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Abstract

This dissertation considers algorithms for determining a few of the largest singular
values and corresponding vectors of large sparse matrices by solving equivalent eigen-
value problems. The procedure is based on a method by Golub and Kent for estimating
eigenvalues of equvalent elgensystems using modified moments. The asynchronicity in
the computations of moments and eigenval ues makes this method attractive for paralel
implementations on a network of workstations. However, one potential drawback to
thismethod is that there is no obvious relationship between the modified moments and
the eigenvectors. The lack of eigenvector approximations makes deflation schemes
difficult, and no robust implementation of the Golub/Kent scheme are currently used
in practical applications. Methods to approximate both eigenvalues and eigenvectors
using the theory of modified momentsin conjunction with the Chebyshev semi-iterative
method are described in this disseratation. Deflation issues and implicit error approxi-
mation methods are addressed to present a complete algorithm. The performance of an
ANSI-Cimplementation of this scheme on anetwork of UNIX workstationsusing PVM
is presented. The portability of thisimplementation is demonstrated through results on
a 256 processor Cray T3D massively-parallel computer.
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Chapter 1

| ntroduction

The singular value decomposition (SVD) is commonly used in the solution of uncon-
strained linear least squares problems, matrix rank estimation, and canonical corelation
analysis. In applications such as information retrieval, seismic reflection tomography
and real-time signal processing, the SVD of large, sparse input matricesisrequired in
the shortest possible time. Given the growing availability of multiprocessor computer
systems, there has been great interest in the devel opment of efficient implementations of
the singular value decomposition that can utilizethe parallel processing power available
in multiprocessor environments provided through distributed computing and massively-
parallel platforms. The goa of this dissertation is to describe and develop a parallel
algorithm for computing the SVD of unstructured, sparse matrices. First, afew of the
fundamental characterizations of the SVD are reviewed.

Given an m x n matrix A, where m > n and rank(A4) = r, the singular value
decomposition of A, denoted by SVD(A), is defined as

A=UzVT, (1.1)

where UTU = 1,,, VIV = I,,and T = diag(cy,- -+, 0,),0; > 0for 1 <i < r,o; =
Oforj > r + 1. Thefirst » columns of the orthogonal matrices U and V' define the
orthonormal eigenvectors associated with the - nonzero eigenvalues of AA™ and A™ A,
respectively. U and V' arereferred to as the left and right singular vectors, respectively.
The singular values of A are defined as the diagonal elements of Z which are the non-
negative square roots of the n eigenvalues of AA”. A discussion of the properties of
the SVD, and its applications can be found in the literature (e.g., [GL89], [Ste73]).

The SVD can revea important information about the structure of a matrix, asillus-
trated by the following two well-known theorems [Ber92].

Theorem 1.1 Let the SVD of A be given by Equation (1.1) with
0-120-2... 20-7’>0-7’+1:"':0-n:07

and let R(A) and V' (A) denote the range and null space of A, respectively. Then the
following properties hold.



1. Rank property: rank(A) = r, AN (A4) = spa{v,41,---,v,}, and R(A) =
span{uy, -, u, }, where U = [uguz - - uy,] and V = [vgvg - - - v,).

T

;.

2. Dyadic decomposition: A = o;-u;-v
=1

3. Norms: ||A||2 = 62+ --- + o2 and || A]|5 = o1. Here, ||.|| - denotes the Frobenius
norm defined by

m n
> lagl?,

i=17=1

and ||.||» denotes the 2-norm defined by

A
Al = max 124, g 5

—p=12...0 (1.2
20 ||,

with p=2;

Dueto the rank property, it is possible to use the singular values of A as quantitative
measures of the qualitative notion of rank. The dyadic decomposition, which is the
rationale for data reduction or compression in many applications, provides a canonical
description of a matrix as a sum of r rank-one matrices of decreasing importance, as
measured by the singular values. The three resultsin Theorem 1.1 can be combined to
yield the following quantification of matrix rank deficiency (see [GL89] for a proof):

Theorem 1.2 (Eckart and Young) Let the SVD of A be given by Equation (1.1) with
r = rank(A) < p = min(m, n) and define

k
A=Y ouiol, 13
=1
. _ Bl — B 2 _ ,
mnr’lzg;ﬂ”A Bl =1|A = Aglly = 041+ + oy

The SVD(A) may be computed from two equival ent eigenval ue decompositions:

cz(fT g‘). (1.4)

If rank(A) = n, it can be shown that the eigenvalues of C' are the n pairs o,
where o; is a singular value of A, with (m — n) additional zero eigenvalues if
m > n. The multiplicity of the zero eigenvalue of C' is m + n — 2r, where
r=rank(A).

1. Define the 2-cyclic matrix



2. Alternatively, the SVD(A) can be computed indirectly by the eigenpairs of either
then x n matrix AT A or them x m matrix AAT. Thefollowing lemmaillustrates
the fundamental relations between these symmetric eigenvalue problems and the
SVD.

Lemmal.l Let Abeanm x n matrixwithm > n and rank(A) = r.

(@ IfV = (v1,v2,...,v,) arelinearly independent » x 1 eigenvectorsof AT A so
that VI(ATA)V = diag(o?,03,...,02), then o, isthe:"" nonzero singular

value of A corresponding to the right singular vector v;. The corresponding
left singular vector, u;, isthen obtained as u; = (1/0;) Av;.

(b) If U = (ug,up,...,u,) arelinearly independent m x 1 eigenvectors of AAT
sothat UT(AATYU = diag(c2, 03, ..., 02),then o, isthe:" nonzero singular

value of A corresponding to the left singular vector «;. The corresponding
right singular vector, v;, isthen obtained asv; = (1/0;) AT u;.

Each scheme described above hasits own advantages and disadvantages. The matrix
AT Aisof order at most », whereas thetwo-cyclic matrix C' defined in Equation (1.4) is
of order at most (m + n). If the matrix A isover-determined, i.e. m > n, the smaller
memory requirements for the n x » matrix A” A make it the more attractive choice for
computing the SVD. However, this scheme only gives the right-singular vectors, and
the left-singular vectors have to be obtained by scaling Av; as defined in Lemma 1.1 .
The eigenvectors of the two-cyclic matrix, on theother hand, are of theform [u; T, »; 117,
and directly give complete information about the singular triplet: {u;,o;,v;}. Also,
each eigenvalueof A” A iso,2, forcing aclustering of the singular val ue approximations
when o; < 1. Evaluating the SVD from the eigen-decomposition of A’ A isthus most
suited for problems when only the largest singular values are desired, with a potential
loss of accuracy for the smaller singular-values. Using the two-cyclic matrix ' does
not have this drawback, however, at the price of alarger memory requirement.

Although severa direct methods (e.g., Householder’'s method) exist for computing
the eigenval uesof the canonical matricesdescribedin Lemmal.1, these methodsare un-
desirable when applied to large, unstructured sparse matrices. Direct methods involve
factorizations which result in intermediate, full submatrices. For sparse eigenvalue
problems, the input matrix is typically stored in compressed format, and the undesir-
able fill-in and large memory requirements associated with direct methods limit their
applicability to such problems.

Preferred methods for large, sparse, symmetric eigenproblems include the Lanc-
zos method [GL89] and Arnoldi’s method [Saa92]. Other related methods include
subspace-iteration [Par80], and trace minimization [Ber92]. All of these methods
obtain approximations to the eigenvalues and vectors of symmetric matrix A by con-
structing elements from a Krylov-like basis through the operation AS = {As:se S}
[Par80] for the subspace spanned by the eigenvectors. Thus, thematrix A isused only to

3



compute the matrix-vector product As, and these algorithmsmay be implemented with-
out making any assumptions about the structure/storage format of A. The efficiency of
these methodsis determined primarily by the performance of the matrix-vector product
and the storage scheme used for the matrix.

The Lanczos method solves the eigenvalue problem C'z = Az through partial tridi-
agonalizations of the matrix C'. Unlike factorization methods, no intermediate, full
submatrices are generated. Also, information about s extremal eigenvalues tend to
emerge long before tridiagonalization is complete. Hence, the Lanczos agorithm par-
ticularly useful in situationswhere only afew of C’slargest or smallest eigenvaluesare
desired.

An aternative method, CSI-MSVD, to tridiagonalize large, sparse matrices is pre-
sented in [GK89]. This method is based on the extraction of modified moments from
the Chebyshev semi-iterative method [Var62]. The attractiveness of this algorithm lies
in the scope for parallelism and reduced memory requirements.

A brief review of Krylov subspace methodswill now be presented in order to provide
sufficient background information for the CSI-M SV D algorithm.

The Krylov subspaceisof considerableimportancein thetheory of iterative methods
for the solution of the eigenvalue problem C'x = Axz. The Krylov subspace associated
withthe m x m matrix C' with real elements are determined by asingle non-zero vector
J by

K™(f)={f,Cf....,c" D}

and denote K™ = span K™ ( f).

Theoretically, the natural basis for K™ is the Krylov basis K ( f). In practice, the
orthonormal basis

Qm =(q1,- -, Gm), (1.5

obtained by the QR factorization of the columns of A™( f) isused as abasis for K.
If thedimension of K™ ism, i.e, K™ (q) hasfull rank, it can be shown that @), C'Q,,
is an unreduced tridiagona matrix [Ste73], where * denotes the Hermitian-transpose.
Thus, one way to view the Lanczos processis as a construction of the Krylov basis for
C'. Alternatively, the Lanczos process can be viewed as a method for reducing C' to
tridiagonal form [Par80].

A third method of deriving the Lanczos algorithm is by considering the relationship
between Krylov subspaces and orthogonal polynomials. The Krylov subspace X can
be considered as the subspace of all vectorsin IR which can bewrittenas = = p(C')v,
where p(«) is apolynomial of degree not exceeding m — 1. Let p,,, (=) be the nonzero
monic polynomial of lowest degree such that p,,,(v) = 0. Then it can be shown [Saa92]
that ™ isof dimension m if and only if the degree of the minimal polynomial with
respect to C'islarger than m — 1. Thus, it ispossible to derive the isomorphism between
IP,._1 and IC,,, the space of polynomials of degree < m — 1 defined by

qEP,_1—x=q(C)veK™.

4



The subspace IP,,, _; istypically associated with an inner product

(P, @)or = (p(C)v1,q(C)v1) (1.6)

which is anondegenerate bilinear form.
The Lanczos vectors v; are of the form

v; = Qi—l(c)vl with

gi(x) = z". (1.7)
The orthogonality of the v/s is equivalent to the orthogonality of the polynomials, with
respect to the inner product defined in Equation (1.6). A discussion of the relations
between the Lanczos biorthogonalization method [GL89], the theory of orthogonal
polynomias, and Gaussian quadratureis provided in [Bre80].

Several possibilities exist for the choice of the orthogona polynomials ¢;(x) in
Equation (1.7). Golub and Kent in [GK89] propose a scheme to approximate eigen-
values using Chebyshev polynomials [GV61] for ¢;(x). The inner products generated
by Equation (1.6) are used to derive moments [Wil62] which are then used in the mod-
ified Chebyshev algorithm [Gau82] to generate a set of orthogonal polynomials. The
guasi-symmetric tridiagonal matrix obtained from the coefficients of the orthogonal
polynomials, known as the Jacobi matrix, is then used to approximate the elgenvalues
of the matrix .

Berry and Golub in [BG91] have shown the effectiveness of the scheme proposed
in [GK89] through an implementation on the Cray Y-MP that approximates singular
values of a sparse matrix A from the eigenvalues of the corresponding two-cyclic
matrix C' defined by Equation (1.4). They also point out that the potential asynchronous
computation of the orthogonal polynomia swiththeiterationsof an adaptive Chebyshev
semi-iterative method allows multiple processors to execute different sections of the
algorithm in paralel. Thus, there is more inherent scope for parallelism with this
scheme than with Lanczos algorithms. Also, the recurrence relations defining the
Chebyshev polynomials alow an accelerated construction of the moments, and it is
possible to approximate the singular valuesin relatively few iterations.

Theimplementation proposed in [BG91] describes ascheme to approximate singular
values only, i.e., singular vectors are not estimated. The tridiagonal Jacobi matrix is
constructed to approximate, through its elgenval ues, theroots of the characteristic equa-
tion. Moreover, while recurrence relations may be used to accelerate the construction
of modified moments from the Chebyshev iterates, thereis no known scheme to obtain
the converse result, i.e., to approximate the Chebyshev iterates (and thus the singular
vectors) from the moments. The absence of singular-vector (and elgenvector) approxi-
mations gives rise to problems such as the lack of an error estimate on the approximated
singular value (or eigenvalue) and inefficient deflation schemes. Dueto these problems,
there has been no robust, complete implementation of this algorithm, in spite of its
theoretical efficiency and suitability for parallel computers.

5



This dissertation presents one scheme to obtain the SVD from the canonical eigen-
value problemsdescribed in Lemmal1.1. Methods to approximate both eigenvalues and
eigenvectors using the theory of modified momentsin conjunction with the Chebyshev
semi-iterative method are described. Deflation issues and implicit error approxima-
tion methods are addressed to present a complete algorithm. The performance of an
ANSI-Cimplementation of this scheme on anetwork of UNIX workstationsusing PVM
[GBD*94] ispresented. The portability of thisimplementationisdemonstrated through
results on a 256 processor Cray T3D massively-parallel computer. A synopsis of the
remainder of this dissertation is asfollows.

The mathematical backgrounds of iterative methods, and the theory of modified mo-
ments are presented in Chapter 2, followed by adetailed description of the CSI-MSVD
algorithm and associated problems in approximating eigenvectors using this scheme.
Solutionsto these problems are al so addressed, and a compl ete algorithm is described.
Chapter 3 describes typical application areas in which sparse SVD problems are en-
countered and provides an overview of issues related to sparse matrix manipulation.
The methodology and computational environments used to eval uate performance of the
CSI-MSVD dgorithm is described in Chapter 4 and the results obtained on various

platformsare presented in Chapter 5. Lastly, Chapter 6 presents conclusions and future
work.



Chapter 2

Algorithms

Following [GK89], consider the basic iteration
2D = At 4o (2.2)
to solve the system of linear equations
(I — M)z =b, (2.2)

where M iseither then x n matrix AT A or the (m + n) x (m + n) matrix defined by
Equation (1.4), and M is suitably scaled so that p(M) < 1. Asshown in Section 2.1
of this chapter, the Chebyshev semi-iterative method [GV61] produces an alternative
iteration to Equation (2.1) of the form

W = pp(M)EO, (233)

wherep, (M) isapolynomia of degree k in M, and £*) isacolumn vector of dimension
(m 4+ n) x 1orn x 1 depending on whether A/ is the two-cyclic matrix of Equation
(1.4) or the matrix AT A. Sections 2.2 and 2.3 of this chapter discuss how one can
estimate the eigenvalues of A1 (corresponding to the largest singular valuesof A) using
Equation (2.3) with the method of modified moments. The next section reviews some of
the theory of iterative methods addressing issues such as convergence criteriaand rates
of convergence to establish the optimality of the Chebyshev semi-iterative method. A
three-term recurrence for the Chebyshev iterates ¢(*) defined by Equation (2.3) will be
derived.

