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Abstract
This dissertation considers algorithms for determining a few of the largest singular

values and corresponding vectors of large sparse matrices by solving equivalent eigen-
value problems. The procedure is based on a method by Golub and Kent for estimating
eigenvalues of equvalent eigensystems using modified moments. The asynchronicity in
the computations of moments and eigenvalues makes this method attractive for parallel
implementations on a network of workstations. However, one potential drawback to
this method is that there is no obvious relationship between the modified moments and
the eigenvectors. The lack of eigenvector approximations makes deflation schemes
difficult, and no robust implementation of the Golub/Kent scheme are currently used
in practical applications. Methods to approximate both eigenvalues and eigenvectors
using the theory of modified moments in conjunction with the Chebyshev semi-iterative
method are described in this disseratation. Deflation issues and implicit error approxi-
mation methods are addressed to present a complete algorithm. The performance of an
ANSI-C implementation of this scheme on a network of UNIX workstations using PVM
is presented. The portability of this implementation is demonstrated through results on
a 256 processor Cray T3D massively-parallel computer.
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Chapter 1

Introduction

The singular value decomposition (SVD) is commonly used in the solution of uncon-
strained linear least squares problems, matrix rank estimation, and canonical corelation
analysis. In applications such as information retrieval, seismic reflection tomography
and real-time signal processing, the SVD of large, sparse input matrices is required in
the shortest possible time. Given the growing availability of multiprocessor computer
systems, there has been great interest in the development of efficient implementations of
the singular value decomposition that can utilize the parallel processing power available
in multiprocessor environments provided through distributed computing and massively-
parallel platforms. The goal of this dissertation is to describe and develop a parallel
algorithm for computing the SVD of unstructured, sparse matrices. First, a few of the
fundamental characterizations of the SVD are reviewed.

Given an m � n matrix A, where m � n and rank(A) = r, the singular value
decomposition of A, denoted by SVD(A), is defined asA = UΣV T ; (1.1)

where UTU = Im, V TV = In, and Σ = diag(�1; � � � ; �n); �i > 0 for 1 � i � r; �j =
0 for j � r + 1. The first r columns of the orthogonal matrices U and V define the
orthonormal eigenvectors associated with the r nonzero eigenvalues of AAT and ATA,
respectively. U and V are referred to as the left and right singular vectors, respectively.
The singular values of A are defined as the diagonal elements of Σ which are the non-
negative square roots of the n eigenvalues of AAT . A discussion of the properties of
the SVD, and its applications can be found in the literature (e.g., [GL89], [Ste73]).

The SVD can reveal important information about the structure of a matrix, as illus-
trated by the following two well-known theorems [Ber92].

Theorem 1.1 Let the SVD of A be given by Equation (1.1) with�1 � �2 � � � � �r > �r+1 = � � � = �n = 0;
and let R(A) and N (A) denote the range and null space of A, respectively. Then the
following properties hold.
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1. Rank property: rank(A) = r;N (A) � spanfvr+1; � � � ; vng, and R(A) �
spanfu1; � � � ; urg, where U = [u1u2 � � �um] and V = [v1v2 � � � vn]:

2. Dyadic decomposition: A = rXi=1

�i � ui � vTi :
3. Norms: kAk2F = �2

1 + � � �+ �2r and kAk2
2 = �1: Here, k:kF denotes the Frobenius

norm defined by kAkF 2 = vuut mXi=1

nXj=1

jaijj2;
and k:k2 denotes the 2-norm defined bykAkp = maxx6=0

kAxkpkxkp p = 1; 2; : : :1 (1.2)

with p=2;

Due to the rank property, it is possible to use the singular values of A as quantitative
measures of the qualitative notion of rank. The dyadic decomposition, which is the
rationale for data reduction or compression in many applications, provides a canonical
description of a matrix as a sum of r rank-one matrices of decreasing importance, as
measured by the singular values. The three results in Theorem 1.1 can be combined to
yield the following quantification of matrix rank deficiency (see [GL89] for a proof):

Theorem 1.2 (Eckart and Young) Let the SVD of A be given by Equation (1.1) withr = rank(A) � p = min(m;n) and defineAk = kXi=1

�i � ui � vTi ; (1.3)

minrank(B)=k kA�Bk2F = kA�Akk2F = �2k+1 + � � �+ �2p:
The SVD(A) may be computed from two equivalent eigenvalue decompositions:

1. Define the 2-cyclic matrix C =  
0 AAT 0

!: (1.4)

If rank(A) = n, it can be shown that the eigenvalues of C are the n pairs ��i,
where �i is a singular value of A, with (m � n) additional zero eigenvalues ifm > n. The multiplicity of the zero eigenvalue of C is m + n � 2r, wherer = rank(A).
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2. Alternatively, the SVD(A) can be computed indirectly by the eigenpairs of either
the n�n matrixATA or them�mmatrixAAT . The following lemma illustrates
the fundamental relations between these symmetric eigenvalue problems and the
SVD.

Lemma 1.1 Let A be an m� n matrix with m � n and rank(A) = r.

(a) If V = (v1; v2; : : : ; vr) are linearly independent n�1 eigenvectors of ATA so
that V T (ATA)V = diag(�2

1; �2
2; : : : ; �2r), then �i is the ith nonzero singular

value of A corresponding to the right singular vector vi. The corresponding
left singular vector, ui, is then obtained as ui = (1=�i)Avi.

(b) If U = (u1; u2; : : : ; ur) are linearly independent m� 1 eigenvectors of AAT
so thatUT (AAT )U = diag(�2

1; �2
2 ; : : : ; �2r), then �i is the ith nonzero singular

value of A corresponding to the left singular vector ui. The corresponding
right singular vector, vi, is then obtained as vi = (1=�i)ATui.

Each scheme described above has its own advantages and disadvantages. The matrixATA is of order at most n, whereas the two-cyclic matrixC defined in Equation (1.4) is
of order at most (m+ n). If the matrix A is over-determined, i.e. m� n, the smaller
memory requirements for the n� n matrix ATA make it the more attractive choice for
computing the SVD. However, this scheme only gives the right-singular vectors, and
the left-singular vectors have to be obtained by scaling Avi as defined in Lemma 1.1 .
The eigenvectors of the two-cyclic matrix, on the other hand, are of the form [uiT ; viT ]T ,
and directly give complete information about the singular triplet: fui; �i; vig. Also,
each eigenvalue ofATA is �i2, forcing a clustering of the singular value approximations
when �i < 1. Evaluating the SVD from the eigen-decomposition of ATA is thus most
suited for problems when only the largest singular values are desired, with a potential
loss of accuracy for the smaller singular-values. Using the two-cyclic matrix C does
not have this drawback, however, at the price of a larger memory requirement.

Although several direct methods (e.g., Householder’s method) exist for computing
the eigenvalues of the canonical matrices described in Lemma 1.1, these methods are un-
desirable when applied to large, unstructured sparse matrices. Direct methods involve
factorizations which result in intermediate, full submatrices. For sparse eigenvalue
problems, the input matrix is typically stored in compressed format, and the undesir-
able fill-in and large memory requirements associated with direct methods limit their
applicability to such problems.

Preferred methods for large, sparse, symmetric eigenproblems include the Lanc-
zos method [GL89] and Arnoldi’s method [Saa92]. Other related methods include
subspace-iteration [Par80], and trace minimization [Ber92]. All of these methods
obtain approximations to the eigenvalues and vectors of symmetric matrix A by con-
structing elements from a Krylov-like basis through the operation AS � fAs : s 2 Sg
[Par80] for the subspace spanned by the eigenvectors. Thus, the matrixA is used only to

3



compute the matrix-vector product As, and these algorithms may be implemented with-
out making any assumptions about the structure/storage format of A. The efficiency of
these methods is determined primarily by the performance of the matrix-vector product
and the storage scheme used for the matrix.

The Lanczos method solves the eigenvalue problem Cx = �x through partial tridi-
agonalizations of the matrix C . Unlike factorization methods, no intermediate, full
submatrices are generated. Also, information about C’s extremal eigenvalues tend to
emerge long before tridiagonalization is complete. Hence, the Lanczos algorithm par-
ticularly useful in situations where only a few of C’s largest or smallest eigenvalues are
desired.

An alternative method, CSI-MSVD, to tridiagonalize large, sparse matrices is pre-
sented in [GK89]. This method is based on the extraction of modified moments from
the Chebyshev semi-iterative method [Var62]. The attractiveness of this algorithm lies
in the scope for parallelism and reduced memory requirements.

A brief review of Krylov subspace methods will now be presented in order to provide
sufficient background information for the CSI-MSVD algorithm.

The Krylov subspace is of considerable importance in the theory of iterative methods
for the solution of the eigenvalue problem Cx = �x. The Krylov subspace associated
with the m�m matrixC with real elements are determined by a single non-zero vectorf by Km(f) = ff;Cf; : : : ; C(m�1)fg

and denote Km = span Km(f):
Theoretically, the natural basis for Km is the Krylov basis Km(f). In practice, the

orthonormal basis Qm � (q1; : : : ; qm); (1.5)

obtained by the QR factorization of the columns of Km(f) is used as a basis for Km.
If the dimension ofKm is m, i.e., Km(q1) has full rank, it can be shown that Qm�CQm
is an unreduced tridiagonal matrix [Ste73], where � denotes the Hermitian-transpose.
Thus, one way to view the Lanczos process is as a construction of the Krylov basis forC . Alternatively, the Lanczos process can be viewed as a method for reducing C to
tridiagonal form [Par80].

A third method of deriving the Lanczos algorithm is by considering the relationship
between Krylov subspaces and orthogonal polynomials. The Krylov subspace Km can
be considered as the subspace of all vectors in lRn which can be written as x = p(C)v,
where p(x) is a polynomial of degree not exceeding m� 1. Let pm(x) be the nonzero
monic polynomial of lowest degree such that pm(v) = 0. Then it can be shown [Saa92]
that Km is of dimension m if and only if the degree of the minimal polynomial with
respect toC is larger thanm�1. Thus, it is possible to derive the isomorphism between
lPm�1 and Km, the space of polynomials of degree � m� 1 defined byq 2 lPm�1 ! x = q(C)v1 2 Km:

4



The subspace lPm�1 is typically associated with an inner producthp; qiv1 = (p(C)v1; q(C)v1) (1.6)

which is a nondegenerate bilinear form.
The Lanczos vectors vi are of the formvi = qi�1(C)v1 withqi(x) = xi: (1.7)

The orthogonality of the v0is is equivalent to the orthogonality of the polynomials, with
respect to the inner product defined in Equation (1.6). A discussion of the relations
between the Lanczos biorthogonalization method [GL89], the theory of orthogonal
polynomials, and Gaussian quadrature is provided in [Bre80].

Several possibilities exist for the choice of the orthogonal polynomials qi(x) in
Equation (1.7). Golub and Kent in [GK89] propose a scheme to approximate eigen-
values using Chebyshev polynomials [GV61] for qi(x). The inner products generated
by Equation (1.6) are used to derive moments [Wil62] which are then used in the mod-
ified Chebyshev algorithm [Gau82] to generate a set of orthogonal polynomials. The
quasi-symmetric tridiagonal matrix obtained from the coefficients of the orthogonal
polynomials, known as the Jacobi matrix, is then used to approximate the eigenvalues
of the matrix C .

Berry and Golub in [BG91] have shown the effectiveness of the scheme proposed
in [GK89] through an implementation on the Cray Y-MP that approximates singular
values of a sparse matrix A from the eigenvalues of the corresponding two-cyclic
matrixC defined by Equation (1.4). They also point out that the potential asynchronous
computation of the orthogonal polynomials with the iterations of an adaptive Chebyshev
semi-iterative method allows multiple processors to execute different sections of the
algorithm in parallel. Thus, there is more inherent scope for parallelism with this
scheme than with Lanczos algorithms. Also, the recurrence relations defining the
Chebyshev polynomials allow an accelerated construction of the moments, and it is
possible to approximate the singular values in relatively few iterations.

The implementation proposed in [BG91] describes a scheme to approximate singular
values only, i.e., singular vectors are not estimated. The tridiagonal Jacobi matrix is
constructed to approximate, through its eigenvalues, the roots of the characteristic equa-
tion. Moreover, while recurrence relations may be used to accelerate the construction
of modified moments from the Chebyshev iterates, there is no known scheme to obtain
the converse result, i.e., to approximate the Chebyshev iterates (and thus the singular
vectors) from the moments. The absence of singular-vector (and eigenvector) approxi-
mations gives rise to problems such as the lack of an error estimate on the approximated
singular value (or eigenvalue) and inefficient deflation schemes. Due to these problems,
there has been no robust, complete implementation of this algorithm, in spite of its
theoretical efficiency and suitability for parallel computers.
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This dissertation presents one scheme to obtain the SVD from the canonical eigen-
value problems described in Lemma 1.1. Methods to approximate both eigenvalues and
eigenvectors using the theory of modified moments in conjunction with the Chebyshev
semi-iterative method are described. Deflation issues and implicit error approxima-
tion methods are addressed to present a complete algorithm. The performance of an
ANSI-C implementation of this scheme on a network of UNIX workstations using PVM
[GBD+94] is presented. The portability of this implementation is demonstrated through
results on a 256 processor Cray T3D massively-parallel computer. A synopsis of the
remainder of this dissertation is as follows.

The mathematical backgrounds of iterative methods, and the theory of modified mo-
ments are presented in Chapter 2, followed by a detailed description of the CSI-MSVD
algorithm and associated problems in approximating eigenvectors using this scheme.
Solutions to these problems are also addressed, and a complete algorithm is described.
Chapter 3 describes typical application areas in which sparse SVD problems are en-
countered and provides an overview of issues related to sparse matrix manipulation.
The methodology and computational environments used to evaluate performance of the
CSI-MSVD algorithm is described in Chapter 4 and the results obtained on various
platforms are presented in Chapter 5. Lastly, Chapter 6 presents conclusions and future
work.
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Chapter 2

Algorithms

Following [GK89], consider the basic iterationx(m+1) = Mx(m) + b (2.1)

to solve the system of linear equations(I �M)x = b; (2.2)

where M is either the n� n matrix ATA or the (m+ n)� (m+ n) matrix defined by
Equation (1.4), and M is suitably scaled so that �(M) < 1. As shown in Section 2.1
of this chapter, the Chebyshev semi-iterative method [GV61] produces an alternative
iteration to Equation (2.1) of the form�(k) = pk(M)�(0); (2.3)

where pk(M) is a polynomial of degree k inM , and �(k) is a column vector of dimension(m + n) � 1 or n � 1 depending on whether M is the two-cyclic matrix of Equation
(1.4) or the matrix ATA. Sections 2.2 and 2.3 of this chapter discuss how one can
estimate the eigenvalues of M (corresponding to the largest singular values of A) using
Equation (2.3) with the method of modified moments. The next section reviews some of
the theory of iterative methods addressing issues such as convergence criteria and rates
of convergence to establish the optimality of the Chebyshev semi-iterative method. A
three-term recurrence for the Chebyshev iterates �(k) defined by Equation (2.3) will be
derived.

