
GEMM{Based Level 3 BLAS:High-Performance Model Implementationsand Performance Evaluation BenchmarkBo K�agstr�om � Per Ling� Charles Van Loan yOctober 1995AbstractThe level 3 Basic Linear Algebra Subprograms (BLAS) are designed to performvarious matrix multiply and triangular system solving computations. The devel-opment of optimal level 3 BLAS code is costly and time consuming, because itrequires assembly level programming/thinking. However, it is possible to developa portable and high-performance level 3 BLAS library mainly relying on a highlyoptimized GEMM, the routine for the general matrix multiply and add operation.With suitable partitioning, all the other level 3 BLAS can be de�ned in terms ofGEMM and a small amount of level 1 and level 2 computations. Our contributionis two-fold. First, the model implementations in Fortran 77 of the GEMM-basedlevel 3 BLAS, which are structured to e�ectively reduce data tra�c in a memoryhierarchy. Second, the GEMM-based level 3 BLAS performance evaluation bench-mark, which is a tool for evaluating and comparing di�erent implementations ofthe level 3 BLAS with the GEMM-based model implementations.1 IntroductionThe memory organization in current advanced computer architectures is hierarchical.Accesses to data in the upper levels of the memory hierarchy (registers, cache and/orlocal memory) are much faster than those in lower levels (o�-processor and sharedmemory). Typically, the peak performance measured in Mops or Gops (106 and109 oating point operations per second, respectively) is only delivered for data storedin the top level of the memory hierarchy. Therefore, it is important to organize thecomputations such that we can maximize reuse of data in the upper levels of the memoryhierarchy. Matrix and vector operations are basic in most scienti�c computations andcan most often be reorganized for e�ective data reuse. For example, an n-by-n matrix�Department of Computing Science, Ume�a University, S-901 87 Ume�a, Sweden. Email addresses:bokg@cs.umu.se and per.ling@cs.umu.se. Financial support has been received from theSwedish National Board of Industrial and Technical Development under grant NUTEK 89-02578P.yDepartment of Computer Science, Cornell University, Ithaca, New York 14853-7501. Emailaddress: cv@cs.cornell.edu.Also appears as Ume�a University Report UMINF-95.18.1

multiply C = AB involves O(n3) arithmetic but O(n2) data movements (usually).Thus, as n grows the cost of accessing data is increasingly dominated by the cost ofcomputation. This fact has lead to a technique to reorganize standard algorithms toperform matrix-matrix (level 3) operations in their inner loops (e.g., see [12]). Typically,these matrix-matrix operations are expressed as calls to level 3 Basic Linear AlgebraSubprograms (BLAS) [9, 10], which together with level 1 BLAS [22] and level 2 BLAS[7] are de facto standards for basic matrix and vector operations. The level 3 BLAShave been successfully used as building blocks for several applications, including thesoftware library LAPACK [3]. With a highly optimized level 3 BLAS, most of theLAPACK codes will \automatically" peform well.However, due to the complex hardware organization of advanced computer architec-tures it can be very costly and time consuming to develop a high-performance level 3BLAS because it requires assembly level programming/thinking. The GEMM-basedapproach presents a way to attain high performance and portability with a limitede�ort. The GEMM-based level 3 BLAS concept [21] shows that it is possible to formu-late the level 3 BLAS operations in terms of the level 3 operation for general matrixmultiply and add (GEMM) and some level 1 and level 2 BLAS operations. Whenevernew high-performance architectures or extensions and modi�cations of existing ones areintroduced, we see the great bene�ts of the GEMM-approach, since we only require afew underlying routines to be optimized for the target architecture. Most important arethe routines that implement the level 3 GEMM operation and the level 2 operation forgeneral matrix-vector multiply and add (GEMV).Morover, the GEMM-based approachprovides possibilities to invoke parallelism, for example, by using parallel versions ofthe underlying routines. It is also possible to create a level 3 BLAS library based onfast algorithms for the GEMM operation, e.g., Strassen's or Winograd's algorithms[25, 26, 15, 11].Our contribution is two-fold. First, the model implementations in Fortran 77 of theGEMM-based level 3 BLAS, which are structured to e�ectively reduce data tra�c ina memory hierarchy. Second, the GEMM-based level 3 BLAS performance evaluationbenchmark, which is a tool for evaluating and comparing di�erent implementations ofthe level 3 BLAS with the GEMM-based model implementations. All software come inall four data precisions and are designed to be easy to implement and use on di�erentplatforms. Each of the GEMM-based routines has a few system dependent parametersthat specify internal block sizes, cache characteristics, and intersection points for alter-native code sections, which are given as input to a program that facilitates the tuningof these parameters. For simplicity, we also provide sample values for some commonarchitectures.We present the GEMM-based model implementations and benchmark in a two-part paper. In this part, we review the GEMM-based concept, and we present thedesign principles behind and the model implementations, and the performance eval-uation benchmark. Moreover, we report results from extensive testings on severalhigh-performance platforms. In a companion paper [20], we describe the installationand tuning of the GEMM-based model implementations, and the use and installationof the performance evaluation benchmark.Before we go into any further details we outline the content of this paper. To set2

the scene Section 2 gives a brief summary of the level 3 BLAS operations and callingsequences with parameter lists. In Section 3 we summarize the GEMM-based level 3BLAS concept and illustrate our approach with a sample level 3 BLAS operation.Section 4 discusses the design principles used in the GEMM-based model implementa-tions. In Section 5 we give a more detailed presentation of the high-performance andportable model implementations of the GEMM-based level 3 BLAS. Section 6 presentsthe GEMM-based level 3 BLAS benchmark, its purpose and design. In Section 7 wereport results from our extensive testings. Section 7.1 presents measured performanceresults for di�erent architectures (vector as well as RISC-based), including single pro-cessor results for IBM SP2, Intel Paragon, NEC SX-3, Parsytec GC/PowerPlus andthe workstations IBM RS6000 and Silicon Graphics Indy. Notice that any implementa-tion of distributed versions of level 3 operations or block-partitioned algorithms shouldbe designed to minimize communication overhead, as well as to make use of highlyoptimized single processor level 3 kernels. For an increasing number of processors,any improvement of the performance of a single processor will (at least for a singleprogram multiple data (SPMD) application) have a multiplicative e�ect on the over-all performance. In section 7.2 we present some benchmark results for di�erent level 3BLAS implementations. Section 8 presents some additional techniques that can be usedto even gain some more performance from the GEMM-based model implementations.Finally, in Section 9 we give some conclusions regarding our contributions.2 Level 3 BLAS SummaryThe level 3 BLAS consist of routines for both general and \structured" matrix multipli-cation, including multiple right hand side triangular system solving. The six level 3 op-erations (and routine names) are general matrix multiply and add (GEMM), symmetricmatrix multiply (SYMM, HEMM), symmetric rank-k update (SYRK, HERK), sym-metric rank-2k update (SYR2K, HER2K), triangular matrix multiply (TRMM), andtriangular system solve (TRSM). In a complete implementation of the level 3 BLASthere are four versions of the routines GEMM, SYMM, SYRK, SYR2K, TRMMand TRSM corresponding to four di�erent data types and with the following pre�xesof the routine names: S for single precision real data, D for double precision real data,C for single precision complex data and Z for double precision complex data. Theroutines HEMM, HERK and HER2K concern hermitian matrices and therefore theyonly exist with pre�xes C and Z.In tables 1 and 2, the operations and the parameter lists of the level 3 BLAS aresummarized [3]. We mainly discuss the real case here. Some comments on the complexcase are given in Section 5.6.Options of a level 3 operation are controlled by arguments that specify op(X) =X;XT or XH (trans = 'N', 'T' or 'C'), the storage format of op(X); upper or lowertriangular (uplo = 'U' or 'L'), unit or non-unit triangular (diag = 'U' or 'N'), andwhether op(X) should be applied from left or right (side = 'L' or 'R'). Each routinehas two or four (only TRMM and TRSM) form parameters for specifying di�erentoptions. The parameters m, n and k specify the sizes of the matrices A;B and/or C3

Table 1: Level 3 BLAS operations.Routine Operation Pre�xesGEMM C �op(A)op(B) + �C; op(X) = X;XT ; XH ; C is m� n S, D, C, ZSYMM C �AB + �C;C �BA+ �C;C is m� n;A = AT S, D, C, ZHEMM C �AB + �C;C �BA+ �C;C is m� n;A = AH C, ZSYRK C �AAT + �C;C �ATA + �C;C = CT is n� n S, D, C, ZHERK C �AAH + �C;C �AHA+ �C;C = CH is n� n C, ZSYR2K C �ABT + �BAT + �C;C �ATB + �BTA+ �C;C = CT is n� n S, D, C, ZHER2K C �ABH + �BAH + �C;C �AHB + �BHA + �C;C = CH is n� n C, ZTRMM C �op(A)C;C �Cop(A); op(A) = A;AT ; AH ; C is m � n S, D, C, ZTRSM C �op(A�1)C;C �Cop(A�1); op(A) = A;AT ; AH ; C is m � n S, D, C, Zthat participate in the operations, whose leading dimensions are speci�ed by lda, ldband ldc, respectively. Finally, alpha and beta correspond to the scalars � and � inthe operations. Table 2: Level 3 BLAS parameter lists.Routine ParametersGEMM (transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc)SYMM (side, uplo, m, n, alpha, A, lda, B, ldb, beta, C, ldc)HEMM (side, uplo, m, n, alpha, A, lda, B, ldb, beta, C, ldc)SYRK (uplo, trans, n, k, alpha, A, lda, beta, C, ldc)HERK (uplo, trans, n, k, alpha, A, lda, beta, C, ldc)SYR2K (uplo, trans, n, k, alpha, A, lda, B, ldb, beta, C, ldc)HER2K (uplo, trans, n, k, alpha, A, lda, B, ldb, beta, C, ldc)TRMM (side, uplo, trans, diag, m, n, alpha, A, lda, C, ldc)TRSM (side, uplo, trans, diag, m, n, alpha, A, lda, C, ldc)3 GEMM{Based Level 3 BLAS ConceptWe have shown that \one can live with" just one highly optimized level 3 BLAS routine:GEMM [21, 17]. This subprogram oversees a general matrix multiply of the formC �op(A)op(B) + �C; where op(X) denotes X or XT :The structured matrix multiplication problems handled by the other level 3 BLAS canbe couched in terms of GEMM and a small amount of level 1 and 2 computations, withsuitable partitionings. Roughly, the idea is to reduce the overall structured multiplica-tion to a set of general multiplications involving \strips". Here, a strip is either a blockrow or a block column. For performance purposes a strip can be further partitioned4

into subblocks. We illustrate our approach with the operation TRSM for triangularsystem solve with multiple right hand sides.From tables 1 and 2, we know the operations and the parameters of TRSM. Thematrix A is triangular and the parameters side and trans are used to specify its action.Moreover, A may be lower or upper triangular (uplo = 'L' or 'U') and may have aunit or nonunit diagonal (diag = 'U' or 'N'). The four di�erent situations from thestandpoint of blocking are summarized in Table 3.Table 3: TRSM blocking cases.Operation T PossibilitiesC X; TX = C lower triangular (T , uplo) = (A; 'L') or (AT ;'U')C X; TX = C upper triangular (T , uplo) = (A; 'U') or (AT ;'L')C X; XT = C lower triangular (T , uplo) = (A; 'L') or (AT ;'U')C X; XT = C upper triangular (T , uplo) = (A; 'U') or (AT ;'L')First, we consider the case C X; TX = C where T is lower triangular.C1C2C3 = @@@@@@@@@@T11T21T31 T22T32 T33 X1X2X3We illustrate by blocking X in three block rows:C1 = T11X1;C2 = T21X1 + T22X2;C3 = T31X1 + T32X2 + T33X3:By solving for X in a block forward fashion we can obtain a GEMM-rich procedure:X1 T�111 C1;X2 T�122 (C2 � T21X1);X3 T�133 (C3 � T31X1 � T32X2):C2 and C3 are updated by calls to GEMM. The update of C2 and C3 with respect toX1 can be performed by one single call.Notice, it is only the diagonal blocks Tii that cannot be handled with GEMMoperations. For these we can repeatedly apply the level 2 BLAS operations TRSVor GEMV. TRSV performs matrix-vector products of the form x T�1x where Tis a nonsingular triangular matrix described via the variables uplo, diag, and trans.GEMV performs a matrix-vector multiply and add operation y �Ax+ �, where �and � are scalars, x and y are vectors, and A is a general matrix. Indeed, our model5