Thefollowing notationwill be used for matrix and vector operationsfor theremainder
of the dissertation. The vector space of all m x n real matrices is denoted by IR™*".
Capital letters are used to denote matrices (e.g., A, B, A) and the subscript 5 refersto
the(z, j) entry inthematrix. Thelettersy and¢ are used to denote scalar parameters, and
al other lower-caseletters(e.qg., =, ) are used to indicate vectors, with single subscripts
(e.g., ;) denoting specific elements in the vector. ||.|| will be taken to indicate the
euclidean norm, unless stated otherwise.



2.1 The Chebyshev Semi-iterative method

The error vector for the m!* iterate from Equation (2.1), (™), can be written as
e = (") — 4 form >0,

S0 that
e = MmO form > 0.

Since M is symmetric, ||M|| = p(M) < 1, the average rate of convergence for m
iterationsis defined as

—lnf| M|

m

R(M™) = < Roo(M) = —Inp(M), form > 1. (2.9
From the theory of summability of sequences [Var62], consider the more general
iterative procedure

) = > v
Jj=
The requirement that if (9 = «, then 4™ must be z, resultsin the constraint

> vi(m) =1, form > 0.
7=0

The iterative method resulting from the sequence y(™ WI|| be referred to as a semi-
iterative method and the error vector corresponding to ™ is given by the expression
(see Appendix A.1)
&) =y g = (M), (2.5
wherep,, (1) = v;(m)t’ isan m' degree polynomial withm > 0 and p,,(1) = 1.
7=0
A generdization of Equation (2.4) gives the average rate of convergence for m
iterations of the semi-iterative method

~Inllp (M)

m

R[an(M)] =

Note that when p,,(t) = ™, y™) becomes identical to =(™), and the iterative and
semi-iterative methods are equivalent.

In order to accelerate the convergence of the semi-iterative method, it is necessary
to minimize the average rate of convergence, or, equivalently, obtain the solution of the
minimization problem

min_|[pm (M)]] (2.6)

pm(1)=1



The solution of this problem requires a priori determination of the eigenvalues. In its
place, consider the new minimization problem

min m o (1
pm(1)=1 —1<a§aéb<1|p Ol

where —p(M) < a < b < p(M) < 1. The solution of the new minimization problem
isgiven in terms of the Chebyshev polynomials, ., (t), defined by

cos(mcos™1t), It] <1,

Cn(t) = { cosh(mecosh™t), |t| > 1, (27)
form > 0.
Using the trigonometric identity
cos[(m — 1)0] + cos[(m + 1)0] = 2cos(0)cos(mb)
and Equation (2.7), the following 3-term recurrence can be derived.
Co(t) = 1,C1(t) = ¢, 2.8)
Crnt1(t) = 20C (1) — Cpea(2) form > 1.
Consider the polynomidl p,,, (¢) defined by
Pm(t) = w (2.9)
T w(EEE) |
This polynomial j,,, isarea polynomial, satisfying p,,,(1) = 1. Also,
max [ (1) = @

sincey = 2=+ js31-1 mapping of « < ¢ < bonto —1 < y < 1. The following

theorem can be derived from the properties of p,,, .

Theorem 2.1 For eachm > 0, let 5, bethe set of all real polynomialsp,,(t) of degree
m satisfying p,,(1) = 1. Then, the polynomial 5,,(¢) € S,, is the unique polynomial
which solves the minimization problem defined by Equation (2.6).

Proof: See[Var62].
O

Since—p(M) <a<b<p(M)<1lifb=p=p(M)= —aitcan be shown (see
Appendix A.2) that



for m > 1. Using Equation (2.5) and applying the polynomia p,, to the matrix M, the
following recurrence for €0 is obtained for m > 1,

o (%) ety = 2M (E) @)y~ ¢y (%) (em=1)).

p p

Since &™) = (™) — ¢, the above recurrence can be rewritten as

Cosa () 9 0= B, (2 00— o e (3] 09 - )

g g (2.10)
for m > 1. Equations (2.8) and (2.10) can then be combined to yield an iteration of the
form

y Ut = { My + b — DY 4y D, (211)

20, (L)

1
where w11 = ; cm+1fl)' The above result specifies the Chebyshev semi-iterative

method with respect to ‘the iteration defined in Equation (2.1). A brief discussion of
the convergence of this method is now presented (for a more detailed discussion see
[GV61)).

Since M isasymmetric matrix with eigenvalues y; satisfying

—p(M) < pi < p(M),

then

. |Con i/ )]
1@% [P (123)] = 1@% W

Let |u;| = p(M) for some j. By the definition of Chebyshev polynomialsin Equation
(28)and |C),,(+1)] = 1,

form > 0.

5 (M) = mm >0

From Equation 2.7, it follows that the above sequence of matrix norms is strictly
decreasing for all > 0 so that the error €™ of Equation (2.5) approaches zero asm
becomes large.

The iteration defined by Equation (2.11) can be used in combination with the theory
of modified moments (discussed in the next section) to produce approximations to the
largest eigenvalues of the matrix M. Specifically, Equation (2.11) may be used to
generate iterates £¢) through the iteration

€7 = wpa(MET 4 ) + (1= )€Y, (212)
h 20,(2) "

Wherew,,+1 = ——— 1+ '
mt /J‘Cm+1(%) ( )

10



Similar to the Lanczos algorithm (see [Bre80], [GL89]) the next section will show how
modified moments derived from the iterates ¢*) may be used to generate a sequence
of bidiagonal matrices whose largest singular values approximate those of the sparse
matrix A.

2.2 Orthogonal Polynomials and the Eigenvalue Problem

Some of the definitions relating to the theory of orthogona polynomials will now
be presented, and the relevance of orthogona polynomials to the general eigenvalue
problem C'x = Az will beshown. Thistheory will then be used to obtain approximations
to the eigenvalues of theiteration matrix M defined earlier.

2.2.1 Modified Moments and Orthogonal Polynomials
Definition 2.1 ([Wil62]) Anintegrablefunction X iscalled a weight function on [«, ]
if \(t) > Ofor t € [a, b] and the moments
b
= / A1)t (2.14)
exist and are finite.

Given aweight function A(¢), we can construct a set of polynomials 7(t) such that
the following orthogonality property is satisfied.

Definition 2.2 The set of polynomials 7, (¢) are said to be orthogonal with respect to
the weight function A(¢) if and only if

>0, r=s

/abm,(t)ws(t)d)\(t){ Z0 rts

Theorem 2.2 The set of polynomials {7, 71, ..., 7, } defined in the following way is
orthogonal on [a, b] with respect to the weight function A.

mo(t) = 1,
mi(t) =t — o, for each ¢ € [a, b]
_ [,
where a1 = RO
and when k& > 2,
me(t) = (L — ar)mea(t) — yem—2(t), for each € fa, b, (2.15)
b 2

where _ [ noa0Poo

“ [ lr—a(6)]2dA(2)
and Y= [ tm o1 () me—a())AN(2)

[ lrn—a(0)12dA(2)

11



Proof: See[BF81].

a

Given a weight function A(¢) represented in terms of the moments . defined in
Equation (2.14) [ Gau82] describes a procedure for the recursive computation of «; and
vx Which is numerically unstable. A more stable procedure may be obtained if A(¢) is
codified in terms of the modified moments

v, = / D (D)dA (), (2.16)
where p,(¢) isaset of orthogonal polynomials satisfying arecurrence relation

tpi(t) = bjpj41(t) + a;jp;(t) + ¢jpj-a(t). (2.17)

It has been shown in [GK89] that some simplificationsto this more stable procedure are
possi ble when the polynomials p(¢) are chosen to be the Chebyshev polynomials. The
simplified procedureis described in Section 2.4 as part of the CSI-MSVD agorithm.

2.2.2 Relation tothe Eigenvalue Problem

The connection between the moments and eigenvalues is well-known (e.g., [Lan50],
[Hou64], [Gol74]). The associated matrix equation for the set of polynomials ()
orthogonal to the modified moments defined by Equation (2.16) has the form

apo 1
oo 1 ZO(t) ZO(t)
. . . 1:(t) =1 1:(t) — €k+17'f'k_|_1(t). (218)
Ye-1 ap—1 1 (1) (1)

V& O

The tridiagonal matrix J, = [yx, ok, 1] of coefficients defined in the above equation
is called the Jacobi matrix. From Equation (2.18) it can be inferred that the zeros
of the polynomial m;,1(¢) may be found by solving the standard eigenvalue problem
Jyx = tz. Thus, theroots of m;41(¢) may be obtained as the eigenvalues of the Jacobi
matrix Jy.

As pointed out in [GK89], this procedure is analogous to the Lanczos algorithm
and may be used to approximate the eigenvalues of the iteration matrix M in the
Chebyshev semi-iterative method. A scheme to extract modified moments based on
the theory described in [GK89] from the Chebyshev iterates will be described below.
The modified moments will then be used to define a Jacobi matrix whose eigenvalues
approximate those of the iteration matrix.

12



2.3 Modified Moments from the Chebyshev Semi-iter ative M ethod

Since the iteration matrix M defined defined by the canonical eigenvalue problemsin
Lemmal.lissymmetric, M hasacomplete set of orthogonal eigenvectors which form
abasisfor IR”. Let this set be denoted by

Q = [qlquv .- 7(]71]
Then,

5(0) = Zai%v
=1
f(k) = Zaﬂk()\i)%

where, for i > 0, £ isthe ;' Chebyshev iterate generated by Equation (2.12), ¢(©
istheinitial iterate, and ); is an eigenvalue of M corresponding to the eigenvector ¢;.
Consider the inner product of the £ and :* iterates, i.e.,

(€W, 60y =3 alm(A)m(h). (2.19)
=1
Equation (2.19) is equivalent to the continuous integral
(€9, 60) = [ mNm(N)da(), (2.20)

when o()\) isdefined to be the discrete non-negative distribution [GK89]

0. if ) < M,
aA) =< al®+ a4+ ... +al i <A< Mg,
al’?+ a2+ ... +a,? ifd, <A

Thediscretedistribution o( A ) isillustrated in Figure2.1. By choosing/ = 0in Equation
(2.20) and noting that mo(¢) = 1 from Theorem 2.2, it follows that

(0, €O = / mr (AN da()).

Note that the final orthogonal polynomial =,(¢) has a zero at each eigenvalue i.e,
(X)) =0,0=1,2 ...r. Hence, at each step of the Chebyshev semi-iterative method,
we can extract the £ modified moment

("), €Oy = . (2.21)

The extraction of moments from iterates can be accelerated by using the recurrence

relationsfor the Chebyshev polynomialsdefined in Equation (2.8). It can be shown (see
Appendix A.3) that

1
var = (€W, €W) +

Ca(5)

{(¢®, W) — 1o}, and (2.22)

13
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a
2
2
91
M Ao A
Figure 2.1. The discrete distribution a:(A)
Vauen = (€9, €04D) T (60, 40y (0 ey, (2.23)
pC2e11(;)

Notethat the polynomial p, (¢) in Equation (2.16) associated with the modified moments
V2L and V2k41 satisfies

praa(t) = wipatpr(t) + (1 — wirra)pr-a(t),

where the coefficients ay, by, ¢, of the polynomials p,(¢) in Equation (2.17) are given
by

We4+1 — 1

ap = O, bk = , Cp =
W41 W41

(2.24)
24 TheCSI-MSVD Algorithm
Let \(¢) beaweight function codified in termsof the 2» modified moments., asdefined

in Equations (2.22) and (2.23). A procedureto compute the coefficients of polynomials
71 (t) orthogonal with respect to A(¢) isdesired. From Equation (2.15), the polynomials

14



mi(t) areof theform

Trea(t) = (8 — ap)mi(t) — yemp-1(t).

Following [GK89] withthechoice 3, = 1, the coefficients o, and v, may be determined
using the recurrences bel ow.

Fork=1,2....m—1,
Fori=Fk+1...,2m—k—1,

op = biog—1141 — (Qp—1 — @1)0k—11 — Ve—10k—2,1 + CI0K—1,1-1, (2.29)
Ok k+1 Ok—1k
Ofk = ak —I_ - 9
Okk Uk—l,k—l
Okk
o . (2.26)
Uk—l,k—l

Here, ay;, b, and ¢, are defined by Equation (2.24), and initially,
0'_171 = O, 0'071 =V, 0 = 1/1/1/0,’)/0 = O

The computation of o,’sand y,’s, £ = 1,2, ... effectively constructs the elements of
the Jacobi matrix from Equation (2.18), whose eigenvalues approximate those of the
iteration matrix M. This procedure will be referred to as the CSI-MSVD agorithm.

Thus, by setting M to either of the two canonical matrices described in Lemma
1.1, one can obtain the SVD of a general matrix by solving an equivalent symmetric
eigenvalue problem. The implementation of this scheme for each of the canonical
eigenvalue problems described in Lemma 1.1 will now be examined.

241 Two-CyclicCSI-MSVD

Let M beinthe form of aweakly cyclic matrix of index 2, defined in Equation (1.4),
and partition the Chebyshev iterate £() into them x 1 vector z; and then x 1 vector -
and the vector b from Equations (2.2) into the m x 1 vector b; and the n x 1 vector b,
S0 that

Equation (2.12) can be re-written as
w1 = 0 {Ax™ by — 2 Y} 4o Y, (2.27)
Jiz(m+l) = wm+1{AT$1(m) + bz — Jiz(m_l)} + Jiz(m_l). (228)
The elementsof successiveiterates generated by Equations (2.27) and (2.28) arerelated

15



Figure 2.2. Updating the Chebyshev iterate

by the dependency shown in Figure (2.2), so that choosing z,(® = Owhen by = b, = 0
forces 21 = 2,? = ... = 0. If £ denotesthe " iterate, then

(2s) B 0
¢29) = ( 51?10 ) cand (2D = ( 25(25=1) ) . (2.29)

Thus, at each step, only one of the Equations (2.27) and (2.28) needs to be computed,
reducing the number of computationsby afactor of two. Also, thisnew iterationrequires
only oneinitial vector approximationto x,(®) asopposed to thetwo approximations (z1©)
and 2,9) required for the general case.

The simplifications provided by Equation (2.29) also reduce the number of compu-
tations involved in the calculation of the coefficients of the Jacobi matrix in Equation
(2.18). From Equations (2.29) and (2.23), it follows that 15,1 = 0, withv; = 0, SO
that a9 = 0. It can be shown by induction that

Ok k+2i—1 = O,Z == 1, 27 e, — k, (230)

whichforcesa, = Ofor al k. Hence, the only unknown quantitiesin the Jacobi matrix
are the elements of the sub-diagonal, ;.

As demonstrated in [GLO81] the eigenvalues of the 2k x 2k Jacobi matrix are the
same as the singular values of the matrix

Vi1 V7,
V73 V7
By,

(2.31)

ﬁZk—S ﬁZk—Z
L ﬁZk—l d
The QR-iteration for bidiagonal matrices[DBM S79] may be applied to the matrix B, to

obtain its singular values, thus approximating the singular values of the original m x n
matrix A.

24.2 CSI-MSVD AppliedtotheMatrix AT A

The SVD of the m x n matrix A may be obtained from the eigenvalue decomposition
of the matrix A7 A. When m > n, the matrix A” A is considerably smaller than the
corresponding two-cyclic matrix C' of Equation (1.4). The CSI-MSVD agorithm could
be applied to approximate the eigenvalues and eigenvectors of A7 A. However, the

16



simplifications possible for the two-cyclic matrix may not be applied to this case. For
example, it is not possible to re-write Equation (2.12) by partitioning the iterates to
obtain two dependent iterations as was done to obtain Equations (2.27) and (2.28). The
disadvantages arising from iterates () of thisform are listed bel ow.

