
Array Redistribution in ScaLAPACK using PVM

Jack Dongarra �
The University of Tennessee and Oak Ridge National Laboratory

Loic Prylli, Cyril Randriamaro and Bernard Tourancheauy
LIP, Ecole Normale Suprieure de Lyon, France

Abstract

Linear algebra on distributed-memory parallel computers raises the problem
of data distribution of matrices and vectors among the processes. Block-cyclic
distribution works well for most algorithms. The block size must be chosen
carefully, however, in order to achieve good efficiency and good load balancing.
This choice depends heavily on each operation; hence, it is essential to be able to
go from one distribution to another very quickly. We present here the algorithms
implemented in the ScaLAPACK library,and we discuss timing results on a network
of workstations and on a Cray T3D using PVM.

1 Introduction
The problem of data redistributionoccurs when one deals with arrays (from vectors

to multidimensional arrays) on parallel distributed-memory computers. Data redistri-
butionapplies both to data-parallel languages such as High Performance Fortran (HPF)
and to single-process multiple-data (SPMD) programs with message passing. In the
first case the redistribution is implicit in array statements such as A = B, where A andB are two matrices with different distributions. In the second case two approaches are
possible. A library function may be called to do the operation, or the redistribution
may be hidden (for instance, when a routine is called to do an LU decomposition, the
routine can begin by checking whether the matrix passed has an optimal distribution;
if not, the routine can do a redistribution and then go back to the initial distribution).

For a long time, redistributionwas considered very difficult. Most implementations
restricted the possible distributions to block or cyclic distributions [?, ?, ?, ?, ?]. In
some implementations, all block sizes had to be multiple of each other, in order to
reduce the memory access operations. Recent studies show that data redistributioncan
be done at compile time [?, ?]. However, all of these studies address the compilation
techniques for redistribution of arrays with a fixed number of processes.�Computer Science Department, Knoxville, TN 37996-1301, USA and also Oak Ridge National Labo-
ratory, Mathematical Sciences Section, P.O. Box 2008, Oak Ridge, TN 37831-6367, USA.y46, alle d’Italie, 69364 LYON cedex 07, France (e-mail lprylli@lip.ens-lyon.fr)

We present here an algorithm and implementation of the redistribution routine that
is used in ScaLAPACK [?, ?]. We use a dynamic approach in order to construct
the communication sets and then efficiently communicate them. Our algorithm uses
several strategies depending of the amount of data to be communicated and the target
architecture capabilities. The result is a very fast, scalable algorithmcapable of loading
and downloading from/to one process to/from many others.

The structure of the paper is as follow. Section 2 introduces the ScaLAPACK data
distribution models and notation used in this paper. Section 3 presents the algorithms
that were used for the redistributionof data. Section 4 discusses timing results obtained
on different machines running PVM.

2 SCALAPACK data distribution and redistribution
The SCALAPACK library uses the block-cyclic data distribution on a virtual grid of

processors in order to reach good load-balance, good computation efficiency on arrays
and an equal memory usage between processors. Arrays are wrapped by block in all
dimensions corresponding to the processor grid. The figure 1 illustrate the organization
of the block-cyclic distribution of a 2D arrays on a 2D grid of P processors.

The distribution of a matrix is defined by four main parameters: a block width
size, r; a block height size, s; the number of processor in a row, Prow; the number of
processors in a column, Pcol and few others to determine, when a sub-matrix is used,
which element of the global matrix is the the starting point and which processor it
belongs to.

(0,1) (0,2)

(1,0)

(2,0)

(3,0)

(0,4) (0,5)(0,3)(0,0)

(2,3)

Blocks owned by the processors [0,0]

Grid of Processors [2,3] Block - Matrix

0 1 2

1

0 (2,0)

(1,0)

(3,0) (3,3)

(1,1)

(3,1)

(1,4)

(3,4)

(1,2) (1,5)

(3,2) (3,5)

(0,3)

(2,3)

(1,3)

(0,1) (0,4)

(2,1) (2,4)

(0,2) (0,5)

(2,2) (2,5)

(0,0)

Figure 1: The block cyclic data distributionof a 2D array on a 2�3 grid of processors.

In SCALAPACK, the efficiency of redistribution is crucial as in any data parallel
approach because it should be negligible or at least small compared to the computation
it was done for. This is especially difficult since the redistribution operation has to be
done dynamically, with no compile-time or static information. This dynamic approach
implies that we deal from the beginning with the most general case of redistribution

allowed by our constraints, namely cyclic with blocks of size (r; s) on a Prow � Pcol
virtual grid to cyclic with blocks of size (r0; s0) on a P 0row � P 0col virtual grid1.

Moreover, no latency hiding techniques or overlapping can be used between the
redistribution and the previous computation because these routines are independent
(remark that it does not prevent the use of these techniques inside the redistribution
routine itself, as it is explained in section 3.3).

3 Redistribution algorithm
The whole problem of data redistribution is for each processor to find which data

stored locally has to be send to the others and respectively how much data it will
receive from the others and where it will store it locally. Then the communication
problem itself occurs on the target computer.

3.1 Computation of data sets in one dimension
If we assume that the data are stored contiguously in a block cyclic fashion on the

processors, the problem is then to find which data items stored on processor pi will be
send to processor pj . These data items have to be packed in one message before being
sent to pj in order to avoid start-up delays.