implementation of TRSM uses one of the two level 2 operations depending on thevalues of the form parameters. We refer to the next two sections for more informationon how the choice between two di�erent level 2 operations are handled.The other three cases listed in Table 3 are similar and require only cursory discus-sion. For the case TX = C with upper triangular T we have in the i-th step (i = 2and C1, C2 are already updated with respect to X1);C1C2 = @@@@@@@@@@ T12T22 X2Solve for X2 : T22X2 = C2;Update C1 : C1 C1 � T12X2:It follows that if we resolve the block rows of X in reverse order (from bottom to top)we can overwrite C with X .For the case XT = C with T lower triangular we have in the i-th step;C1 C2 = X2 @@@@@@@@T21 T22Solve for X2 : X2T22 = C2;Update C1 : C1 C1 �X2T21:It follows that if we resolve the block columns of X from right to left we can overwriteC with X .Finally, for the case XT = C with T upper triangular we have in the i-th step;C2 C3 = X2 @@@@@@@@ T22 T23Solve for X2 : X2T22 = C2;Update C3 : C3 C3 �X2T23:It follows that if we resolve the block columns of X from left to right we can overwriteC with X . 6

In the present concept discussion we have omitted several issues that a�ect theperformance of a GEMM-based implementation. Examples include the placement of apossible o�set diagonal block, which is determined by the values of uplo and trans,and the size and orientation of blocks to be referenced and updated. More on this andother design principles are discussed in the next section. The GEMM-based TRSMalgorithm for the model implementation is discussed in more detail in Section 5.5.4 Design Principles for the Model ImplementationsIt is possible to implement GEMM-based level 3 routines in several ways. Performanceis often signi�cantly a�ected by di�erent design decisions, even if the underlying BLASroutines (GEMM and some lower level kernels) are well optimized and show highperformance. This section discusses design principles used in the GEMM-based level 3BLAS model implementations.4.1 Memory hierarchy modelThe GEMM-based level 3 BLAS model implementations are based on a memory hier-archy architecture model with certain characteristics:� The CPU (or the processor) is connected to the main memory via a cache memory.Data transfers between the CPU and main memory normally go through thecache, where a copy of the data is kept. Accesses to data are handled by avirtual memory system which is responsible for the correctness in handling thedata accesses but does not guarantee fast access times.� The access time to data in the cache memory is constant and independent ofwhere in the cache data reside or in which order data are accessed. For example,accesses to array data in cache are stride independent.� Updates of data in memory, both reading and writing, are assumed to take moretime than just reading data.� Data transfers between cache and main memory take place in lines of severalconsecutive array elements, i.e., units of data larger than one element. The ele-ments of a matrix column are assumed to be consecutively stored in memory (asin Fortran). Accordingly, an arbitrary column of a 2-dimensional array requiresfewer lines to be transferred than the corresponding matrix row.There are means to specify di�erent cache characteristics in terms of machine-speci�c parameters, which are used by the auxiliary routine CLD (see sections 4.6 and4.7).Several of the current high-performance architectures fall within this logical mem-ory hierarchy model. Examples include vector processors with local cache memory andRISC processors with separate on-chip caches for data and instructions. Architectureswith multi-level caches can be interpreted within this framework in two di�erent ways:(i) all cache memory is considered as a unit, (ii) only the top level is considered as the7

cache memory and the lower levels together with the main memory are regarded asone unit of memory. Neither of these interpretations are completely satisfactory. Thesolution we recommend is to impose that the few underlying routines called by theGEMM-based model implementations utilize the machine characteristics of the targetarchitecture e�ciently (including a multi-level cache). Another (and complementary)solution is to apply di�erent levels of blocking with respect to a multi-level memory.However, to guarantee portability as well as high performance we have only imple-mented blocking with respect to one level of cache memory (see below and Section8.)4.2 Blocking strategyThe blocking strategy of the GEMM-based routines should be adapted to the perfor-mance characteristics of the underlying BLAS kernels that are called. If the underlyingBLAS kernels should have equal and uniform performance for all problems then anyGEMM-based implementation would be good enough, but in practice this is not thecase.The performance of the underlying BLAS depend on the size and con�guration ofthe problem, properties of the machine, and how e�cient these properties are utilizedin the BLAS kernels themselves, i.e., how well they are optimized for the machine.A machine with a vector processor, for example, usually need long vectors or vectorssized to �t in vector registers to perform at its best. Properties of the machine include,for instance, possibilities for pipelining, chaining, use of compound instructions, reuseof data in registers (and in cache for GEMM), parallelism, etc. For this reason, theGEMM-based routines are designed to utilize the fastest underlying BLAS routines andto supply them with appropriate subproblems.We see four basic ways to block a GEMM-based level 3 BLAS routine involving atriangular matrix, or a symmetric matrix stored as a triangular matrix. In Figure 1 weillustrate these alternative ways by looking at GEMM-updates C �CA + C withinthe TRSM operation. In this case, side = 'R', uplo = 'U', and trans = 'N', i.e.,at the outermost level we perform the operation C CA�1, where A is triangular andstored in upper triangular format. This operation is covered by the last case illustratedin Section 3.In each of the four alternatives in Figure 1, there are three GEMM-updates, eachillustrated with a di�erent pattern, , ���� , and . Notice that some of the blocksinvolved in the di�erent GEMM-updates overlap and create mixed patterns.We can identify the four ways by looking at the blocks of the triangular A. In allalternatives, A is partitioned into three uniformly sized triangular diagonal blocks andone smaller triangular diagonal block. This o�set block may be located in either thelower right corner of the matrix, as in alternatives 1 and 3, or in the upper left corner,as in alternatives 2 and 4. Additionally, three rectangular blocks are needed to coverA. The subproblems involving triangular diagonal blocks of A have the same dimen-sions irrespective of in which corner of A the o�set block is placed. Therefore, thelocation of the o�set block is not expected to have a signi�cant impact on the per-8

C(m�n) C(m�n) A(n�n) C(m�n)1. �� � � �� @@@@@@ �������������������������������� + ��2. �� � � �� @@@@@@ ������������������������ + ��3. �� � � �� @@@@@@ ������������������������ + ��4. �� � � �� @@@@@@ �������������������������������� + ��Figure 1: Four basic ways to block TRSM, side = 'R', uplo = 'U' and trans ='N'.formance of the subproblems involving triangular blocks. However, the subproblemsinvolving rectangular blocks of A have di�erent dimensions in all four alternatives. Inalternatives 1 and 2 the rectangular blocks of A have a �xed maximum width, andin alternatives 3 and 4, they have a �xed maximum height. Computations involvingrectangular blocks of A can be performed by calls to GEMM. All four alternativespresent a di�erent set of problems for GEMM. Consequently, the performance of theentire TRSM operation, is mostly determined by the performance of GEMM for thesesets of subproblems. Which of the four alternatives that gives the best performancemay be di�erent for di�erent architecture characteristics. Our approach is to choose ablocking strategy that we expect to be the fastest on most modern memory hierarchymachines. The following guidelines were used to decide which of the four alternativesto select.� Update policy. If data is brought from memory with a high amount of locality of9

reference, the data tra�c in the memory hierarchy is generally reduced. Localityof reference (or data locality) means that for a sequence of operations, referencesare kept local to limited portions of consecutive addresses in memory. With ahigh amount of locality of reference, larger amounts of data can be reused atdi�erent levels of the memory hierarchy. In general, we expect that updating,which involves both reading and writing of memory, generates more tra�c in thememory hierarchy than just reading data. Since columns of matrices are storedcontiguously in Fortran 77, while elements of rows may have a large stride, ahigher amount of data locality can, in general, be obtained when accessing blockcolumns of matrices rather than block rows.In our implementations we choose to update a block column or a block row of theresult matrix completely before the next block column or block row is processed.The blocks are updated consecutively until the whole result matrix is completed.This approach gives a su�cient amount of data locality.� O�set block positioning. The o�set block is placed in the corner that causesthe adjoining rectangular block to be vertically oriented in memory, or stored as ablock column. The rectangular block will often become tall and narrow with fewerand longer columns than rows, enabling a high amount of locality of reference.The columns will always have a minimum height equal to the dimension of theremaining triangular blocks.If the matrix has an upper triangular storage format, uplo = 'U', then the o�setblock is placed in the lower right corner of the matrix and for a lower triangularstorage format, uplo = 'L', the o�set block is placed in the upper left corner.In alternatives 1 and 2 of Figure 1 a block column of C is fully updated before thenext block of C is processed. In alternatives 1 and 3, the rectangular block adjoiningthe o�set block of A is vertically oriented, i.e., a block column. Only the �rst blockingstrategy ful�lls both our criteria and was therefore chosen for our GEMM-based TRSMimplementation.4.3 Local arrays for consecutive storage of submatricesAn unappropriate size of the leading dimension of a 2-dimensional array may cause par-ticularly heavy tra�c in the memory hierarchy when the matrix is referenced repeatedly.Further, only a small fraction of the cache may be utilized. Physical characteristics ofthe memory hierarchy determines for which leading dimensions these problems willoccur.Local arrays are used extensively in the model implementations to provide prop-erly aligned consecutive storage for temporarily kept blocks of matrices, resulting inimproved data locality. The size of the local arrays are determined before compilation.Provided that proper values for the dimensions of the local arrays are speci�ed, theseproblems with \critical" leading dimensions are e�ectively avoided. The blocks may betransposed while they are copied to local arrays, in order to possibly �t the succeedingcomputations in the underlying BLAS routines better. Additionally, symmetric and10