¢ Itisnot possibleto halvethe number of operationsat each step, asin thetwo-cyclic
case. Each element in the iterates needs to be computed.

e The odd-moments are non-zero, and both odd and even moments exist.
e The smplification provided by Equation (2.30) does not apply.

e The coefficients o, are not nonzero, in general, and it isnecessary to compute both
diagonal and sub-diagonal elementsin the Jacobi matrix .J,.

¢ The bidiagonal-QR iteration cannot be used. The eigenvalues of the tridiagonal
Jacobi matrix must be computed through less efficient algorithms such as the QL
method [Par80].

The discussions in Sections 2.4.1 and 2.4.2 suggest that the CSI-MSVD agorithm
with a 2-cyclic iteration matrix has the advantages of faster convergence to the singular
values, with fewer intermediate computations. For this reason, this dissertation focuses
on the 2-cyclic eigenvalue problem. Unless otherwise stated, referencesto CSI-MSVD
in this dissertation will pertain to the algorithm as applied to 2-cyclic iteration matrices
as defined in Equation (1.4).

The three main steps that constitute the CSI-MSVD algorithm are:

1. calculation of the CSl-iterate using Equations (2.27) and (2.28),
2. calculation of the new momentsfor the current iterate, and

3. updating thebidiagonal matrix and approximating the eigenval uesof thetwo-cyclic
iteration matrix through the QR-iteration.

Figure 2.3 shows the dependencies involved in the steps of the above outlined
procedure. The pipelined nature of the computation indicates that Steps 1, 2, and 3
described could be carried out concurrently. For example, the computation of the anti-
diagonal elements o13, 022, 015, 024, o33 (Shown in the box labeled SIGMA in Figure
2.3) could be overlapped with the computation of theiterates ¢ and ¢(. Also, when
the bidiagonal matrix has been updated with the elements ~, and ~3 (the box labeled
GAMMA) by using Equation (2.26), the approximation of eigenvalues through the
bidiagonal-QR iteration could be done in parallel with the computation of the next
anti-diagona elements (o, K+ = 8 or £ + { = 10). Thus, the three functionad
components MATVEC, SIGMA, and GAMMA could be executed on three different
processors. Information about the two-cyclic matrix M of Equation (1.4) is required
only for the computations in MATVEC, so that the implementations of SIGMA and
GAMMA isindependent of the format used for storing the matrix.

17
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Figure 2.3. A single passof two-cyclic CSI-MSVD

2.5 Singular Vector Calculation

Although [BG91] describes an implementation to approximate singular values accu-
rately and efficiently using modified moments from Chebyshev iterates, singular vec-
tors are not estimated. Two problems which arise from the lack of singular vector
approximations are listed below.

1. Estimation of the error in approximated singular values necessitates a comparison
with true singular values generated by some other scheme, in order to detect if the
current approximation to the singular value is within some acceptabl e bound.

2. A set of singular values of acceptable accuracy must not be recomputed in suc-
ceeding iterations to prevent wasteful computation. Also, since CSI-MSVD ap-
proximatesthe largest singular valuesfirst, it is necessary to deflate the converged
singular values out of the computation to allow convergence of the smaller singu-
lar value approximations. Some candidate schemes for deflation are discussed in
[Saa92]. Most of these schemes require singular vector approximations.

18



The implementation described in [BG91] addresses these two issues in the following
manner.

e ConvergenceTests. At the k™ step of the Chebyshev iteration, the quantity

589 — 55| /50

is computed, where &f’“) is an approximation to the :** largest singular value of
A. The procedure terminates when this quantity is within some desired tolerance
€+o1, OF When k exceeds the user-specified input of %,,,.., the maximum number of
iterations allowed.

e Deflation: No deflation schemes are attempted.

The estimation of singular vectors from the eigenvectors derived by CSI-MSVD is
a non-trivial task. The tridiagonal Jacobi matrix .J, defined by Equation (2.18) has
been constructed so that characteristic equation corresponding to ./, has the same roots
as the iteration matrix. Thus, the method does not explicitly construct a basis for the
subspace spanned by the eigenvectors, so that the methods used in Lanczos or other
popular Krylov-subspace methods do not have obvious analogsin CSI-MSVD.

However, asdiscussed in Section 2.1, especially when parameters such asw; defined
in Equation (2.11) are chosen optimally, the iterative method defined by Equation
(2.12) should convergeto ¢ suchthat (1 — M)¢ = b. Asb — 0, the eigenvector ¢ of the
appropriately scaled matrix M correspondsto the eigenvalue nearest 1. The parameters
that affect the convergence of CSI-MSVD are

e the scaling factor §, chosen so that the m x n matrix (1/6) A has singular values
o; < 1e=1..r,r <n(orequivaently,thetwo-cyclicmatrix A hasegenvaues
A = o; < 1). Ideally, since the eilgenvector is the solution of a system of theform
(I — M)z = b, anoptimal choicefor thecaseb = Owouldbeé = 0,,,.(A). Here,
M isone of the canonical matrices defined in Lemma 1.1.

¢ thedamping-parameter i« = p for the Chebyshev polynomialsdefined in Equations
(2.22) and (2.23). Asdiscussed in [BG91], setting i« = 1 effectively suppresses
all singular values o; having magnitude less than .. It istherefore desirable to set
w =~ op/cq in order to accelerate convergence to the largest singular value.

The convergence of the iterative method to the eigenvector ¢ is affected by the
choice of the above parameters, which are not known a priori. Also, after & steps
of the iterative method, the recurrences provided by Equation (2.23) and (2.22) allow
the calculation of 2k moments from the Chebyshev iterates, so that the construction of
the Jacobi matrix is accelerated. However, in the absence of any obvious method to
approximate Chebyshev iteratesfrom the Jacobi matrix, the convergence of theiterative
method to the eigenvector is slower than the convergence of the Jacobi matrix to the
eigenvalues. To overcome these problems, a two-pass scheme has been developed.
Figure 2.4 illustrates the following steps of the two-pass scheme.
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Figure 2.4. Flow chart for computing the k-largest singular triplets using CSI-MSVD

20



1. PASSI: Inthe first pass, perform at most n; steps of CSI-MSVD. This involves
the execution of all of the steps shown in Figure 2.3. The iteration is terminated
when either

¢ the convergence tests defined in [BG91] are satisfied, or,
e exactly n, iterates have been calculated.

2. PASS2: Leth; > ), > ... > ), betheeigenvaluesof ., at theend of PASSL, and
¢*) the current Chebyshev iterate. If the residual norm || M &%) — A1£()|| is not
within some desired tolerance ., the scaling parameter ¢ should be set to A;, and
the damping parameter 1 set to A,/ A;. Then, a most 1, steps of the Chebyshev
iteration are performed while examining the convergence asin Step 1.

3. ACCEPT: Accept the approximate singular value corresponding to \; (as defined
inLemma1.1). If ahigher accuracy in the current approximationsto the singular
value and corresponding singular vector obtained from (A, £(7)) is desired, some
refinement procedure may be used, with starting val ues set to the current estimates.
In practice, the accel erated construction of the Jacobi matrix produces eigenvalue
approximations of at least 10~2 accuracy, and as discussed in [Par80] asingle step
of inverse-iteration coul d be used to approximatethe eigenvectorsto 10~ accuracy.
However, asdescribed in Section 1, for large, sparse matricesit isdesirableto avoid
fill-infrom direct methods. The current PV M implementation of CSI-MSVD uses
an ANSI-C trandation of the subroutine SYMMLQ [PS75] [B*94] for refinement
of the eigenvector approximation. SYMMLQ is a Conjugate Gradient method for
symmetric indefinite systems of the form (B — 71)z = b where 7 is a specified
scalar value. By setting b = 0, 7 to A1, the computed vector + may approximate
an eigenvector of the matrix B. After the residua error has been reduced to
the desired tolerance, deflation in the form of a Wielandt scheme [Saa92] can be
employed to repeat the above 3 stepsin order to approximate the next triplet.

2.6 Estimation of Error in Singular Triplet
As the Chebyshev semi-iterative method proceeds, iterates of the form

a1 0 2, k2 0
0 ) $2(k+1) ) 0 ) l’z<k+3) PR

are generated. Approximations to the left singular vector corresponding to the largest
singular valueareobtained from lim « 1"+2) and the corresponding right singul ar vector
—+00

is obtained from lim 2,*2+D - An estimate of the error in these singular vectors is
—+00
desired. Let

(k+1)

1 = Al‘z ,I;]_ = I/]_/HI/]_H, Uy = ATJ}]_(k), 1;2 == I/z/Hl/zH, (232)
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and consider the error vectors defined by
€1 = I/~1 — l’l(k) and €2 = 1;2 — Jiz(k+l). (233)

These vectors measure the error in the singular vector approximations alone, and do
not reflect the error in the singular triplet, i.e., 11 — o12:® and 1o — o125V, The
vectors¢; and ¢, are generated as part of the solution of the system of equations defined
by Equation (2.2) with b = 0 and o, is approximating the singular value of A (now
scaled by §) closest to 1.

The vectors z1*t? and z,**+3 are generated by substituting m = k + 1in Equation
(2.27) and m = k£ 4 2in Equation (2.28) (with b; = b, = 0) to get

2102 = o { Az, — g () 4 (B), (2.34)

2,3 = wk+3{AT:1:1(k+2) — :Iiz(k+l)} + (Y, (2.35)

Hence, the quantity Ax,(*+1 is calculated as an intermediate result in the calculation
of 21%*+2 and 1, can be calculated at step k + 2.

An analogous result for v is harder to derive since the right multiplication of A
is by z1**2 which is calculated in Equation (2.34) (rather than z,(*)). Consider the
intermediate product

vy = AT % {wppa { Al D — 21} 4 5y 00y
= AT{(1 = wpy2)21® + wppa AV}
= (1 — wpy2) ATy ® 4 w0 AT Az,
From Equation (2.32), 11 = Az,(**Y and so
Ve = (1 — wipo) AT21® 4y AT 0. (2.36)

Sinceey = 2 — 21! by definition, it followsthat vy = ||v4]|(e1 4 22™). Substituting
thisexpression for v, into Equation (2.36) yields

ve = (1= wes2) AT + [[n]|wig2AT (e + 21Y) or

v, = k1 ATz W 4 koAl e, (2.37)

where k1 = 1+ wiia(]|va]] — 1), k2 = wis2||14]|, and hence v, is a perturbation of
a vector in the desired direction A”z,(*). If this perturbation is suitably small, i.e.
roATe; — 0, then ¢, could be approximated by

& = 0, — a\FHY), (2.38)

where v, isthe normalized version of »,. In practice, for typica applications such as
information retrieval, the larger singular values o; are typically well-separated, and the
parameter ;. = o0,/01 hasvaluesin the range (0.5, 0.8) so that, (see Figure 2.5) w; ~ 1
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Figure 2.5. Effect of parameter

forcing k2 ~ 1. The perturbation v, isonly aslargeas ¢1, allowing an approximation of
¢2 through Equation (2.38). However, when clustered singular values are encountered,
the effect of an increased perturbation combined with accumul ated round-off render this
error estimate unreliable. In this situation, the CSI-MSVD algorithm uses an external
refinement scheme such as SYMMLQ to obtain a more accurate estimate of the error
in the singular triplet.

A pseudo-code for the two-pass CSI-M SV D agorithm to compute both elgenvalues
and eigenvectors with implicit error estimation islisted in Figures 2.6 and 2.7.
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Function PASS
Input Starting vector x, scaling parameter ¢, damping parameter ;, matrix A,
upper bound on number of iterationst,,, ..., error-bound on
approximated solution ¢ol
Output Approximations to the 3-largest eigenvalues of the 2-cyclic matrix defined
in Equation (1.4) A1, A and )3, and eigenvector approximation (:z;T, yT)T
Compute w(1: 4¢,,., + 1) using Equation (2.13). Initialize A; to 5.
Scale A by 6.
[* Thismay be implicitly incorporated in the matrix-vector
multiplication routine */
Set y = ATx; Compute 013 < 1 Using Equation (2.22).
Compute o, using Equation (2.25) and set 1 t0 o2.
fort =1tot,,., — 1
Save current valuesof =, y and Ay in x,, ys and X, respectively.
Compute new iterate = using Equation (2.34), and y using Equation (2.35).
Calculate new moments o1 4¢+1 and o1 4.4.3 from = and y using
Equations (2.22) and (2.23), respectively.
Using Equation (2.25), compute the antidiagonals o1 4111, 02,41, - - ., 0212
and 01,442, 02,4041, - - - s T2441,2041-
Using Equation (2.26), compute the values +,; and ~,;, 1, and use the
bidiagona QR [DBMS79] iteration to approximate the elgenvalues
A1, A2, Az of the updated bidiagonal matrix.
(5)-(5)
normalized form of the vector v.
If || A1 — As|| < tol, returnto the calling program.
endfor

Compute the error estimate ¢ =

, Where © denotes the

Figure 2.6. Pseudo-codefor one PASS of the CSI-MSVD algorithm.
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Input m x n matrix A, estimate of damping parameter 1, estimate of scaling
parameter 4, bound on error in computed singular triplet {0/, number of
desired triplets V.

Output NV singular triplets.

Initialize i = pest, startv = rand(m, 1).
fori=1to N
Call Function PASS to obtain singular value approximations A1, A, and Az,
singular triplet {x, A1, y} and error estimate c.
if ¢ < tol,
set A+ A— My’
goto NEXT.
else
Set = A/ A1, 0 = Aq, startv = z.
Call Function PASS to obtain singular value approximations A1, A, and Az,
singular triplet {x, A1, y} and error estimate c.
if ¢ < tol,
set A+ A— My’
goto NEXT.
else
call Function SYMMLQ [PS75] with Ay as shift, and (27, y7)"
as starting vector.
endif
endif
NEXT: Set/,b = )\3/)\2,5 = )\2.
endfor

Figure 2.7. Pseudo-codefor two-pass CSI-MSVD agorithm with implicit error estimation.
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Chapter 3

Sparse Matrix Applications

Sparse linear least squares problems naturally arise in many real-world applicationsin
the physical and socia sciences. The use of the sparse SVD to solve such problems
is of current interest to researchers in these fields [WBSM94], [DDF*90]. A brief
description of two such applications, query-based information retrieval and seismic
reflectiontomography, isprovidedin thischapter. A description of typical sparse-matrix
storage formats used, followed by a discussion of the effect of these storage formatson
the performance of iterative methodsis also discussed. Parallel implementations of the
time-consuming kernelsfor iterative methods using compressed storage formatsfor the
input sparse matrices are a so described in this Chapter.

3.1 Applicationsfor Sparse Singular Value Decomposition

CSI-MSVD was tested with matrices arising from query-based information retrieva
applications and seismic reflection tomography. This section describes these two appli-
cations, along with the role played by the SVD in each problem domain.

