the most general case of redistribution

allowed by our constraints, namely cyclic with blocks of size (r, s) ona Py X Peor
virtual grid to cyclic with blocks of size (', s') ona P, x P.,, virtual grid.

Moreover, no latency hiding techniques or overlaﬁffiung can be used between the
redistribution and the previous computation because these routines are independent
(remark that it does not prevent the use of these techniques inside the redistribution

routineitself, asit isexplained in section 3.3).

3 Redistribution algorithm

The whole problem of data redistributionis for each processor to find which data
stored locally has to be send to the others and respectively how much data it will
receive from the others and where it will store it localy. Then the communication
problem itself occurs on the target computer.

3.1 Computation of data setsin one dimension

If we assume that the data are stored contiguoudly in ablock cyclic fashion on the
processors, the problem is then to find which data items stored on processor p; will be
send to processor p;. These dataitems have to be packed in one message before being
sent to p; in order to avoid start-up delays.

Our agorithm scan at the same time the matrix indices of the data blocks stored
on p; and those that will be stored on p;. More precisdly, we keep two counters, one
corresponding to p;’s data location in the global matrix and the other to p;’s one. We
increment them progressively by block as in a merge sort in order to determine the
overlap areas (the comparison number is linear in the number of blocks). Then we
pack the data items corresponding to the overlap areas in one message to be send to

pj.

3.2 General algorithm for the computation of data sets

The block scanning is done dimension by dimension and the overlapping indexes
are the Cartesian product of the intervals computed in each dimension. (Thereis no
limitationin the number of dimension scanned and the complexity islinear inthe sum
of the dimension sizes while the packing is obviously linear in the size of the data).

Thiswork is done in each processor in order to send the data and respectively to
receive the data, and stored them at the right place in local memory.

3.3 Optimizations

The obvious scanning strategy involves testing every index, but the intersection
of intervalsin a block cyclic distributionisin fact periodic. Hence, instead of afull
block scanning, the algorithm stops as soon as it reaches the cyclic bound. Moreover,
it reduces the bound on the storage necessary for the intersection patterns. In practice
this optimization is interesting only for very small block sizes, and there is a point
where it is more interesting to do an analytic determination of the cyclic distribution
patterns (see, eg., [?]).

1Remark that this general case includes the loading and down-loading of data from a processor to a
multicomputer and also calls to parallel routines from a sequential code.

Synchronous communication: The agorithm uses the nonblocking send protocol .
Therefore, in order to minimize process idle time and to avoid deadlocks resulting
from buffer limitations, every send function call must have the corresponding receive
function call at the same time. In other words, if the receiving process performs its
n-th communication, the sending process performs its n-th communication, too.

Thestrategy implemented herecan be compared with arolling caterpillar composed
of processes: at step d, each process p;, (0 < ¢ < P) exchanges its data with process
P((P—i—d)modp)- Figure 2 illustrates this method.

Step 1 step 2 step 3

0123 012 7012
8 processors 7 3
7654 65 4 6543

012 012 601
7 processors 3 6
654 543 543

Figure 2: The caterpillar communication method isillustrated with an even (8) and an
odd (7) number of processes. The communication occurs between the vertical pairs of
processes (a process alone communicates with itself). .

Asynchronouscommunication: Theasynchronous communication method issim-
pler: there is no supposition about the target computer’s ability to receive from any
process. Hence, the sizes of the messages to be received are computed first. Then the
asynchronous receives are posted, followed by the sends.

Communication pipeining : In the pipeline method, we take advantage of the
possibility that work can be divided in small units. Each process p; can receive
elements in a small packet. It can also at the same time pack elements to be sent
and unpack elements it just received, instead of waiting for all the information from
another process.

The pipelined method is an overlapping strategy similar to the work described
in[?]. In the overlapped agorithm the information is scheduled with the caterpillar
method, and we divide this protocol in several steps (each rotation of the caterpillar).
For each step there are two asynchronous sends (from a node p; to its corresponding
p; and from p; to p;). With this overlap between communication and caculation the
program timings are greatly improved on machines with rather dow communications
(i.e., local area networks of workstationsand “old” parallel computers).

4 Timingresults

The experiments corroborate very well our expectation, the computing of the data
sets is negligible compare to the communication and packing and the global routine
execution timeisvery efficient.

41 OnaLAN of workstation using PVYM

The PVM machine was composed of 4 workstationsand the tests were ran during
a Saturday night (no fever). We generate random tests in arangethat isreasonable for

the target algorithmusinga N x N matrix (1 < r < /72— and1 < s < y/5-),

and compare them to the LU decomposition on the same matrix size in Figure 3.

50.0 T 0.10

synchronous exchange
asynchronous exchange
- with native

redistribution time
-~~~ LU decomposition time

0.0 0.00

0.0 200.0 400.0 600.0 800.0 1000.0 0.0 200.0 400.0 600.0 800.0 1000.0

Figure3: Timingsof theredistributiontestsin seconds as afunction of thematrix size.
On the left average of 20 random data-distributionsin seconds compared to (the best)
LU decomposition on a4 nodes LAN of SUN Sparc-ELC. On theright on a 32 nodes
Cray T3D.

The LU decomposition is far more costly than the redistributions, moreover, the
worst timing of LU decomposition is twice the one plotted while there is no big
differences between redistribution times.

4.2 OnaCray T3D paralle machine

The Cray T3D proposed a home-made version of PVM based on the Cray native
primitives. We show on Figure 3 the two algorithms described before implemented
using thisCray PVM version and the asynchronous a gorithm (best one) implemented
directly with the Cray native shared memory primitives.

The results show the very good communication performances achieved by this
machine, especially with the shared memory communications.

Thetimingsare very good indeed regarding to classical computation duration, for
instance the benchmark of LU decomposition of a 1600 x 1600 matrix is 1.7 second
on this machine?.

5 Conclusion

In generd, the redistribution of datais useful for improving the performance of
paralel linear algebra routines. However, the redistribution must be very efficient.
Our work demonstrates that the redistribution of data can be done efficiently using our
algorithm and optimization. Our algorithm, implemented for the ScalL APACK library,
computes all redistributionsand is not limited to a set of block-cyclic redistributions.
It is also useful when dealing with submatrices (but cannot take into account strides
that are not 1 or the array leading dimension).

Our results are encouraging for the frequent use of data redistribution both in
explicit parallel programming and in redistributionlibrary routineswith callsin codes
generated by HPF compilers.

2(from the LINPACK benchmark database)

References