hermitian blocks of matrices, where only the upper or lower triangular part is stored,can be transformed to general form when they are copied to the local arrays. We getrectangular blocks with long and uniformly sized vectors where the dimensions can besized to �t, for instance, both vector registers and cache at the same time. Moreover,the general blocks make it possible to enhance the use of GEMV and GEMM whichare likely to be the fastest level 2 and level 3 routines available on most machines. Thisgenerally works well with any type of processor, RISC, CISC, vector processors, etc.4.4 Underlying BLAS routinesApart from the level 3 routine GEMM, the computations are focused on the level 2routine GEMV since this is the fastest level 2 routine available, on most machines.The number of di�erent BLAS routines called from the GEMM-based routines areintentionally kept small, in order to reduce the number of necessary machine speci�cimplementations. The underlying BLAS routines are the level 3 routine GEMM, thelevel 2 routines GEMV, SYR, TRMV, and TRSV [7], and the level 1 routinesAXPY, COPY, and SCAL [22]. The most signi�cant underlying routines in orderfor the GEMM-based level 3 BLAS model implementations to achieve high performanceare GEMM and GEMV.4.4.1 Level 3 performance obtained with level 2 BLASThe level 2 BLAS [7] perform matrix-vector operations. For instance, the matrix vectormultiply and add operation GEMV, y �Ax+ �y, where � and � are scalars, x andy are vectors, and A is a general matrix. On a machine with vector registers, or asu�cient number of scalar registers, it is possible to implement level 2 BLAS routinesthat o�er register reuse of a vector. One of the vectors, x or y, is referenced repeatedlyand a part of it can be kept in registers between the references. Which vector dependson whether the underlying instructions are arranged to perform dot or axpy orientedoperations, where dot denotes the operation dot dot + xTy and axpy denotes theoperation y �x+ y.Cache reuse is usually not associated with the level 2 BLAS since the elements ofthe matrix A are referenced only once. Cache reuse requires multiple references of amatrix.If, for instance, the underlying instructions perform dot products, it is possible tokeep a large section of the vector x in the cache and reuse it for each row of A. Werefer to this approach as vector register reuse using the cache as a large vector register,rather than as cache reuse.However, if the level 2 routine is called multiple times, it is sometimes possibleto attain \true" cache reuse for the level 2 computations. For instance, if GEMVis called repeatedly with di�erent x and y vectors each time, but with the same A-matrix, it is possible to reuse A in the cache between the calls, provided that A �tsproperly in the cache. For matrices that do not �t in cache, a blocked approach canbe applied. Notice that vector register reuse can still be implemented on top of this.Apart from the overhead caused by multiple calls to GEMV (parameter checking,11

etc), this approach makes it possible to reach performance levels usually associatedwith the level 3 BLAS. The computations of the GEMM-based level 3 BLAS modelimplementations are structured to utilize this technique extensively in order to attainhigh and uniform performance.On machines with the possibility to get explicit control over which data that residesin the cache, the programmer implementing GEMV may choose to use the cache asa large vector register, for instance, for a large section of the x-vector. This e�cientlyspoils all chances to reuse the A-matrix and to attain level 3 performance over multiplecalls to GEMV. On machines having a LRU (least recently used) based replacementpolicy, where the most recently referenced data always resides in the cache, this willnot be a problem. Notice that a level 2 implementation that explicitly uses the cache asa large vector register may be faster for one or possibly a few repeated calls. However,for more than just a few calls the approach to reuse a section of x in a vector registerand a block of A in the cache, or possibly both x and A in the cache, is likely to befaster.4.5 Alternative code sectionsAlternative code sections performing the same task but calling di�erent underlyingBLAS routines are used conditionally to utilize the fastest underlying routine dependingon the problem con�guration. Mostly, the choice is between a code section that callsthe level 2 routine GEMV and a code section that calls some other level 2 BLASroutine. The alternate code sections have di�erent performance characteristics and thechoice between them are controlled by intersection points (ipx) in each of the level 3routines.Alternative code sections are also used to avoid \critical" leading dimensions andreferencing matrices by row.4.6 Auxiliary routinesThe original Fortran 77 model implementations of the level 3 BLAS [9, 10] include twoauxiliary subprograms, LSAME and XERBLA. The GEMM-based level 3 BLAS modelimplementations have two additional auxiliary subprograms, BIGP and CLD.� BIGP determines which of two alternative code sections, in a GEMM-basedlevel 3 routine, that will be the fastest for a particular problem con�guration.� CLD determines whether the size of the leading dimension of a 2-dimensional ar-ray is appropriate for the target memory hierarchy. A \critical" size of the leadingdimension may cause a substantial increase in the amount of data movements inthe memory hierarchy, resulting in severe performance degradation. Particularly,this may happen if the array is referenced by row.For more information about the implementations of BIGP and CLD see Section2 in the companion paper [20]. 12

4.7 Machine-speci�c parametersEach of the GEMM-based routines has system dependent parameters which are assignedvalues at compile time. The parameters specify internal block sizes, cache characteris-tics, and intersection points for alternate code sections in the GEMM-based routines.Blocking parameters and intersection points will appear in the description of the modelimplementations (see Section 5). The parameters that specify characteristics of thecache memory are described in [20], where also guidelines for assigning values to themachine-speci�c parameters are given.5 High Performance Model ImplementationsThe model implementations are written in Fortran 77 and are structured to e�ectivelyreduce data tra�c in a memory hierarchy. A detailed description of the algorithmsused in our model implementations for the di�erent level 3 operations is presentedin [19]. These descriptions include block partitionings and associated GEMM-basedtemplates for di�erent options of the operations. Since these descriptions are very space-demanding we only give a brief description of the GEMM-based implementations here.This includes the characteristics of each complete GEMM-based level 3 BLAS algorithmsummarized in a table that shows the lower level BLAS operations, auxiliary routines,and intrinsic functions used. Moreover, we display local arrays, intersection points (ipx)for algorithm variants and blocking parameters associated with the partitionings of thematrices involved. Finally, we discuss the complex case and point to some di�erencesbetween the real and complex model implementations.5.1 Symmetric Matrix MultiplySYMM performs the matrix multiply and add operation:� C �AB + �C, if side = 'L',� C �BA + �C, if side = 'R',where C is a general m � n matrix, A (m�m or n� n) is symmetric (A = AT), andstored as an upper or lower triangular matrix.The implementation consists of four sections of code corresponding to the di�erentvalues of side and uplo. Each section consists of an outer sectioning (or blocking) loopto partition the problem into subtasks. In each iteration of this outer sectioning loopthree di�erent subtasks are handled that involve:� a diagonal block of the symmetric matrix A,� an o�-diagonal block of A,� the transpose of an o�-diagonal block of A.The computations in each of these subtasks are performed by a single call to GEMM.The blocking strategy for SYMM is chosen so that a horizontal or vertical block of C13

is updated in each iteration of the outer sectioning loop. The block is of size rc� n (ifside = 'L') or m� rc (if side = 'R').Since A has triangular storage format some preparations are necessary before GEMMis invoked in subtasks involving diagonal blocks of A. The triangular diagonal blocks ofA can not immediately be processed by GEMM. Full square diagonal blocks (rc� rc)are created from the non-transpose and the transpose of A using COPY. The newblocks are stored in a 2-dimensional local array T1 with general storage format andused (instead of A) in the calls to GEMM.T1, which may be large, is referenced by row when the transpose of A is copied toT1. Since referencing by row, under certain circumstances may cause increased memorytra�c and thereby longer access times, an additional level of blocking is implementedfor this suboperation, which reduces the length of the row vectors referenced from rcto c. Vertical rc� c blocks of the square block T1 (rc� rc) are referenced as units. Thesame approach is used to reference the local array in SYR2K (see Section 5.3).The local array is only used to change the storage format in this routine. Since allcomputations are performed by GEMM we do not need to be concerned with criticalleading dimensions and alignment for e�cient cache utilization, except for copying thetranspose of diagonal blocks of A to T1 above. We trust that GEMM handles thememory hierarchy e�ciently. However, good performance may well be achieved withlocal arrays that matches the size of the cache. Notice that no level 2 BLAS is involvedin this implementation.Table 4: Characteristics of the SYMM implementation.Level 1 routines called COPYLevel 2 routines called |Level 3 routines called GEMMAuxiliary routines called LSAME, XERBLAIntrinsic functions called MAX, MINLocal arrays T1 (rc� rc)Intersection points |Blocking parameters rc, cThe characteristics of the GEMM-based SYMM is summarized in Table 4.5.2 Symmetric Rank{k UpdateSYRK performs the rank-k update operation:� C �AAT + �C, if trans = 'N',� C �ATA+ �C, if trans = 'T',where C is n � n, symmetric (C = CT), and stored as an upper or lower triangularmatrix. The matrix A is n� k (if trans = 'N') or k � n (if trans = 'T').14

The implementation consists of four sections of code corresponding to the di�erentvalues of uplo and trans. Each of these sections is further divided into two parts whichare used conditionally depending on the value of the dimension n. If n < ip41, thenthe �rst part is used. Otherwise, the second part is used.The �rst part uses the level 1 routines COPY and SCAL, and the level 2 routineSYR for computations involving diagonal blocks of C. A square diagonal block of C(rc � rc and stored in upper or lower triangular format) is copied to the local arrayT2 (using COPY) and if necessary scaled by � (using SCAL). The block is thenrank-1 updated n times (using SYR) and copied back to C from T2 (using COPY)again. If trans = 'T' an additional local array T3 is used for blocks of AT so thatmultiple rank�1 updates on diagonal blocks of C(ATA) can be performed as T3TT3 toprovide stride one references for SYR. For small values of k (determined by a secondintersection point, ip42) the computations are performed directly on the blocks of C,not using T2 or T3. Copying blocks to and from T2 and T3 imply too much overheadcompared to the number of times the blocks are referenced, since k is small. However, ifthe leading dimension of C is critical then the data tra�c in the memory hierarchy mayincrease substantially when the block of C is referenced. In that case it is importantto use T2, which should be sized to �t safely in the cache. Typically, this is the case ifthe storage requirements of T2 is limited to 50{75% of the size of the cache memory.The second part uses COPY and GEMV for computations involving diagonalblocks of C. A rectangular block of A or AT , depending on the value of trans is copiedto T1 (r � c) (using COPY). Then a square (r � r) diagonal block of C (stored inupper or lower triangular matrix format) is updated by � and T1TT1 (using GEMV).The block in T1 is then repeatedly replaced by subsequent blocks of A or AT , and theblock of C is repeatedly updated by T1TT1 (using GEMV). A local temporary � is usedto facilitate the scaling of the block of C with � the �rst time it is referenced. T1 isreused heavily and should also be sized to �t safely in the cache.In both parts, the rectangular o�-diagonal blocks of C are computed using GEMM.The sizes of the o�-diagonal blocks of C are di�erent in the two parts.Table 5: Characteristics of the SYRK implementation.Level 1 routines called COPY, SCALLevel 2 routines called GEMV, SYRLevel 3 routines called GEMMAuxiliary routines called CLD, BIGP, LSAME, XERBLAIntrinsic functions called MAX, MINLocal arrays T1 (r � c), T2 and T3 (rc� rc)Intersection points ip41 for n, ip42 for kBlocking parameters r, c, rcThe characteristics of the GEMM-based SYRK is summarized in Table 5.15

5.3 Symmetric Rank{2k UpdateSYR2K performs the rank-2k update operation:� C �ABT + �BAT + �C, if trans = 'N',� C �ATB + �BTA+ �C, if trans = 'T',where C is n � n, symmetric (C = CT), and stored as an upper or lower triangularmatrix. The matrices A and B are n� k (if trans = 'N') or k � n (if trans = 'T').The implementation consists of four sections of code corresponding to the di�erentvalues of uplo and trans. Each section consists of an outer sectioning (or blocking)loop to partition the problem into subtaks. In each iteration of this outer sectioningloop three di�erent subtasks are handled that involve:� a diagonal block of the symmetric matrix C,� an o�-diagonal block of C,� the transpose of an o�-diagonal block of C.The computations involving o�-diagonal blocks of C are performed by calls to GEMM.The subtask involving diagonal blocks of C consists of the following three steps:� Conceptually, one of the operations T1 �ABT and T1 �ATB, depending onthe value of trans, is performed on rectangular blocks of A and B using GEMM.T1 is a local array of size rc� rc.� The stored upper or lower triangular part (depending on uplo) of Cii, a diagonalblock of the symmetric C is updated by � times itself (using SCAL) and by theupper or lower part of T1 (using AXPY), so that Cii T1 + �Cii.Notice that we have to use both SCAL and AXPY to perform this fairly simpleoperation. We lack a level 1 BLAS routine performing the operation y x+ �yor y �x+ �y.� Cii is then further updated with the appropriate upper or lower part of the trans-pose of T1 (using AXPY), so that Cii TT1 + Cii.Notice that T1, which may be large, is referenced by row in this operation. As inSYMM an additional level of blocking is implemented which reduces the lengthof the row vectors referenced, from rc to c. Vertical blocks (rc� c) of the squareblock T1 (rc� rc) are referenced as units.The result of these three steps is a complete rank-2k update for a diagonal block of C.Notice that the local array T1 is needed only to provide a general storage formatfor the matrix multiply operation. T1 does not need to �t in the cache. With thisapproach for SYR2K all handling of the memory hierarchy becomes local to GEMM.This approach was �rst used in [23]. Notice also that no level 2 BLAS is used in thisimplementation.The characteristics of the GEMM-based SYR2K is summarized in Table 6.16