3.1.1 Latent Semantic Indexing

The fundamental goal of information retrieval techniquesis to match words of queries
provided by auser with words of documentsin the database being searched, and thereby
extract relevant documents. Attempts to solve this problem by aliteral match between
wordsin queriesand documentsare not alwayssuccessful because userswant to retrieve
documents on the basis of conceptual topic or meaning. There are two main sources of
noise arising from variability in word usage:

1. many possible in wordsto express the same concept (synonymy), or,

2. multiplicity in meanings of some words (polysemy).
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Latent Semantic Indexing (LSI) [DDF+90] proposes a solution to this problem by
assuming that there is an underlying semantic structure in word usage. Here, the
frequency of appearance of terms that could be used as referents to a document is used
to set up an m x n matrix A, whose m rows and n columns correspond to the terms
and documents, respectively. Each element [«,;] of the term-document matrix A is a
measure of the frequency of appearance of term : in document j. The matrix A is
naturally sparse since there are relatively few referent terms for any given document.
Theclosest (in aleast squares sense) rank-£ approximation to the term-document matrix

k
Ak = Z ui.ak.viT withk < r (31)
=1

issought so that A, capturesthe major associational structureinthe matrix and removes
the noise. The rank-property of the SVD [GR71] alowsthe computation of A, fromthe
matrix A. Themodel provided by Equation (3.1), usually with 100 < £ < 200, encodes
documents in a reduced space R(Ay) using the left- and right-singular vectors «; and
v;. Using A, as an approximation to the original matrix A allows conceptually-related
documentswith different referent termsto be mapped into the same vector, ameliorating
the effects of synonymy. This clustering of conceptually-related documentsin R(Ay)
al so causesdocumentsto be described by aconsensusof their term meanings, dampening
the effects of polysemy. A discussion of the properties and performance of LS| using
the sparse SVD can befound in [BD95].

3.1.2 Sesmic Reflection Tomography

In this application the sparse SV D problem arises from the solution of nonlinear inverse
problems associated with the approximation of acoustic or elastic wave-speed from
travel times. Specifically, the travel times ¢(r) are related to the wave-speed (model
parameters) through the relation

)= [ stey.)dl (32)

where x, y, and = are spatia coordinates, d! is the distance (differential) along the ray
rand s(x,y,z) = 1/u(x,y, z) is the sowness (reciproca of velocity) at the point
(z,y,2). For large two-dimensional problems, the travel times, extracted from the
original seismograms, can involve up to O(10°) rays. The ray path depends on the
downess (unknown) and thus Equation (3.2) must be linearized about some initial or
reference downess (unknown) model. Discretization of the downess by cells or finite
elements within which the downess is assumed to be constant allows the linearized
integral to be approximated as a sum. The resulting over-determined system of linear
eguations for the unknown slowness perturbation valuesis

Dhs = A, (3.3)
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where the components of At are the differences between the travel times computed for
the model and observed times, the components of As are the differences between the
initial and updated model, and D is the Jacobian matrix whose (¢, 7) element is the
distance the:'" ray travelsin the ;' cell. For two-dimensional models, the matrix D in
Equation (3.3) is generally large (0(10°)) and sparse.

For over-determined systems of equations such as Equation (3.3), the SVD is one
of the best known methods for obtaining the linear least squares solution using the
pseudo-inverse

D' =Viz, "

where k = rank(D), %, = diag(o1,02,---,0%), Uy U, = Vi'Vi = 1. The smallest
singular valuesand corresponding vectorscontrol model parameterssuch asthevel ocity-
reflector depth trade-off. Researchersin seismic reflection tomography can assess trade-
offsin model parameters using sparse SVD methods to approximate large numbers of
singular triplets above specified quantities (noise level).

3.2 SparseMatrix Storage Formats

The input matrix encountered in the applications described in Section 3.1 is large and
gparse.  When solving these problems using iterative methods or Krylov subspace
methods, a reduction in memory requirements may be achieved by storing only the
nonzero elements of A. There are many methods for storing sparse matrices ([ Saa90],
[Eij92]). Of these formats, the compressed row and compressed column storage formats
[B194] arethe most generdl, i.e., they make no assumptions about the sparsity structure
while avoiding the storage of any unnecessary elements. These formats produce an
additional reduction in storage by economizing the storage of index information at some
additiona indirect-addressing overhead during execution. The reduction in storage
from using compressed sparse row/column formats is considerable when min(m,n) is
much less than nn z, the number of non-zeros in the matrix, as happens with matrices
encountered in the applications described in Section 3.1. Without loss of generality, it
will be assumed for the rest of this discussion that the matrix is stored in Compressed
Column Storage (CCS) format, also known as the Harwell-Boeing format [DGL89].

The CCS format is specified by the three arrays {val, row.ind, col_ptr} where
row_ind(i) stores the row indices of each nonzero value val(i). Nonzero valuesin the
same column are stored as lists of contiguous elementsin the array val, with col _ptr(j)
marking the start of the ;" list in val. Figure 3.1 shows the values of col_ptr, row_ind,
and val for a matrix with nrow = 6,ncol = 4. It can be seen that for nnz = 12
non-zeros, the storage requirements are 2nnz + ncol + 1. Thisisless than the value
3nnz which would be required if the row- and column-index of each non-zero were
stored. The disadvantage of this scheme, though, isthat it is now necessary to perform
more than one memory access to find the column index for any given value.
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(val, row._ind)
(10, 1)
(3, 2)
3, 4)
col _ (9, 2)

1 (7, 3)
4 (8, 5) 10 0 0 O
8 (4, 6) 3 900
10 (8, 3) A= 0 787
13 @®, 4) 3087
(7, 3 0O 8 09
0O 400

1(7, 4)
(9, 5)
<EOF>

Figure 3.1. Example of the Harwell-Boeing storage format for a6 x 4 sparse matrix A.

Figure 3.2 illustrates the pseudocode to perform the operation y = Ax (Algorithm
OP) and y = ATz (Algorithm OPT). It can be seen that both algorithms use indirect
addressing, and thus have poor vectorizability propertiesfor any architecture. However,
Algorithm OPT has a more favorable memory access patternin that it reads two vectors
(val() and x()) and writes one scalar. Algorithm OP on the other hand reads elements
z() and val and performs both reads and writes of the indirectly-addressed elements
iny(). Thus, unless the machine on which these methods are implemented has three
separate memory paths, performanceis limited by memory traffic.

Table 3.1 lists the average times to compute the matrix-vector products using Al-
gorithms OP and OPT from Figure 3.2. Here the matrix-vector product was timed
repeatedly within aloop, and the average elapsed time for 100 calls was calculated on
asingle SPARC processor. The datasets used were obtained from information retrieva
applications. It can be seen that the time for multiplication by the transpose using Al-
gorithm OPT is consistently less than the corresponding times for multiplication using
Algorithm OPR.
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Algorithm OP (computey = Ax)
for : =1ton
tmp = z(i)

for j =col_ptr(z) to col_ptr(: + 1) —

y(row_ind(y)) +=val(j) * tmp
endfor
endfor

1

Algorithm OPT (computey = AT x)
for : =1ton
res=0
for j =col_ptr(z) to col_ptr(: + 1) —
res+ = val(y) * z(row.ind(y))
endfor
y(1) = res
endfor

1

Figure 3.2. Computation of matrix-vector product when the sparse matrix A is stored in the Harwell-
Boeing format

Table 3.1

Average (elapsed) time over 100 experimentsfor computing matrix-vector products,on aSPARCstation
20 - Model 50 (50 MHz SuperSPARC Processor with 256 Mbyte memory).

Dataset dimensions non-zeros | time(OP) | time(OPT)
adit 374 x 82 1343 0.7 0.6

CCE 3054 x 490 13607 10.2 9.1
oyang2hb | 1853 x 625 3706 2.6 24
amocol | 1436 x 330 35210 181 171
bellcist 5143 x 1460 66340 47.3 42.4
knoxns 12615 x 40140 | 1780951 | 1507.6 1266
bellency | 25629 x 56530 | 2843956 | 2483.906 | 2059.494

All timesin milli-seconds
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3.3 Parallelism

For most iterative and Krylovs subspace methods, the only operations involving the
gparse m x n matrix A are the matrix-vector multiplications. The compressed format
used to store the sparse matrix can thus impact single and multiprocessor program
performance. [B™94] addresses aspects of paralelism and identifies the basic time-
consuming kernels of iterative schemes such as

e inner products,
e vector updates, and
e matrix-vector products, A¢®) and AT,

The computation of an inner product of two vectors and vector updates can be easily
paraleized (see [BT94]). However, when compressed storage of sparse matrices is
used, the larger amount of message-passing involved complicates the parallelization of
matrix-vector products.

In the current implementation of the CSI-MSVD agorithm the following scheme
(which is aso recommended in [B*94]) is used to implment matrix-vector multiplica-
tion.

Algorithm P_OP: Compute y™*1 = A™*7z"*1 ysing p processors

l Letn=gp+r

2. Partition A column-wisg, i.e.,, A™*" = [A142... A, A, 41... A,]. Here A0 =
1,...risanm x (¢+1) matrix containing columns (i —1)g+: . ..ig+:+210f A,and
A i =r+1... pisanm x¢matrix containingcolumns(:—1)g+r+1...ig+r+1.
The :*" processor stores the block A;.

3. Partition ™1 as

L1

z,

Tri1

Lp

where z; € RUTV*Iwheni € [1, 7], and ; € IR”** wheni € [r 4+ 1,p]. Thei*
processor stores z;.

4. The matrix vector product Az can then be written as

r P
Az = A+ D A
=1 i=r+4+1
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Thus, processor ; can obtain the matrix-vector product y; = A;x; by applying
Algorithm OP of Figure 3.2. The vector y = Az can then be obtained by doing a
global reductionto get > ;.

Algorithm P_OPT: Compute y™*! = transp(A™*") » z™*! using p processors

l Letn=gp+r

2. Partition A column-wise asin Step 2 of algorithm P_OP, so that

3. The matrix vector product A7z can be written as

- Angz; -
AZTJ}

ATz
T
Ar-l—l x

AT

T
Az

Thus, processor i can obtain the matrix-vector product y; = A, « by applying
Algorithm OPT of Figure 3.2. The elements of the vector y = ATz are then
automatically partitioned across the p processors. Note that, in this case, the
vector x isnot partitioned, and every processor must have all of theelementsin z.

It should be noted that for CSI-MSVD, the only information about y that is needed by
the remainder of the algorithmis||y||. By rewriting ||y|| as

P
Z yizv
=1

lly|| can be computed by performing a global reduction of y,? across processors, and
obtaining the square-root of the resulting scalar.

32



Chapter 4

Per for mance Evaluation M ethodology

This chapter describes the computational platformsand parameters used to evaluate the
performance of a paralel implementation of the CSI-MSVD algorithm.

4.1 Computational Environments

A distributed version of the CSI-MSVD agorithm as described in Section 2.4 was
implemented using PVM, the Paralléel Virtual Machine [GBD*94]. The objective was
to produce a portable implementation that could be used across multiple platforms.
PVM was chosen as the software environment because of its modularity, portability and
immediate availability. Dueto the wide-spread use of PVM in the scientific/engineering
community, many vendors of massively-paralel computers provide optimized imple-
mentations of PVM for their machines. Portability of the PVM implementation of
CSI-MSVD was also studied using one such platform, the CRAY T3D. This section
describes the computationa environments available through PVM and on the CRAY
T3D.

411 PVM: Parallel Virtual Machine

PVM is a software package developed at the University of Tennesse, Knoxville (UTK)
and the Oak RidgeNational Laboratory (ORNL) that permitsaheterogeneous collection
of Unix computers linked together by a network to be used as asingle large “virtualy-
parallel” computer. The PVM system is composed of two parts.

1. The PVM daemon pvnd that resides on all the computers making up the virtual
machine. The PVM daemon must be started to create the virtual machine.

2. Thelibrary of PVM interfaceroutines. Thislibrary contains user-callable routines
for message-passing, spawning processes, coordinating tasks, and modifying the
virtual machine.
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The PVM computing model is based on the notion that an application consists of
several tasks which can be executed concurrently. Functional parallelism isachieved
when each task performs a different function, and data parallelism is achieved when
multiple tasks perform the same operations on different data. The PVM library routines
for task-spawning, communication between tasks and virtua machine configuration
management provide a portabl e interface to interprocess communication primitiveslike
sockets.

Program development using PVM on a network of workstations has several advan-
tages. Since the source code for PVM is available at no charge, parallel computing
can take place on existing hardware without any additional overhead in investment.
Applications developed using PVM are not locked into proprietary interfaces and algo-
rithm devel opment and testing can be done at low cost, using familiar environmentsand
hardware. After a satisfactory implementation is available, the code can be ported to
platforms with superior hardware. The virtual computer resources can grow in stages
and take advantage of the latest computational and network technologies.

The major disadvantage of parallel programming using PVM on anetwork of work-
stations arises from the high latency of typical packet-switched networks and bus tech-
nology. The performance of bus-connected systems may degrade rapidly if the data
transfer rate on the bus (i.e., bus bandwidth) is not able to deliver data to accommodate
the processors. Typically, bus connections are limited to a modest number ( > 30)
of processors. Also, since each processor in the virtual machine is a workstation,
networked computers can have several other users on them, running a variety of jobs,
and sharing the bandwidth of the Ethernet bus with the paralel program. Program
performanceis usually affected by the overhead arising from these factors.

4.1.2 CRAY T3D Hardware/Software Overview

As discussed in the previous section, although PVM on a network of workstations can
provide the necessary environment for algorithm development at low cost, the high
message-passing overhead makes this model infeasible for the solution of problemsin
practice.

The CRAY T3D isamassively-paralel platformwith superior hardware support that
supports message-passing based onthe PVM model. A hardwareoverview of the CRAY
T3D is presented bel ow followed by a description of the message-passing environment.
Significant differences in the PYM models available on networked-workstations and
the MPP are indicated. Further details are available in [CR94b].

CRAY T3D Hardware Overview

The CRAY T3D contains four types of components. processing element (PE) nodes,
the interconnect network, 1/0 gateways, and a clock. Each PE node of the CRAY T3D
contains a RISC 64-hit Alpha chip developed by Digital Equipment Corporation, local
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memory, and support circuitry. There aretwo PE’s per processing element node. Figure
4.1 illustrates the components of a PE node and the interconnect network.

Processing Element Node
& Network Router

Processing

Element 0 Element 1

Interface

Router

Key

Control

= Data

+X
<——= Communication Link

Figure 4.1. Processing element node and interconnect components on the CRAY T3D

The PE'sare connected by afast bidirectional 3-D torus system interconnect network
(Figure4.2). Thistopol ogy ensuresshort connection pathsand high bisection bandwidth
(the maximum rate at which one haf of the system can exchange data with the other
half). With peak interprocessor communication rates of 300 Mbytes per second in
every direction through the torus resulting in up to 76.8 Gbytes per second of bisection
bandwidth, this design allows the extremely fast remote memory access critical for
efficient MPP system usage.

Thelocal memory within each PE is part of aphysically distributed, logically shared
memory system. System memory is physicaly distributed (since each PE contains
local memory) and is logically shared since the microprocessor in one PE can access
the memory of another PE without involving the microprocessor in that PE.
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Figure 4.2. Two-dimensional Torus

CRAY T3D Programming Tools

Information about the FORTRAN, C and C++ compilers provided on the CRAY T3D
may be found in [CR94b] and [CR94a]. The C compilers were used for this study.
The operating system (UNICOS MAX) that supports the CRAY MPP system is a
microkernel-based distributed operating system. Thisoperating system runson aCRAY
T3D system and its CRAY Y-MP or C90 host.