The following notation will be used for matrix and vector operations for the remainder
of the dissertation. The vector space of all m � n real matrices is denoted by lRm�n.
Capital letters are used to denote matrices (e.g., A;B;∆) and the subscript ij refers to
the (i; j) entry in the matrix. The letters y and t are used to denote scalar parameters, and
all other lower-case letters (e.g., x; �) are used to indicate vectors, with single subscripts
(e.g., xi) denoting specific elements in the vector. k:k will be taken to indicate the
euclidean norm, unless stated otherwise.
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2.1 The Chebyshev Semi-iterative method

The error vector for the mth iterate from Equation (2.1), x(m), can be written as�(m) = x(m) � x; for m � 0;
so that �(m) = Mm�(0); for m � 0:
Since M is symmetric, kMk = �(M) < 1, the average rate of convergence for m
iterations is defined asR(Mm) = �lnkMmkm � R1(M) = �ln�(M); for m � 1: (2.4)

From the theory of summability of sequences [Var62], consider the more general
iterative procedure y(m) � mXj=0

�j(m)x(j):
The requirement that if x(0) = x, then y(m) must be x, results in the constraintmXj=0

�j(m) = 1; for m � 0:
The iterative method resulting from the sequence y(m) will be referred to as a semi-
iterative method and the error vector corresponding to y(m) is given by the expression
(see Appendix A.1) �̃(m) = y(m) � x = pm(M)�(0); (2.5)

where pm(t) = mXj=0

�j(m)tj is an mth degree polynomial with m � 0 and pm(1) = 1:
A generalization of Equation (2.4) gives the average rate of convergence for m

iterations of the semi-iterative methodR[pm(M)] � �lnkpm(M)km :
Note that when pm(t) = tm, y(m) becomes identical to x(m), and the iterative and
semi-iterative methods are equivalent.

In order to accelerate the convergence of the semi-iterative method, it is necessary
to minimize the average rate of convergence, or, equivalently, obtain the solution of the
minimization problem

minpm(1)=1
kpm(M)k: (2.6)
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The solution of this problem requires a priori determination of the eigenvalues. In its
place, consider the new minimization problem

minpm(1)=1
f max�1<a�t�b<1

jpm(t)jg
where ��(M) � a � b � �(M) < 1. The solution of the new minimization problem
is given in terms of the Chebyshev polynomials, Cm(t), defined byCm(t) = ( cos(mcos�1t); jtj � 1;cosh(mcosh�1t); jtj � 1; (2.7)

for m � 0:
Using the trigonometric identitycos[(m� 1)�] + cos[(m+ 1)�] = 2cos(�)cos(m�)

and Equation (2.7), the following 3-term recurrence can be derived.C0(t) = 1; C1(t) = t;Cm+1(t) = 2tCm(t)� Cm�1(t) for m � 1: (2.8)

Consider the polynomial p̃m(t) defined byp̃m(t) = Cm � 2t�(b+a)b�a �Cm �2�(b+a)b�a � : (2.9)

This polynomial p̃m is a real polynomial, satisfying p̃m(1) = 1. Also,

maxa�t�b jp̃m(t)j = 1Cm � 2�(b+a)b�a �;
since y = 2t�(b+a)b�a is a 1-1 mapping of a � t � b onto �1 � y � 1: The following
theorem can be derived from the properties of p̃m.

Theorem 2.1 For each m � 0, let Sm be the set of all real polynomials pm(t) of degreem satisfying pm(1) = 1. Then, the polynomial p̃m(t) 2 Sm is the unique polynomial
which solves the minimization problem defined by Equation (2.6).

Proof: See [Var62]. 2
Since ��(M) � a � b � �(M) < 1, if b � � � �(M) � �a it can be shown (see

Appendix A.2) thatCm+1

 
1�! p̃m+1(t) = 2t� Cm  1�! p̃m(t)� Cm�1

 
1�! p̃m�1(t);
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for m � 1. Using Equation (2.5) and applying the polynomial p̃m to the matrix M , the
following recurrence for �̃(m) is obtained for m � 1,Cm+1

 
1�! (�̃(m+1)) = 2M� Cm  1�! (�̃(m))� Cm�1

 
1�! (�̃(m�1)):

Since �̃(m) = y(m) � x, the above recurrence can be rewritten asCm+1

 
1�! (y(m+1) � x) = 2M� Cm  1�! (y(m) � x)� Cm�1

 
1�! (y(m�1) � x)

(2.10)
for m � 1. Equations (2.8) and (2.10) can then be combined to yield an iteration of the
form y(m+1) = !m+1fMy(m) + b� y(m�1)g+ y(m�1); (2.11)

where !m+1 = 2Cm( 1� )�Cm+1( 1� ) . The above result specifies the Chebyshev semi-iterative

method with respect to the iteration defined in Equation (2.1). A brief discussion of
the convergence of this method is now presented (for a more detailed discussion see
[GV61]).

Since M is a symmetric matrix with eigenvalues �i satisfying��(M) � �i � �(M);
then

max
1�i�n jp̃m(�i)j = max

1�i�n jCm(�i=�)jCm(1=�) for m � 0:
Let j�jj = �(M) for some j. By the definition of Chebyshev polynomials in Equation
(2.8) and jCm(�1)j = 1, kp̃m(M)k = 1Cm(1=�) ;m � 0:
From Equation 2.7, it follows that the above sequence of matrix norms is strictly
decreasing for all m � 0 so that the error �̃(m) of Equation (2.5) approaches zero as m
becomes large.

The iteration defined by Equation (2.11) can be used in combination with the theory
of modified moments (discussed in the next section) to produce approximations to the
largest eigenvalues of the matrix M . Specifically, Equation (2.11) may be used to
generate iterates �(i) through the iteration�(m+1) = !m+1(M�(m) + b) + (1� !m+1)�(m�1); (2.12)

where !m+1 = 2Cm( 1�)�Cm+1( 1�) : (2.13)
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Similar to the Lanczos algorithm (see [Bre80], [GL89]) the next section will show how
modified moments derived from the iterates �(k) may be used to generate a sequence
of bidiagonal matrices whose largest singular values approximate those of the sparse
matrix A.

2.2 Orthogonal Polynomials and the Eigenvalue Problem

Some of the definitions relating to the theory of orthogonal polynomials will now
be presented, and the relevance of orthogonal polynomials to the general eigenvalue
problemCx = �xwill be shown. This theory will then be used to obtain approximations
to the eigenvalues of the iteration matrix M defined earlier.

2.2.1 Modified Moments and Orthogonal Polynomials

Definition 2.1 ([Wil62]) An integrable function � is called a weight function on [a; b]
if �(t) � 0 for t 2 [a; b] and the moments�r � Z ba tr�(t)dt (2.14)

exist and are finite.

Given a weight function �(t), we can construct a set of polynomials �k(t) such that
the following orthogonality property is satisfied.

Definition 2.2 The set of polynomials �k(t) are said to be orthogonal with respect to
the weight function �(t) if and only ifZ ba �r(t)�s(t)d�(t)( > 0; r = s= 0; r 6= s :
Theorem 2.2 The set of polynomials f�0; �1; : : : ; �ng defined in the following way is
orthogonal on [a; b] with respect to the weight function �.�0(t) � 1;�1(t) = t� �1; for each t 2 [a; b]
where �1 = R ba td�(t)R ba d�(t) ;

and when k � 2,�k(t) = (t� �k)�k�1(t)� k�k�2(t); for each t 2 [a; b]; (2.15)

where �k = R ba t[�k�1(t)]2d�(t)R ba [�k�1(t)]2d�(t)
and k = R ba t�k�1(t)�k�2(t)d�(t)R ba [�k�2(t)]2d�(t)
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Proof: See [BF81]. 2
Given a weight function �(t) represented in terms of the moments �r defined in

Equation (2.14) [Gau82] describes a procedure for the recursive computation of �k andk which is numerically unstable. A more stable procedure may be obtained if �(t) is
codified in terms of the modified moments�r = Z pr(t)d�(t); (2.16)

where pr(t) is a set of orthogonal polynomials satisfying a recurrence relationtpj(t) = bjpj+1(t) + ajpj(t) + cjpj�1(t): (2.17)

It has been shown in [GK89] that some simplifications to this more stable procedure are
possible when the polynomials pk(t) are chosen to be the Chebyshev polynomials. The
simplified procedure is described in Section 2.4 as part of the CSI-MSVD algorithm.

2.2.2 Relation to the Eigenvalue Problem

The connection between the moments and eigenvalues is well-known (e.g., [Lan50],
[Hou64], [Gol74]). The associated matrix equation for the set of polynomials �k(t)
orthogonal to the modified moments defined by Equation (2.16) has the form26666664 �0 11 �1 1

. . . . . . . . .k�1 �k�1 1k �k 37777775266664 �0(t)�1(t)
...�k(t) 377775 = t266664 �0(t)�1(t)

...�k(t) 377775� ek+1�k+1(t): (2.18)

The tridiagonal matrix Jk = [k; �k; 1] of coefficients defined in the above equation
is called the Jacobi matrix. From Equation (2.18) it can be inferred that the zeros
of the polynomial �k+1(t) may be found by solving the standard eigenvalue problemJkx = tx. Thus, the roots of �k+1(t) may be obtained as the eigenvalues of the Jacobi
matrix Jk.

As pointed out in [GK89], this procedure is analogous to the Lanczos algorithm
and may be used to approximate the eigenvalues of the iteration matrix M in the
Chebyshev semi-iterative method. A scheme to extract modified moments based on
the theory described in [GK89] from the Chebyshev iterates will be described below.
The modified moments will then be used to define a Jacobi matrix whose eigenvalues
approximate those of the iteration matrix.
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2.3 Modified Moments from the Chebyshev Semi-iterative Method

Since the iteration matrix M defined defined by the canonical eigenvalue problems in
Lemma 1.1 is symmetric, M has a complete set of orthogonal eigenvectors which form
a basis for lRn. Let this set be denoted byQ = [q1; q2; : : : ; qn]:
Then, �(0) = rXi=1

�iqi;�(k) =Xi �i�k(�i)qi
where, for i > 0, �(i) is the ith Chebyshev iterate generated by Equation (2.12), �(0)
is the initial iterate, and �i is an eigenvalue of M corresponding to the eigenvector qi.
Consider the inner product of the kth and ith iterates, i.e.,h�(k); �(l)i = rXi=1

�i2�k(�i)�l(�i): (2.19)

Equation (2.19) is equivalent to the continuous integralh�(k); �(l)i = Z �k(�)�l(�)d�(�); (2.20)

when �(�) is defined to be the discrete non-negative distribution [GK89]�(�) = 8><>: 0; if � � �1;�1
2 + �2

2 + : : :+ �t2; if �t < � � �t+1;�1
2 + �2

2 + : : :+ �n2; if �n < �:
The discrete distribution�(�) is illustrated in Figure 2.1. By choosing l = 0 in Equation
(2.20) and noting that �0(t) = 1 from Theorem 2.2, it follows thath�(k); �(0)i = Z �k(�)d�(�):
Note that the final orthogonal polynomial �n(t) has a zero at each eigenvalue i.e.,�n(�i) = 0; i = 1; 2; : : : r. Hence, at each step of the Chebyshev semi-iterative method,
we can extract the kth modified momenth�(k); �(0)i = �k: (2.21)

The extraction of moments from iterates can be accelerated by using the recurrence
relations for the Chebyshev polynomials defined in Equation (2.8). It can be shown (see
Appendix A.3) that�2k = h�(k); �(k)i + 1C2k( 1�)fh�(k); �(k)i � �0g; and (2.22)
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Figure 2.1. The discrete distribution �(�)�2k+1 = h�(k); �(k+1)i+ 1�C2k+1( 1�)fh�(k); �(k+1)i � h�(0); �(1)ig: (2.23)

Note that the polynomial pr(t) in Equation (2.16) associated with the modified moments�2k and �2k+1 satisfiespk+1(t) = !k+1tpk(t) + (1� !k+1)pk�1(t);
where the coefficients ak; bk; ck of the polynomials pr(t) in Equation (2.17) are given
by ak = 0; bk = 1!k+1

; ck = !k+1 � 1!k+1
: (2.24)

2.4 The CSI-MSVD Algorithm

Let �(t) be a weight function codified in terms of the 2nmodified moments �r as defined
in Equations (2.22) and (2.23). A procedure to compute the coefficients of polynomials�k(t) orthogonal with respect to �(t) is desired. From Equation (2.15), the polynomials
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�k(t) are of the form �k+1(t) = (t� �k)�k(t)� k�k�1(t):
Following [GK89] with the choice �k = 1, the coefficients�k and k may be determined
using the recurrences below.

For k = 1; 2; : : : ;m� 1,
For l = k; k + 1; : : : ; 2m� k � 1,�kl � bl�k�1;l+1 � (�k�1 � al)�k�1;l � k�1�k�2;l + cl�k�1;l�1; (2.25)�k = ak + �k;k+1�kk � �k�1;k�k�1;k�1

;k = �kk�k�1;k�1
: (2.26)

Here, ak; bk and ck are defined by Equation (2.24), and initially,��1;l = 0; �0;l = �l; �0 = �1=�0; 0 = 0:
The computation of �k’s and k’s , k = 1; 2; : : : effectively constructs the elements of
the Jacobi matrix from Equation (2.18), whose eigenvalues approximate those of the
iteration matrix M . This procedure will be referred to as the CSI-MSVD algorithm.

Thus, by setting M to either of the two canonical matrices described in Lemma
1.1, one can obtain the SVD of a general matrix by solving an equivalent symmetric
eigenvalue problem. The implementation of this scheme for each of the canonical
eigenvalue problems described in Lemma 1.1 will now be examined.

2.4.1 Two-Cyclic CSI-MSVD

Let M be in the form of a weakly cyclic matrix of index 2, defined in Equation (1.4),
and partition the Chebyshev iterate �(i) into the m� 1 vector x1 and the n� 1 vector x2

and the vector b from Equations (2.2) into the m� 1 vector b1 and the n � 1 vector b2

so that �(i) =  x1
(i)x2
(i) ! ; b =  b1b2

! :
Equation (2.12) can be re-written asx1

(m+1) = !m+1fAx2
(m) + b1 � x1

(m�1)g+ x1
(m�1); (2.27)x2

(m+1) = !m+1fATx1
(m) + b2 � x2

(m�1)g+ x2
(m�1): (2.28)

The elements of successive iterates generated by Equations (2.27) and (2.28) are related
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Figure 2.2. Updating the Chebyshev iterate

by the dependency shown in Figure (2.2), so that choosing x2
(0) = 0 when b1 = b2 = 0

forces x1
(1) = x2

(2) = : : : = 0. If �(i) denotes the ith iterate, then�(2s) =  x1
(2s)
0

! ; and �(2s�1) =  
0x2

(2s�1) ! : (2.29)

Thus, at each step, only one of the Equations (2.27) and (2.28) needs to be computed,
reducing the number of computations by a factor of two. Also, this new iteration requires
only one initial vector approximation tox1

(0) as opposed to the two approximations (x1
(0)

and x2
(0)) required for the general case.

The simplifications provided by Equation (2.29) also reduce the number of compu-
tations involved in the calculation of the coefficients of the Jacobi matrix in Equation
(2.18). From Equations (2.29) and (2.23), it follows that �2k+1 = 0, with �1 = 0, so
that �0 = 0. It can be shown by induction that�k;k+2i�1 = 0; i = 1; 2; : : : ;m� k; (2.30)

which forces �k = 0 for all k. Hence, the only unknown quantities in the Jacobi matrix
are the elements of the sub-diagonal, k.