Table 6: Characteristics of the SYR2K implementation.Level 1 routines called SCAL, AXPYLevel 2 routines called |Level 3 routines called GEMMAuxiliary routines called LSAME, XERBLAIntrinsic functions called MAX, MINLocal arrays T1 (rc � rc)Intersection points |Blocking parameters rc, c5.4 Triangular Matrix MultiplyTRMM performs the matrix multiply operation:� C � op(A) C, if side = 'L',� C � C op(A), if side = 'R',where C is an m � n general matrix, op(A) (m � m or n � n) is a unit or non-unitupper or lower triangular matrix, and op(A) = A or AT .The implementation consists of eight sections of code corresponding to the di�erentvalues of side, uplo, and trans. Each of these sections are further divided into twoparts which are used conditionally depending on the values of m and n. If side = 'L'and n < ip81 or if side = 'R' and m < ip83, then the �rst part is used. Otherwise,the second part is used.The �rst part uses the level 1 routine COPY and the level 2 routine TRMV forcomputations involving triangular diagonal blocks of A. If side = 'L' and n � ip82,then T3 (rc�rc) is used to hold the triangular diagonal blocks of A during the TRMVcomputations. This guarantees that the blocks of A will reside properly in cache duringthe calls to TRMV that follows. The result is e�cient cache reuse. If n < ip82,the blocks of A are referenced without using T3 in TRMV. In this case, using T3 isconsidered to represent too much overhead in relation to the number of calls to TRMV.If side = 'R', the blocks of C are referenced by row in the calls to TRMV. Thismay be very costly if more than one or two calls are made. So, if m � ip83, the secondpart is used (see below).The second part uses COPY and GEMV for computations involving triangulardiagonal blocks of A. If side = 'L', the following steps are performed repeatedly in ablocked fashion.� If trans = 'N', the transpose of a triangular diagonal block Aii of A (c� c) iscopied to the local array T2, using COPY (T2 ATii).� The transpose of a rectangular block Cij of C is copied to T1 (r�c) using COPY(T1 CTij). 17

GEMV: T1 T1T2 + �T1T1(r�c) T1(r�c) T2(c�c) T1(r�c)"i � "i + 1 -� r0 @@@@@@6?r0 "i +� "i + 1Figure 2: Sample use of GEMV for triangular diagonal blocks in GEMM-basedTRMM (side = 'L', uplo = 'U' and trans = 'N').� The blocks of C stored in T1, the blocks of A possibly stored in T2, and thescalar � are multiplied together using GEMV, T1 � � T1�(T2 or a block ofA). The local array T1 will be heavily referenced and if properly sized, it willremain in cache between the calls to GEMV and provide for e�cient cache reuse(see Section 4.4). For example, if side = 'L', trans = 'N' and uplo = 'U',the operationT1(1 : ni; i) T1(1 : ni; i+ 1 : r0) � T2(i+ 1 : r0; i) + �T1(1 : ni; i);where is assigned the value �, � is assigned the value � (if diag = 'U') or�T2(i; i) (if diag = 'N'), is performed with repeated calls to GEMV.In Figure 2 we illustrate one such GEMV operation. The values for and r0 (thesecond dimension of the matrix block T1which varies) are also used to overcome a\de�ciency" in GEMV that appears if the second dimension of the block is zero.Whenever r0 is zero, it is changed to 1:0 and is changed to 0:0, before GEMVis called. Otherwise, if these changes were omitted, GEMV would just performa \quick return" instead of scaling T1 with � when r0 = 0 . If trans = 'T', theblocks of A are referenced directly without using the local array T2.� The result of the multiplication stored in T1 is copied back to the matrix C usingCOPY (Cij TT1).A similar approach is used if side = 'R'. The di�erences are (i) the blocks of Care not transposed when they are copied to the local array T1, (ii) the results are storedback directly to C instead of via T1. The diagonal blocks of A are copied to T2 andtransposed when trans = 'T' instead of when trans = 'N'.In both parts, the computations involving rectangular o�-diagonal blocks of A areperformed using GEMM. In the �rst part, GEMM performs the scaling of C (C �C) before the computation involving a triangular block starts, and the operation18

C �op(A)C+C or C �Cop(A)+C, is performed after completion of the triangularcomputation. In the second part the scaling of C is performed in the calls to GEMV.Notice that the sizes of the blocks involved are di�erent between the two parts.If side = 'L', a horizontal block of C is updated in each iteration of the outermostloop. Otherwise, if side = 'R', a vertical block of C is updated in each iteration.Table 7: Characteristics of the TRMM implementation.Level 1 routines called COPYLevel 2 routines called GEMV, TRMVLevel 3 routines called GEMMAuxiliary routines called CLD, BIGP, LSAME, XERBLAIntrinsic functions called MAX, MIN, MODLocal arrays T1 (r � c), T2 (c� c), T3 (rc� rc)Intersection points ip81 and ip82 for n, ip83 for mBlocking parameters r, c, rcThe characteristics of the GEMM-based TRMM is summarized in Table 7.5.5 Triangular System SolveTRSM solves for X in the matrix equation:� op(A) X = �C, if side = 'L',� X op(A) = �C, if side = 'R',where C is an m � n general matrix, op(A) (m � m or n � n) is a unit or non-unitupper or lower triangular matrix, and op(A) = A or AT . The solution X overwrites C(C X).The implementation is very similar to TRMM and consists of eight sections of codecorresponding to the di�erent values of side, uplo, and trans. The di�erences in thesecode sections compared to TRMM are:� The direction of some of the blocking loops are reversed, so that the blocks andcolumns of blocks of C are read (operand) and updated (result) in the reversedorder compared to TRMM.� Only one call to GEMM is needed in each part of the eight code sections. Thiscall is placed before the computations involving triangular blocks of A and per-forms both the scalar update of blocks of C and the blocked matrix multiply.Conceptually, the operation is C �op(A)C + �C or C �Cop(A) + �C.� The values assigned to the variables and � in TRSM are di�erent from thoseassigned in TRMM. Scalar division is involved if diag = 'N' (for dividing bythe diagonal elements of A). 19

� If side = 'R', T1 also keeps the result vectors from GEMV until the block iscomplete. Then T1 is copied back to C. This is necessary since, in TRSM, blocksof C are also read after they have been updated. The operand C (T1) needs tobe the same as the result block C (T1) in calls to GEMV. This is not the case inTRMM where C is not read after being updated.� The intersection points ip81, ip82, and ip83 in TRMM correspond to ip91, ip92,and ip93, respectively, in TRSM.Table 8: Characteristics of the TRSM implementation.Level 1 routines called COPYLevel 2 routines called GEMV, TRSVLevel 3 routines called GEMMAuxiliary routines called CLD, BIGP, LSAME, XERBLAIntrinsic functions called MAX, MIN, MODLocal arrays T1 (r � c), T2 (c� c), T3 (rc� rc)Intersection points ip91 and ip92 for n, ip93 for mBlocking parameters r, c, rcThe characteristics of the GEMM-based TRSM is summarized in Table 8.5.6 The Complex CaseThe de�nitions of level 3 BLAS for single complex and double complex data di�er fromthe real counterparts in some aspects. First of all, we have the additional routines forhermitian matrices, HEMM, HERK, and HER2K. Apart from the complex routineSYMM which is a direct translation of the real SYMM, the remaining routines alsohave other di�erences than just the type. The symmetric rank updates SYRK andSYR2K do not allow, trans = 'C', in the complex versions as opposed to the realversions where 'C' is interpreted as 'T'. In the complex TRMM and TRSM, trans= 'C', means the conjugated transpose whereas in the real cases 'C' is treated like'T'. The conjugated transpose cases obviously bring additional code into the complexversions of TRMM and TRSM.For the GEMM-based level 3 BLAS the di�erences between the real and the com-plex routines are greater than in the original Fortran 77 model implementations [10].This is, to a great extent, due to the use of underlying level 1 and level 2 BLAS rou-tines. These routines have di�erences between the real and complex versions, whichneed to be handled by the GEMM-based routines. For example, the real SYRK callsthe underlying level 2 symmetric rank-1 update SYR, which has no complex counter-part. In the complex SYRK we use the complex level 1 routine AXPY to performsymmetric rank-1 updates. Moreover, we have extended the use of local arrays to storethe conjugated transpose of subarrays and in general to facilitate the preparation ofsubproblems to �t the underlying routines well. Code sections that copy the conju-gated transpose of blocks to local arrays are implemented with inline code using the20

intrinsic functions CONJG/DCONJG, since no convenient BLAS routine exists. Thehermitian routines HEMM, HERK, and HER2K are developed from their symmetriccounterparts SYMM, SYRK, and SYR2K. They contain inline code and use localarrays more frequently. The intrinsic routines REAL/DBLE, CMPLX/DCMPLX, andCONJG/DCONJG, are used for appropriate data conversion. We assume the samede�nitions as in the original BLAS and LAPACK for all intrinsic functions. Noticethat the scalars � and � in HERK and � in HER2K are de�ned to be real and notcomplex.6 GEMM{Based Level 3 BLAS BenchmarkMany people have put a lot of e�ort into developing fast level 3 BLAS since the speci�-cation was published in 1990 [9, 10]. Some vendors provide highly optimized BLAS fortheir machines, see for example [2, 1, 16, 4, 24], while others provide optimized versionsof some or none of the routines. Vendor-independent groups have also developed tunedlevel 3 kernels for di�erent machines, for example [23, 17, 13, 6, 14], where some arebased on the GEMM-based concept [17, 6, 14].Today di�erent implementations with di�erent performance characteristics coexistand it is becoming more important to evaluate di�erent implementations thoroughly.The GEMM-based benchmark measures the performance of an arbitrary set oflevel 3 BLAS implementations, speci�ed by the user, and compares it with the perfor-mance of the GEMM-based level 3 BLAS model implementations, permanently includedin the benchmark. The level 3 BLAS implementations speci�ed by the user are linkedwith the benchmark program. When the benchmark executes, timings are performedaccording to speci�cations given in an input �le. The user may design her/his owntests or use the enclosed input �les (see [20]). The following output results are eligiblefor presentation:� A collected \mean value" statistic, calculated from the performance results of theuser-speci�ed level 3 BLAS routines for the problem con�gurations speci�ed inthe input �le.� Tables, that show measured performance results in Mops for each routine andchoice of parameters. Both the user-speci�ed and the GEMM-based level 3 BLASroutines are timed and their performances are compared.The tables are intended for program developers and others who require detailed per-formance information. It is possible to choose which of the following results that areto be presented:� Performance of the GEMM-based level 3 BLAS routines in Mops.� Performance of the user-speci�ed level 3 BLAS routines in Mops.� Performance of the user-speci�ed GEMM routine in Mops.� GEMM-e�ciency of the user-speci�ed level 3 BLAS routines.21