All of the three compilers listed above support the message-passing programming
methods using PVM. The three release packages of PVM libraries available are the
CRAY Network PVM-3.2.0, the CRAY MPP PVM-3.1.0 and the CRAY T3D Emulator
1.1. A brief description of each islisted below.

e The CRAY Network PVM-3.2.0, or the network version is basically identical to
the software developed and released at ORNL for networked-workstations. This
version supports PVM across a heterogeneous network of computers and is based
on TCP/IP and UDP data transfers between UNIX processes. In this kind of
communication, the network transfer speeds are relatively slow.

e The CRAY MPP PVM-3.1.0, subsequently referred to as either the CRAY MPP
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version or the CRAY T3D version uses the hardware capabilities of the CRAY T3D
system to handle communications between the CRAY T3D processor elements
and uses TCP/IP and UDP data transfers to handle communications outside the
CRAY MPP system. The CRAY MPP version can be used in two modes. In a
stand-alone mode, it can be used to program an application on the CRAY T3D
system, like the message-passing libraries supplied for other MPP systems. Ina
distributed mode, it can be coupled with the network versionto let the CRAY T3D
applications use message-passing to communicate with processes running on the
CRAY Y-MP host or any of the other systems that run PVM.

e The CRAY T3D Emulator 1.1, or the emulator version, allows programs to be
developed and executed without having to use a CRAY T3D system. PVM is
included in the emulator library.

Parallel programming with PVM can involve a combination of any of the above
situations to provide a range of different scenarios. The following scenarios are listed
roughly in increasing cost of communication:

1. One application running on a CRAY T3D system, requiring only the CRAY MPP
version, used in stand-alone mode. High-performance connections are used be-
tween the tasks on the PE’s in this version.

2. Two processes running on a single CRAY Y-MP computer system, requiring the
networking version. Networking capabilities are used for communication

3. One process running on a CRAY Y-MP computer system, and another application
running on an associated CRAY T3D system, requiring both the networking and
the CRAY MPP version in distributed mode.

Therefore, in order to obtain the best message-passing latencies, it isdesirableto use
the CRAY MPP in stand-alone mode, with no participation from the Cray Y-MP front
end. In the discussion that follows, it will be assumed that Cray MPP is used in this
mode.

4.1.3 Differences Between CRAY M PP and NOW Versions of PVYM

This section summarizes the salient differences between the MPP version of PVM, and
PVM implementations for networks of workstations, henceforth referred to as NOW
versions of PVM.

PE Number

The NOW versions only support the concept of PVM task identifier (pvmt i d) to
identify atask on the virtual machine. The MPP version allows the use of PE numbers
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in place of the pvmt i ds. PE numbers are in the range [O. . . npes], where npes is
the number of PE’s in the current partition. On the CRAY T3D, in addition to support
for dynamic groups [GBD194], every task (or PE) is aso a member of a static, pre-
defined, global group. Thisgroup can be accessed throughthe PV M group manipulation
functions defined for NOW versions by using anull name to refer to the global group.
Initscurrent implementation, PVM limitsthe maximum number of tasksthat canjoin
agroup. Thisisdone assuming that most groups are small relative to the total number
of PE’s, and it saves memory for each group. Where possible, it is recommended that
programs being ported from NOW versions of PVM to the CRAY MPP use the the
predefined global group on the CRAY MPP system. This helps prevent the program
from exceeding limitson group-sizeand al so givesbetter performancewhen performing
synchronization-barriers across the group or broadcasts to the group.

Process Spawning

The NOW versions of PVM allow any task in the virtual machine to spawn any number
of images of an arbitrary executable throughacall to pymspawn. Inthe MPP version,
calls to pvmspawn may be made only from the Y-MP host. A call to pvmspawn
causes a copy of the spawned program to execute on each PE in the current partition.
The same executabl e image must execute on each PE inthe partition, and tasks executing
on the T3D nodes may not call pvmspawn.

Virtual Machine Configuration

NOW versions of PVM provide the function pvmconfi g to provide informa
tion about the current configuration of the virtua machine. In the CRAY MPP
verson, the PVYM machine is of fixed size and composition, and al PE's are
running the same program. As a result, the full functionality of pvmconfig
is redundant and is therefore not implemented. The MPP version instead pro-
vides the functions pvmget PE() to return the PE number of the calling task.
Also, the number of PE's in the current partition (i.e, in the virtua machine)
may be obtained by determining the size of the global group by the function call
n_pes=pvmgsi ze( NULL) .

Word Size

Since al CRAY machines have a 64 bit word-size, and single-precision integers are
defined to be 8 bytes, the CRAY MPP and emulator versions provide a constant,
| NTEGERS, for packing/unpacking functionsin the FORTRAN interface to PVM.
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Unsupported Functions

Some of the functions supported by the NOW version, but not implemented in
the MPP version are pvmaddhost s, pvmdel host s, pvmki | | , pvmnst at,
pvmnoti fy,pvmperror,pvmsendsi g,pvmset opt ,pvmt asks. Caling
these functions on the CRAY T3D is permitted, but, if called, each will return the error
status: PvniNot | npl .

PvnDat al nPl ace Semantics

The network and CRAY MPP version differ in the treatment of data buffers packed
using PvnDat al nPl ace encoding. Inthe CRAY MPP version, such data must not
be reused until the data has been unpacked by the receiving PE. If possible, down-sizing
should be consistent. The caller is responsible for any additional synchronization or
communication required to ensure this coordination.

Communicatingwith the PVYM Daemon

PE’s on the CRAY T3D system communicate with the daemon using sockets. Because
of UNICOS limitsin the number of open files per application, not al PE’s may be able
to communicate with the daemon. By default only PEO establishes communication.
Additional PE's may be allowed to communicate with the daemon by modifying the
PVMPE_LI ST environment variable.

4.2 Performance Parameters

Two aspects of the performance of the CSI-MSVD algorithm are discussed in this
section:

e Performance of the algorithm, measured in terms of convergence rates and mag-
nitude of error.

¢ Performance of the parallel implementation, measured in terms of execution time,
memory requirements and scalability.

The methods used to evaluate each of these aspects will be described in the following
sections.
421 Performance of Algorithm CSI-MSVD

The relative performance of the algorithm is obtained by comparison with other widely
used eigenval ue-solvers used to obtain the SVD of sparse matrices. [GL89] points out
that Krylov-based methods are typically used to solve large, sparse eigenproblems. As
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discussed in Section 3.2, matrix-vector multiplicationsare thefundamental and most ex-
pensive operationsfor iterative methods (CSI) and Krylov subspace methods (Lanczos,
Arnoldi). Thus, the performance of each of these algorithms (CSI-MSVD, Lanczos
and Arnoldi’s method) can be estimated by computing the number of matrix-vector
multiplications required when the same constraints on number of required eigenpairs
(singular triplets) tolerance are used. Since the problems under consideration are large
and sparse, memory requirements, which could prove to be a constraint, must be mini-
mized. Also the sparsity pattern should not be disturbed, and the benefits of compressed
storage should not belost. Therefore, inthisdissertation, cost ismeasured by evaluating
the memory requirements of each method. A comparison of the performance (as mea-
sured by the number of matrix-vector multiplications) and the cost (as measured by the
memory requirements) is used to assess the theoretical analysis of the two algorithms.
Another aspect of algorithm performanceisthe magnitude of theerror inthe singul ar
triplet. When the SVD is obtained from the two-cyclic eigenvalue problem, the error in
the singular triplet can be trand ated to the error in the eigenpair approximants obtained
from CSI-MSVD. Following Section 2.6, the error in CSI-MSVD is approximated by

T
¢ = [ o ] : (4.2)
€

where ¢; is defined in Equation (2.33) and ¢, is defined in Equation (2.38). The
approximate ¢ defined in Equation (4.1) is compared to the following two norms:
1. The error in the eigenvector of the iteration matrix M defined in Equation (1.4),
i.e,
1

= Muv — 4.2
HHMUH v UH? ( )

wherev = [:z:l(k)T,xz(k"'l)T]T.
2. Theerror inthe eigenpair of the iteration matrix A defined in Equation (1.4), i.e.,
HMU—O']_UH, (43)

where o1 isthe current approximation to the largest singular value of the matrix A
and v =[x, 2,077,

Since M isatwo-cyclic matrix, the product M is of the form

O A l’l(k)
AT 0 l’z<k+l)

so that Equation (4.2) measures the error in the singular vectors, and Equation (4.3)
measures the error in the singular triplet {z1®", o5+ 2,(-+D1,
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4.2.2 Performance Evaluation of the Parallel Implementation

The performancegain achieved by parallelizing agiven applicationistypically measured
by monitoring the speedup [KGGK94]. A related parameter for evaluating a paralel
systemisthe scalability of the system, which isameasure of the capacity of the parallel
system to increase the speedup in proportion to the number of processors. Some of the
most common factors that prevent a linear increase in speedup with a larger number
of processors [Hwa93] are communication overhead, the complexity of interprocess
communication or synchronization overhead, and message-passing overhead, which
are absent in serial programs. Also for multiprocessing and time-sharing systems, the
accurate evaluation of CPU usage and time spent in communication for any one process
is difficult, and best-case statistics do not necessarily predict the performance of the
system for the average case.

The objectivein this dissertation was to eval uate the speed of execution as perceived
by the user. For thisreason, thewall-clock time for execution was monitored. Although
thetimetakento start up all the processesand to print thefinal resultswerenot considered
for these experiments, the time spent in loading the matrix into memory was taken into
account. Thisdatawas obtained by using anetwork of 24 machinesonaLAN (10Mbps
Ethernet) isolated by a bridgeto avoid interference from external traffic on the Internet,
and thus provide an estimate of the best-case performance. Each machine on the LAN
was a Sun SPARCstation 5 Model 70 workstation with a clock speed of 70 MHz and
32 MB memory. Wall-clock times for execution using this configuration are listed in
Section 5.4.

Although parallel speedup is a popular measure for evaluating parallel program
performance, there are some pitfallsto this metric as indicated in [Com93], especially
when used across multiple platforms. In this dissertation the speedup is computed to
obtain an estimate of the scalability of the algorithm with a variation in problem size,
so that for a given class of problems, recommendations can be made for the optimal
choice of virtual machine configuration. Speedup is defined as

STp

(4.4)

where T} istaken to be the wall-clock timefor CSI-M SV D to execute on one processor
without any redundant synchronization/communication operations, and 7, is the wall-
clock timewith p processors. Although thisdefinition of 73 doesnot give thewall-clock
time with the best single-processor algorithm, the objective in computing S through
Equation (4.4) isto obtain ameasure of the speedup over single-processor time, i.e., the
scalability of the system.
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4.3 Input problemsand Test Parameters

For all of the experimenta results listed in this dissertation, the wall-clock time for
execution was obtained as the difference between the values returned by calls to the
UNIX function get ti meof day() [Ste92]. The time taken to spawn processes and
to print the results was not considered, but the time to read in the matrix A from the
disk wasincluded in the wall-clock time. For experiments requiring the monitoring of
system parameterslike CPU time and pagefaultsthe BSD 3.2 functionget r usage()

[Ste92] was used wherever available. Each data point was obtained as the arithmetic
mean of 10 samples.

The test problems used were obtained primarily from information retrieval applica-
tions and from seismic reflection tomography problems (see Section 3.1). Table 4.1
lists the sizes and sparsity of the matrices used for evaluating the performance of the
CSI-MSVD agorithm. Here sparsity is defined by

nnz

Sparsity = nrows x ncols’
where nnz isthe number of non-zeros, nrows isthe number of rows, and ncols isthe
number of columns of the sparse matrix.

In order to study the effect of clustered spectra on the accuracy of the error estimate,
synthetic diagonal test matrices having clustered or multiple diagona elements were
also used as input. The diagona matrices used for these experiments included those
described in [Ber94]. In addition, two other matrices CLUS2 and CLUS5 were used to
introduce a larger separation between clusters. The diagonal elements were defined as
clustered values of a step function chosen to reflect varying numbers of clusters with
varying separation between clusters. Formally the diagonal elementswere chosen to be

a subset of
Ule, 8,0k, i) = J(ak + B) + &,
wherel < i < i,4,:,0 <k < kpus.

Here, ¢ defines the separation of elements within a cluster, o defines the separation
between consecutive clusters, i,,,, defines the maximum number of distinct elements
within acluster, and k..., o and 3 are such that for any diagonal element ¢; in the &'
cluster Cy, |oj| = ak + 5.

The 11-largest diagonal elements of two such matrices CLUS2 and CLUSS are
shownin Figure 4.3. The parametersfor these diagonal test matricesare givenin Table
4.2.
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Table4.1

Test matrices used to evaluate the performance of CSI-MSVD.

Matrix | Source Dimension Number of | Sparsity
non-zeros
amocol | Amoco Research 1436 x 330 35210 0.0074
amoco2t | Amoco Research 8754 x 9855 1,159, 116 | 0.0018
belladit | Bellcore Linguistics data 374 x 82 1343 0.0438
bellcrat | Bellcore Linguistics data 4997 x 1400 78,942 0.0113
bellcist | Bellcore Linguistics data 5143 x 1460 66, 340 0.0088
bellency | AA Encyclopedia 25629 x 56530 | 2,843,956 | 0.0020
belltect | Bellcore Linguistics data 16637 x 6535 | 327,244 0.0030
belltrec3 | Bellcore Linguistics data 10836 x 48809 | 2343775 | 0.0044
ccelink | Hypertext linksfrom Columbia | 12025 x 9778 | 33,545 0.0002
Condensed Encyclopedia
greenh | Greenhouse Effects News 318 x 100 5772 0.1820
knoxns | Term-document matrix 12615 x 40140 | 1,780,951 | 0.0035

from Knoxville News-Sentinel
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Table 4.2

Parameters for some diagonal test matrices

Matrix (Oé,ﬁ,(s7kmax7imax)
CLUSL | (4,0,10°3,12, 4)
CLUS2 | (1,0,107%, 4, 10)
CLUS3 | (26,—1078 1078 1, 25)
CLUS4 | (10,1,0,4, 10)
CLUS5 | (10,8,10°3,4, 4)
50
¢ ¢
404 x x x X X X X
¢
5
230 . o xCLUS2
% +CLUS5
S
20
¢
10-
¢
0 5 10
Index

Figure 4.3. Clustered spectraof two 50 x 50 test matrices.



Chapter 5

Results

Experimental results to demonstrate the performance of PVM implementations of the
CSI-MSVD agorithm for two-cyclic matrices are described in this Chapter. First,
an evauation of the theoretical performance of the algorithm is presented through
comparisons with Krylov subspace methods like Lanczos and Arnoldi’s method in
Section 5.1. Section 5.2 presents an anaysis of the reliability of the schemes for error
estimation described earlier in Section 2.6. The CSI-MSVD agorithm for two-cyclic
matrices as defined in Section 2.4.1 was implemented in ANSI C using PVM 3.3.7 for
a network of workstations. An overview of the paralel implementation is presented
in Section 5.3, and parallel program performance is evaluated by studying parameters
such as scalability in Section 5.4. Other aspects of parallel programming such as load
balancing are also described in Section 5.5.

As discussed in Chapter 4, vendors of massively-parallel platforms often supply a
PVM interface to their message-passing libraries so that PVM applications devel oped
on networked-workstationsmay be ported easily to these massively parallel computers.
The portability of the PVM implementation of the CSI-MSVD agorithm was studied
by experimentsonthe CRAY T3D. The performanceof the PV M implementation of the
CSI-MSVD algorithm using the Cray MPP implementation of PVM (see Section 4.1.2)
isdescribed in Section 5.6 to illustrate the portablity of the current implementation.