As demonstrated in [GLO81] the eigenvalues of the 2k � 2k Jacobi matrix are the
same as the singular values of the matrixBk = 266666664 p1

p
2p
3

p
4

. . . . . .p
2k�3

p
2k�2p
2k�1

377777775 : (2.31)

The QR-iteration for bidiagonal matrices [DBMS79] may be applied to the matrixBk to
obtain its singular values, thus approximating the singular values of the original m� n
matrix A.

2.4.2 CSI-MSVD Applied to the Matrix ATA
The SVD of the m� n matrix A may be obtained from the eigenvalue decomposition
of the matrix ATA. When m � n, the matrix ATA is considerably smaller than the
corresponding two-cyclic matrixC of Equation (1.4). The CSI-MSVD algorithm could
be applied to approximate the eigenvalues and eigenvectors of ATA. However, the
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simplifications possible for the two-cyclic matrix may not be applied to this case. For
example, it is not possible to re-write Equation (2.12) by partitioning the iterates to
obtain two dependent iterations as was done to obtain Equations (2.27) and (2.28). The
disadvantages arising from iterates �(i) of this form are listed below.� It is not possible to halve the number of operations at each step, as in the two-cyclic

case. Each element in the iterates needs to be computed.� The odd-moments are non-zero, and both odd and even moments exist.� The simplification provided by Equation (2.30) does not apply.� The coefficients �k are not nonzero, in general, and it is necessary to compute both
diagonal and sub-diagonal elements in the Jacobi matrix Jk .� The bidiagonal-QR iteration cannot be used. The eigenvalues of the tridiagonal
Jacobi matrix must be computed through less efficient algorithms such as the QL
method [Par80].

The discussions in Sections 2.4.1 and 2.4.2 suggest that the CSI-MSVD algorithm
with a 2-cyclic iteration matrix has the advantages of faster convergence to the singular
values, with fewer intermediate computations. For this reason, this dissertation focuses
on the 2-cyclic eigenvalue problem. Unless otherwise stated, references to CSI-MSVD
in this dissertation will pertain to the algorithm as applied to 2-cyclic iteration matrices
as defined in Equation (1.4).

The three main steps that constitute the CSI-MSVD algorithm are:

1. calculation of the CSI-iterate using Equations (2.27) and (2.28),

2. calculation of the new moments for the current iterate, and

3. updating the bidiagonal matrix and approximating the eigenvalues of the two-cyclic
iteration matrix through the QR-iteration.

Figure 2.3 shows the dependencies involved in the steps of the above outlined
procedure. The pipelined nature of the computation indicates that Steps 1, 2, and 3
described could be carried out concurrently. For example, the computation of the anti-
diagonal elements �13; �22; �15; �24; �33 (shown in the box labeled SIGMA in Figure
2.3) could be overlapped with the computation of the iterates �(4) and �(5). Also, when
the bidiagonal matrix has been updated with the elements 2 and 3 (the box labeled
GAMMA) by using Equation (2.26), the approximation of eigenvalues through the
bidiagonal-QR iteration could be done in parallel with the computation of the next
anti-diagonal elements (�kl, k + l = 8 or k + l = 10). Thus, the three functional
components MATVEC, SIGMA, and GAMMA could be executed on three different
processors. Information about the two-cyclic matrix M of Equation (1.4) is required
only for the computations in MATVEC, so that the implementations of SIGMA and
GAMMA is independent of the format used for storing the matrix.
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Figure 2.3. A single pass of two-cyclic CSI-MSVD

2.5 Singular Vector Calculation

Although [BG91] describes an implementation to approximate singular values accu-
rately and efficiently using modified moments from Chebyshev iterates, singular vec-
tors are not estimated. Two problems which arise from the lack of singular vector
approximations are listed below.

1. Estimation of the error in approximated singular values necessitates a comparison
with true singular values generated by some other scheme, in order to detect if the
current approximation to the singular value is within some acceptable bound.

2. A set of singular values of acceptable accuracy must not be recomputed in suc-
ceeding iterations to prevent wasteful computation. Also, since CSI-MSVD ap-
proximates the largest singular values first, it is necessary to deflate the converged
singular values out of the computation to allow convergence of the smaller singu-
lar value approximations. Some candidate schemes for deflation are discussed in
[Saa92]. Most of these schemes require singular vector approximations.
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The implementation described in [BG91] addresses these two issues in the following
manner.� Convergence Tests: At the kth step of the Chebyshev iteration, the quantityj�̃(k)i � �̃(k�1)i j=�̃(k)i

is computed, where �̃(k)i is an approximation to the ith largest singular value ofA. The procedure terminates when this quantity is within some desired tolerance�tol, or when k exceeds the user-specified input of kmax, the maximum number of
iterations allowed.� Deflation: No deflation schemes are attempted.

The estimation of singular vectors from the eigenvectors derived by CSI-MSVD is
a non-trivial task. The tridiagonal Jacobi matrix Jk defined by Equation (2.18) has
been constructed so that characteristic equation corresponding to Jk has the same roots
as the iteration matrix. Thus, the method does not explicitly construct a basis for the
subspace spanned by the eigenvectors, so that the methods used in Lanczos or other
popular Krylov-subspace methods do not have obvious analogs in CSI-MSVD.

However, as discussed in Section 2.1, especially when parameters such as !i defined
in Equation (2.11) are chosen optimally, the iterative method defined by Equation
(2.12) should converge to � such that (I �M)� = b. As b! 0, the eigenvector � of the
appropriately scaled matrixM corresponds to the eigenvalue nearest 1. The parameters
that affect the convergence of CSI-MSVD are� the scaling factor �, chosen so that the m � n matrix (1=�)A has singular values�i < 1; i = 1; ::; r; r � n (or equivalently, the two-cyclic matrixM has eigenvalues�i = �i < 1). Ideally, since the eigenvector is the solution of a system of the form(I�M)x = b, an optimal choice for the case b = 0 would be � = �max(A). Here,M is one of the canonical matrices defined in Lemma 1.1.� the damping-parameter� � � for the Chebyshev polynomials defined in Equations

(2.22) and (2.23). As discussed in [BG91], setting � = �̄ effectively suppresses
all singular values �i having magnitude less than �̄. It is therefore desirable to set� � �2=�1 in order to accelerate convergence to the largest singular value.

The convergence of the iterative method to the eigenvector � is affected by the
choice of the above parameters, which are not known a priori. Also, after k steps
of the iterative method, the recurrences provided by Equation (2.23) and (2.22) allow
the calculation of 2k moments from the Chebyshev iterates, so that the construction of
the Jacobi matrix is accelerated. However, in the absence of any obvious method to
approximate Chebyshev iterates from the Jacobi matrix, the convergence of the iterative
method to the eigenvector is slower than the convergence of the Jacobi matrix to the
eigenvalues. To overcome these problems, a two-pass scheme has been developed.
Figure 2.4 illustrates the following steps of the two-pass scheme.
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1. PASS1: In the first pass, perform at most �1 steps of CSI-MSVD. This involves
the execution of all of the steps shown in Figure 2.3. The iteration is terminated
when either� the convergence tests defined in [BG91] are satisfied, or,� exactly �1 iterates have been calculated.

2. PASS2: Let �̃1 � �̃2 � : : : � �̃k be the eigenvalues of Jk at the end of PASS1, and�(k) the current Chebyshev iterate. If the residual norm kM�(k) � �̃1�(k)k is not
within some desired tolerance �tol, the scaling parameter � should be set to �̃1, and
the damping parameter � set to �̃2=�̃1. Then, at most �2 steps of the Chebyshev
iteration are performed while examining the convergence as in Step 1.

3. ACCEPT: Accept the approximate singular value corresponding to �̃1 (as defined
in Lemma 1.1). If a higher accuracy in the current approximations to the singular
value and corresponding singular vector obtained from (�̃1; �(k)) is desired, some
refinement procedure may be used, with starting values set to the current estimates.
In practice, the accelerated construction of the Jacobi matrix produces eigenvalue
approximations of at least 10�3 accuracy, and as discussed in [Par80] a single step
of inverse-iteration could be used to approximate the eigenvectors to 10�6 accuracy.
However, as described in Section 1, for large, sparse matrices it is desirable to avoid
fill-in from direct methods. The current PVM implementation of CSI-MSVD uses
an ANSI-C translation of the subroutine SYMMLQ [PS75] [B+94] for refinement
of the eigenvector approximation. SYMMLQ is a Conjugate Gradient method for
symmetric indefinite systems of the form (B � �I)x = b where � is a specified
scalar value. By setting b = 0, � to �̃1, the computed vector x may approximate
an eigenvector of the matrix B. After the residual error has been reduced to
the desired tolerance, deflation in the form of a Wielandt scheme [Saa92] can be
employed to repeat the above 3 steps in order to approximate the next triplet.

2.6 Estimation of Error in Singular Triplet

As the Chebyshev semi-iterative method proceeds, iterates of the form" x1
(k)
0

# ; " 0x2
(k+1) # ; " x1

(k+2)
0

# ; " 0x2
(k+3) # ; : : :

are generated. Approximations to the left singular vector corresponding to the largest
singular value are obtained from liml!1 x1

(k+2l) and the corresponding right singular vector

is obtained from liml!1 x2
(k+2l+1). An estimate of the error in these singular vectors is

desired. Let �1 = Ax2
(k+1); �̃1 = �1=k�1k; �2 = ATx1

(k); �̃2 = �2=k�2k; (2.32)
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and consider the error vectors defined by�1 = �̃1 � x1
(k) and �2 = �̃2 � x2

(k+1): (2.33)

These vectors measure the error in the singular vector approximations alone, and do
not reflect the error in the singular triplet, i.e., �1 � �1x1

(k) and �2 � �1x2
(k+1). The

vectors �1 and �2 are generated as part of the solution of the system of equations defined
by Equation (2.2) with b = 0 and �1 is approximating the singular value of A (now
scaled by �) closest to 1.

The vectors x1
(k+2) and x2

(k+3) are generated by substituting m = k+ 1 in Equation
(2.27) and m = k + 2 in Equation (2.28) (with b1 = b2 = 0) to getx1

(k+2) = !k+2fAx2
(k+1) � x1

(k)g+ x1
(k); (2.34)x2

(k+3) = !k+3fATx1
(k+2) � x2

(k+1)g+ x2
(k+1): (2.35)

Hence, the quantity Ax2
(k+1) is calculated as an intermediate result in the calculation

of x1
(k+2), and �1 can be calculated at step k + 2.

An analogous result for �2 is harder to derive since the right multiplication of AT
is by x1

(k+2) which is calculated in Equation (2.34) (rather than x1
(k)). Consider the

intermediate product�a = AT � f!k+2fAx2
(k+1) � x1

(k)g+ x1
(k)g= ATf(1� !k+2)x1

(k) + !k+2Ax2
(k+1)g= (1� !k+2)ATx1

(k) + !k+2ATAx2
(k+1):

From Equation (2.32), �1 = Ax2
(k+1) and so�a = (1� !k+2)ATx1

(k) + !k+2AT�1: (2.36)

Since �1 = �1k�1k �x1
(k) by definition, it follows that �1 = k�1k(�1 + x1

(k)). Substituting
this expression for �1 into Equation (2.36) yields�a = (1� !k+2)ATx1

(k) + k�1k!k+2AT (�1 + x1
(k)) or�a = �1ATx1

(k) + �2AT �1; (2.37)

where �1 = 1 + !k+2(k�1k � 1), �2 = !k+2k�1k, and hence �a is a perturbation of
a vector in the desired direction ATx1

(k). If this perturbation is suitably small, i.e.�2AT�1! 0, then �2 could be approximated by�̃2 = �̃a � x2
(k+1); (2.38)

where �̃a is the normalized version of �a. In practice, for typical applications such as
information retrieval, the larger singular values �i are typically well-separated, and the
parameter � = �2=�1 has values in the range (0:5; 0:8) so that, (see Figure 2.5) !i � 1
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Figure 2.5. Effect of parameter �
forcing �2 � 1. The perturbation �a is only as large as �1, allowing an approximation of�2 through Equation (2.38). However, when clustered singular values are encountered,
the effect of an increased perturbation combined with accumulated round-off render this
error estimate unreliable. In this situation, the CSI-MSVD algorithm uses an external
refinement scheme such as SYMMLQ to obtain a more accurate estimate of the error
in the singular triplet.

A pseudo-code for the two-pass CSI-MSVD algorithm to compute both eigenvalues
and eigenvectors with implicit error estimation is listed in Figures 2.6 and 2.7.
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Function PASS
Input Starting vector x, scaling parameter �, damping parameter �, matrix A,

upper bound on number of iterations tmax, error-bound on
approximated solution tol

Output Approximations to the 3-largest eigenvalues of the 2-cyclic matrix defined

in Equation (1.4) �1, �2 and �3, and eigenvector approximation
�xT ; yT�T :

Compute !(1 : 4tmax + 1) using Equation (2.13). Initialize �1 to �.
Scale A by �.

/* This may be implicitly incorporated in the matrix-vector
multiplication routine */

Set y = ATx; Compute �13  �2 using Equation (2.22).
Compute �22 using Equation (2.25) and set 1 to �22.
for t = 1 to tmax � 1

Save current values of x, y and �1 in xs, ys and �s, respectively.
Compute new iterate x using Equation (2.34), and y using Equation (2.35).
Calculate new moments �1;4t+1 and �1;4t+3 from x and y using

Equations (2.22) and (2.23), respectively.
Using Equation (2.25), compute the antidiagonals �1;4t+1; �2;4t; : : : ; �2t;2t

and �1;4t+2; �2;4t+1; : : : ; �2t+1;2t+1:
Using Equation (2.26), compute the values 2t and 2t+1, and use the

bidiagonal QR [DBMS79] iteration to approximate the eigenvalues�1; �2; �3 of the updated bidiagonal matrix.

Compute the error estimate � =  x̂ŝys !�  x̂̂y ! ; where v̂ denotes the

normalized form of the vector v.
If k�1 � �sk < tol; return to the calling program.

endfor

Figure 2.6. Pseudo-code for one PASS of the CSI-MSVD algorithm.
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Input m� n matrix A, estimate of damping parameter �, estimate of scaling
parameter �, bound on error in computed singular triplet tol, number of
desired triplets N .

Output N singular triplets.

Initialize � = �est, startv = rand(m; 1).
for i = 1 to N

Call Function PASS to obtain singular value approximations �1, �2 and �3,
singular triplet fx; �1; yg and error estimate �.

if � < tol,
set A A� �1xyT :
goto NEXT.

else
Set � = �2=�1, � = �1, startv = x.
Call Function PASS to obtain singular value approximations �1, �2 and �3,

singular triplet fx; �1; yg and error estimate �.
if � < tol,
set A A� �1xyT :
goto NEXT.

else

Call Function SYMMLQ [PS75] with �1 as shift, and
�xT ; yT�T

as starting vector.
endif

endif
NEXT: Set � = �3=�2; � = �2.
endfor

Figure 2.7. Pseudo-code for two-pass CSI-MSVD algorithm with implicit error estimation.
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Chapter 3

Sparse Matrix Applications

Sparse linear least squares problems naturally arise in many real-world applications in
the physical and social sciences. The use of the sparse SVD to solve such problems
is of current interest to researchers in these fields [WBSM94], [DDF+90]. A brief
description of two such applications, query-based information retrieval and seismic
reflection tomography, is provided in this chapter. A description of typical sparse-matrix
storage formats used, followed by a discussion of the effect of these storage formats on
the performance of iterative methods is also discussed. Parallel implementations of the
time-consuming kernels for iterative methods using compressed storage formats for the
input sparse matrices are also described in this Chapter.