� GEMM-ratio.Results are presented for each routine and problem con�guration speci�ed in the input�le. Each item in the listing above corresponds to a column of the output tables (see [20]for more information). The last two items are de�ned as follows. The GEMM-e�ciencyis intended to illustrate how close to the \practical" peak performance a routine reaches,which is de�ned as the performance of the highly optimized GEMM routine speci�edby the user for the given problem con�guration. Notice that the \practical" peakperformance can be considerably lower than the maximal theoretical performance ofthe architecture considered. The performance of the user-speci�ed level 3 BLAS routineis compared with the performance of the user-speci�ed GEMM routine. Let Perf (x)denote the the performance in Mops of x. ThenGEMM-e�ciency = Perf (user-speci�ed level 3 routine)Perf (user-speci�ed GEMM routine) :The GEMM-e�ciency is measured using a choice of parameters for GEMM which, inthis respect, \corresponds" to the problem con�guration for the level 3 routine it iscompared with.The GEMM-ratio is the performance of a GEMM-based level 3 BLAS routine com-pared with the user-speci�ed implementation of the same routine, i.e.,GEMM-ratio = Perf (GEMM-based routine)Perf (user-speci�ed level 3 routine) :For a vendor-supplied level 3 BLAS library we would expect to have all GEMM-ratiosless than 1. However, this is not always the case (e.g., see results in [17, 18] and Section7). A value greater than one implies that the GEMM-based implementation is fasterthan the user-speci�ed implementation for the given problem con�guration.The collected \mean value" statistic provides a comprehensive performance result ofthe user-speci�ed routines that is easy to compare with other level 3 BLAS implemen-tations, and between di�erent machines. This result consists of a tuple (x; y), where xis the mean value of the GEMM-e�ciency and y is the mean value of the performanceof GEMM. The GEMM-e�ciency is measured for the routines and choice of param-eters that are speci�ed in the input �le and the performance of GEMM is measuredfor corresponding problem con�gurations. Provided that GEMM is well implemented,y represents the average \practical" peak performance of the target computer system,for the speci�ed problem con�gurations. The average performance of the remaninguser-speci�ed implementations can be approximated as x � 100 percent of the average\practical" peak performance y.To further standardize the result we have included a pair of \canonical" input �lescalled MARK01 and MARK02, which are explained in [20]. The user can also use\customized" input �les to obtain results for problem con�gurations of interest.7 Performance and Benchmark ResultsWe have tested our GEMM-based model implementations and performance evalua-tion benchmark on several platforms (vector as well as RISC-based), including Al-22

liant FX/2800, IBM 3090 VF, IBM RS6000, IBM SP2, Intel PARAGON, NEC SX-3,Parsytec GC/PowerPlus and Silicon Graphics (SGI) Indy. In this section we reportsome of these results, focusing on modern high-performance architectures. Sample per-formance results for the vector machine IBM 3090 VF can be found in [17, 18]. Thecorrectness of the GEMM-based model implementations were veri�ed by the testingprogram accompanying the original model implementations. The measured perfor-mance results presented here are all for double precision real data (64 bits oatingpoint numbers) and were obtained by using the GEMM-based performance evaluationbenchmark. The exception is the results for NEC SX-3 for which single precision realdata corresponds to 64 bits oating point arithmetic. Corresponding results for doubleprecision complex data are very similar.7.1 Performance results of the GEMM-based model implementationsIn the �rst set of tables we compare the performance of the GEMM-based routines withoptimized vendor-supplied level 3 BLAS.Tables 9 and 10 show GEMM-ratios for level 3 BLAS provided in the IBM ESSLlibrary [16]. The results are obtained on IBM RS6000 250 and IBM RS6000 530H (Table9) and on a thin and wide node, respectively, of the scalable IBM SP2 system (Table10). The underlying routines of the GEMM-based library are from ESSL, except for theresults on IBM RS6000, where we used our own developed Fortran 77 implementationof DGEMV (denoted POL-DGEMV in the tables). We decided to implement POL-DGEMV when we discovered that ESSL DGEMV did not perform satisfactory whenthe matrix already redsides in cache. We could not get level 3 performance fromthe computations as described in Section 4.4.1. The problem was an eight cycle haltoccurring in ESSL DGEMV whenever elements from a new line of data are loaded [2].POL-DGEMV is implemented with unrolling and data fetching in advance similar toalgorithmic prefetching as described in [2].The corresponding results for the Paragon Basic Math Library (lkmath) on a singlenode of the Intel PARAGON are displayed in Table 11. The underlying routines ofthe GEMM-based library are from lkmath, except for DGEMV for which we use anoptimized assembler version (denoted KD-DGEMV in the tables) [5]. This routinestores parts of A in cache memory and thereby makes it possible to attain level 3performance of consecutive GEMV operations where the A-block is kept �x but x isvaried (see Section 4.4.1).Table 12 shows similar results for the vendor-supplied level 3 BLAS (libblas) onSGI Indy equipped with MIPS R4000 and R4400 processors. The underlying routinesof the GEMM-based library used come from the SGI library libblas.The level 3 libraries provided by the vendors are considered to be highly optimizedand perform well on the respective target architectures. Our results clearly demonstratethat the portable GEMM-based model implementations are competetive with all threeand that they all can be improved further. When level 2 BLAS operations are imper-ative as in DSYRK, DTRMM and DTRSM, the corresponding GEMM-based routinesdo not fully match the best results. However, if the portability claim is dropped, inlinesource code implementing consecutive level 2 operations adapted to a speci�c target23

machine can resolve this problem (see Section 8). On the other hand, when no level 2BLAS operations are required as in DSYMM and DSYR2K even the best-performedvendor-manufactured routines can gain from the GEMM-concept.Extensions and modi�cations of high-performance architectures are introduced reg-ularly. Now and then, we also see new architectures appear on the market. Thesecircumstances show the bene�ts of our GEMM-approach, since we only require a fewroutines to be optimized for the target architecture (see Section 4.4). One example ofa recent scalable high-performace architecture is the Parsytec GC/PowerPlus, basedon the PowerPC microprocessor as computing nodes. Presently, Parsytec does noto�er an optimized level 3 BLAS for this architecture. Fortunately, there exists anoptimized DGEMM routine for the machine (developed by Bernhard Przywara anddenoted BP-DGEMM in the tables) which enabled us to try out the GEMM-basedmodel implementations. BP-DGEMM builds on the work in [8]. The remaining under-lying routines of the GEMM-based library are from the original level 1 and 2 BLASmodel implementations. In Table 13 we show the GEMM-ratios from a single node ofParsytec GC/PowerPlus. The comparison is here with the original level 3 BLAS modelimplementations from netlib. In the right-most part of Table 13 we show results wherethe original DGEMV has been replaced by POL-DGEMV. These clearly demonstratesthe bene�ts of using an optimized level 2 GEMV routine as well.One way to invoke parallelism in the GEMM-based level 3 BLAS is to use parallelversions of the underlying BLAS kernels. At minimum this implicit approach requiresa well-optimized parallel version of GEMM. In Table 14 we display multiprocessor per-formance results of the GEMM-based DSYR2K executing on an ALLIANT FX/2816(one-processor peak performance in double precision real arithmetic is 40 Mops), onlyusing a parallel DGEMM. We show the performance in Mops, the parallel speedup Spon p processors, and the parallel e�ciency Ep for DSYR2K. Moreover, we show the cor-responding Mops results for the parallel DGEMM routine from the ALLIANT librarylibalgebra, and the GEMM-e�ciency de�ned as the ratio between the performance inMops of DSYR2K and DGEMM for the same problem sizes. A number close to 1 indi-cates that DSYR2K performs as well as the parallel DGEMM. Our results demonstratethat the GEMM-based approach can also be appropriate for parallel processing (espe-cially in a shared memory environment). Notably, the parallel DGEMM in libalgebraand the GEMM-based level 3 BLAS make it possible to create a multiprocessor versionof LAPACK on ALLIANT FX/2800 systems.Finally, we are able to show some results of NEC SX-3, a top of the line high-performance computer. In Tables 15 and 16 we display one-processor performanceresults from NEC SX-3 Model 22. The theoretical peak performance of a single pro-cessor is 2.75 Gops. According to NEC System Laboratory, the performance resultsfrom initial testings of the GEMM-based model implementations on NEC SX-3 are veryimpressive, and they are currently implementing them on both NEC SX-3 and NECSX-4. 24

7.2 Benchmark resultsWe are collecting results from the GEMM-based level 3 BLAS performance evaluationbenchmark. In tables 17 and 18 we present some benchmark results for the architecturesconsidered in Section 7.1, using the canonical input �les DMARK01 and DMARK02.Columns 2{4 of the tables display the GEMM-e�ciency of the GEMM-based modelimplementations, the original Fortran model implementations [9, 10] and the vendor-supplied level 3 BLAS, respectively. Column 5 shows the mean value of the performance(measured in Mops) of the user-speci�ed DGEMM. For IBM RS6000 we provide twoGEMM-e�ciency numbers for the GEMM-based model implementations. One whereall underlying routines are from the ESSL library, and one where all routines exceptDGEMV (for which we use POL-DGEMV) are from ESSL. As before, all underlyingroutines for IBM SP2 are from ESSL. We also provide two numbers for the GEMM-based model implementations on Intel PARAGON. One where all underlying routinesare from the lkmath library. In the other case we replaced DGEMV in lkmath withKD-DGEMV. Presently, Parsytec does not provide an optimized level 3 BLAS library.For the benchmark results of the GEMM-based model implementations we use POL-DGEMV and BP-DGEMM. For SGI Indy all underlying routines are from the libraryprovided by the vendor.The GEMM-e�ciency is an overall performance number that measures how muchof the computations are performed in terms of GEMM operations. A number close toone means that the level 3 computations (speci�ed by the user in an input �le) areexecuted with almost the same performance as the user-speci�ed GEMM routine forsimilar problem con�gurations. Notice that it is not always possible to obtain a GEMM-e�ciency equal to one, since some operations by default cannot be expressed in termsof GEMM. From the benchmark results in tables 17 and 18 we see that the GEMM-based model implementations show a factor 2-3 times better performance (measuredin terms of the GEMM-e�ciency) than the original Fortran 77 model implementations[9, 10]. When collecting the results for the original Fortran 77 model implementationswe imposed all kinds of optimizations that were provided by the Fortran compilers. Weselected the ones that gave the best performance. Without these compiler optimiza-tions, the di�erences between the two Fortran 77 libraries would have been even larger.In this context, we also mention that we do not recommend any \fancy" optimizationags to be set when compiling the GEMM-based model implementations. (More onthis in Section 3.4 of the companion paper [20].) Moreover, we see that GEMM-basedmodel implementations also compete well with the vendor-manufactured level 3 BLASlibraries, and show in some cases even better results.8 Additional Techniques for E�ective Use of a MemoryHierarchyWith the model implementations we provide a high performance GEMM-based level 3BLAS library which is portable between di�erent memory hierarchy machines. If wefocus on a speci�c target architecture it might be possible to gain performance evenafter tuning the machine speci�c parameters of the model implementations. Here we25