5.1 Comparisonswith Krylov methods.

It has been pointed out in [Ber90] that the Lanczos algorithm has been demonstrated
to be the fastest method among Krylov- and subspace-iteration based methods for
computing severa of the largest singular values and corresponding vectors of large
gparse matrices. Arnoldi’s method, a generalization of the Lanczos method, may aso
be used to obtain the SVD by solving the eigenvalue problems described in Lemma
1.1. However, sincethe eigenvalue problemsunder consideration in thisdissertation are
symmetric eigenvalue problems, Arnoldi’s method reduces to the symmetric Lanczos
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algorithm.

The implementation was tested on a network of 24 machines, each a Sparc-5 Model
70 (70 MHz) having 32 MBytes internal memory. Cost-performance comparisons
between thisimplementation and library implementations of the Lanczos algorithmin
SVDPACK [Ber92] are described in this Section. Experimentsusing CSI-MSVD asa
preconditioner to Arnoldi’s method implemented in [LSV94] are also described.

511 CSI-MSVDversusLAS

The cost and performance of the PVM implementation of CSI-MSVD were compared
with LAS1 and LAS2, the Lanczos agorithms implemented in SVDPACK [Ber92].
LASI solves the two-cyclic eigenvalue problem (i.e., the eigenvalues of the matrix M
defined in Equation (1.4)), and LA S2 solves the eigenval ue problem for the matrix A” A.
In order to estimate the cost of each method, the maximum memory requirement for
any process in the virtual machine for CSI-M SV D was compared to the corresponding
requirementsfor LAS1 and LAS2.

Table5.1

Memory requirements for matrix-vector multiplication in CSI-MSVD using 20 processors.

Matrix | Memory (Mbytes)
amoco | 2.458304
bellcist | 0.814496
bellcrat | 0.799032
bellency | 2.708668
belltect | 8.019468
knoxns | 3.796876

It was found that the dominant memory-cost for CSI-MSVD was for the storage for
the matrix A itself. The memory requirementsfor calculating the triangular matrix o,
defined in Equation (2.25) and for the extraction of singular values from the resulting
bidiagonal matrix in Equation (2.31) are bounded by the number of iterations: required
for convergence. As demonstrated by Equations (2.23) and (2.22), the construction
of the Jacobi matrix is accelerated by the extraction of moments v, and 15,1 a step
k + 1, and hence the number of iterations ¢ is usually small. In practice, : was found
to be of the O(10), and a maximum iteration limit (MAXIT) of 50 was found to be
sufficient for all of the matricesused. For thisvalue of MAXIT, the upper-bound on the
memory requirements for the calculation of o; was found to be 0.191 Kbytes and that
for the bidiagonal QR iteration was 0.456 Kbytes. In contrast, the combined memory
requirementsfor the matrix storage and the Chebyshev iteration are shownin Table 5.1.
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The memory requirement for storage of the matrix in CSI-MSVD isone that can be
controlled by varying the number of processors used. Since this requirement dominates
the memory required for the calculations intrinsic to the algorithm itself, there is some
control over the cost of CSI-MSVD.

Table 5.2

Memory requirements in MBytes for LAS1 and LAS2. Values, as reported by software from
SVDPACK, indicate memory required in addition to that for the storage of the matrix.

FileName | LAS1 LAS2

amoco 31.2084 | 31.6440
bellcist 11.1343 | 11.2818
bellcrat 10.7899 | 10.9325
bellency 137.464 | 139.424
belltect 38.8377 | 39.3829
knoxns 88.3005 | 89.5556

The memory requirementsfor the Lanczos algorithmsfrom SVDPACK arelisted in
Table5.2. It canbeseenfor largematrices, evenif thematrix ispartitioned acrosssevera
processors, and matrix-vector multiplicationis carried out through data-parallel compu-
tation, the memory requirementsfor the algorithm could prove to be an insurmountable
bottle-neck.

In order to study the performance of each method, the number of matrix-vector
multiplications was compared for CSI-MSVD, LASL and LAS2. Table 5.3 records
the number of Az operations when calculating the largest 10 singular values and the
corresponding vectors for the matrices considered earlier. Here, the maximum iteration
limit for the Lanczos codes was set to 100, and to 50 for CSI-MSVD. A tolerance limit
of 10-% was requested from both methods.

Although CSI-MSVD takes about 3 times as many matrix-vector multiplications as
LAS2, the number of these operationsisof the same order of magnitudeasLASL. Better
insight into this behavior may be obtained by examining the cumulative overhead for
computing singular-triplets. Figure 5.1 shows acomparison of the cumulative overhead
for thematrix bel | ency. Herethe number of matrix-vector multiplicationsrequired
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Table 5.3

Performance comparisons, as measured by the number of matrix-vector multiplications required by
each method, when calculating the 10-largest singular values and corresponding singular vectors.

FileName | CSl | LAS1 | LAS2
amoco | 221 164 86
bellcist | 289 194 122
bellcrat | 263 196 86

bellency | 238 192 86
belltect | 255 196 118
knoxns | 208 120 71

2004

100+

Cumulative cost (number of A*x operations)

sLAS1

o CSl

2 4

6

8

index of singular value
Matrix: BELLENCY (25629 rows, 56530 columns, 2,843,956 nonzeros)

10

Figure5.1. Comparison of cumulative overhead when computing singular triplets by LAS1 and
CSI-MSVD. CSI-MSVD requires fewer matrix-vector multiplications to calculate each triplet, but
LASI1 has alower cumulative count for & > 8 because more than one singular triplet can be deflated

at each step.
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to get the k-largest tripletsusing LAS1 and CSI-MSVD is plotted with alinear-least
squares fit of degree 1 through the data points. For LAS1 the minimum subspace to
compute the k-largest triplets to an accuracy of 10-® was used. It can be seen from
Figure 5.1 that the performance of CSI-MSVD as measured by the number of matrix-
vector multiplications is lower than the corresponding values for LASL1 for the first
8 triplets. For the first triplet, CSI-MSVD takes 13 iterations while LAS1 takes 50
iterations. However, the incremental overhead for calculating each additional triplet
for CSI-MSVD is high as indicated by the slope of the interpolating line. This high
incremental overhead could be reduced if, at each step, it were possible to accept
more than one singular triplet. However, the absence of more than one singular vector
approximation precludes this, and the performance of CSI-MSVD deteriorates more
rapidly than that of LASL.

The choice of Wielandt’'s scheme for deflation provides robustness in CSI-MSVD.
The effectiveness of deflation is not as sensitive to the orthogonality of singular-vector
approximates as in Lanczos agorithms, and convergence is not affected by loss of
orthogonality dueto round-off. Thus, vectors can be orthogonalized by one step of total
re-orthogonalization after the desired number of triplets are found or as frequently as
desired in the application without introducing a synchronization point in the algorithm.

512 CSI-MSVD versus Arnoldi’smethod

The feasibility of using CSI-MSVD as a preconditioner to Krylov-based methods like
Arnoldi’s algorithm was investigated by using Matlab 4.2 implementations of CSI-
MSVD in combination with a k-step Arnoldi method (Arnupd) as implemented in
[LSV9Y4]. Arnupd iterates with a subspace of dimension 6, and the number of desired
eigenvalues k=1 with p = 5 extra vectors calculated at each step to obtain the partial
Schur decomposition for the iteration matrix A where

MQ = QH.

The starting vector for Arnoldi’s method in Arnupd was provided by the singul ar-vector
approximation from CSI-MSVD.

Table 5.4 tabulates the number of Arnoldi iterations required using the iterates
generated by the CSI-M SV D procedure as compared to running Arnoldi with arandom
starting vector for the ADI matrix. There isaclear reduction in the number of Arnoldi
iterations so that at most 1 Arnoldi iteration is needed to refine the singular vectors.
Also, theresidual error islarger when arandom starting vector is used with Arnupd.

It should be noted that, since Arnupd tests for convergence by ensuring that the error
in the Rayleigh Quotient ||QT M Q — H]||, is within the user-defined tolerance tol, the
actual error in the eigenpair is given by ¢ = ||Mv; — A\v;||2. Here ), is obtained as
theeigenvalues of H, and v; = Q * y; where y, isthe eigenvector of H corresponding
to A\;. The actua error ¢ is typically larger than tol. When the subspace size is
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Table 5.4

Refinement by Arnoldi; parameters used for CSI-MSVD were i, = 5, 2 = 15 and parameters used

with Arnupd were £=1 and p=5.

Arnoldi for singular vector refinement | Arnoldi: rand starting values
Singular Value | Arnupd iterations for error Arnupd iterations error

tol: 10~3 | tol: 10°° tol: 10-°
2.078676e+01 1 1 8.348e-06 1 2.780e-02
1.423534e+01 1 1 7.702e-05 3 8.427e-03
1.295953e+01 1 1 3.935e-05 2 1.248e-02
1.056388e+01 1 1 6.652e-05 3 1.083e-02
9.614439e+00 1 1 2.618e-04 5 7.000e-03
8.907366e+00 1 1 8.133e-04 9 8.748e-03
8.660762e+00 1 1 5.374e-04 6 1.367e-02
8.356867e+00 1 1 8.39%4e-04 6 6.465e-03
8.157926e+00 1 1 7.586e-04 8 7.376e-03

kept constant for a given user-defined tolerance tol, starting vectors generated by the
CSI-MSVD dgorithm consistently yield improved errors in the eigenpairs computed
by Arnoldi’s method. In addition, as indicated by Figure 5.1, since the CSI-MSVD
algorithm typically requires O(10) matrix-vector multiplications to converge to each
eigenvalue, a considerable improvement in the accuracy in the solution obtained from
Arnupd can be obtained at very little cost.

5.2 Error estimation

In order to study the magnitude and validity of the error estimate, several matricesfrom
information retrieval applications and synthetically generated test matrices were used.
A description of these matrices is provided in Section 4.3. The 10-largest singular
values and the corresponding singular vectors were cal cul ated.

For typical term-document matricesobta ned from information retrieval applications,
it was found that in spite of the perturbation «,A”¢; defined in Equation (2.37), the
error estimate defined by Equation (2.32) provides an upper bound on the actual error
in the vector for up to 8 of the largest triplets (see Figure 5.2 ). Even when the estimate
isnot a good upper bound on the actual error, a good approximation to the actual error
is available from the estimate, especially for well-separated singular values. Thus the
error estimate can be used as a reasonable indicator of the acceptability of the current
eigenvector approximation, even though it may not always be an upper bound on the
actual error in the eigenvector, and the explicit computation of the exact error may be
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Figure 5.2. Variation in the reliability of the error estimate as an upper-bound for clustered singular
values.

avoided through this scheme.
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Figure 5.3 shows the error estimate, and the actual error measures defined in Equa-
tions (4.2) and (4.3) for two of the diagonal test matrices described in Table 4.2. For the
matrix CLUS2, whose 10-largest singular values are clustered around 40, the error esti-
mate cannot provide a good bound on the actual error for the fourth to seventh singular
tripletsin the 10-element cluster around the singular value 40. The effect of clustering
on the error estimate is more obvious for the matrix CLUSS. Here, for the 11-largest
triplets, each cluster has at most 2 values, with a large separation (« = 10) between
consecutive clusters. When the gap between the values of the largest and second-largest
singular-values of the deflated matrix islarge, 1 = o0, /0; isrelatively small and agood
approximationto the actual error isprovided by Equation (4.1). Figure5.3(b) illustrates
that when o, and o1 are not well-separated, the validity of theerror estimate asareliable
upper-bound becomes more questionable (0,5 € {1,3,5,7,9}). However, the CSI-
MSVD agorithm invokes an external refinement procedure SY MMLQ when clustered
singular values are encountered. The error estimate provided by the SYMMLQ over-
rides the estimate given by Equation (4.1) so that an accurate error estimate is obtained
regardliess of the clustering in the singular values.

5.3 Parallel Implementations

The components of the parallel implementation and the parameters controlling commu-
nication and computation overhead will first be described. Then the parallel program
performance will be examined, using the methods described in Section 4.2.2.
The major functional components of CSI-MSVD (see Figure 2.3) are
MATVEC(:) When the matrix has been partitioned across p processors, this
indicatesthe:-th process participating in matrix-vector multipli-
cation, and thus, the Chebyshev semi-iterative method defined
by Equation (2.12). Processes MATVEC(:), 0 < ¢ < p are
enrolled in alogical, dynamic PVM group, MATVEC.

SIGMA  Processthat updatesthe array oy, defined in Equation (2.25).

GAMMA  Process that performs the bidiagona QR-iteration to approxi-
mate the singular values of the current bidiagonal matrix By, in
Equation (2.31)

MAIN  Driver program that initializes parameters for CSI-MSVD and
keepstrack of deflation.
TheprocessesMATVEC, SIGMA and GAMMA arepipelined sothat MATVEC initiates
the pipeline by sending moments to SIGMA. SIGMA then updates the bidiagonal
matrix, and GAMMA, the third process in the pipeline, performsthe QR-iteration with
the updated bidiagonal matrix.
As noted in Section 5.1.1, due to the accelerated computation of moments and the
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Figure 5.3. Error estimates for computing the 10-largest singular triplets for 50 x 50 diagonal test
matrices.
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simplifications possible for the two-cyclic iteration (Section 2.4.1), the sizes of the
matrix oy, defined by Equation (2.25) and the bidiagonal matrix are independent of the
problem size in practice. Hence the computational workload in SIGMA and GAMMA
is not large enough to necessitate the parallelization of these components.

The load on processors involved in the MATVEC group, on the other hand, is
dependent on the size of the input sparse matrix. It is possible that a single processor
may not be able to satisfy the memory requirements of some large input matrices. Even
if the matrix could be accommodated in a single processor, it is desirable to partition a
large matrix across multiple processorsto obtain the benefits of distributed computation
of the Chebyshev iteration.

5.3.1 DataParallel implementation of CSI

One method to obtain a data-parallel computation of the Chebyshev semi-iterative
method using only those operations defined by PVM will now be described.

Let the iterate at the £ step, €¥) be partitioned so that ¢#[1 : m] = (¥ and
EWm + 1 : n] = y® where m,n are the number of rows and columns of the input
matrix A. Further, assume that the sparse matrix A, and the elements of =*) and y(*)
are distributed across p processors as described in Section 3.3 so that processor : has
A;, 2 and ;%) storedinitslocal memory. The Chebyshev semi-iterative method now
proceeds as follows:

1. Calculate A;y;\*) on the i*" processor

2. Sum the result of Step 1 across all processors (global reduction), and store result
in processor /1. Note that since A;y;*) is an m-element vector, the complexity of
thisstep isO(m).

3. On processor [; compute =¥tV using Equation (2.27), with the equivalences
Ty x, &y, mek,

4, The scalar (y®, y®) computed in iteration £ — 1 at Step 7 may be sent to the
process SIGMA for computation of the new anti-diagonal as illustrated in Figure
2.3.

5. On completion of Step 3, processor /; must broadcast the vector =+ to all other
processors in the group, in preparation for the computation of A”z*+Y, Note
that thisis necessary because, as discussed in Section 3.3, every processor must
have al of the elements of +(*+. Thus, an unavoidable synchronization step is
required so that the value of =(*+9 is consistent across all processors. Since z(¥+1)
isan m-element vector, the communication overhead involved is O(m)

6. On processor i, compute y; ¥+ using Equation (2.28).

7. Globally reduce (y;*+9 | y;(*+1)) to store the result in processor /.
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8. Thevalue: (1) 2(*+1)) may be sent to the process SIGMA for computation of
the new anti-diagonal.