3.1 Applications for Sparse Singular Value Decomposition

CSI-MSVD was tested with matrices arising from query-based information retrieval
applications and seismic reflection tomography. This section describes these two appli-
cations, along with the role played by the SVD in each problem domain.

3.1.1 Latent Semantic Indexing

The fundamental goal of information retrieval techniques is to match words of queries
provided by a user with words of documents in the database being searched, and thereby
extract relevant documents. Attempts to solve this problem by a literal match between
words in queries and documents are not always successful because users want to retrieve
documents on the basis of conceptual topic or meaning. There are two main sources of
noise arising from variability in word usage:

1. many possible in words to express the same concept (synonymy), or,

2. multiplicity in meanings of some words (polysemy).
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Latent Semantic Indexing (LSI) [DDF+90] proposes a solution to this problem by
assuming that there is an underlying semantic structure in word usage. Here, the
frequency of appearance of terms that could be used as referents to a document is used
to set up an m � n matrix A, whose m rows and n columns correspond to the terms
and documents, respectively. Each element [aij] of the term-document matrix A is a
measure of the frequency of appearance of term i in document j. The matrix A is
naturally sparse since there are relatively few referent terms for any given document.
The closest (in a least squares sense) rank-k approximation to the term-document matrixAk = kXi=1

ui:�k:viT with k < r (3.1)

is sought so that Ak captures the major associational structure in the matrix and removes
the noise. The rank-property of the SVD [GR71] allows the computation of Ak from the
matrixA. The model provided by Equation (3.1), usually with 100 � k � 200, encodes
documents in a reduced space R(Ak) using the left- and right-singular vectors ui andvi. Using Ak as an approximation to the original matrix A allows conceptually-related
documents with different referent terms to be mapped into the same vector, ameliorating
the effects of synonymy. This clustering of conceptually-related documents in R(Ak)
also causes documents to be described by a consensus of their term meanings, dampening
the effects of polysemy. A discussion of the properties and performance of LSI using
the sparse SVD can be found in [BD95].

3.1.2 Seismic Reflection Tomography

In this application the sparse SVD problem arises from the solution of nonlinear inverse
problems associated with the approximation of acoustic or elastic wave-speed from
travel times. Specifically, the travel times t(r) are related to the wave-speed (model
parameters) through the relationt(r) = Zr(s) s(x; y; z)dl; (3.2)

where x; y; and z are spatial coordinates, dl is the distance (differential) along the rayr and s(x; y; z) = 1=�(x; y; z) is the slowness (reciprocal of velocity) at the point
(x; y; z). For large two-dimensional problems, the travel times, extracted from the
original seismograms, can involve up to O(105) rays. The ray path depends on the
slowness (unknown) and thus Equation (3.2) must be linearized about some initial or
reference slowness (unknown) model. Discretization of the slowness by cells or finite
elements within which the slowness is assumed to be constant allows the linearized
integral to be approximated as a sum. The resulting over-determined system of linear
equations for the unknown slowness perturbation values isD∆s = ∆t; (3.3)
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where the components of ∆t are the differences between the travel times computed for
the model and observed times, the components of ∆s are the differences between the
initial and updated model, and D is the Jacobian matrix whose (i; j) element is the
distance the ith ray travels in the jth cell. For two-dimensional models, the matrix D in
Equation (3.3) is generally large (O(105)) and sparse.

For over-determined systems of equations such as Equation (3.3), the SVD is one
of the best known methods for obtaining the linear least squares solution using the
pseudo-inverse Dy = VkΣk�1UkT
where k = rank(D);Σk = diag(�1; �2; � � � ; �k); UkTUk = VktVk = I: The smallest
singular values and corresponding vectors control model parameters such as the velocity-
reflector depth trade-off. Researchers in seismic reflection tomography can assess trade-
offs in model parameters using sparse SVD methods to approximate large numbers of
singular triplets above specified quantities (noise level).

3.2 Sparse Matrix Storage Formats

The input matrix encountered in the applications described in Section 3.1 is large and
sparse. When solving these problems using iterative methods or Krylov subspace
methods, a reduction in memory requirements may be achieved by storing only the
nonzero elements of A. There are many methods for storing sparse matrices ([Saa90],
[Eij92]). Of these formats, the compressed row and compressed column storage formats
[B+94] are the most general, i.e., they make no assumptions about the sparsity structure
while avoiding the storage of any unnecessary elements. These formats produce an
additional reduction in storage by economizing the storage of index information at some
additional indirect-addressing overhead during execution. The reduction in storage
from using compressed sparse row/column formats is considerable when min(m;n) is
much less than nnz, the number of non-zeros in the matrix, as happens with matrices
encountered in the applications described in Section 3.1. Without loss of generality, it
will be assumed for the rest of this discussion that the matrix is stored in Compressed
Column Storage (CCS) format, also known as the Harwell-Boeing format [DGL89].

The CCS format is specified by the three arrays fval, row ind, col ptrg where
row ind(i) stores the row indices of each nonzero value val(i). Nonzero values in the
same column are stored as lists of contiguous elements in the array val, with col ptr(j)
marking the start of the jth list in val. Figure 3.1 shows the values of col ptr, row ind,
and val for a matrix with nrow = 6; ncol = 4. It can be seen that for nnz = 12
non-zeros, the storage requirements are 2nnz + ncol + 1. This is less than the value
3nnz which would be required if the row- and column-index of each non-zero were
stored. The disadvantage of this scheme, though, is that it is now necessary to perform
more than one memory access to find the column index for any given value.
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col ptr
1
4
8

10
13

(val, row ind)
(10, 1)
(3, 2)
(3, 4)
(9, 2)
(7, 3)
(8, 5)
(4, 6)
(8, 3)
(8, 4)
(7, 3)
(7, 4)
(9, 5)

<EOF>

%' -%'-��-$&-$& - A = 0BBBBBBBB@ 10 0 0 0
3 9 0 0
0 7 8 7
3 0 8 7
0 8 0 9
0 4 0 0

1CCCCCCCCA
Figure 3.1. Example of the Harwell-Boeing storage format for a 6� 4 sparse matrix A.

Figure 3.2 illustrates the pseudocode to perform the operation y = Ax (Algorithm
OP) and y = ATx (Algorithm OPT). It can be seen that both algorithms use indirect
addressing, and thus have poor vectorizability properties for any architecture. However,
Algorithm OPT has a more favorable memory access pattern in that it reads two vectors
(val() and x()) and writes one scalar. Algorithm OP on the other hand reads elementsx() and val and performs both reads and writes of the indirectly-addressed elements
in y(). Thus, unless the machine on which these methods are implemented has three
separate memory paths, performance is limited by memory traffic.

Table 3.1 lists the average times to compute the matrix-vector products using Al-
gorithms OP and OPT from Figure 3.2. Here the matrix-vector product was timed
repeatedly within a loop, and the average elapsed time for 100 calls was calculated on
a single SPARC processor. The datasets used were obtained from information retrieval
applications. It can be seen that the time for multiplication by the transpose using Al-
gorithm OPT is consistently less than the corresponding times for multiplication using
Algorithm OP.
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Algorithm OP (compute y = Ax)
for i = 1to ntmp = x(i)

for j =col ptr(i) to col ptr(i+ 1) � 1y(row ind(j)) += val(j) � tmp
endfor

endfor

Algorithm OPT (compute y = ATx)
for i = 1to nres = 0

for j =col ptr(i) to col ptr(i+ 1) � 1res+ = val(j) � x(row ind(j))
endfory(i) = res

endfor

Figure 3.2. Computation of matrix-vector product when the sparse matrix A is stored in the Harwell-
Boeing format

Table 3.1

Average (elapsed) time over 100 experiments for computing matrix-vector products,on a SPARCstation
20 - Model 50 (50 MHz SuperSPARC Processor with 256 Mbyte memory).

Dataset dimensions non-zeros time(OP) time(OPT)
adit 374� 82 1343 0.7 0.6
CCE 3054� 490 13607 10.2 9.1
oyang2hb 1853� 625 3706 2.6 2.4
amoco1 1436� 330 35210 18.1 17.1
bellcist 5143� 1460 66340 47.3 42.4
knoxns 12615� 40140 1780951 1507.6 1266
bellency 25629� 56530 2843956 2483.906 2059.494

All times in milli-seconds
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3.3 Parallelism

For most iterative and Krylovs subspace methods, the only operations involving the
sparse m� n matrix A are the matrix-vector multiplications. The compressed format
used to store the sparse matrix can thus impact single and multiprocessor program
performance. [B+94] addresses aspects of parallelism and identifies the basic time-
consuming kernels of iterative schemes such as� inner products,� vector updates, and� matrix-vector products, A�(i) and AT�(i).
The computation of an inner product of two vectors and vector updates can be easily
parallelized (see [B+94]). However, when compressed storage of sparse matrices is
used, the larger amount of message-passing involved complicates the parallelization of
matrix-vector products.

In the current implementation of the CSI-MSVD algorithm the following scheme
(which is also recommended in [B+94]) is used to implment matrix-vector multiplica-
tion.

Algorithm P OP: Compute ym�1 = Am�nxn�1 using p processors

1. Let n = qp+ r
2. Partition A column-wise, i.e., Am�n = [A1A2 : : : ArAr+1 : : : Ap]. Here, Ai; i =

1; : : : r is anm�(q+1)matrix containing columns (i�1)q+i : : : iq+i+1 ofA, andAi; i = r+1 : : : p is anm�qmatrix containing columns (i�1)q+r+1 : : : iq+r+1.
The ith processor stores the block Ai.

3. Partition xm�1 as 0BBBBBBBBB@ x1
...xrxr+1
...xp 1CCCCCCCCCA ;

where xi 2 lR(q+1)�1 when i 2 [1; r], and xi 2 lRq�1 when i 2 [r + 1; p]. The ith
processor stores xi.

4. The matrix vector product Ax can then be written asAx = rXi=1

Aixi + pXi=r+1

Aixi:
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Thus, processor i can obtain the matrix-vector product yi = Aixi by applying
Algorithm OP of Figure 3.2. The vector y = Ax can then be obtained by doing a
global reduction to get

Xi yi.
Algorithm P OPT: Compute yn�1 = transp(Am�n) � xm�1 using p processors

1. Let n = qp+ r
2. Partition A column-wise as in Step 2 of algorithm P OP, so thatAT = 26666666666664 A1

TA2
T

...ArTAr+1
T

...ApT 37777777777775 :
3. The matrix vector product ATx can be written asAT = 26666666666664 A1

TxA2
Tx
...ArTxAr+1
Tx

...ApTx 37777777777775 :
Thus, processor i can obtain the matrix-vector product yi = AiTx by applying
Algorithm OPT of Figure 3.2. The elements of the vector y = ATx are then
automatically partitioned across the p processors. Note that, in this case, the
vector x is not partitioned, and every processor must have all of the elements in x.

It should be noted that for CSI-MSVD, the only information about y that is needed by
the remainder of the algorithm is kyk. By rewriting kyk asvuut pXi=1

yi2;kyk can be computed by performing a global reduction of yi2 across processors, and
obtaining the square-root of the resulting scalar.
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Chapter 4

Performance Evaluation Methodology

This chapter describes the computational platforms and parameters used to evaluate the
performance of a parallel implementation of the CSI-MSVD algorithm.

4.1 Computational Environments

A distributed version of the CSI-MSVD algorithm as described in Section 2.4 was
implemented using PVM, the Parallel Virtual Machine [GBD+94]. The objective was
to produce a portable implementation that could be used across multiple platforms.
PVM was chosen as the software environment because of its modularity, portability and
immediate availability. Due to the wide-spread use of PVM in the scientific/engineering
community, many vendors of massively-parallel computers provide optimized imple-
mentations of PVM for their machines. Portability of the PVM implementation of
CSI-MSVD was also studied using one such platform, the CRAY T3D. This section
describes the computational environments available through PVM and on the CRAY
T3D.

4.1.1 PVM: Parallel Virtual Machine

PVM is a software package developed at the University of Tennesse, Knoxville (UTK)
and the Oak Ridge National Laboratory (ORNL) that permits a heterogeneous collection
of Unix computers linked together by a network to be used as a single large “virtually-
parallel” computer. The PVM system is composed of two parts:

1. The PVM daemon pvmd that resides on all the computers making up the virtual
machine. The PVM daemon must be started to create the virtual machine.

2. The library of PVM interface routines. This library contains user-callable routines
for message-passing, spawning processes, coordinating tasks, and modifying the
virtual machine.
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The PVM computing model is based on the notion that an application consists of
several tasks which can be executed concurrently. Functional parallelism is achieved
when each task performs a different function, and data parallelism is achieved when
multiple tasks perform the same operations on different data. The PVM library routines
for task-spawning, communication between tasks and virtual machine configuration
management provide a portable interface to interprocess communication primitives like
sockets.

Program development using PVM on a network of workstations has several advan-
tages. Since the source code for PVM is available at no charge, parallel computing
can take place on existing hardware without any additional overhead in investment.
Applications developed using PVM are not locked into proprietary interfaces and algo-
rithm development and testing can be done at low cost, using familiar environments and
hardware. After a satisfactory implementation is available, the code can be ported to
platforms with superior hardware. The virtual computer resources can grow in stages
and take advantage of the latest computational and network technologies.

The major disadvantage of parallel programming using PVM on a network of work-
stations arises from the high latency of typical packet-switched networks and bus tech-
nology. The performance of bus-connected systems may degrade rapidly if the data
transfer rate on the bus (i.e., bus bandwidth) is not able to deliver data to accommodate
the processors. Typically, bus connections are limited to a modest number ( > 30 )
of processors. Also, since each processor in the virtual machine is a workstation,
networked computers can have several other users on them, running a variety of jobs,
and sharing the bandwidth of the Ethernet bus with the parallel program. Program
performance is usually affected by the overhead arising from these factors.

4.1.2 CRAY T3D Hardware/Software Overview

As discussed in the previous section, although PVM on a network of workstations can
provide the necessary environment for algorithm development at low cost, the high
message-passing overhead makes this model infeasible for the solution of problems in
practice.

The CRAY T3D is a massively-parallel platform with superior hardware support that
supports message-passing based on the PVM model. A hardware overview of the CRAY
T3D is presented below followed by a description of the message-passing environment.
Significant differences in the PVM models available on networked-workstations and
the MPP are indicated. Further details are available in [CR94b].

CRAY T3D Hardware Overview

The CRAY T3D contains four types of components: processing element (PE) nodes,
the interconnect network, I/O gateways, and a clock. Each PE node of the CRAY T3D
contains a RISC 64-bit Alpha chip developed by Digital Equipment Corporation, local
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memory, and support circuitry. There are two PE’s per processing element node. Figure
4.1 illustrates the components of a PE node and the interconnect network.

Processing 

Element 0

Processing 

Element 1

Block
Transfer
Engine

Network 

Interface

Network
Router

-X

-Y

-Z

+X

+Y

+ Z

Key

Control

Data

Communication Link
+X

Processing Element  Node

 & Network Router

Figure 4.1. Processing element node and interconnect components on the CRAY T3D

The PE’s are connected by a fast bidirectional 3-D torus system interconnect network
(Figure 4.2). This topology ensures short connection paths and high bisection bandwidth
(the maximum rate at which one half of the system can exchange data with the other
half). With peak interprocessor communication rates of 300 Mbytes per second in
every direction through the torus resulting in up to 76.8 Gbytes per second of bisection
bandwidth, this design allows the extremely fast remote memory access critical for
efficient MPP system usage.