discuss two common techniques that are useful for targeted optimization.Our motto is that the machine characteristics of a target architecture should asmuch as possible be hidden and utilized in the underlying BLAS. Therefore, we �rst ofall recommend further optimization e�orts to be focused on GEMMand the underlyinglevel 1 and 2 BLAS routines. The optimization techniques described in this section andSection 4 are likely to be applicable to the underlying routines.8.1 A second level of blockingThe model implementations have no speci�c blocking for a possible translation look-aside bu�er (TLB) or a second level cache. A TLB holds real addresses to a certainnumber of pages in the main memory. Usually the most recently touched pages. Ref-erences to pages in main memory whose addresses are missing in the TLB need to betranslated from virtual addresses to real addresses which may take considerable time.An additional level of blocking for a second level of cache memory or to make refer-ences local to the pages currently pointed to by the TLB, could possibly increase theperformance. TLB blocking is, for instance, implemented in the IBM ESSL library[1]. However, if TLB blocking is already implemented in the underlying GEMM rou-tine, then to implement TLB blocking in the GEMM-based routines would only causemarginal performance improvements.8.2 Inlining source code and register blockingEven if the underlying routines are highly optimized and we get level 3 performancefor some of the level 2 computations (see Section 4.4.1), it is sometimes possible toachieve even higher performance with well-tuned inline code than with multiple callsto level 2 BLAS. This is due to limitations in the BLAS operations themselves. Inlinecode makes it possible to improve the ratio between the number of computations andthe number of loads and stores. This is illustrated by the following example.Assume that we wish to multiply a block Aij of a matrix A with two vectors, xand y, which all reside in cache. We may accomplish the operation by calling GEMVtwice to perform two matrix-vector multiplications, Aijx and Aijy. On machines wherethe arithmetic instructions operate solely on data in registers, the elements of Aij arenecessarily loaded into registers twice, and the elements of x and y once for each vector.If we instead perform a matrix-matrix multiplication, Aij [x,y], where the vectors aretreated as a matrix with two columns and if there are su�cient number of registersavailable, it is only necessary to load the elements of Aij into registers once. Theelements of x and y still only need to be loaded once. The matrix multiply operationcould be accomplished by a single call to GEMM or by using e�cient inline code. Now,assume that there are more than two vectors involved and that the vectors have di�erentlengths. Perhaps they constitute a triangular block (as in TRMM and TRSM). Inthis case, using GEMM would be a poor solution since GEMM only operates onrectangular blocks. Therefore, inline code is appropriate in order to avoid loading theelements of A twice.Since the number of registers usually are not su�cient to keep the entire operands,26

it is necessary to use some sort of register blocking to minimize the number of loadsand stores and attain e�cient register reuse. One way to implement register blockingis similar to cache blocking but in this case the blocks are small enough to �t in theregisters. At the source code level this may be implemented with a technique called loopunrolling [1]. The technique unwinds some of the iterations in a loop and perform themin a single iteration. Loop unrolling can often be applied to several nested loops and thetechnique can operate on di�erent matrix dimensions simultaneously. The statementsinside the innermost loop form a tiny blocked subproblem, where the reusable data �tin the registers and the amount of non-reusable data is minimized. Additionally, theremust be some \clean-up" code for the remaining iterations that are not handled by theunrolled code.For the GEMM-based routines, it may be possible to gain some performance byreplacing calls to the level 1 and 2 BLAS with proper inline source code. However, itwould not be possible to maintain high performance across a wide range of processors.Vector and RISC processors, for example, require quite di�erent source code to performwell. Moreover, the routines would become much more dependent on di�erent compil-ers. Even for the limited class of RISC-based machines, it is not su�cient with a singleunrolled Fortran code. Our tests show that the GEMM-based routines often reachbetter performance with calls to vendor-supplied level 2 routines than with commonportable inline code. One explanation can be found in vendor-supplied level 2 routinesthat also use other more or less machine- and/or compiler-speci�c techniques to gainperformance. For example, the IBM ESSL library uses a technique called algorithmicprefetching [2], in order to continuously feed the processor with useful data and avoiddelays caused by memory accesses.9 ConclusionsThe objective of the GEMM-based approach is to express the structured matrix mul-tiplications problems handled by the level 3 BLAS (including triangular solve withmultiple right hand sides) in terms of general matrix multiply and add (GEMM) oper-ations and a small amount of level 2 and level 1 operations. Since the GEMM operationdelivers the best performance (measured in Mops) of all level 1, level 2 and level 3BLAS operations, the goal is to perform as much as possible of the computations interms of GEMM. This is e�ected by appropriate partitionings of the matrices involvedin the level 3 operation. If the underlying routines, i.e., GEMM and some level 1 andlevel 2 BLAS kernels are e�ciently optimized for the target machine, the GEMM-basedlevel 3 BLAS model implementations provide:� E�cient use of vector instructions (compound instructions, chaining, etc.), throughGEMM, level 1 and level 2 BLAS routines.� Register and vector register reuse, through GEMM and level 2 BLAS routines.� E�cient cache reuse, through internal blocking, use of local arrays, and throughGEMM. 27

� Column-wise referencing, for problems that would cause severe performance degra-dation with row-wise referencing (except for reference patterns in underlyingBLAS routines).� Parallelism, through automatic parallelization by a compiler, or by using parallelunderlying BLAS kernels.� A level 3 BLAS library based on unconventional underlying matrix multiply al-gorithms like, for example, Strassen's or Winograd's algorithms (e.g., see [25, 26,15, 11]).We have also contributed with the GEMM-based level 3 BLAS performance eval-uation benchmark. This program package facilitates the evaluation and comparisonbetween di�erent level 3 BLAS libraries. The benchmark compares a user-speci�edlevel 3 BLAS library (e.g., a vendor-supplied library) with the GEMM-based modelimplementations. Besides performance results (measured in Mops) the benchmarkevaluates the user-speci�ed library in terms of GEMM-ratios and the GEMM-e�ciency.The GEMM-e�ciency measures how much of the computations are performed in termsof GEMM operations. A number close to one means that almost all computations areGEMM operations. The GEMM-ratio measures the relative performance of a user-speci�ed routine with resepct to the corresponding GEMM-based routine.Performance results from extensive testings show that the GEMM-based modelimplementations in Fortran 77 is a high performance level 3 BLAS library that isportable over a wide spectrum of di�erent memory hierarchy architectures. The modelimplementatons are competetive with vendor-manufactured level 3 BLAS libraries, andin some cases even better. Perhaps, more importantly, the GEMM-based approachonly requires a few underlying routines to be optimized when new or extensions andmodi�cations of high-performance architectures are introduced on the market.To conclude, our GEMM-based concept is the correct level of abstraction for de-veloping a level 3 BLAS library which is both portable over a spectrum of memoryhierarchy arctitectures and can deliver near to practical peak performance.AcknowledgementsWe are grateful to Ramesh Agarwal and Fred Gustavson, IBM Thomas J. WatsonResearch Center, Yorktown Heights, for fruitful discussions relating to this work. Weare also grateful to Bernhard Przywara, IWRF, University of Heidelberg for providingus with an optimized DGEMM routine for the Parsytec GC/PowerPlus, and NaokiIwata, NEC Systems Laboratory Inc. for installing the model implementations andrunning the benchmark on the NEC SX-3.The other performance results reported have been performed at the Parallel Com-puting Laboratory, Bergen University, Norway (Intel Paragon), PDC, Royal Institute ofTechnology (IBM SP2), NSC, Link�oping University (Parsytec GC/PowerPlus), Ume�aUniversity (Alliant FX/2800, IBM RS6000, Silicon Graphics Indy) and SupercomputerCenter North (IBM 3090VF). 28

Financial support has been received from the Swedish National Board of Industrialand Technical Development under grant NUTEK 89-02578P.References[1] R.C. Agarwal, F.G. Gustavson, and Z. Zubair. Exploting functional parallelism ofPOWER2 to design high-performance numerical algorithms. IBM J. Res. Develop.,38(5):563{576, September 1994.[2] R.C. Agarwal, F.G. Gustavson, and Z. Zubair. Improving performance of linearalgebra algorithms for dense matrices using algorithmic prefetching. IBM J. Res.Develop., 38(3):265{275, May 1994.[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Green-baum, S. Hammarling, A. McKenny, S. Ostrouchov, and D. Sorensen. LAPACKUsers Guide. SIAM Publications, 1992. ISBN 0{89871{294{7.[4] Intel Corporation. Paragon Basic Math Library Performance Report. TechnicalReport 312936-001, Intel Supercomputer Division, Beaverton, Oregon, October1993.[5] K. Dackland. Design Issues and the Performance of Level 1 and Level 2 Kernelson Intel i860-based Platforms. Report UMINF-95.xx, Department of ComputingScience, Ume�a University, S-901 87 Ume�a, Sweden, 1995. To appear.[6] M. J. Dayde, I. S. Du�, and A. Petitet. \A Parallel Block Implementation of Level-3 BLAS for MIMD Vector Processors". ACM Trans. Math. Softw., 20(2):178{193,June 1994.[7] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An Extended Set ofFortran Basic Linear Algebra Subprograms. ACM Trans. Math. Software, 14:1{17,18{32, 1988.[8] J. Dongarra, P. Mayes, and G. Radicati di Brozolo. The IBM RISC System 6000and Linear Algebra Operations. Supercomputer, 8(4):15{30, 1991.[9] J. J. Dongarra, J. DuCroz, I. Du�, and S. Hammarling. A Set of Level 3 BasicLinear Algebra Subprograms. ACM Trans. Math. Software, 16(1):1{17, March1990.[10] J. J. Dongarra, J. DuCroz, I. Du�, and S. Hammarling. Algorithm 679: A Setof Level 3 Basic Linear Algebra Subprograms: Model Implementation and TestPrograms. ACM Trans. Math. Software, 16(1):18{28, March 1990.[11] C.C. Douglas, M. Heroux, G. Slishman, and R.M. Smith. GEMMV: A PortableLevel 3 BLAS Winograd Variant of Strassen's Matrix-Matrix Multiply Algorithm.J. Comp. Physics, 110:1{10, 1994. 29

[12] K. Gallivan, W. Jalby, U. Meier, and A.H. Sameh. Impact of Hierarchical MemorySystems on Linear Algebra Algorithm Design. Int. J. Supercomput. Appl., 2:12{48,1988.[13] H. Grasemann. Optimization of Level 3 BLAS for SIEMENS VP Systems. Tech.rep. No. 38.89, University of Karlsruhe, Computer Center, September 1989.[14] M. Green. High Performance Level 3 BLAS. A KSR Implementation. Workingnote, Department of Mathematics, University of Manchester, Manchester, M139PL, UK, April 1994.[15] N.J. Higham. Exploiting Fast Matrix Multiplication Within the Level 3 BLAS.ACM Trans. Math. Software, 16(4):352{368, 1990.[16] IBM. Engineering and Scienti�c Subroutine Library, Guide and Reference, Jan-uary 1994. SC23{0526{01.[17] B. K�agstr�om, P. Ling, and C. Van Loan. High Performance GEMM-Based Level 3BLAS: Sample Routines for Double Precision Real Data. In M. Durand andF. El Dabaghi, editors, High Performance Computing II, pages 269{281, Ams-terdam, 1991. North{Holland.[18] B. K�agstr�om, P. Ling, and C. Van Loan. Portable High Performance GEMM{Based Level 3 BLAS. In R.F. Sincovec et al., editors, Parallel Processing forScienti�c Computing, pages 339{346, Philadelphia, 1993. SIAM Publications.[19] B. K�agstr�om, P. Ling, and C. Van Loan. GEMM-Based Level 3 BLAS: Algorithmsfor the Model Implementations. Report UMINF-94.13, Department of ComputingScience, Ume�a University, S-901 87 Ume�a, Sweden, December 1994.[20] B. K�agstr�om, P. Ling, and C. Van Loan. ALGORITHM XYZ. GEMM-BasedLevel 3 BLAS: High-Performance Model Implementations and Performance Eval-uation Benchmark. Report UMINF-95.19, Department of Computing Science,Ume�a University, S-901 87 Ume�a, Sweden, 1995. Submitted to ACM Trans. Math.Software.[21] B. K�agstr�om and C. Van Loan. GEMM-Based Level 3 BLAS. Technical Re-port CTC91TR47, Department of Computer Science, Cornell University, Decem-ber 1989.[22] C. Lawson, R. Hanson, R. Kincaid, and F. Krogh. Basic Linear Algebra Subpro-grams for Fortran Usage. ACM Trans. Math. Software, 5:308{323, 1979.[23] P. Ling. A Set of High Performance Level-3 BLAS Structured and Tuned for theIBM 3090 VF and Implemented in Fortran 77. The Journal of Supercomputing,7(3):323{355, September 1993.[24] Q. Sheik, V. Phuong, Y. Chao, and M. Merchant. Implementation of the Level 2and 3 BLAS on the CRAY Y-MP and the CRAY-2. The Journal of Supercomput-ing, 5(4):291{305, February 1992. 30

[25] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354{356, 1969.[26] S. Winograd. Some Remarks on Fast Multiplication of Polynomials. In J. F.Traub, editor, Complexity of Sequential and Parallel Numerical Algorithms, page181, New York, 1973. Academic Press.