It can be seen that the length of the largest messages (and thus the complexity of
message-passing) are determined by m, the number of rows in the input matrix. For
rectangular matrices, when m = n, it is therefore desirable to have m < n, and, if
necessary, use the transposed matrix to achieve this effect.

For example, consider the matrix BELLTECT described in Table 4.1 with 16,637
rows and 6,535 column. Figure 5.4 illustrate the wall-clock times for computing the
10-largest singular triplets of BELLTECT using CSI-MSVD with varying numbers
of processors on the CRAY T3D. The corresponding times for the transposed matrix
BELLTECH (6,535 rows, 16,637 columns) are also shown in Figure 5.4. Although
BELLTECH and BELLTECT have ailmost identical execution times when the size of

-+ BELLTECT (16637 rows, 6535 columns)

4001, BELLTECH(6535 rows, 16637 columns)

w
o]
<

Wall-clock time (seconds)
N
o
o

=
Q
<

0

0 50 100
Number of processors (p) in MATVEC
Figure 5.4. Effect of m, the number of rows, on wall-clock times in seconds obtained on the CRAY

T3D. BELLTECT is the transpose of the BELLTECH. The communication-overhead is proportional
to the number of rows in the matrix, which causes higher wall-clock times for BELLTECT.

the MATVEC group, p < 2, these times are much larger for BELLTECT when p > 2,
indicating the phenomenon of higher communication overhead from the larger number
of rows. Thus, it ispreferable to use BELLTECH as the input matrix to CSI-MSVD.

5.4 Scalability

The wall-clock times for execution of CSI-MSVD on a network of SPARCstation 5
machines on aLAN isolated by abridge were monitored as described in Section 4.2.2.
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For small matrices (< 500,000 non-zeros) the benefits obtained by partitioning the
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Figure5.5. CSI-MSVD: wall-clock times (seconds) for execution for matrices with 500, 000 or fewer
Non-zeros

matrix across multiple processors are overshadowed by the communication overhead so
that partitioning the matrix over morethan one processor resultsinasow-down. Figure
5.5 illustrates this effect for the matrices BELLCRAT and BELLTECT. The values of
the number of non-zerosand the number of rows () for BELLTECT are approximately
4 timesthe valuesfor BELLCRAT, and thisisreflected in the corresponding wall-clock
times.

The detrimental effect of communication overhead can be observed more clearly in
Figure5.6. Here the two matrices AMOCO1 and CCELINK were used in experiments
on the CRAY T3D. Wall-clock times for execution for computing 10 singular triplets
to 10~® accuracy. AMOCOL1 isa 1,436 x 330 matrix with 35, 210 non-zeros, while
CCELINK isa 12,025 x 9,778 matrix with 33, 545 non-zeros. Thus, athough both
matrices have approximately the same number of non-zeros, they have widely different
number of rows and columns and thus very different sparsity. As expected, the CSI-
MSVD agorithm encounters larger communication overhead with CCELINK, which
is also the sparse matrix, so that larger execution times are observed in this case.
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Figure 5.6. Effect of communication overhead and sparsity on the parallel program performance.
Elapsed wall-clock times on the CRAY T3D were recorded.

While the dow-down exhibited in Figure 5.5 with increasing number of processors
might appear to detract from any advantages of parallelism, it isalso encountered when
traditional sequential methods like Lanczos are used to solve large eigenval ue problems
by partitioning the matrix across multiple processors.

Figure5.6 asoillustratesthat the number of non-zerosisnot the only indicator of the
complexity of computing the eigenvalues using CSI-MSVD for the matrices AMOCOL1
and CCELINK, and factors such as differencein sparsity and communication overhead
must be considered in order to construct run-time performance models. The factorsthat
affect wall-clock execution time, listed in relative order of importance are:

e number of rows
e number of non-zeros

e Sparsity

For large matrices (> 10° non-zeros), however, the time to calculate the matrix-
vector product by storing the entire matrix on one processor is much larger than the
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corresponding time when the matrix is partitioned across multiple processors. The
parallel program has an additiona advantage: there are fewer page faults per process
for the partitioned matrix so that a super-linear speedup can be observed in some
cases (Figure5.7). Figures 5.7 and 5.8 show the trend in wall-clock times with varying
numbersof non-zeroswhen the number of rows (and thus, the communi cation overhead)
are of the same order of magnitude for all the matrices being considered. The optimal
choice for p, the number of processors in MATVEC at which wall-clock times are
mimimized, appearsto be approximately 5. Whilethisimpliesthat thea gorithm cannot
exploit the parallelism afforded by alarger number of processors, it also indicates that
relatively few resources are required to obtain optimal performance.
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Figure 5.9. Average number of page faults per processor, with a variation in the number of processors,
for 2 matrices of different sizes

To further investigate the effect of variation in page faults with varying numbers of
processors, the number of page-faults per process involved in matrix-vector multipli-
cation was monitored within the program through calls to get r usage() ([Ste92]).
Figure 5.9 illustrates the variation in the number of page-faults with a varying number
of processors. Asexpected, for smaller matriceslike BELLCRAT (4997 x 1400, 78942
non-zeros), the number of page-faults does not vary substantially with the number of
processors over which the matrix is partitioned. However, for large matrices such as
KNOXNS (12, 615 x 40, 140, 1, 780, 951 non-zeros, the average number of page faults
per processis affected by factors such as number of columns of the matrix assigned to
the process, the distribution of non-zerosin these columns, and hardware characteristics
such as cache size.

Figure 5.10 summarizes the speedups for four matrices AMOCO2T, KNOXNS,
BELLTREC3 and BELLENCY, where the speedup is defined by Equation (4.4).
Since the number of rows for AMOCO2T, KNOXNS and BELLTRECS are all about
10, 000, the communication overhead for these three matrices is approximately the
same. AMOCO2ZT, with 1, 159, 116 non-zeros gives rise to the smallest computational
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—— AMOCO2T (9855 rows, 1,159,116 nonzeros, Sparsity=0.002)
—- KNOXNS (12615 rows, 1,780,951 nonzeros; Sparsity=0.0035)
-~ BELLENCY (25629 rows, 2,843,956 nonzeros; Sparsity=0.002)

-+ BELLTRECS3 (10836 rows, 2,343,775 nonzeros,; Sparsity=0.004)
15+

Speedup (T(1)/T(p))
H
P

ik

0 5 10 15 20
Number of processors (p) in MATVEC

Figure 5.10. Summary of speedups attained using PYM on a network of workstations. The dashed
line indicates the theoretical linear speedup.

load with the CSI-MSVD algorithm, and BELLTRECS, with 2, 343, 775 non-zeros,
produces the largest computational load Thus as expected, the smallest speedups are
observed with the matrix AMOCO2ZT, and the largest are observed with BELLTRECS,
with a clear trend within the set { AMOCO2T, KNOXNS, BELLTREC3}.

An interesting variation is observed when BELLENCY is considered. Although
BELLENCY hasmorenon-zerosthan BELLTRECS, itisthe sparser of thetwo matrices
(see Table 4.1). Low sparsity produces a detrimental memory-access pattern which is
aggravated by thelarge value for the number of non-zeros, so that when BELLENCY is
stored on one processor, the el apsed wall-clock time T(1) islarger than the corresponding
valuefor BELLTRECS. Thiscausesthe speedup T(1)/T(p) for BELLENCY to belarger
than the value for BELLTREC3 when p < 5.
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However, since the number of rowsin BELLENCY (25,629) is approximately twice
that for BELLTREC3 (10,836), the communication overhead for BELLENCY is cor-
respondingly higher. Thus, as p increases, the larger communication overhead has a
deteriorating effect on speedup, and BELLTREC3 experiences the higher speedup for
p > 5. Since speedup is sengitive to the choice of T(1), it cannot be used as an absolute
estimate of the degree of paralelization achieved. However, Figure 5.10 provides a
heuristic for estimating the upper bound on the number of processors in the virtual
machine for this class of matrices.

5.5 Load Balancing

From a performance point of view, the computational load is not fully balanced across
the three functional components in the pipeline described in Section 5.3. The com-
putational load on SIGMA and GAMMA is much less than the load on MATVEC for
large sparse matrices since the process MATVEC involves the manipulation of large
vectors through indirect addressing. Attemptsto balance this load dynamically would
necessitate the sharing of the matrix across these processorsaswell and further decrease
the granularity of the parallel program. Idedlly, it is desirable to have CSI-MSVD dis-
tributed across a heterogeneous network of processors on a LAN with the processes
involved in MATVEC executing on the fastest processors. However, such a heteroge-
neous LAN without interference from general Internet traffic was not available for this
study, and all experiments were performed on a network of homogeneous processors.

Some scope for static load balancing is possible in the data-parallel computation of
the matrix-vector multiplication. In order to obtain an estimate of the balance of load
achieved in the current implementation, callsto get r usage() [KR92] were madein
each processto monitor the system time used. The system timeis defined to be thetime
attributed to the kernel when it executes on behalf of the process [Ste92].

Table 5.5 shows the typical distribution of system time for the processes involved
in matrix-vector multiplication. It can be observed that the system time for 7, the
0" process in MATVEC is much larger than the system time for the other processes.
This load imbalance arises from program design. All PVM group operations such as
vector reduction requirearoot to be defined in the call so that the result of the reduction
operation can be accumulated inthe root. Inthe current version, processor Fy isdefined
astheroot for al reductions.

A small degree of static load-balancing may be achieved by assigning a different
root at each reduction. However, this would impose constraints on the minimum
number of processes that need to be involved in the matrix-vector multiplication. As
discussed earlier in Section 5.4, the number of processors p required to achieve optimal
performanceis dependent on the size of the matrix. The implementation of such astatic
load-balancing scheme is thus justifiable only if a substantial improvement in system
performance could be attained through the scheme that would compensate for the loss
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Table 5.5

System time for each process involved in matrix-vector multiplication when the matrix BELLCRAT
partitioned across 10 processors.

Process System Time
MATVEC(0) | 22.38
MATVEC(1) | 3.710
MATVEC(2) | 3.480
MATVEC(3) | 3.820
MATVEC(4) | 3.920
MATVEC(5) | 3.930
MATVEC(6) | 3.960
MATVEC(7) | 4.010
MATVEC(8) | 4.870
MATVEC(9) | 4.110

of flexibility introduced by the constraints on the minimum number of processors.

In order to study the scope for static load balancing in the Chebyshev semi-iteration
described in Section 5.3.1, the steps described there will now be examined. It is
possible to overlap Step 3 with Step 4 on processor /5, as well as Steps 6 and Step 7
with Step 8. Step4 involvesacal topvmsend() whichisan asynchronousoperation
(computation on the sending processor resumes as soon as the message is safely on its
way to the receiving processor). Step 3 involves adaxpy [GL89] which can also be
computed efficiently. Thus, the overlap of Steps 3 and 4 produces a dight, though not
remarkable, speedup. Similarly the call to pvmsend() [GBD*94] involved in Step
8 isasynchronous, and thusis not expected to be atime-critical operation. On the other
hand, barriersexist at two points:

¢ The broadcast of the m-element vector +(*+1) at Step 5 which must be completed
before Step 6, and after Step 3. Note that the size of the vector isindependent of
the number of processors used.

e Step 7 must be completed on processor [, so that [, isavailablefor the next iteration
through Steps 1 and 2.

Tables 5.6 and 5.7 show thetimesfor group communicationswithin PVM, aslistedin
[SGDM94] whereit has been pointed out ([GBD*94] [SGDM94]) that group functions
in PVM have been designed to be robust at some cost in efficiency.

Consider amatrix like BELLADIT, with 374 rows, and 82 columns. As has been
demonstrated in Section 5.3, the most expensive message-passing operations involve
messages of length r:, wherem isthe number of rows of the matrix under consideration.
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Table 5.6

Data transfer times (milliseconds)

Network Message Length

Type 0 128|512 | 1K [ 4K | 16K | 64K | 1M
Ethernet | 1.2 |15 |21 |32 |72 |245|823| 12112
FDDI 12|15 |19 | 25|59 |16.1|60.3 | 665.7

Table 5.7

Group operation times (milliseconds). Messagesize: 1K

Operation Number of Processors
Type 2 |4 8 16 | 32
Barrier 221105 |281|532|107.2
Broadcast | 3.2 |55 | 159 | 285 65.9
Opt.Bcast | 1.2 32 | 115|182 | 3.1

Even if calculations were done with single-precision accuracy, the message-passing
length in bytes would be 374 x 4 = 1,496 bytes. Then, from Table 5.6 the Ethernet
data transfer time per m-element message is at least 3.2 milliseconds. Comparing this
with the time for matrix-vector multiplication for BELLADIT listed in Table 3.1, it
can be seen that the communication overhead is about four to five times larger than
the time for the more computationally complex matrix-vector multiplications. Thusthe
barriers described earlier could be bottlenecks that cannot be circumvented by static
|oad-balancing.

Table 5.8
Distribution of system time (seconds) for all 10 processes involved in matrix-vector multiplication

for CSI-MSVD. Ten processorswere used for storing the input matrix and to compute the 10 largest
singular values and corresponding singular vectors of the matrix BELL CRAT.

Process Computation | Communication
MATVEC | 20.75 381.51
SIGMA 0.04 164.40
GAMMA | 0.23 201.78

64



Table 5.8 lists the distribution of the time spent by the different processes in com-
putation and communication for the matrix BELLCRAT with the matrix divided across
10 processors. Thisincludesthe CPU usage for computation in the pipelined processes
MATVEC, SIGMA and GAMMA, and the time spent in message-passing for the three
processes. Sincethe sending of messagesis designed to be anon-blocking call in PV M,
the time spent on waiting for message arrival was found to account for most of the com-
munication overhead. For the processes SIGMA and GAMMA, thisarose fromwaiting
on the arrival of moment information from MATVEC. For processes in the MATVEC
group the slowest message-passing operations were those involving reduction opera-
tions for the group, where the result of the operation had to be accumulated on the root
(the 0" processor) and then broadcast to the members of the group. Examples of this
type of operationinclude computing the norm of avector and Step 4 of Algorithm P_OP.

Table 5.8 indicates that even though the computational load of MATVEC(0) is
higher than that of SIGMA and GAMMA, the amount of time spent in communication
ismuch larger than that spent in computation for the three processes so that even when
static load-balancing was implemented for matrix-vector multiplication, no significant
performance gain was achieved. It did not appear justifiable to impose constraints
on the minimum number of processors, and the load-balancing scheme was therefore
abandoned.

5.6 Resultson the CRAY T3D

Theimplementation of CSI-MSVD for NOW versions of PV M was ported successfully
to the CRAY MPP. Due to the differencesin the PVM implementations on the CRAY
MPP (see Section 4.1.3), some syntactic modifications had to be made. Only the
minimal changes required to successfully port the NOW version were attempted. The
emphasis was on developing a portable, modular implementation of Algorithm CSI-
MSVD that could be used across multiple platforms. This section tabul ates wall-clock
times on a 256 node CRAY T3D at the Advanced Computing Laboratory, Los Alamos
National Laboratory.

The C compiler used for these experimentswas Cr ay St andard C Ver si on
4. 0. 3. 2, and the loader used was MPPLDR ver si on 10. x. Compiler optimiza-
tion for aggressive vectorization, suppression of redundant symbol-tables, and usage of
branchesinstead of jumpsto external functionswere used.