The local memory within each PE is part of a physically distributed, logically shared
memory system. System memory is physically distributed (since each PE contains
local memory) and is logically shared since the microprocessor in one PE can access
the memory of another PE without involving the microprocessor in that PE.
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Figure 4.2. Two-dimensional Torus

CRAY T3D Programming Tools

Information about the FORTRAN, C and C++ compilers provided on the CRAY T3D
may be found in [CR94b] and [CR94a]. The C compilers were used for this study.
The operating system (UNICOS MAX) that supports the CRAY MPP system is a
microkernel-based distributed operating system. This operating system runs on a CRAY
T3D system and its CRAY Y-MP or C90 host.

All of the three compilers listed above support the message-passing programming
methods using PVM. The three release packages of PVM libraries available are the
CRAY Network PVM-3.2.0, the CRAY MPP PVM-3.1.0 and the CRAY T3D Emulator
1.1. A brief description of each is listed below.� The CRAY Network PVM-3.2.0, or the network version is basically identical to

the software developed and released at ORNL for networked-workstations. This
version supports PVM across a heterogeneous network of computers and is based
on TCP/IP and UDP data transfers between UNIX processes. In this kind of
communication, the network transfer speeds are relatively slow.� The CRAY MPP PVM-3.1.0, subsequently referred to as either the CRAY MPP
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version or the CRAY T3D version uses the hardware capabilities of the CRAY T3D
system to handle communications between the CRAY T3D processor elements
and uses TCP/IP and UDP data transfers to handle communications outside the
CRAY MPP system. The CRAY MPP version can be used in two modes. In a
stand-alone mode, it can be used to program an application on the CRAY T3D
system, like the message-passing libraries supplied for other MPP systems. In a
distributed mode, it can be coupled with the network version to let the CRAY T3D
applications use message-passing to communicate with processes running on the
CRAY Y-MP host or any of the other systems that run PVM.� The CRAY T3D Emulator 1.1, or the emulator version, allows programs to be
developed and executed without having to use a CRAY T3D system. PVM is
included in the emulator library.

Parallel programming with PVM can involve a combination of any of the above
situations to provide a range of different scenarios. The following scenarios are listed
roughly in increasing cost of communication:

1. One application running on a CRAY T3D system, requiring only the CRAY MPP
version, used in stand-alone mode. High-performance connections are used be-
tween the tasks on the PE’s in this version.

2. Two processes running on a single CRAY Y-MP computer system, requiring the
networking version. Networking capabilities are used for communication

3. One process running on a CRAY Y-MP computer system, and another application
running on an associated CRAY T3D system, requiring both the networking and
the CRAY MPP version in distributed mode.

Therefore, in order to obtain the best message-passing latencies, it is desirable to use
the CRAY MPP in stand-alone mode, with no participation from the Cray Y-MP front
end. In the discussion that follows, it will be assumed that Cray MPP is used in this
mode.

4.1.3 Differences Between CRAY MPP and NOW Versions of PVM

This section summarizes the salient differences between the MPP version of PVM, and
PVM implementations for networks of workstations, henceforth referred to as NOW
versions of PVM.

PE Number

The NOW versions only support the concept of PVM task identifier (pvm tid) to
identify a task on the virtual machine. The MPP version allows the use of PE numbers
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in place of the pvm tids. PE numbers are in the range [0 : : : npes], where npes is
the number of PE’s in the current partition. On the CRAY T3D, in addition to support
for dynamic groups [GBD+94], every task (or PE) is also a member of a static, pre-
defined, global group. This group can be accessed through the PVM group manipulation
functions defined for NOW versions by using a null name to refer to the global group.

In its current implementation, PVM limits the maximum number of tasks that can join
a group. This is done assuming that most groups are small relative to the total number
of PE’s, and it saves memory for each group. Where possible, it is recommended that
programs being ported from NOW versions of PVM to the CRAY MPP use the the
predefined global group on the CRAY MPP system. This helps prevent the program
from exceeding limits on group-size and also gives better performance when performing
synchronization-barriers across the group or broadcasts to the group.

Process Spawning

The NOW versions of PVM allow any task in the virtual machine to spawn any number
of images of an arbitrary executable through a call to pvm spawn. In the MPP version,
calls to pvm spawn may be made only from the Y-MP host. A call to pvm spawn
causes a copy of the spawned program to execute on each PE in the current partition.
The same executable image must execute on each PE in the partition, and tasks executing
on the T3D nodes may not call pvm spawn.

Virtual Machine Configuration

NOW versions of PVM provide the function pvm config to provide informa-
tion about the current configuration of the virtual machine. In the CRAY MPP
version, the PVM machine is of fixed size and composition, and all PE’s are
running the same program. As a result, the full functionality of pvm config
is redundant and is therefore not implemented. The MPP version instead pro-
vides the functions pvm get PE() to return the PE number of the calling task.
Also, the number of PE’s in the current partition (i.e, in the virtual machine)
may be obtained by determining the size of the global group by the function call

n pes=pvm gsize(NULL).

Word Size

Since all CRAY machines have a 64 bit word-size, and single-precision integers are
defined to be 8 bytes, the CRAY MPP and emulator versions provide a constant,
INTEGER8, for packing/unpacking functions in the FORTRAN interface to PVM.
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Unsupported Functions

Some of the functions supported by the NOW version, but not implemented in
the MPP version are pvm addhosts, pvm delhosts, pvm kill, pvm mstat,
pvm notify, pvm perror, pvm sendsig, pvm setopt, pvm tasks. Calling
these functions on the CRAY T3D is permitted, but, if called, each will return the error
status: PvmNotImpl.

PvmDataInPlace Semantics

The network and CRAY MPP version differ in the treatment of data buffers packed
using PvmDataInPlace encoding. In the CRAY MPP version, such data must not
be reused until the data has been unpacked by the receiving PE. If possible, down-sizing
should be consistent. The caller is responsible for any additional synchronization or
communication required to ensure this coordination.

Communicating with the PVM Daemon

PE’s on the CRAY T3D system communicate with the daemon using sockets. Because
of UNICOS limits in the number of open files per application, not all PE’s may be able
to communicate with the daemon. By default only PE0 establishes communication.
Additional PE’s may be allowed to communicate with the daemon by modifying the
PVM PE LIST environment variable.

4.2 Performance Parameters

Two aspects of the performance of the CSI-MSVD algorithm are discussed in this
section:� Performance of the algorithm, measured in terms of convergence rates and mag-

nitude of error.� Performance of the parallel implementation, measured in terms of execution time,
memory requirements and scalability.

The methods used to evaluate each of these aspects will be described in the following
sections.

4.2.1 Performance of Algorithm CSI-MSVD

The relative performance of the algorithm is obtained by comparison with other widely
used eigenvalue-solvers used to obtain the SVD of sparse matrices. [GL89] points out
that Krylov-based methods are typically used to solve large, sparse eigenproblems. As
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discussed in Section 3.2, matrix-vector multiplications are the fundamental and most ex-
pensive operations for iterative methods (CSI) and Krylov subspace methods (Lanczos,
Arnoldi). Thus, the performance of each of these algorithms (CSI-MSVD, Lanczos
and Arnoldi’s method) can be estimated by computing the number of matrix-vector
multiplications required when the same constraints on number of required eigenpairs
(singular triplets) tolerance are used. Since the problems under consideration are large
and sparse, memory requirements, which could prove to be a constraint, must be mini-
mized. Also the sparsity pattern should not be disturbed, and the benefits of compressed
storage should not be lost. Therefore, in this dissertation, cost is measured by evaluating
the memory requirements of each method. A comparison of the performance (as mea-
sured by the number of matrix-vector multiplications) and the cost (as measured by the
memory requirements) is used to assess the theoretical analysis of the two algorithms.

Another aspect of algorithm performance is the magnitude of the error in the singular
triplet. When the SVD is obtained from the two-cyclic eigenvalue problem, the error in
the singular triplet can be translated to the error in the eigenpair approximants obtained
from CSI-MSVD. Following Section 2.6, the error in CSI-MSVD is approximated by�̃ = " �1

T�̃T2 # ; (4.1)

where �1 is defined in Equation (2.33) and �̃2 is defined in Equation (2.38). The
approximate �̃ defined in Equation (4.1) is compared to the following two norms:

1. The error in the eigenvector of the iteration matrix M defined in Equation (1.4),
i.e., k 1kMvkMv � vk; (4.2)

where v = [x1
(k)T ; x2

(k+1)T ]T .

2. The error in the eigenpair of the iteration matrix M defined in Equation (1.4), i.e.,kMv � �1vk; (4.3)

where �1 is the current approximation to the largest singular value of the matrixA
and v = [x1

(k)T ; x2
(k+1)T ]T .

Since M is a two-cyclic matrix, the product Mv is of the form"
0 AAT 0

# x1
(k)x2

(k+1) !
so that Equation (4.2) measures the error in the singular vectors, and Equation (4.3)
measures the error in the singular triplet fx1

(k)T ; �1
(k+1); x2

(k+1)g.
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4.2.2 Performance Evaluation of the Parallel Implementation

The performance gain achieved by parallelizing a given application is typically measured
by monitoring the speedup [KGGK94]. A related parameter for evaluating a parallel
system is the scalability of the system, which is a measure of the capacity of the parallel
system to increase the speedup in proportion to the number of processors. Some of the
most common factors that prevent a linear increase in speedup with a larger number
of processors [Hwa93] are communication overhead, the complexity of interprocess
communication or synchronization overhead, and message-passing overhead, which
are absent in serial programs. Also for multiprocessing and time-sharing systems, the
accurate evaluation of CPU usage and time spent in communication for any one process
is difficult, and best-case statistics do not necessarily predict the performance of the
system for the average case.

The objective in this dissertation was to evaluate the speed of execution as perceived
by the user. For this reason, the wall-clock time for execution was monitored. Although
the time taken to start up all the processes and to print the final results were not considered
for these experiments, the time spent in loading the matrix into memory was taken into
account. This data was obtained by using a network of 24 machines on a LAN (10Mbps
Ethernet) isolated by a bridge to avoid interference from external traffic on the Internet,
and thus provide an estimate of the best-case performance. Each machine on the LAN
was a Sun SPARCstation 5 Model 70 workstation with a clock speed of 70 MHz and
32 MB memory. Wall-clock times for execution using this configuration are listed in
Section 5.4.

Although parallel speedup is a popular measure for evaluating parallel program
performance, there are some pitfalls to this metric as indicated in [Com93], especially
when used across multiple platforms. In this dissertation the speedup is computed to
obtain an estimate of the scalability of the algorithm with a variation in problem size,
so that for a given class of problems, recommendations can be made for the optimal
choice of virtual machine configuration. Speedup is defined asS = T1Tp (4.4)

where T1 is taken to be the wall-clock time for CSI-MSVD to execute on one processor
without any redundant synchronization/communication operations, and Tp is the wall-
clock time with p processors. Although this definition of T1 does not give the wall-clock
time with the best single-processor algorithm, the objective in computing S through
Equation (4.4) is to obtain a measure of the speedup over single-processor time, i.e., the
scalability of the system.
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4.3 Input problems and Test Parameters

For all of the experimental results listed in this dissertation, the wall-clock time for
execution was obtained as the difference between the values returned by calls to the
UNIX function gettimeofday() [Ste92]. The time taken to spawn processes and
to print the results was not considered, but the time to read in the matrix A from the
disk was included in the wall-clock time. For experiments requiring the monitoring of
system parameters like CPU time and page faults the BSD 3.2 functiongetrusage()
[Ste92] was used wherever available. Each data point was obtained as the arithmetic
mean of 10 samples.

The test problems used were obtained primarily from information retrieval applica-
tions and from seismic reflection tomography problems (see Section 3.1). Table 4.1
lists the sizes and sparsity of the matrices used for evaluating the performance of the
CSI-MSVD algorithm. Here sparsity is defined bySparsity = nnznrows � ncols;
where nnz is the number of non-zeros, nrows is the number of rows, and ncols is the
number of columns of the sparse matrix.

In order to study the effect of clustered spectra on the accuracy of the error estimate,
synthetic diagonal test matrices having clustered or multiple diagonal elements were
also used as input. The diagonal matrices used for these experiments included those
described in [Ber94]. In addition, two other matrices CLUS2 and CLUS5 were used to
introduce a larger separation between clusters. The diagonal elements were defined as
clustered values of a step function chosen to reflect varying numbers of clusters with
varying separation between clusters. Formally the diagonal elements were chosen to be
a subset of [i;k(�; �; �; k; i) = [i;k(�k + �) + �i;
where 1 � i � imax; 0 � k � kmax.

Here, � defines the separation of elements within a cluster, � defines the separation
between consecutive clusters, imax defines the maximum number of distinct elements
within a cluster, and kmax; � and � are such that for any diagonal element �j in the kth
cluster Ck, b�jc = �k + �:

The 11-largest diagonal elements of two such matrices CLUS2 and CLUS5 are
shown in Figure 4.3. The parameters for these diagonal test matrices are given in Table
4.2.
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Table 4.1

Test matrices used to evaluate the performance of CSI-MSVD.

Matrix Source Dimension Number of Sparsity
non-zeros

amoco1 Amoco Research 1436� 330 35210 0.0074
amoco2t Amoco Research 8754� 9855 1; 159; 116 0.0018
belladit Bellcore Linguistics data 374� 82 1343 0.0438
bellcrat Bellcore Linguistics data 4997� 1400 78; 942 0.0113
bellcist Bellcore Linguistics data 5143� 1460 66; 340 0.0088
bellency AA Encyclopedia 25629� 56530 2; 843; 956 0.0020
belltect Bellcore Linguistics data 16637� 6535 327; 244 0.0030
belltrec3 Bellcore Linguistics data 10836� 48809 2343775 0.0044
ccelink Hypertext links from Columbia 12025� 9778 33; 545 0.0002

Condensed Encyclopedia
greenh Greenhouse Effects News 318� 100 5772 0.1820
knoxns Term-document matrix 12615� 40140 1; 780; 951 0.0035

from Knoxville News-Sentinel
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Table 4.2

Parameters for some diagonal test matrices

Matrix (�; �; �; kmax; imax)
CLUS1 (4; 0; 10�3; 12; 4)
CLUS2 (1; 0; 10�6; 4; 10)
CLUS3 (26;�10�8; 10�8; 1; 25)
CLUS4 (10; 1; 0; 4; 10)
CLUS5 (10; 8; 10�3; 4; 4)
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Figure 4.3. Clustered spectra of two 50� 50 test matrices.
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Chapter 5

Results

Experimental results to demonstrate the performance of PVM implementations of the
CSI-MSVD algorithm for two-cyclic matrices are described in this Chapter. First,
an evaluation of the theoretical performance of the algorithm is presented through
comparisons with Krylov subspace methods like Lanczos and Arnoldi’s method in
Section 5.1. Section 5.2 presents an analysis of the reliability of the schemes for error
estimation described earlier in Section 2.6. The CSI-MSVD algorithm for two-cyclic
matrices as defined in Section 2.4.1 was implemented in ANSI C using PVM 3.3.7 for
a network of workstations. An overview of the parallel implementation is presented
in Section 5.3, and parallel program performance is evaluated by studying parameters
such as scalability in Section 5.4. Other aspects of parallel programming such as load
balancing are also described in Section 5.5.