31

Table 9: GEMM-ratios for the IBM ESSL library on IBM RS/6000 250 and IBMRS/6000 530H. Underlying routines: ESSL and POL-DGEMV.Routine Dimensions IBM RS/6000 250 IBM RS/6000 530HDSYMM M N SIDE, UPLO SIDE, UPLO'L','U' 'L','L' 'R','U' 'R','L' 'L','U' 'L','L' 'R','U' 'R','L'32 256 1.00 1.00 0.98 0.97 1.00 1.00 1.01 1.0164 256 0.99 0.99 0.98 0.98 1.00 1.00 1.00 1.0096 256 0.96 0.95 0.98 0.98 1.09 1.08 0.99 0.99256 32 0.90 0.89 1.00 1.00 0.97 0.96 1.00 1.00256 64 0.94 0.94 1.01 1.00 0.99 0.99 1.00 1.00256 96 0.96 0.96 1.02 1.05 1.00 1.00 1.00 1.00256 256 0.98 0.98 1.02 1.02 1.01 1.01 0.99 0.99DSYRK N K UPLO, TRANS UPLO, TRANS'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'32 256 0.74 0.78 0.74 0.79 0.58 0.55 0.58 0.5464 256 0.64 0.71 0.64 0.71 0.64 0.65 0.63 0.6496 256 0.73 0.81 0.72 0.81 0.68 0.72 0.67 0.71256 32 0.80 0.83 0.80 0.83 0.76 0.79 0.76 0.78256 64 0.83 0.82 0.82 0.81 0.81 0.84 0.82 0.84256 96 0.80 0.87 0.79 0.86 0.79 0.82 0.78 0.82256 256 0.79 0.85 0.79 0.85 0.81 0.84 0.80 0.84DSYR2K N K UPLO, TRANS UPLO, TRANS'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'32 256 0.98 0.98 0.97 0.98 0.96 0.96 0.96 0.9664 256 1.06 1.08 1.06 1.08 1.06 1.06 1.07 1.0696 256 1.02 1.00 1.01 1.01 1.03 1.01 1.02 1.01256 32 0.84 0.86 0.83 0.86 0.92 0.94 0.92 0.94256 64 0.91 0.94 0.90 0.93 1.01 0.96 1.02 0.96256 96 0.93 0.98 0.93 0.97 1.00 0.97 1.00 0.97256 256 1.00 0.98 1.00 0.97 1.02 1.00 1.02 1.00DTRMM M N SIDE, TRANS SIDE, TRANS'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'32 256 0.64 0.67 0.88 0.92 0.69 0.70 0.83 0.8464 256 0.64 0.67 0.88 0.88 0.71 0.72 0.89 0.8896 256 0.76 0.79 0.88 0.89 0.74 0.76 0.87 0.87256 32 0.88 0.92 0.74 0.69 0.82 0.87 0.69 0.68256 64 0.87 0.89 0.71 0.72 0.88 0.90 0.77 0.75256 96 0.86 0.89 0.86 0.86 0.86 0.88 0.80 0.78256 256 0.87 0.88 0.89 0.88 0.88 0.89 0.89 0.88DTRSM M N SIDE, TRANS SIDE, TRANS'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'32 256 0.59 0.61 0.84 0.88 0.62 0.66 0.81 0.8164 256 0.61 0.63 0.84 0.85 0.65 0.69 0.87 0.8696 256 0.73 0.76 0.84 0.85 0.69 0.73 0.84 0.84256 32 0.85 0.90 0.62 0.63 0.79 0.87 0.65 0.65256 64 0.85 0.88 0.63 0.66 0.85 0.89 0.72 0.70256 96 0.85 0.87 0.78 0.80 0.83 0.86 0.76 0.75256 256 0.86 0.86 0.84 0.85 0.85 0.87 0.86 0.8532

Table 10: GEMM-ratios for the IBM ESSL library on IBM SP2 thin node and widenode. Underlying routines: ESSL.Routine Dimensions IBM SP2 thin node IBM SP2 wide nodeDSYMM M N SIDE, UPLO SIDE, UPLO'L','U' 'L','L' 'R','U' 'R','L' 'L','U' 'L','L' 'R','U' 'R','L'32 256 0.99 0.99 0.66 0.67 0.99 0.99 0.79 0.7864 256 0.96 0.96 0.82 0.83 0.99 0.99 0.89 0.8996 256 0.95 0.95 0.88 0.88 1.04 1.02 0.92 0.92256 32 0.67 0.67 0.96 0.99 0.74 0.73 0.99 0.99256 64 0.79 0.79 0.99 0.96 0.85 0.85 0.99 0.99256 96 0.85 0.86 0.96 0.94 0.91 0.90 0.99 0.99256 256 0.95 0.95 0.96 0.96 0.98 0.98 0.97 0.97DSYRK N K UPLO, TRANS UPLO, TRANS'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'32 256 1.07 1.22 1.10 1.21 0.42 0.38 0.41 0.3764 256 1.22 1.30 1.20 1.28 0.51 0.49 0.50 0.4996 256 0.85 0.87 0.82 0.83 0.58 0.57 0.58 0.57256 32 1.03 1.03 1.02 1.02 0.71 0.72 0.71 0.71256 64 1.06 1.04 1.04 1.05 0.74 0.75 0.75 0.75256 96 0.86 0.84 0.84 0.82 0.76 0.76 0.76 0.77256 256 0.89 0.87 0.87 0.86 0.76 0.76 0.76 0.76DSYR2K N K UPLO, TRANS UPLO, TRANS'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'32 256 0.99 1.00 1.01 0.99 0.96 0.96 0.96 0.9564 256 0.99 0.99 0.99 0.99 1.07 1.05 1.07 1.0596 256 0.99 0.98 0.98 0.98 1.02 0.99 1.02 0.99256 32 0.76 0.74 0.77 0.74 0.72 0.74 0.71 0.73256 64 0.87 0.84 0.87 0.84 0.89 0.84 0.88 0.84256 96 0.92 0.88 0.92 0.88 0.91 0.87 0.90 0.87256 256 1.01 0.96 0.92 0.96 1.00 0.96 1.00 0.96DTRMM M N SIDE, TRANS SIDE, TRANS'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'32 256 1.18 1.12 0.98 0.93 0.61 0.63 0.61 0.6164 256 1.13 1.09 1.17 1.15 0.64 0.65 0.82 0.8196 256 0.84 0.82 1.07 1.07 0.70 0.72 0.76 0.75256 32 0.92 1.01 1.15 1.15 0.56 0.59 0.68 0.68256 64 1.06 1.11 1.15 1.12 0.76 0.79 0.70 0.71256 96 0.98 1.02 0.84 0.84 0.71 0.73 0.76 0.76256 256 0.94 0.93 0.96 0.96 0.82 0.83 0.86 0.84DTRSM M N SIDE, TRANS SIDE, TRANS'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'32 256 1.13 1.09 0.97 1.00 0.59 0.61 0.61 0.6064 256 1.12 1.07 1.14 1.23 0.62 0.64 0.82 0.8096 256 0.84 0.82 1.07 1.16 0.67 0.72 0.76 0.75256 32 1.04 1.11 1.14 1.14 0.57 0.61 0.68 0.69256 64 1.19 1.21 1.08 1.10 0.76 0.79 0.70 0.71256 96 1.11 1.11 0.82 0.84 0.71 0.73 0.75 0.75256 256 0.93 0.92 0.94 0.95 0.80 0.82 0.85 0.8433

Table 11: GEMM-ratios on a single node of the Intel PARAGON. Underlying routines:Paragon Basic Math Library and KD-GEMV.Routine Dimensions Intel PARAGONDSYMM M N SIDE, UPLO'L','U' 'L','L' 'R','U' 'R','L'32 256 1.84 1.86 1.12 1.1364 256 1.54 1.56 1.09 1.0996 256 1.39 1.40 1.08 1.08256 32 1.05 1.05 1.24 1.26256 64 1.10 1.10 1.16 1.16256 96 1.12 1.12 1.11 1.11256 256 1.12 1.12 1.06 1.06DSYRK N K UPLO, TRANS'U','N' 'U','T' 'L','N' 'L','T'32 256 1.16 0.61 1.17 0.6264 256 0.99 0.70 1.04 0.7196 256 0.99 0.73 1.07 0.75256 32 1.04 1.08 1.09 1.12256 64 0.98 0.91 1.56 0.97256 96 0.99 0.89 1.38 0.93256 256 0.99 0.87 1.15 0.88DSYR2K N K UPLO, TRANS'U','N' 'U','T' 'L','N' 'L','T'32 256 2.86 1.33 2.90 1.3364 256 2.04 1.15 2.13 1.1696 256 1.72 1.08 1.84 1.10256 32 1.11 0.98 2.30 1.08256 64 1.21 1.00 1.87 1.06256 96 1.24 1.01 1.69 1.06256 256 1.26 1.03 1.44 1.04DTRMM M N SIDE, TRANS'L','N' 'L','T' 'R','N' 'R','T'32 256 0.76 0.98 1.08 1.2864 256 0.69 0.89 0.98 1.0796 256 0.72 0.86 0.93 0.99256 32 0.80 0.88 0.60 0.61256 64 0.81 0.91 0.69 0.68256 96 0.80 0.91 0.75 0.74256 256 0.80 0.92 0.89 0.90DTRSM M N SIDE, TRANS'L','N' 'L','T' 'R','N' 'R','T'32 256 0.77 0.76 1.12 1.2864 256 0.71 0.78 0.99 1.0796 256 0.72 0.78 0.93 0.98256 32 0.79 0.85 0.61 0.61256 64 0.80 0.87 0.69 0.67256 96 0.79 0.87 0.74 0.73256 256 0.79 0.88 0.88 0.8934