Table 5.9 summarizes the modifications that were made to port the NOW implemen-
tation of the CSI-MSVD agorithm to the CRAY T3D. Since the CRAY MPP does not
support pvmspawn( ) andthereforerequiresall nodesto run the same executable pro-
gram, heterogeneity was achieved by using my:d in adriver programto determineif the
node under consideration would participate in the computations involving MATVEC,
SIGMA or GAMMA. The driver program to achieve thisis shown in Appendix B.

Thewall-clock timesfor computing the 10-largest singular values and corresponding
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Figure5.11. Wall-clock timesfor execution using CRAY T3D’s MPP version of PVM, compared with

times using PVM on a network of workstations. The 10-largest singular values and corresponding
vectors were computed to 10~8 accuracy.
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Table 5.9

List of modifications made to port the CSI-MSVD algorithm to the CRAY T3D

Variable purpose Previous Evaluation: replaced by:
nprocs — number of processes Read from nprocs=pvm_gsize(NULL)
in virtual machine parametersfile
tids|i] array of tidg[] Parent broadcasts  tidgi]=pvm_gettid(NULL,i)
of processesin array to
virtual machine child processes
myid logical number index within myid=pvm_get_PE(mytid)
of process logical group

singular vectorson the CRAY T3D are shownin Figure5.11 along with the correspond-
ing timesfor execution on anetwork of workstations. The benefits of improved connec-
tivity can be clearly seen. For the matrix BELLTECT ( 16, 637 x 6, 535, with 327,244
non-zeros) the improvement in execution time through an increase in parallelism is no
longer damped by the communication overhead, and a pattern similar to that exhibited
in Tables 5.7 and 5.8 can now be seen. Further, for both the matrices BELLTECT and
BELLENCY, the rate of increase in communication latency is much lower with the
CRAY T3D, so that when the matrix is partitioned across 125 processors, the execution
timeisless than the execution time on a network of workstations with the matrix stored
on only one processor. Also, the minimum execution time is still observed when the
size of the MATVEC group is approximately 5, confirming the heuristic established by
Figure 5.10. A comparison of this minimum execution time between the networked-
and MPP versions of PVM is shown in Table 5.10. It can be seen that the MPP im-
plementation is about 2 to 10 times faster than the networked implementation. The
largest differences in execution time are observed for matrices like BELLCRAT and
BELLCIST which havethe smallest number of non-zeros, indicating that these matrices
are most critically affected by communication overhead in NOW environments.
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Table 5.10

Comparison of elapsed wall-clock times to compute 10 singular-triplets to 10~° accuracy using CSI-
MSVD. Cray MPP and networked versions of PV M were used . Thetimesreported herewere obtained
with the PVM configurationsthat result in the minimum execution time for the respective platforms.

File MPP NOW
amocozZt | 165.831 | 449.127
bellency | 462.322 | 1437.603
belltrec3 | 334.928 | 768.5795
knoxns | 266.414 | 466.568
bellcist | 18.934 | 270.135
belltect | 78.478 | 586.219
bellcrat | 19.571 | 228.691

All timesin seconds.
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Program performance was also profiled using the Cray MPP Apprentice tool, a
window-based performance analysis tool available on Cray MPP systems. The Ap-
prentice tool can be configured to report time spent in each subroutine in performing
tasks such as parallel computations, 1/0, and communications. One example output of
the Apprentice tool is shown in Figures 5.12 and 5.13. Figure 5.12 shows the PVM
overhead associated with matrix-vector multiplication when the matrix KNOXNS is
distributed across 5 processors, and 10 singular triplets are requested from CSI-MSVD
to an accuracy of 10-6. From Figure 5.14 it can be seen that the 47% of the total time

[CO5TS: D Instructions PIShared Hemory Overhead MEPYH Dverhead |

Time Hame

b,0Be+02  pum_barrier
1.4e+04  pum_becaszt
1.13=+04  pum_initsen
1.4e+05  pum_pkdoubl
1.49=+07  pum_recy
4,62e+03%  pum_send
3,28e+06  pum_upkdoub
1.27e+04  pum_upkint

0 2.50e+08 B, levid

Time {usec’

MATVEC

Figure 5.12. PVM overhead within MATVEC as evaluated by Apprentice for CSI-MSVD when
computing the singular triplets of KNOXNS using 5 processors for matrix storage.

taken by the programisaccounted for by pvmr ecv alone. The Apprenticetool reports
that 179,028,341 ;:sec ( 5.08%) are spent in executing "work" instructions, 344,496,344
usec (19.77%) in loading instruction and data caches 2183,117,126 usec (61.92%) in
waiting on PV M communication and 819,286,910 ;:sec (23.24%) are spent in executing
uninstrumented functions.
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An examination of the PVM overhead for each of the functional components
MATVEC, SIGMA and GAMMA, is shown in Figures 5.12 and 5.14. The pattern
exhibited is similar to the behavior observed for performance on the network of work-
stations (see Section 5.5). For the processes SIGMA and GAMMA, the time spent in
pvmr ecv (i.e., fromwaiting for information about moments) accounts almost entirely
for the PVYM overhead. The cause for this overhead can be understood by examining
the process MATVEC which initiates the pipeline described in Section 5.3. The pro-
cesses involved in the Chebyshev semi-iterative method are all associated with a PVM
group, and the operations for CSI are synchronized through calls to pvmbarri er.
As been pointed out in Section 4.1.3, on the CRAY T3D, operations on groups other
than the global group may be expected to be inefficient. Specifically, synchronizations
and broadcasts to arbitrary groups are not optimally implemented, and pvmbarri er
IS seen to be the most expensive PVM operation in Figure 5.12. The time spent in
pvmbarri er (5.06 x 10® ;sec) isamost the same as the time spent by SIGMA and
GAMMA onpvmr ecv.

The explicit usage of PVM groups may be avoided by implementing the same func-
tionality directly in between the tasks involved in the Chebyshev semi-iterative method.
This may not be desirable since PVM groups are implemented with portability given
higher priority than efficiency. Severa problems are encountered with attempts to
implement group-operations (e.g. broadcasts) efficiently for every architecture. Re-
finement of PVM group operations is being investigated, and it is possible that future
implementations may be able to achieve a better balance between portability and effi-
ciency. For example, PVM 3.3.8 contains several optimized implementations of native
group operations. By isolating operations such as vector-reduction, synchronizations
and broadcasts to the PVM group functions, it is possible to use vendor-specific imple-
mentations for these operations. In the interest of the modularity provided by isolating
theselogical operationsto the class of PV M-defined group operations, no attemptswere
made to circumvent the usage of PVM groups.
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Chapter 6

Conclusions

A procedure, CSI-MSVD, for approximating the singular values and vectors of large,
Sparse matrices has been presented. When compared to popular single-processor algo-
rithms such asthe Lanczos method, CSI-M SV D has the attractive properties of reduced
memory requirements, and accelerated convergence to the larger singular value. I1n ad-
dition, the CSI-MSVD agorithm allows both functional and data parallelism, making
it suitable for heterogeneous computing environments.

Since CSI-MSVD obtains the SVD by providing a fast algorithm to obtain highly
accurate approximations to the eigenvalues of the equivalent eigensystems, it can be
used to accelerate the convergence of other eigenvalue solvers. The Chebyshev semi-
iterative method involves the computation of matrix-vector products which are aso
required by Krylov subspace methods. It isthus possible to interleave the computations
of CSI-MSVD with other Krylov subspace methods such as block Lanczos methods so
that the elgenvalue estimates from CSI-M SV D could be used within aKrylov subspace
method to solve a shifted eigenvalue problem. The approximations to the eigenvalues
provided by CSI-M SV D could a so be used within L SI applicationsto obtain an estimate
of the error in the low-rank approximationsto the term-document matrix.

The biggest challenge encountered with the CSI-MSVD algorithm is the absence
of arelationship between the moments of the iterative method and the eigenvectors of
the iteration matrix. The absence of this relationship necessitates the use of externd
refinement schemes like SYMMLQ when a high accuracy in the singular vector es-
timates is desired. It has been pointed out in [Saa92] and [Bre80] that the Lanczos
procedure isthe Stieltjes algorithm for computing a sequence of orthogonal polynomi-
als with respect to the inner product. Deriving the relationship between the Lanczos
vectors and the Stieltjes moments could provide a better understanding between the
eigenvectors and the moments arising from quadrature formulag, so that convergence
to the current eigenvalue and eigenvector could be obtained s multaneoudly, and more
efficient deflation schemes could then be used.

Some software modifications that could be made to improve the performance of the
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PVM implementation include optimized implementations of the PVM group functions
like broadcast and barrier functions that take into account the topology of the platform
available. The message-passing paradigm provided by MPI [DHHW93] is emerging
as an efficient, portable standard and future research will include a performance study
of MPI implementations of the CSI-MSVD agorithm. It should be noted that the
CRAY MPP implementation used for the experiments listed in this dissertation was
not optimized. Further improvement in performance is possible by using T3D-specific
featureslikethechanneled send/receive, and theshared memory library (shmemget ()
and shmemput () etc.).
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Sealected DerivationsProofs
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A.1 Error in the Chebyshev Iterates

Consider the ;" iterate in a semi-iterative method

y) = S wa(m)al),
where -7 v;(m) = 1, form > 0.

By definition, the error in the iterate is

=m) — (m) _

<

I/]‘(m)l'(j) — .
0

j:
The above expression can be rewritten as

m

iovj(m)w o+ S ) — o

J=0

Dueto the constraints on ; imposed by Equation (A.1), thisis equivalent to
>_vi(m)(a") - z).
7=0

By definition, ¢/} = (2/) — z), i.e., theerror in the vector (9, so that

clm) — 3 ,/j(m)e(y’)

7=0

=" v (m)M? O,
7=0

Thus, it can be inferred that
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A.2 RecurrenceRéeationsfor p,,(t)

The recurrences for Chebyshev polynomials are defined as

Coft) = 1, Ca(t) = ¢,

Cosa(t) = 200 () — Cor_a(t), fOrm > 1. (A2)
Using these recurrencesin the definition for the polynomial p,,,(¢) defined by
2t—(b+a
pult) = 2 2 ) 5 (A3
mAr) 2—(b+a)\’ '
it follows that
227,‘ (b—l—a) Cm(Zt—b(b—I—a)) N Cm_l(Zt—b(b—I—a))
pm-l-l(t) Cm(Z—b!E-:a ) )
Withb = p(M) = —a,thenb+ a = 0,b — a = 2p, and
ZtC t
Pryi(l) = ( ) ( ) , SO that
e )
1) . t
Crt1 ( )Pm+1 (—) - ( ) : (A.4)
P P
Also, from (A.3)
P (1) = Cm@?, (A.5)
Cr(3;)
which yields
t 1
Co (—) _c, (—) PO (A5)
P P

Using Equation (A.6) in Equation (A.4) resultsin the recurrence

1\ . 2t 1 1\ .
Cm—l—l (_) pm-l—l( ) = _C ( ) pm(t) - Cm—l (_) pm—l(t)v form Z 1
p p " \p p
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A.3 Obtaining the Moments from the Iterates of the Chebyshev
Semi-Iterative M ethod

The following recurrences for Chebyshev polynomials may be inferred from the defi-
nition of Chebyshev polynomials, and basic trigonometric identities [Var62].

Cor = 20k2 — Co, and (A?)

Corp1 = 20,Cx41 — Ch. (A.8)
Then, from Equations (A.7) and (A.5),

Con(2)  204%(5) = Co(%) 20 (x)Ci(3) — Co(%)

Pale) = Ca(3)  Cal3) - C2(3)
52 Cop(2) 4+ Co( )Y — Cp(2
_ Pi(efCarly) 10(”)} ;) from Equation (A.7).
Car(3)
Since Co() = 1 by definition (Equation (A.2) it follows that

(P(x) — 1)
Ca® (A.9)

From the theory of orthogonal polynomials, and the properties of the Chebyshev semi-
iterative method one may write

(€0 ¢y = / mr (MmN da(\). (A.10)

Par(x) = pr(x) +

Hence it followsthat
var = (€9,69) = [ fan(\)da(d),
wherethe polynomial s, havebeen chosen to bethe polynomialsp, defined in Equation
(A.5). From Equation (A.9)
1

Vo = /ﬁ%()\)doé()\) + Con(3)

{[ #(pdaip) — [ dap)}

Substituting [ = & in Equation (A.10) yields
1

oy, — (£F) g(k) = k) gy
o = (£, € >‘|‘02k(%){<§ &) — 1o}
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Similarly, using Equations (A.8) and (A.5),
Cansa(5)  20%(3)Chpa(5) — Cu(3)

et = o T T Can()
_ 20n(@)Cr(DPra(2) Cria(5) — Ca(5)
Canraly)
_ Pr(@)iera(@){Cava(3) + Co(3)} = Cal5)
02k+1(p) '

By the definition of Chebyshev polynomials given by Equation (A.2), Ci(x) = x, SO
that

~ ~ ~ p D 1 1
Cansa(3) P p Copsal(y)

By definition, the (& + 1)"* moment is

Vohyl = /ﬁ2k+1()\)d04()\)-

Using the expression for ;.1 derived in Equation (A.11) in the above definition for
V2k4+1, it follows that

Vakss = /@Amﬂﬁwqm+ 17 [ (N pesa(Ada()

Ada(A
POZk+1 % /

PCZkH (A.12)

Also,

A
— ~ P —
_ / Fr(\)da() 01% da(3) = / Ada())
Using thisresult to substitute for / Ada(A) and using Equation (A.10) to substitute for

/ (M) m(A)da()\), Equation (A.12) yields

L (e, g0+0) _ (0

_ (k) ¢(k+1)
v - ) + )
2k+1 <§ 5 > P02k+1(%)
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Appendix B

Driver program for CRAY MPP
version

The NOW version of PVM is composed of four distinct executable programs:

1. mai n, the driver routine, that spawns off the other 3 codes. This executable
performs adjustment of the parameters ;« and ¢ at the end of PASS1 and PASS2
defined in Figure 2.4, and determines if the the external refinement procedure
should be invoked.

2. mat vec, the routines involved in the Chebyshev semi-iterative method, defined
in Figure 2.3.

3. si gma, theroutines involved in the computation of o, defined in Figure 2.3.
4. gamma, the routinesinvolved in the computation of ~;, defined in Figure 2.3.

Sincethe CRAY MPPversionrequiresthat all nodesrunthe sameexecutableprogram
the heterogeneity in the NOW design was simulated through a wrapper program, that
uses the logical PE number to determine the functionality of the invoking node. The
code to achieve thisis shown in Figure B.1.
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main()
{

int myid= _my_pe(); /+* Use Cray macro to obtain logical PE number x/
char «filename="/usr/t np/ var adhan/ par ans";

nprocs=pvm_gsize(NULL);
if (nprocs<4)
/* Print error message and quit =/
if ((myid>0) && (myid<nprocs—2)){
/* | am going to work on the Chebyshev iteration:/
if ((MyAddress = pvm_joingroup("MATVEC"))<0){
/* Could not join group. Print error message and quit x*/
}

}
pvm_barrier(NULL,0);

if (myid==0) f_main(filename); /+ | am the driver program x/
else if (myid==nprocs—2) f_sigma(filename); /+ SGMA x/

else if (myid==nprocs—1) f_gamma(filename); /x GAMMA x/
else f_matvec(filename);

pvm_barrier(NULL,0);
pvm_exit();
exit(1);

Figure B.1. Wrapper used in Cray MPP implementation of CSI-MSVD
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