As discussed in Chapter 4, vendors of massively-parallel platforms often supply a
PVM interface to their message-passing libraries so that PVM applications developed
on networked-workstations may be ported easily to these massively parallel computers.
The portability of the PVM implementation of the CSI-MSVD algorithm was studied
by experiments on the CRAY T3D. The performance of the PVM implementation of the
CSI-MSVD algorithm using the Cray MPP implementation of PVM (see Section 4.1.2)
is described in Section 5.6 to illustrate the portablity of the current implementation.

5.1 Comparisons with Krylov methods.

It has been pointed out in [Ber90] that the Lanczos algorithm has been demonstrated
to be the fastest method among Krylov- and subspace-iteration based methods for
computing several of the largest singular values and corresponding vectors of large
sparse matrices. Arnoldi’s method, a generalization of the Lanczos method, may also
be used to obtain the SVD by solving the eigenvalue problems described in Lemma
1.1. However, since the eigenvalue problems under consideration in this dissertation are
symmetric eigenvalue problems, Arnoldi’s method reduces to the symmetric Lanczos

45



algorithm.
The implementation was tested on a network of 24 machines, each a Sparc-5 Model

70 (70 MHz) having 32 MBytes internal memory. Cost-performance comparisons
between this implementation and library implementations of the Lanczos algorithm in
SVDPACK [Ber92] are described in this Section. Experiments using CSI-MSVD as a
preconditioner to Arnoldi’s method implemented in [LSV94] are also described.

5.1.1 CSI-MSVD versus LAS

The cost and performance of the PVM implementation of CSI-MSVD were compared
with LAS1 and LAS2, the Lanczos algorithms implemented in SVDPACK [Ber92].
LAS1 solves the two-cyclic eigenvalue problem (i.e., the eigenvalues of the matrix M
defined in Equation (1.4)), and LAS2 solves the eigenvalue problem for the matrixATA.
In order to estimate the cost of each method, the maximum memory requirement for
any process in the virtual machine for CSI-MSVD was compared to the corresponding
requirements for LAS1 and LAS2.

Table 5.1

Memory requirements for matrix-vector multiplication in CSI-MSVD using 20 processors.

Matrix Memory (Mbytes)
amoco 2.458304
bellcist 0.814496
bellcrat 0.799032
bellency 2.708668
belltect 8.019468
knoxns 3.796876

It was found that the dominant memory-cost for CSI-MSVD was for the storage for
the matrix A itself. The memory requirements for calculating the triangular matrix �kl
defined in Equation (2.25) and for the extraction of singular values from the resulting
bidiagonal matrix in Equation (2.31) are bounded by the number of iterations i required
for convergence. As demonstrated by Equations (2.23) and (2.22), the construction
of the Jacobi matrix is accelerated by the extraction of moments �2k and �2k+1 at stepk + 1, and hence the number of iterations i is usually small. In practice, i was found
to be of the O(10), and a maximum iteration limit (MAXIT) of 50 was found to be
sufficient for all of the matrices used. For this value of MAXIT, the upper-bound on the
memory requirements for the calculation of �kl was found to be 0.191 Kbytes and that
for the bidiagonal QR iteration was 0.456 Kbytes. In contrast, the combined memory
requirements for the matrix storage and the Chebyshev iteration are shown in Table 5.1.
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The memory requirement for storage of the matrix in CSI-MSVD is one that can be
controlled by varying the number of processors used. Since this requirement dominates
the memory required for the calculations intrinsic to the algorithm itself, there is some
control over the cost of CSI-MSVD.

Table 5.2

Memory requirements in MBytes for LAS1 and LAS2. Values, as reported by software from
SVDPACK, indicate memory required in addition to that for the storage of the matrix.

File Name LAS1 LAS2
amoco 31.2084 31.6440
bellcist 11.1343 11.2818
bellcrat 10.7899 10.9325
bellency 137.464 139.424
belltect 38.8377 39.3829
knoxns 88.3005 89.5556

The memory requirements for the Lanczos algorithms from SVDPACK are listed in
Table 5.2. It can be seen for large matrices, even if the matrix is partitioned across several
processors, and matrix-vector multiplication is carried out through data-parallel compu-
tation, the memory requirements for the algorithm could prove to be an insurmountable
bottle-neck.

In order to study the performance of each method, the number of matrix-vector
multiplications was compared for CSI-MSVD, LAS1 and LAS2. Table 5.3 records
the number of Ax operations when calculating the largest 10 singular values and the
corresponding vectors for the matrices considered earlier. Here, the maximum iteration
limit for the Lanczos codes was set to 100, and to 50 for CSI-MSVD. A tolerance limit
of 10�6 was requested from both methods.

Although CSI-MSVD takes about 3 times as many matrix-vector multiplications as
LAS2, the number of these operations is of the same order of magnitude as LAS1. Better
insight into this behavior may be obtained by examining the cumulative overhead for
computing singular-triplets. Figure 5.1 shows a comparison of the cumulative overhead
for the matrix bellency. Here the number of matrix-vector multiplications required
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Table 5.3

Performance comparisons, as measured by the number of matrix-vector multiplications required by
each method, when calculating the 10-largest singular values and corresponding singular vectors.

File Name CSI LAS1 LAS2
amoco 221 164 86
bellcist 289 194 122
bellcrat 263 196 86

bellency 238 192 86
belltect 255 196 118
knoxns 208 120 71
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Matrix: BELLENCY (25629 rows, 56530 columns, 2,843,956 nonzeros)
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Figure 5.1. Comparison of cumulative overhead when computing singular triplets by LAS1 and
CSI-MSVD. CSI-MSVD requires fewer matrix-vector multiplications to calculate each triplet, but
LAS1 has a lower cumulative count for k > 8 because more than one singular triplet can be deflated
at each step.
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to get the k-largest triplets using LAS1 and CSI-MSVD is plotted with a linear-least
squares fit of degree 1 through the data points. For LAS1 the minimum subspace to
compute the k-largest triplets to an accuracy of 10�6 was used. It can be seen from
Figure 5.1 that the performance of CSI-MSVD as measured by the number of matrix-
vector multiplications is lower than the corresponding values for LAS1 for the first
8 triplets. For the first triplet, CSI-MSVD takes 13 iterations while LAS1 takes 50
iterations. However, the incremental overhead for calculating each additional triplet
for CSI-MSVD is high as indicated by the slope of the interpolating line. This high
incremental overhead could be reduced if, at each step, it were possible to accept
more than one singular triplet. However, the absence of more than one singular vector
approximation precludes this, and the performance of CSI-MSVD deteriorates more
rapidly than that of LAS1.

The choice of Wielandt’s scheme for deflation provides robustness in CSI-MSVD.
The effectiveness of deflation is not as sensitive to the orthogonality of singular-vector
approximates as in Lanczos algorithms, and convergence is not affected by loss of
orthogonality due to round-off. Thus, vectors can be orthogonalized by one step of total
re-orthogonalization after the desired number of triplets are found or as frequently as
desired in the application without introducing a synchronization point in the algorithm.

5.1.2 CSI-MSVD versus Arnoldi’s method

The feasibility of using CSI-MSVD as a preconditioner to Krylov-based methods like
Arnoldi’s algorithm was investigated by using Matlab 4.2 implementations of CSI-
MSVD in combination with a k-step Arnoldi method (Arnupd) as implemented in
[LSV94]. Arnupd iterates with a subspace of dimension 6, and the number of desired
eigenvalues k=1 with p = 5 extra vectors calculated at each step to obtain the partial
Schur decomposition for the iteration matrix M whereMQ �= QH:
The starting vector for Arnoldi’s method in Arnupd was provided by the singular-vector
approximation from CSI-MSVD.

Table 5.4 tabulates the number of Arnoldi iterations required using the iterates
generated by the CSI-MSVD procedure as compared to running Arnoldi with a random
starting vector for the ADI matrix. There is a clear reduction in the number of Arnoldi
iterations so that at most 1 Arnoldi iteration is needed to refine the singular vectors.
Also, the residual error is larger when a random starting vector is used with Arnupd.

It should be noted that, since Arnupd tests for convergence by ensuring that the error
in the Rayleigh Quotient kQTMQ �Hk2 is within the user-defined tolerance tol, the
actual error in the eigenpair is given by � = kMvi � �ivik2. Here �i is obtained as
the eigenvalues of H , and vi = Q � yi where yi is the eigenvector of H corresponding
to �i. The actual error � is typically larger than tol. When the subspace size is

49



Table 5.4

Refinement by Arnoldi; parameters used for CSI-MSVD were �1 = 5, �2 = 15 and parameters used
with Arnupd were k=1 and p=5.

Arnoldi for singular vector refinement Arnoldi: rand starting values
Singular Value Arnupd iterations for error Arnupd iterations error

tol: 10�3 tol: 10�6 tol: 10�6

2.078676e+01 1 1 8.348e-06 1 2.780e-02
1.423534e+01 1 1 7.702e-05 3 8.427e-03
1.295953e+01 1 1 3.935e-05 2 1.248e-02
1.056388e+01 1 1 6.652e-05 3 1.083e-02
9.614439e+00 1 1 2.618e-04 5 7.000e-03
8.907366e+00 1 1 8.133e-04 9 8.748e-03
8.660762e+00 1 1 5.374e-04 6 1.367e-02
8.356867e+00 1 1 8.394e-04 6 6.465e-03
8.157926e+00 1 1 7.586e-04 8 7.376e-03

kept constant for a given user-defined tolerance tol, starting vectors generated by the
CSI-MSVD algorithm consistently yield improved errors in the eigenpairs computed
by Arnoldi’s method. In addition, as indicated by Figure 5.1, since the CSI-MSVD
algorithm typically requires O(10) matrix-vector multiplications to converge to each
eigenvalue, a considerable improvement in the accuracy in the solution obtained fromArnupd can be obtained at very little cost.

5.2 Error estimation

In order to study the magnitude and validity of the error estimate, several matrices from
information retrieval applications and synthetically generated test matrices were used.
A description of these matrices is provided in Section 4.3. The 10-largest singular
values and the corresponding singular vectors were calculated.

For typical term-document matrices obtained from information retrieval applications,
it was found that in spite of the perturbation �2AT �1 defined in Equation (2.37), the
error estimate defined by Equation (2.32) provides an upper bound on the actual error
in the vector for up to 8 of the largest triplets (see Figure 5.2 ). Even when the estimate
is not a good upper bound on the actual error, a good approximation to the actual error
is available from the estimate, especially for well-separated singular values. Thus the
error estimate can be used as a reasonable indicator of the acceptability of the current
eigenvector approximation, even though it may not always be an upper bound on the
actual error in the eigenvector, and the explicit computation of the exact error may be

50



2 4 6 8 10
Index of singular vector

1e-09

1e-06

1e-03

1e+00

M
a

g
n

it
u

d
e 

o
f 

er
ro

r

Matrix: BELLCRAT(4997 rows, 1400 columns, 78,942 nonzeros)

Error estimate from CSI-MSVD

Actual error in singular vector

Actual error in triplet

Figure 5.2. Variation in the reliability of the error estimate as an upper-bound for clustered singular
values.

avoided through this scheme.
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Figure 5.3 shows the error estimate, and the actual error measures defined in Equa-
tions (4.2) and (4.3) for two of the diagonal test matrices described in Table 4.2. For the
matrix CLUS2, whose 10-largest singular values are clustered around 40, the error esti-
mate cannot provide a good bound on the actual error for the fourth to seventh singular
triplets in the 10-element cluster around the singular value 40. The effect of clustering
on the error estimate is more obvious for the matrix CLUS5. Here, for the 11-largest
triplets, each cluster has at most 2 values, with a large separation (� = 10) between
consecutive clusters. When the gap between the values of the largest and second-largest
singular-values of the deflated matrix is large, � = �2=�1 is relatively small and a good
approximation to the actual error is provided by Equation (4.1). Figure 5.3(b) illustrates
that when �2 and �1 are not well-separated, the validity of the error estimate as a reliable
upper-bound becomes more questionable (�j; j 2 f1; 3; 5; 7; 9g). However, the CSI-
MSVD algorithm invokes an external refinement procedure SYMMLQ when clustered
singular values are encountered. The error estimate provided by the SYMMLQ over-
rides the estimate given by Equation (4.1) so that an accurate error estimate is obtained
regardless of the clustering in the singular values.

5.3 Parallel Implementations

The components of the parallel implementation and the parameters controlling commu-
nication and computation overhead will first be described. Then the parallel program
performance will be examined, using the methods described in Section 4.2.2.

The major functional components of CSI-MSVD (see Figure 2.3) are
MATVEC(i) When the matrix has been partitioned across p processors, this

indicates the i-th process participating in matrix-vector multipli-
cation, and thus, the Chebyshev semi-iterative method defined
by Equation (2.12). Processes MATVEC(i), 0 � i < p are
enrolled in a logical, dynamic PVM group, MATVEC.

SIGMA Process that updates the array �kl defined in Equation (2.25).

GAMMA Process that performs the bidiagonal QR-iteration to approxi-
mate the singular values of the current bidiagonal matrix Bk in
Equation (2.31)

MAIN Driver program that initializes parameters for CSI-MSVD and
keeps track of deflation.

The processes MATVEC, SIGMA and GAMMA are pipelined so that MATVEC initiates
the pipeline by sending moments to SIGMA. SIGMA then updates the bidiagonal
matrix, and GAMMA, the third process in the pipeline, performs the QR-iteration with
the updated bidiagonal matrix.

As noted in Section 5.1.1, due to the accelerated computation of moments and the
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Figure 5.3. Error estimates for computing the 10-largest singular triplets for 50 � 50 diagonal test
matrices.
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simplifications possible for the two-cyclic iteration (Section 2.4.1), the sizes of the
matrix �kl defined by Equation (2.25) and the bidiagonal matrix are independent of the
problem size in practice. Hence the computational workload in SIGMA and GAMMA
is not large enough to necessitate the parallelization of these components.

The load on processors involved in the MATVEC group, on the other hand, is
dependent on the size of the input sparse matrix. It is possible that a single processor
may not be able to satisfy the memory requirements of some large input matrices. Even
if the matrix could be accommodated in a single processor, it is desirable to partition a
large matrix across multiple processors to obtain the benefits of distributed computation
of the Chebyshev iteration.

5.3.1 Data Parallel implementation of CSI

One method to obtain a data-parallel computation of the Chebyshev semi-iterative
method using only those operations defined by PVM will now be described.

Let the iterate at the kth step, �(k) be partitioned so that �(k)[1 : m] = x(k) and�(k)[m + 1 : n] = y(k) where m;n are the number of rows and columns of the input
matrix A. Further, assume that the sparse matrix A, and the elements of x(k) and y(k)
are distributed across p processors as described in Section 3.3 so that processor i hasAi, x(k) and yi(k) stored in its local memory. The Chebyshev semi-iterative method now
proceeds as follows:

1. Calculate Aiyi(k) on the ith processor

2. Sum the result of Step 1 across all processors (global reduction), and store result
in processor l1. Note that since Aiyi(k) is an m-element vector, the complexity of
this step is O(m).

3. On processor l1 compute x(k+1) using Equation (2.27), with the equivalencesx1 $ x, x2 $ y, m$ k.

4. The scalar hy(k); y(k)i computed in iteration k � 1 at Step 7 may be sent to the
process SIGMA for computation of the new anti-diagonal as illustrated in Figure
2.3.