Table 12: GEMM-ratios for machine speci�c libraries on SGI Indy with MIPS R4000and R4400 processor. Underlying routines: SGI library libblas.Routine Dimensions SGI Indy (R4000) SGI Indy (R4400)DSYMM M N SIDE, UPLO SIDE, UPLO'L','U' 'L','L' 'R','U' 'R','L' 'L','U' 'L','L' 'R','U' 'R','L'32 256 1.21 1.24 1.10 1.06 1.27 1.29 1.06 1.0764 256 1.25 1.28 1.14 1.16 1.27 1.31 1.09 1.1196 256 1.26 1.30 1.16 1.18 1.26 1.31 1.12 1.13256 32 1.01 1.03 1.44 1.45 1.02 0.99 1.39 1.35256 64 1.14 1.13 1.34 1.32 1.16 1.15 1.29 1.29256 96 1.16 1.18 1.30 1.28 1.18 1.18 1.27 1.26256 256 1.20 1.22 1.21 1.23 1.22 1.24 1.19 1.20DSYRK N K UPLO, TRANS UPLO, TRANS'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'32 256 1.42 1.43 1.34 1.43 1.46 1.55 1.45 1.4964 256 1.24 1.23 1.20 1.23 1.24 1.26 1.25 1.2796 256 1.16 1.16 1.14 1.17 1.21 1.23 1.20 1.23256 32 1.12 1.01 1.11 0.96 1.13 1.07 1.12 1.06256 64 1.06 1.05 1.05 1.08 1.12 1.11 1.11 1.11256 96 1.05 1.09 1.03 1.08 1.12 1.11 1.11 1.11256 256 1.03 1.08 1.01 1.08 1.10 1.12 1.10 1.11DSYR2K N K UPLO, TRANS UPLO, TRANS'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'32 256 1.83 1.89 1.82 1.86 1.69 1.88 1.69 1.8764 256 1.54 1.57 1.50 1.56 1.43 1.58 1.44 1.5996 256 1.41 1.41 1.41 1.42 1.36 1.44 1.36 1.44256 32 1.11 1.06 1.11 1.04 1.09 1.05 1.09 1.04256 64 1.15 1.13 1.15 1.12 1.15 1.15 1.15 1.15256 96 1.17 1.15 1.18 1.16 1.17 1.18 1.17 1.18256 256 1.17 1.20 1.23 1.21 1.21 1.22 1.21 1.22DTRMM M N SIDE, TRANS SIDE, TRANS'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'32 256 0.68 0.69 0.96 0.95 0.78 0.79 0.95 0.9464 256 0.81 0.76 0.99 0.96 0.88 0.85 0.94 0.9496 256 0.81 0.80 0.99 0.98 0.92 0.86 0.96 0.97256 32 0.89 0.86 1.02 0.98 0.95 0.91 0.95 0.81256 64 0.85 0.85 1.01 1.00 0.93 0.90 0.95 0.88256 96 0.86 0.87 1.01 1.00 0.94 0.91 0.98 0.93256 256 0.85 0.85 1.00 1.00 0.94 0.90 0.99 0.98DTRSM M N SIDE, TRANS SIDE, TRANS'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'32 256 0.77 0.85 1.02 0.96 0.90 0.91 0.91 0.8864 256 0.86 0.88 1.01 0.95 0.96 0.95 0.92 0.8996 256 0.88 0.89 1.00 0.95 0.98 0.93 0.96 0.91256 32 0.91 0.91 1.01 0.99 0.97 0.91 1.03 0.97256 64 0.87 0.91 1.01 1.00 0.94 0.91 1.00 0.97256 96 0.88 0.92 0.99 0.98 0.96 0.92 1.01 0.94256 256 0.86 0.88 0.99 0.94 0.96 0.90 0.99 0.9235

Table 13: GEMM-ratios on a single node of the Parsytec GC/PP for the original level3 BLAS model implementations from netlib. Underlying routines: BP-DGEMM andoriginal netlib BLAS (second column), BP-DGEMM, POL-DGEMV and original netlibBLAS (third column).Routine Dimensions Parsytec (DGEMV) Parsytec (POL-DGEMV)DSYMM M N SIDE, UPLO SIDE, UPLO'L','U' 'L','L' 'R','U' 'R','L' 'L','U' 'L','L' 'R','U' 'R','L'32 256 1.98 1.99 4.62 4.64 2.09 2.10 4.57 4.5764 256 2.05 2.06 4.23 4.22 2.06 2.06 4.21 4.1896 256 2.84 2.82 4.17 4.15 2.85 2.83 4.14 4.12256 32 2.26 2.25 3.20 3.20 2.27 2.26 3.02 3.01256 64 2.56 2.54 3.52 3.51 2.58 2.57 3.50 3.50256 96 2.68 2.67 3.85 3.85 2.70 2.69 3.82 3.82256 256 2.80 2.80 4.02 4.01 2.82 2.82 3.98 3.97DSYRK N K UPLO, TRANS UPLO, TRANS'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'32 256 1.24 0.76 1.27 0.77 1.93 1.15 1.98 1.1264 256 1.57 1.08 1.62 1.11 2.20 1.52 2.31 1.4596 256 1.81 1.33 1.85 1.36 2.40 1.79 2.49 1.79256 32 2.24 2.04 2.29 2.08 2.58 2.38 2.71 2.38256 64 2.41 1.98 2.48 2.04 2.75 2.30 2.88 2.27256 96 2.55 2.05 2.61 2.11 2.97 2.42 3.09 2.41256 256 2.58 1.98 2.63 2.05 2.99 2.32 3.11 2.34DSYR2K N K UPLO, TRANS UPLO, TRANS'U','N' 'U','T' 'L','N' 'L','T' 'U','N' 'U','T' 'L','N' 'L','T'32 256 4.17 2.33 4.12 2.36 4.14 2.41 4.07 2.3664 256 3.34 2.37 3.31 2.41 3.31 2.45 3.28 2.4196 256 3.19 2.46 3.16 2.51 3.17 2.54 3.15 2.51256 32 2.26 2.72 2.26 2.76 2.26 2.79 2.27 2.76256 64 2.48 2.59 2.47 2.63 2.46 2.67 2.48 2.63256 96 2.64 2.68 2.64 2.71 2.62 2.76 2.63 2.72256 256 2.84 2.57 2.84 2.63 2.82 2.66 2.83 2.64DTRMM M N SIDE, TRANS SIDE, TRANS'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'32 256 0.87 0.65 2.80 2.50 1.10 0.86 3.16 2.7464 256 1.15 0.89 2.69 2.59 1.43 1.13 3.01 2.9096 256 1.87 1.53 2.73 2.70 2.37 1.98 3.08 3.03256 32 2.54 2.15 1.10 1.12 2.84 2.45 1.37 1.42256 64 2.72 2.26 1.48 1.51 3.06 2.59 1.90 1.93256 96 2.85 2.36 1.79 1.80 3.23 2.73 2.28 2.29256 256 2.92 2.40 2.66 2.69 3.32 2.76 3.00 3.03DTRSM M N SIDE, TRANS SIDE, TRANS'L','N' 'L','T' 'R','N' 'R','T' 'L','N' 'L','T' 'R','N' 'R','T'32 256 1.10 0.74 2.73 2.46 1.41 0.91 3.07 2.6764 256 1.37 0.95 2.60 2.53 1.69 1.19 2.89 2.7996 256 2.09 1.55 2.64 2.63 2.63 1.94 2.95 2.91256 32 2.78 2.14 0.99 0.98 3.11 2.44 1.21 1.25256 64 2.97 2.25 1.38 1.40 3.34 2.56 1.70 1.72256 96 3.11 2.34 1.68 1.69 3.52 2.68 2.08 2.09256 256 3.18 2.38 2.56 2.61 3.61 2.72 2.87 2.9036

Table 14: Multiprocessor performance of the GEMM-Based DSYR2K on the ALLIANTFX/2816. Dimensions DSYR2K DGEMMK N p Mops Sp Ep Mops EGEMM512 512 1 34.76 1.0 1.0 36.81 0.942 62.50 1.8 0.9 70.48 0.824 106.11 3.0 0.8 129.93 0.826 129.81 3.7 0.6 179.13 0.7332 512 1 25.72 1.0 1.0 28.11 0.922 38.89 1.5 0.8 51.82 0.754 53.03 2.1 0.5 87.93 0.606 55.60 2.2 0.4 108.98 0.51512 32 1 23.29 1.0 1.0 28.11 0.922 33.82 1.5 0.7 33.70 1.004 43.30 1.9 0.5 40.76 1.066 42.67 1.8 0.3 42.41 1.00128 128 1 27.71 1.0 1.0 32.99 0.842 43.51 1.6 0.8 58.94 0.734 61.38 2.2 0.6 97.44 0.636 64.12 2.3 0.4 126.88 0.50Table 15: Performance in Mops for NEC SX-3. Leading dimension of arrays is 512.Dimensions SSYMM SSYRK SSYR2K STRMM STRSMM(N) N(K) 'L','U' 'U','N' 'U','N' 'L','N' 'L','N'16 512 266.3 85.3 105.5 142.4 125.332 512 643.9 192.7 207.3 406.3 368.464 512 1416.8 409.5 410.6 864.1 808.4128 256 2229.8 824.1 813.1 1101.0 1236.7512 16 716.9 1090.1 1254.6 652.3 536.1512 32 1109.1 767.2 729.7 935.4 913.1512 64 1527.6 817.6 779.9 1194.2 1404.6512 128 1883.0 825.3 803.2 1384.7 1880.0512 512 2284.5 829.3 825.0 1428.5 2008.937

Table 16: Performance in Mops for NEC SX-3. Leading dimension of arrays are 530.Dimensions SSYMM SSYRK SSYR2K STRMM STRSMM(N) N(K) 'L','U' 'U','N' 'U','N' 'L','N' 'L','N'16 512 271.5 85.0 335.5 142.0 124.832 512 646.6 192.0 711.8 405.4 366.264 512 1417.0 409.3 1463.2 862.2 807.6128 256 2234.2 824.0 2251.7 1102.9 1240.5512 16 1048.5 1107.7 1279.8 655.2 533.8512 32 1468.0 1383.8 1696.8 948.1 908.0512 64 1838.1 1579.4 2031.2 1210.2 1393.6512 128 2106.0 1607.7 2210.8 1392.9 1865.7512 512 2363.3 1628.4 2373.0 1429.5 1986.9
Table 17: Benchmark results for canonical input �le DMARK01Machines GEMM- Original Vendor DGEMM Commentsbased netlib supplied MopsIBM RS6K 530H 0.73 0.34 0.92 51.2 ESSL underlying routinesIBM RS6K 530H 0.78 0.34 0.92 51.2 ESSL under. except POL DGEMVIBM RS6K 250 0.77 0.30 0.91 42.2 ESSL underlying routinesIBM RS6K 250 0.80 0.30 0.91 42.2 ESSL under. except POL DGEMVIBM SP2 0.67 0.27 0.87 163.8 single thin nodeIBM SP2 0.70 0.33 0.90 197.6 single wide nodeIntel PARAGON 0.72 0.20 0.71 38.5 Underlying from -lkmathIntel PARAGON 0.75 0.20 0.71 38.5 U. f. -lkmath except KD DGEMVParsytec GC/PP 0.75 0.32 | 46.5 1 proc. POL DGEMV, B.P. DGEMMSGI Indy 0.82 0.39 0.80 26.0 R4000 processorSGI Indy 0.86 0.38 0.81 40.5 R4400 processor38

Table 18: Benchmark results for canonical input �le DMARK02Machines GEMM- Original Vendor DGEMM Commentsbased netlib supplied MopsIBM RS6K 530H 0.83 0.31 0.95 58.8 ESSL underlying routinesIBM RS6K 530H 0.87 0.31 0.95 58.8 ESSL under. except POL DGEMVIBM RS6K 250 0.81 0.28 0.95 48.8 ESSL underlying routinesIBM RS6K 250 0.85 0.28 0.95 48.8 ESSL under. except POL DGEMVIBM SP2 0.74 0.22 0.92 197.1 single thin nodeIBM SP2 0.83 0.30 0.95 227.6 single wide nodeIntel PARAGON 0.79 0.18 0.84 44.6 Underlying from -lkmathIntel PARAGON 0.82 0.18 0.84 44.6 U. f. -lkmath except KD DGEMVParsytec GC/PP 0.81 0.29 | 53.1 1 proc. POL DGEMV, B.P. DGEMMSGI Indy 0.81 0.34 0.78 30.9 R4000 processorSGI Indy 0.85 0.33 0.79 48.1 R4400 processor
39