Our algorithm scan at the same time the matrix indices of the data blocks stored
on pi and those that will be stored on pj. More precisely, we keep two counters, one
corresponding to pi’s data location in the global matrix and the other to pj’s one. We
increment them progressively by block as in a merge sort in order to determine the
overlap areas (the comparison number is linear in the number of blocks). Then we
pack the data items corresponding to the overlap areas in one message to be send topj.
3.2 General algorithm for the computation of data sets

The block scanning is done dimension by dimension and the overlapping indexes
are the Cartesian product of the intervals computed in each dimension. (There is no
limitation in the number of dimension scanned and the complexity is linear in the sum
of the dimension sizes while the packing is obviously linear in the size of the data).

This work is done in each processor in order to send the data and respectively to
receive the data, and stored them at the right place in local memory.

3.3 Optimizations
The obvious scanning strategy involves testing every index, but the intersection

of intervals in a block cyclic distribution is in fact periodic. Hence, instead of a full
block scanning, the algorithm stops as soon as it reaches the cyclic bound. Moreover,
it reduces the bound on the storage necessary for the intersection patterns. In practice
this optimization is interesting only for very small block sizes, and there is a point
where it is more interesting to do an analytic determination of the cyclic distribution
patterns (see, e.g., [?]).

1Remark that this general case includes the loading and down-loading of data from a processor to a
multicomputer and also calls to parallel routines from a sequential code.

Synchronous communication : The algorithm uses the nonblocking send protocol.
Therefore, in order to minimize process idle time and to avoid deadlocks resulting
from buffer limitations, every send function call must have the corresponding receive
function call at the same time. In other words, if the receiving process performs itsn-th communication, the sending process performs its n-th communication, too.

The strategy implemented here can be compared with a rolling caterpillar composed
of processes: at step d, each process pi, (0 � i < P) exchanges its data with processp((P�i�d)modP) . Figure 2 illustrates this method.

0 1 2 3

7 6 5 4

Step 1 step 2

 0 1 2
7 3
 6 5 4

step 3

7 0 1 2

6 5 4 3
....8 processors

7 processors
0 1 2
 3
6 5 4

 0 1 2
6
 5 4 3

6 0 1
 2
5 4 3

....

Figure 2: The caterpillar communication method is illustrated with an even (8) and an
odd (7) number of processes. The communication occurs between the vertical pairs of
processes (a process alone communicates with itself). .

Asynchronous communication : The asynchronous communication method is sim-
pler: there is no supposition about the target computer’s ability to receive from any
process. Hence, the sizes of the messages to be received are computed first. Then the
asynchronous receives are posted, followed by the sends.

Communication pipelining : In the pipeline method, we take advantage of the
possibility that work can be divided in small units. Each process pi can receive
elements in a small packet. It can also at the same time pack elements to be sent
and unpack elements it just received, instead of waiting for all the information from
another process.

The pipelined method is an overlapping strategy similar to the work described
in [?]. In the overlapped algorithm the information is scheduled with the caterpillar
method, and we divide this protocol in several steps (each rotation of the caterpillar).
For each step there are two asynchronous sends (from a node pi to its correspondingpj and from pj to pi). With this overlap between communication and calculation the
program timings are greatly improved on machines with rather slow communications
(i.e., local area networks of workstations and “old” parallel computers).

4 Timing results
The experiments corroborate very well our expectation, the computing of the data

sets is negligible compare to the communication and packing and the global routine
execution time is very efficient.

4.1 On a LAN of workstation using PVM
The PVM machine was composed of 4 workstations and the tests were ran during

a Saturday night (no fever). We generate random tests in a range that is reasonable for

the target algorithm using a N � N matrix (1 � r < q NProw and 1 � s < q NPcol),
and compare them to the LU decomposition on the same matrix size in Figure 3.

0.0 200.0 400.0 600.0 800.0 1000.0
0.0

50.0

redistribution time
LU decomposition time

0.0 200.0 400.0 600.0 800.0 1000.0
0.00

0.05

0.10

synchronous exchange
asynchronous exchange
asynchronous with native communications

Figure 3: Timings of the redistribution tests in seconds as a function of the matrix size.
On the left average of 20 random data-distributions in seconds compared to (the best)
LU decomposition on a 4 nodes LAN of SUN Sparc-ELC. On the right on a 32 nodes
Cray T3D.

The LU decomposition is far more costly than the redistributions, moreover, the
worst timing of LU decomposition is twice the one plotted while there is no big
differences between redistribution times.

4.2 On a Cray T3D parallel machine
The Cray T3D proposed a home-made version of PVM based on the Cray native

primitives. We show on Figure 3 the two algorithms described before implemented
using this Cray PVM version and the asynchronous algorithm (best one) implemented
directly with the Cray native shared memory primitives.

The results show the very good communication performances achieved by this
machine, especially with the shared memory communications.

The timings are very good indeed regarding to classical computation duration, for
instance the benchmark of LU decomposition of a 1600� 1600 matrix is 1:7 second
on this machine2.

5 Conclusion
In general, the redistribution of data is useful for improving the performance of

parallel linear algebra routines. However, the redistribution must be very efficient.
Our work demonstrates that the redistribution of data can be done efficiently using our
algorithm and optimization. Our algorithm, implemented for the ScaLAPACK library,
computes all redistributions and is not limited to a set of block-cyclic redistributions.
It is also useful when dealing with submatrices (but cannot take into account strides
that are not 1 or the array leading dimension).

Our results are encouraging for the frequent use of data redistribution both in
explicit parallel programming and in redistribution library routines with calls in codes
generated by HPF compilers.

2(from the LINPACK benchmark database)

References