5. On completion of Step 3, processor l1 must broadcast the vector x(k+1) to all other
processors in the group, in preparation for the computation of ATx(k+1). Note
that this is necessary because, as discussed in Section 3.3, every processor must
have all of the elements of x(k+1). Thus, an unavoidable synchronization step is
required so that the value of x(k+1) is consistent across all processors. Since x(k+1)
is an m-element vector, the communication overhead involved is O(m)

6. On processor i, compute yi(k+1) using Equation (2.28).

7. Globally reduce hyi(k+1); yi(k+1)i to store the result in processor l2.

54



8. The value: hx(k+1); x(k+1)i may be sent to the process SIGMA for computation of
the new anti-diagonal.

It can be seen that the length of the largest messages (and thus the complexity of
message-passing) are determined by m, the number of rows in the input matrix. For
rectangular matrices, when m 6= n, it is therefore desirable to have m < n, and, if
necessary, use the transposed matrix to achieve this effect.

For example, consider the matrix BELLTECT described in Table 4.1 with 16,637
rows and 6,535 column. Figure 5.4 illustrate the wall-clock times for computing the
10-largest singular triplets of BELLTECT using CSI-MSVD with varying numbers
of processors on the CRAY T3D. The corresponding times for the transposed matrix
BELLTECH (6,535 rows, 16,637 columns) are also shown in Figure 5.4. Although
BELLTECH and BELLTECT have almost identical execution times when the size of
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Figure 5.4. Effect of m, the number of rows, on wall-clock times in seconds obtained on the CRAY
T3D. BELLTECT is the transpose of the BELLTECH. The communication-overhead is proportional
to the number of rows in the matrix, which causes higher wall-clock times for BELLTECT.

the MATVEC group, p � 2, these times are much larger for BELLTECT when p > 2,
indicating the phenomenon of higher communication overhead from the larger number
of rows. Thus, it is preferable to use BELLTECH as the input matrix to CSI-MSVD.

5.4 Scalability

The wall-clock times for execution of CSI-MSVD on a network of SPARCstation 5
machines on a LAN isolated by a bridge were monitored as described in Section 4.2.2.
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For small matrices (� 500; 000 non-zeros) the benefits obtained by partitioning the
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Figure 5.5. CSI-MSVD: wall-clock times (seconds) for execution for matrices with 500;000 or fewer
non-zeros

matrix across multiple processors are overshadowed by the communication overhead so
that partitioning the matrix over more than one processor results in a slow-down. Figure
5.5 illustrates this effect for the matrices BELLCRAT and BELLTECT. The values of
the number of non-zeros and the number of rows (m) for BELLTECT are approximately
4 times the values for BELLCRAT, and this is reflected in the corresponding wall-clock
times.

The detrimental effect of communication overhead can be observed more clearly in
Figure 5.6. Here the two matrices AMOCO1 and CCELINK were used in experiments
on the CRAY T3D. Wall-clock times for execution for computing 10 singular triplets
to 10�6 accuracy. AMOCO1 is a 1; 436 � 330 matrix with 35; 210 non-zeros, while
CCELINK is a 12; 025 � 9; 778 matrix with 33; 545 non-zeros. Thus, although both
matrices have approximately the same number of non-zeros, they have widely different
number of rows and columns and thus very different sparsity. As expected, the CSI-
MSVD algorithm encounters larger communication overhead with CCELINK, which
is also the sparse matrix, so that larger execution times are observed in this case.
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Figure 5.6. Effect of communication overhead and sparsity on the parallel program performance.
Elapsed wall-clock times on the CRAY T3D were recorded.

While the slow-down exhibited in Figure 5.5 with increasing number of processors
might appear to detract from any advantages of parallelism, it is also encountered when
traditional sequential methods like Lanczos are used to solve large eigenvalue problems
by partitioning the matrix across multiple processors.

Figure 5.6 also illustrates that the number of non-zeros is not the only indicator of the
complexity of computing the eigenvalues using CSI-MSVD for the matrices AMOCO1
and CCELINK, and factors such as difference in sparsity and communication overhead
must be considered in order to construct run-time performance models. The factors that
affect wall-clock execution time, listed in relative order of importance are:� number of rows� number of non-zeros� sparsity

For large matrices (> 106 non-zeros), however, the time to calculate the matrix-
vector product by storing the entire matrix on one processor is much larger than the
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corresponding time when the matrix is partitioned across multiple processors. The
parallel program has an additional advantage: there are fewer page faults per process
for the partitioned matrix so that a super-linear speedup can be observed in some
cases (Figure 5.7). Figures 5.7 and 5.8 show the trend in wall-clock times with varying
numbers of non-zeros when the number of rows (and thus, the communication overhead)
are of the same order of magnitude for all the matrices being considered. The optimal
choice for p, the number of processors in MATVEC at which wall-clock times are
mimimized, appears to be approximately 5. While this implies that the algorithm cannot
exploit the parallelism afforded by a larger number of processors, it also indicates that
relatively few resources are required to obtain optimal performance.
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Figure 5.7. CSI-MSVD wall-clock times (seconds)for execution for matrices with� 2�106 non-zeros
on a network of SUN workstations.
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Figure 5.8. CSI-MSVD wall-clock times (seconds) for execution for matrices with � 106 non-zeros
on a network of SUN workstations.
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Figure 5.9. Average number of page faults per processor, with a variation in the number of processors,
for 2 matrices of different sizes

To further investigate the effect of variation in page faults with varying numbers of
processors, the number of page-faults per process involved in matrix-vector multipli-
cation was monitored within the program through calls to getrusage() ([Ste92]).
Figure 5.9 illustrates the variation in the number of page-faults with a varying number
of processors. As expected, for smaller matrices like BELLCRAT (4997�1400, 78942
non-zeros), the number of page-faults does not vary substantially with the number of
processors over which the matrix is partitioned. However, for large matrices such as
KNOXNS (12; 615� 40; 140, 1; 780; 951 non-zeros, the average number of page faults
per process is affected by factors such as number of columns of the matrix assigned to
the process, the distribution of non-zeros in these columns, and hardware characteristics
such as cache size.

Figure 5.10 summarizes the speedups for four matrices AMOCO2T, KNOXNS,
BELLTREC3 and BELLENCY, where the speedup is defined by Equation (4.4).
Since the number of rows for AMOCO2T, KNOXNS and BELLTREC3 are all about
10; 000, the communication overhead for these three matrices is approximately the
same. AMOCO2T, with 1; 159; 116 non-zeros gives rise to the smallest computational
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Figure 5.10. Summary of speedups attained using PVM on a network of workstations. The dashed
line indicates the theoretical linear speedup.

load with the CSI-MSVD algorithm, and BELLTREC3, with 2; 343; 775 non-zeros,
produces the largest computational load Thus as expected, the smallest speedups are
observed with the matrix AMOCO2T, and the largest are observed with BELLTREC3,
with a clear trend within the set fAMOCO2T, KNOXNS, BELLTREC3g.

An interesting variation is observed when BELLENCY is considered. Although
BELLENCY has more non-zeros than BELLTREC3, it is the sparser of the two matrices
(see Table 4.1). Low sparsity produces a detrimental memory-access pattern which is
aggravated by the large value for the number of non-zeros, so that when BELLENCY is
stored on one processor, the elapsed wall-clock time T(1) is larger than the corresponding
value for BELLTREC3. This causes the speedup T(1)/T(p) for BELLENCY to be larger
than the value for BELLTREC3 when p � 5.
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However, since the number of rows in BELLENCY (25,629) is approximately twice
that for BELLTREC3 (10,836), the communication overhead for BELLENCY is cor-
respondingly higher. Thus, as p increases, the larger communication overhead has a
deteriorating effect on speedup, and BELLTREC3 experiences the higher speedup forp > 5. Since speedup is sensitive to the choice of T(1), it cannot be used as an absolute
estimate of the degree of parallelization achieved. However, Figure 5.10 provides a
heuristic for estimating the upper bound on the number of processors in the virtual
machine for this class of matrices.

5.5 Load Balancing

From a performance point of view, the computational load is not fully balanced across
the three functional components in the pipeline described in Section 5.3. The com-
putational load on SIGMA and GAMMA is much less than the load on MATVEC for
large sparse matrices since the process MATVEC involves the manipulation of large
vectors through indirect addressing. Attempts to balance this load dynamically would
necessitate the sharing of the matrix across these processors as well and further decrease
the granularity of the parallel program. Ideally, it is desirable to have CSI-MSVD dis-
tributed across a heterogeneous network of processors on a LAN with the processes
involved in MATVEC executing on the fastest processors. However, such a heteroge-
neous LAN without interference from general Internet traffic was not available for this
study, and all experiments were performed on a network of homogeneous processors.

Some scope for static load balancing is possible in the data-parallel computation of
the matrix-vector multiplication. In order to obtain an estimate of the balance of load
achieved in the current implementation, calls to getrusage() [KR92] were made in
each process to monitor the system time used. The system time is defined to be the time
attributed to the kernel when it executes on behalf of the process [Ste92].

Table 5.5 shows the typical distribution of system time for the processes involved
in matrix-vector multiplication. It can be observed that the system time for P0, the
0th process in MATVEC is much larger than the system time for the other processes.
This load imbalance arises from program design. All PVM group operations such as
vector reduction require a root to be defined in the call so that the result of the reduction
operation can be accumulated in the root. In the current version, processor P0 is defined
as the root for all reductions.

A small degree of static load-balancing may be achieved by assigning a different
root at each reduction. However, this would impose constraints on the minimum
number of processes that need to be involved in the matrix-vector multiplication. As
discussed earlier in Section 5.4, the number of processors p required to achieve optimal
performance is dependent on the size of the matrix. The implementation of such a static
load-balancing scheme is thus justifiable only if a substantial improvement in system
performance could be attained through the scheme that would compensate for the loss
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Table 5.5

System time for each process involved in matrix-vector multiplication when the matrix BELLCRAT
partitioned across 10 processors.

Process System Time
MATVEC(0) 22.38
MATVEC(1) 3.710
MATVEC(2) 3.480
MATVEC(3) 3.820
MATVEC(4) 3.920
MATVEC(5) 3.930
MATVEC(6) 3.960
MATVEC(7) 4.010
MATVEC(8) 4.870
MATVEC(9) 4.110

of flexibility introduced by the constraints on the minimum number of processors.
In order to study the scope for static load balancing in the Chebyshev semi-iteration

described in Section 5.3.1, the steps described there will now be examined. It is
possible to overlap Step 3 with Step 4 on processor l2, as well as Steps 6 and Step 7
with Step 8. Step 4 involves a call to pvm send()which is an asynchronous operation
(computation on the sending processor resumes as soon as the message is safely on its
way to the receiving processor). Step 3 involves a daxpy [GL89] which can also be
computed efficiently. Thus, the overlap of Steps 3 and 4 produces a slight, though not
remarkable, speedup. Similarly the call to pvm send() [GBD+94] involved in Step
8 is asynchronous, and thus is not expected to be a time-critical operation. On the other
hand, barriers exist at two points:� The broadcast of the m-element vector x(k+1) at Step 5 which must be completed

before Step 6, and after Step 3. Note that the size of the vector is independent of
the number of processors used.� Step 7 must be completed on processor l2 so that l2 is available for the next iteration
through Steps 1 and 2.

Tables 5.6 and 5.7 show the times for group communications within PVM, as listed in
[SGDM94] where it has been pointed out ([GBD+94] [SGDM94]) that group functions
in PVM have been designed to be robust at some cost in efficiency.

Consider a matrix like BELLADIT, with 374 rows, and 82 columns. As has been
demonstrated in Section 5.3, the most expensive message-passing operations involve
messages of lengthm, wherem is the number of rows of the matrix under consideration.
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Table 5.6

Data transfer times (milliseconds)

Network Message Length
Type 0 128 512 1K 4K 16K 64K 1M
Ethernet 1.2 1.5 2.1 3.2 7.2 24.5 82.3 1211.2
FDDI 1.2 1.5 1.9 2.5 5.9 16.1 60.3 665.7

Table 5.7

Group operation times (milliseconds). Message size: 1K

Operation Number of Processors
Type 2 4 8 16 32
Barrier 2.2 10.5 28.1 53.2 107.2
Broadcast 3.2 5.5 15.9 28.5 65.9
Opt. Bcast 1.2 3.2 11.5 18.2 35.1

Even if calculations were done with single-precision accuracy, the message-passing
length in bytes would be 374 � 4 = 1; 496 bytes. Then, from Table 5.6 the Ethernet
data transfer time per m-element message is at least 3.2 milliseconds. Comparing this
with the time for matrix-vector multiplication for BELLADIT listed in Table 3.1, it
can be seen that the communication overhead is about four to five times larger than
the time for the more computationally complex matrix-vector multiplications. Thus the
barriers described earlier could be bottlenecks that cannot be circumvented by static
load-balancing.

Table 5.8

Distribution of system time (seconds) for all 10 processes involved in matrix-vector multiplication
for CSI-MSVD. Ten processors were used for storing the input matrix and to compute the 10 largest
singular values and corresponding singular vectors of the matrix BELLCRAT.

Process Computation Communication
MATVEC 20.75 381.51
SIGMA 0.04 164.40
GAMMA 0.23 201.78
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Table 5.8 lists the distribution of the time spent by the different processes in com-
putation and communication for the matrix BELLCRAT with the matrix divided across
10 processors. This includes the CPU usage for computation in the pipelined processes
MATVEC, SIGMA and GAMMA, and the time spent in message-passing for the three
processes. Since the sending of messages is designed to be a non-blocking call in PVM,
the time spent on waiting for message arrival was found to account for most of the com-
munication overhead. For the processes SIGMA and GAMMA, this arose from waiting
on the arrival of moment information from MATVEC. For processes in the MATVEC
group the slowest message-passing operations were those involving reduction opera-
tions for the group, where the result of the operation had to be accumulated on the root
(the 0th processor) and then broadcast to the members of the group. Examples of this
type of operation include computing the norm of a vector and Step 4 of Algorithm P OP.

Table 5.8 indicates that even though the computational load of MATVEC(0) is
higher than that of SIGMA and GAMMA, the amount of time spent in communication
is much larger than that spent in computation for the three processes so that even when
static load-balancing was implemented for matrix-vector multiplication, no significant
performance gain was achieved. It did not appear justifiable to impose constraints
on the minimum number of processors, and the load-balancing scheme was therefore
abandoned.

5.6 Results on the CRAY T3D

The implementation of CSI-MSVD for NOW versions of PVM was ported successfully
to the CRAY MPP. Due to the differences in the PVM implementations on the CRAY
MPP (see Section 4.1.3), some syntactic modifications had to be made. Only the
minimal changes required to successfully port the NOW version were attempted. The
emphasis was on developing a portable, modular implementation of Algorithm CSI-
MSVD that could be used across multiple platforms. This section tabulates wall-clock
times on a 256 node CRAY T3D at the Advanced Computing Laboratory, Los Alamos
National Laboratory.

The C compiler used for these experiments was Cray Standard C Version
4.0.3.2, and the loader used was MPPLDR version 10.x. Compiler optimiza-
tion for aggressive vectorization, suppression of redundant symbol-tables, and usage of
branches instead of jumps to external functions were used.

Table 5.9 summarizes the modifications that were made to port the NOW implemen-
tation of the CSI-MSVD algorithm to the CRAY T3D. Since the CRAY MPP does not
support pvm spawn() and therefore requires all nodes to run the same executable pro-
gram, heterogeneity was achieved by usingmyid in a driver program to determine if the
node under consideration would participate in the computations involving MATVEC,
SIGMA or GAMMA. The driver program to achieve this is shown in Appendix B.

The wall-clock times for computing the 10-largest singular values and corresponding
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Figure 5.11. Wall-clock times for execution using CRAY T3D’s MPP version of PVM, compared with
times using PVM on a network of workstations. The 10-largest singular values and corresponding
vectors were computed to 10�6 accuracy.
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Table 5.9

List of modifications made to port the CSI-MSVD algorithm to the CRAY T3D

Variable purpose Previous Evaluation: replaced by:nprocs number of processes Read from nprocs=pvm gsize(NULL)
in virtual machine parameters filetids[i] array of tids[] Parent broadcasts tids[i]=pvm gettid(NULL,i)

of processes in array to
virtual machine child processesmyid logical number index within myid=pvm get PE(mytid)

of process logical group

singular vectors on the CRAY T3D are shown in Figure 5.11 along with the correspond-
ing times for execution on a network of workstations. The benefits of improved connec-
tivity can be clearly seen. For the matrix BELLTECT ( 16; 637� 6; 535, with 327; 244
non-zeros) the improvement in execution time through an increase in parallelism is no
longer damped by the communication overhead, and a pattern similar to that exhibited
in Tables 5.7 and 5.8 can now be seen. Further, for both the matrices BELLTECT and
BELLENCY, the rate of increase in communication latency is much lower with the
CRAY T3D, so that when the matrix is partitioned across 125 processors, the execution
time is less than the execution time on a network of workstations with the matrix stored
on only one processor. Also, the minimum execution time is still observed when the
size of the MATVEC group is approximately 5, confirming the heuristic established by
Figure 5.10. A comparison of this minimum execution time between the networked-
and MPP versions of PVM is shown in Table 5.10. It can be seen that the MPP im-
plementation is about 2 to 10 times faster than the networked implementation. The
largest differences in execution time are observed for matrices like BELLCRAT and
BELLCIST which have the smallest number of non-zeros, indicating that these matrices
are most critically affected by communication overhead in NOW environments.
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Table 5.10

Comparison of elapsed wall-clock times to compute 10 singular-triplets to 10�6 accuracy using CSI-
MSVD. Cray MPP and networked versions of PVM were used . The times reported here were obtained
with the PVM configurations that result in the minimum execution time for the respective platforms.

File MPP NOW
amoco2t 165.831 449.127
bellency 462.322 1437.603
belltrec3 334.928 768.5795
knoxns 266.414 466.568
bellcist 18.934 270.135
belltect 78.478 586.219
bellcrat 19.571 228.691

All times in seconds.
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Program performance was also profiled using the Cray MPP Apprentice tool, a
window-based performance analysis tool available on Cray MPP systems. The Ap-
prentice tool can be configured to report time spent in each subroutine in performing
tasks such as parallel computations, I/O, and communications. One example output of
the Apprentice tool is shown in Figures 5.12 and 5.13. Figure 5.12 shows the PVM
overhead associated with matrix-vector multiplication when the matrix KNOXNS is
distributed across 5 processors, and 10 singular triplets are requested from CSI-MSVD
to an accuracy of 10�6. From Figure 5.14 it can be seen that the 47% of the total time

MATVEC

Figure 5.12. PVM overhead within MATVEC as evaluated by Apprentice for CSI-MSVD when
computing the singular triplets of KNOXNS using 5 processors for matrix storage.

taken by the program is accounted for by pvm recv alone. The Apprentice tool reports
that 179,028,341 �sec ( 5.08%) are spent in executing "work" instructions, 344,496,344�sec ( 9.77%) in loading instruction and data caches 2183,117,126 �sec (61.92%) in
waiting on PVM communication and 819,286,910 �sec (23.24%) are spent in executing
uninstrumented functions.
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Figure 5.13. Output of Apprentice for CSI-MSVD when computing singular triplets of KNOXNS
using 5 processors in the MATVEC group.
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An examination of the PVM overhead for each of the functional components
MATVEC, SIGMA and GAMMA, is shown in Figures 5.12 and 5.14. The pattern
exhibited is similar to the behavior observed for performance on the network of work-
stations (see Section 5.5). For the processes SIGMA and GAMMA, the time spent in
pvm recv (i.e., from waiting for information about moments) accounts almost entirely
for the PVM overhead. The cause for this overhead can be understood by examining
the process MATVEC which initiates the pipeline described in Section 5.3. The pro-
cesses involved in the Chebyshev semi-iterative method are all associated with a PVM
group, and the operations for CSI are synchronized through calls to pvm barrier.
As been pointed out in Section 4.1.3, on the CRAY T3D, operations on groups other
than the global group may be expected to be inefficient. Specifically, synchronizations
and broadcasts to arbitrary groups are not optimally implemented, and pvm barrier
is seen to be the most expensive PVM operation in Figure 5.12. The time spent in
pvm barrier (5:06� 108 �sec) is almost the same as the time spent by SIGMA and
GAMMA on pvm recv.

The explicit usage of PVM groups may be avoided by implementing the same func-
tionality directly in between the tasks involved in the Chebyshev semi-iterative method.
This may not be desirable since PVM groups are implemented with portability given
higher priority than efficiency. Several problems are encountered with attempts to
implement group-operations (e.g. broadcasts) efficiently for every architecture. Re-
finement of PVM group operations is being investigated, and it is possible that future
implementations may be able to achieve a better balance between portability and effi-
ciency. For example, PVM 3.3.8 contains several optimized implementations of native
group operations. By isolating operations such as vector-reduction, synchronizations
and broadcasts to the PVM group functions, it is possible to use vendor-specific imple-
mentations for these operations. In the interest of the modularity provided by isolating
these logical operations to the class of PVM-defined group operations, no attempts were
made to circumvent the usage of PVM groups.
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(a) GAMMA

(b) SIGMA

Figure 5.14. PVM overhead within SIGMA and GAMMA as evaluated by Apprentice for computing
singular triplets of KNOXNS using 5 processors in MATVEC.
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Chapter 6

Conclusions

A procedure, CSI-MSVD, for approximating the singular values and vectors of large,
sparse matrices has been presented. When compared to popular single-processor algo-
rithms such as the Lanczos method, CSI-MSVD has the attractive properties of reduced
memory requirements, and accelerated convergence to the larger singular value. In ad-
dition, the CSI-MSVD algorithm allows both functional and data parallelism, making
it suitable for heterogeneous computing environments.

Since CSI-MSVD obtains the SVD by providing a fast algorithm to obtain highly
accurate approximations to the eigenvalues of the equivalent eigensystems, it can be
used to accelerate the convergence of other eigenvalue solvers. The Chebyshev semi-
iterative method involves the computation of matrix-vector products which are also
required by Krylov subspace methods. It is thus possible to interleave the computations
of CSI-MSVD with other Krylov subspace methods such as block Lanczos methods so
that the eigenvalue estimates from CSI-MSVD could be used within a Krylov subspace
method to solve a shifted eigenvalue problem. The approximations to the eigenvalues
provided by CSI-MSVD could also be used within LSI applications to obtain an estimate
of the error in the low-rank approximations to the term-document matrix.

The biggest challenge encountered with the CSI-MSVD algorithm is the absence
of a relationship between the moments of the iterative method and the eigenvectors of
the iteration matrix. The absence of this relationship necessitates the use of external
refinement schemes like SYMMLQ when a high accuracy in the singular vector es-
timates is desired. It has been pointed out in [Saa92] and [Bre80] that the Lanczos
procedure is the Stieltjes algorithm for computing a sequence of orthogonal polynomi-
als with respect to the inner product. Deriving the relationship between the Lanczos
vectors and the Stieltjes moments could provide a better understanding between the
eigenvectors and the moments arising from quadrature formulae, so that convergence
to the current eigenvalue and eigenvector could be obtained simultaneously, and more
efficient deflation schemes could then be used.

Some software modifications that could be made to improve the performance of the
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PVM implementation include optimized implementations of the PVM group functions
like broadcast and barrier functions that take into account the topology of the platform
available. The message-passing paradigm provided by MPI [DHHW93] is emerging
as an efficient, portable standard and future research will include a performance study
of MPI implementations of the CSI-MSVD algorithm. It should be noted that the
CRAY MPP implementation used for the experiments listed in this dissertation was
not optimized. Further improvement in performance is possible by using T3D-specific
features like the channeled send/receive, and the shared memory library (shmem get()
and shmem put() etc.).
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A.1 Error in the Chebyshev Iterates

Consider the ith iterate in a semi-iterative methody(m) � Pmj=0 �j(m)x(j);
where

Pmj=0 �j(m) = 1; for m � 0: (A.1)

By definition, the error in the iterate is�̃(m) = y(m) � x= mXj=0

�j(m)x(j) � x:
The above expression can be rewritten asmXj=0

�j(m)(x(j) � x) + mXj=0

�j(m)x� x:
Due to the constraints on �j imposed by Equation (A.1), this is equivalent tomXj=0

�j(m)(x(j) � x):
By definition, �(j) = (x(j) � x), i.e., the error in the vector x(j), so that�̃(m) = mXj=0

�j(m)�(j)= mXj=0

�j(m)M j�(0):
Thus, it can be inferred that �̃(m) = pm(M)�(0):
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A.2 Recurrence Relations for p̃m(t)
The recurrences for Chebyshev polynomials are defined asC0(t) = 1; C1(t) = t;Cm+1(t) = 2tCm(t)� Cm�1(t); for m � 1: (A.2)

Using these recurrences in the definition for the polynomial p̃m(t) defined byp̃m(t) = Cm � 2t�(b+a)b�a �Cm �2�(b+a)b�a � ; (A.3)

it follows that p̃m+1(t) = 22t�(b+a)b�a Cm(2t�(b+a)b�a )� Cm�1(2t�(b+a)b�a )Cm( 2�(b+a)b�a ) :
With b � �(M) � �a, then b+ a = 0; b� a = 2�, andp̃m+1(t) = 2t� Cm � t��� Cm�1

� t��Cm+1

�
1�� ; so thatCm+1

 
1�! p̃m+1(t) = 2t� Cm  t�!� Cm�1

 t�! : (A.4)

Also, from (A.3) p̃m(t) = Cm( 2t
2�)Cm( 2
2�) ; (A.5)

which yields Cm  t�! = Cm  1�! p̃m(t): (A.6)

Using Equation (A.6) in Equation (A.4) results in the recurrenceCm+1

 
1�! p̃m+1(t) = 2t� Cm  1�! p̃m(t)� Cm�1

 
1�! p̃m�1(t); for m � 1:
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A.3 Obtaining the Moments from the Iterates of the Chebyshev
Semi-Iterative Method

The following recurrences for Chebyshev polynomials may be inferred from the defi-
nition of Chebyshev polynomials, and basic trigonometric identities [Var62].C2k = 2Ck2 � C0; and (A.7)C2k+1 = 2CkCk+1 �C1: (A.8)

Then, from Equations (A.7) and (A.5),p̃2k(x) = C2k(x�)C2k( 1�) = 2Ck2(x� )�C0(x� )C2k( 1�) = 2p̃2k(x)Ck2( 1�)� C0(x� )C2k( 1�)= p̃2k(x)fC2k( 1�) + C0( 1�)g �C0(x� )C2k( 1�) from Equation (A.7).

Since C0(x� ) = 1 by definition (Equation (A.2) it follows thatp̃2k(x) = p̃2k(x) + (p̃2k(x)� 1)C2k( 1�) : (A.9)

From the theory of orthogonal polynomials, and the properties of the Chebyshev semi-
iterative method one may writeh�(k); �(l)i = Z �k(�)�l(�)d�(�): (A.10)

Hence it follows that �2k = h�(k); �(0)i = Z p̃2k(�)d�(�);
where the polynomials�k have been chosen to be the polynomials p̃k defined in Equation
(A.5). From Equation (A.9)�2k = Z p̃2k(�)d�(�) + 1C2k( 1�)fZ p̃2k(�)d�(�) � Z d�(�)g= h�(k); �(k)i + 1C2k( 1�)fh�(k); �(k)i � h�(0); �(0)ig:
Substituting l = k in Equation (A.10) yields�2k = h�(k); �(k)i+ 1C2k( 1�)fh�(k); �(k)i � �0g:
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Similarly, using Equations (A.8) and (A.5),p̃2k+1(x) = C2k+1(x�)C2k+1( 1�) = 2Ck(x� )Ck+1(x� )� C1(x� )C2k+1( 1�)= 2p̃k(x)Ck( 1�)p̃k+1(x)Ck+1(x� )� C1(x� )C2k+1( 1�)= p̃k(x)p̃k+1(x)fC2k+1( 1�) + C1( 1�)g � C1(x�)C2k+1( 1�) :
By the definition of Chebyshev polynomials given by Equation (A.2), C1(x) = x, so
that p̃2k+1(x) = p̃k(x)p̃k+1(x) + p̃k(x)p̃k+1(x)C2k+1( 1�) 1� � x� 1C2k+1( 1�) : (A.11)

By definition, the (k + 1)th moment is�2k+1 = Z p̃2k+1(�)d�(�):
Using the expression for p̃2k+1 derived in Equation (A.11) in the above definition for�2k+1, it follows that�2k+1 = Z p̃k(�)p̃k+1(�)d�(�) + 1�C2k+1( 1�) Z p̃k(�)p̃k+1(�)d�(�)� 1�C2k+1( 1� ) Z �d�(�): (A.12)

Also, h�(0); �(1)i = Z p̃1(�)d�(�) = Z C1(�� )C1( 1�)d�(�) = Z �d�(�):
Using this result to substitute for

Z �d�(�) and using Equation (A.10) to substitute forZ �k(�)�l(�)d�(�), Equation (A.12) yields�2k+1 = h�(k); �(k+1)i+ 1�C2k+1( 1�)fh�(k); �(k+1)i � h�(0); �(1)ig:
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Appendix B

Driver program for CRAY MPP
version

The NOW version of PVM is composed of four distinct executable programs:

1. main, the driver routine, that spawns off the other 3 codes. This executable
performs adjustment of the parameters � and � at the end of PASS1 and PASS2
defined in Figure 2.4, and determines if the the external refinement procedure
should be invoked.

2. matvec, the routines involved in the Chebyshev semi-iterative method, defined
in Figure 2.3.

3. sigma, the routines involved in the computation of �kl, defined in Figure 2.3.

4. gamma, the routines involved in the computation of k , defined in Figure 2.3.

Since the CRAY MPP version requires that all nodes run the same executable program
the heterogeneity in the NOW design was simulated through a wrapper program, that
uses the logical PE number to determine the functionality of the invoking node. The
code to achieve this is shown in Figure B.1.
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main()f
int myid= my pe(); =� Use Cray macro to obtain logical PE number �=
char �filename="/usr/tmp/varadhan/params";

nprocs=pvm gsize(NULL);
if (nprocs<4)=� Print error message and quit �=
if ((myid>0) && (myid<nprocs�2))f=� I am going to work on the Chebyshev iteration�=

if ((MyAddress = pvm joingroup("MATVEC"))<0)f=� Could not join group. Print error message and quit �=gg
pvm barrier(NULL,0);

if (myid==0) f main(filename); =� I am the driver program �=
else if (myid==nprocs�2) f sigma(filename); =� SIGMA �=
else if (myid==nprocs�1) f gamma(filename); =� GAMMA �=
else f matvec(filename);

pvm barrier(NULL,0);
pvm exit();
exit(1);g

Figure B.1. Wrapper used in Cray MPP implementation of CSI-MSVD
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