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power of such machines is underutilized in problems that require the solu-tion of a single linear system in the sense that much larger systems could besolved before the run time became prohibitively large. In the absence of sub-stantial increases in the ratio of memory to processing power it is natural todevelop out-of-core solvers to tackle very large linear systems. These types oflarge linear system arise, for example, in three-dimensional electromagneticscattering problems and in uid ow past complex objects [10, 11].This paper presents a prototype for the design of a parallel software li-brary for the out-of-core solution of dense linear systems. In section 2, weconsider left- and right-looking, out-of-core parallel LU factorization routinesand propose a hybrid version that balances the degree of parallelism with theamount of I/O. In section 4 di�erent approaches to parallel I/O are discussed.Section 5 outlines the main components of a library of routines for perform-ing I/O on dense matrices. A complete parallel, out-of-core LU factorizationroutine is described in section 6. This algorithm is implemented in terms ofthe BLACS [9], PBLAS [3], and ScaLAPACK [2] routines. Section 7 presentssome preliminary performance results on the Intel Paragon. A summary andconclusions are presented in section 8.2 Sequential Out-Of-Core LU FactorizationLet us consider the decomposition of the matrix A into its LU factorizationwith the matrix partitioned in the following way. Let us suppose that wehave factored A as A = LU . We write the factors in block-partitioned formand observe the consequences.0BBBBBBBBBBB@ A11 A12 A13A21 A22 A23A31 A32 A33 1CCCCCCCCCCCA = 0BBBBBBBBBBB@ L11L21 L22L31 L32 L33 1CCCCCCCCCCCA0BBBBBBBBBBB@ U11 U12 U13U22 U23U33 1CCCCCCCCCCCAMultiplying L and U together and equating terms with A, we have2



Left−looking variant Right−looking variantFigure 1: Memory access patterns for variants of LU decomposition. Theshaded parts indicate the matrix elements accessed in forming a block rowor column, and the darker shading indicates the block row or column beingmodi�ed.A11 = L11U11, A12 = L11U12, A13 = L11U13,A12 = L21U11, A22 = L21U12 + L22U22, A23 = L21U13 + L22U23,A31 = L31U11, A32 = L31U12 + L32U22, A33 = L31U13 + L32U23 + L33U33.With these simple relationships we can develop variants by postponingthe formation of certain components and also by manipulating the order inwhich they are formed. A crucial factor for performance is the choice of theblocksize, k (i.e., the column width) of the second block column. A blocksizeof 1 will produce matrix-vector algorithms, while a blocksize of k > 1 willproduce matrix-matrix algorithms. Machine-dependent parameters such ascache size, number of vector registers, and memory bandwidth will dictatethe best choice for the blocksize.Two natural variants occur: right-looking and left-looking. (There areseveral other variants possible, we examine only two here.) The terms rightand left refer to the regions of data access, as shown in Figure 1.The left-looking variant computes one block column at a time, using pre-viously computed columns. The right-looking variant (the familiar recursive3



algorithm) computes a block row and column at each step and uses themto update the trailing submatrix. These variants have been called the i,j,kvariants owing to the arrangement of loops in the algorithm. For a morecomplete discussion of the di�erent variants, see [8, 13].We now develop these block variants of LU factorization with partialpivoting.2.1 Right-Looking AlgorithmSuppose that a partial factorization of A has been obtained so that the �rstk columns of L and the �rst k rows of U have been evaluated. Then we maywrite the partial factorization in block partitioned form, with square blocksalong the leading diagonal, asPA = 0BBBBBBBBBBB@ L11L21 IL31 0 I 1CCCCCCCCCCCA0BBBBBBBBBBB@ U11 U12 U13Â22 Â23Â32 Â33 1CCCCCCCCCCCA ; (1)where L11 and U11 are k� k matrices, and P is a permutation matrix repre-senting the e�ects of pivoting. Pivoting is performed to improve the numer-ical stability of the algorithm and involves the interchange of matrix rows.The blocks labeled Âij in Eq. 1 are the updated portion of A that has notyet been factored, and will be referred to as the active submatrix.We next advance the factorization by evaluating the next block columnof L and the next block row of U , so that0BBB@ I P2 1CCCAPA = 0BBBBBBBBBBB@ L11L21 L22L31 L32 I 1CCCCCCCCCCCA0BBBBBBBBBBB@ U11 U12 U13U22 U23Â33 1CCCCCCCCCCCA : (2)4



where P2 is a permutation matrix of orderM�k. Comparing Eqs. 1 and 2 wesee that the factorization is advanced by �rst factoring the �rst block columnof the active submatrix which will be referred to as the current column,P2  Â22Â32 ! =  L22L32 !U22 (3)This gives the next block column of L. We then pivot the active submatrixto the right of the current column and the partial L matrix to the left of thecurrent column, Â23Â33 !( P2  Â23Â33 ! ;  L21L31 !( P2  L21L31 ! (4)and solve the triangular systemU23 = L22�1Â23 (5)to complete the next block row of U . Finally, a matrix-matrix product isperformed to update Â33, Â33( Â33 � L32U23: (6)Now, one simply needs to relabel the blocks to advance to the next blockstep.The main advantage of the block partitioned form of the LU factorizationalgorithm is that the updating of Â33 (see Eq. 6) involves a matrix-matrix op-eration if the block size is greater than 1. Matrix-matrix operations generallyperform more e�ciently than matrix-vector operations on high performancecomputers. However, if the block size is equal to 1, then a matrix-vectoroperation is used to perform an outer product | generally the least e�cientof the Level 2 BLAS [7] since it updates the whole submatrix.Note that the original array A may be used to store the factorization,since the L is unit lower triangular and U is upper triangular. Of course,in this and all of the other versions of LU factorization, the additional zerosand ones appearing in the representation do not need to be stored explicitly.We now derive the cost for performing I/O to and from disk for the block-partitioned, right-looking LU factorization of an M �M matrix A with ablock size of nb. For clarity assumeM is exactly divisible by nb. The factor-ization proceeds in M=nb steps which we shall index k = 0; 1 : : : ;M=nb � 1.5



For some general step k, the active submatrix is the Mk �Mk matrix in thelower right corner of A, where Mk = M � knb. In step k it is necessary toboth read and write all of the active submatrix, so the total I/O cost for theright-looking algorithm is(R +W )M=nb�1Xk=0 (M � knb)2 = M33nb (1 +O(nb=M)) (R +W ) (7)where R and W are the times to read and write one matrix element, respec-tively, and we assume there is no startup cost when doing I/O.2.2 Left-Looking AlgorithmAs we shall see, from the standpoint of data access, the left-looking variantis better than the right-looking variant. To begin, we assume thatPA = 0BBBBBBBBBBB@ L11L21 IL31 0 I 1CCCCCCCCCCCA0BBBBBBBBBBB@ U1100 A12 A13A22 A23A32 A33 1CCCCCCCCCCCA : (8)and that we wish to advance the factorization to the form0BBB@ I P2 1CCCAPA = 0BBBBBBBBBBB@ L11L21 L22L31 L32 I 1CCCCCCCCCCCA0BBBBBBBBBBB@ U11 U12 A130 U22 A230 0 A33 1CCCCCCCCCCCA : (9)Comparing Eqs. 8 and 9 we see that the factorization is advanced by �rstsolving the triangular system U12 = L�111 A12 (10)6



and then performing a matrix-matrix product to update the rest of the middleblock column of U ,  Â22Â32 !(  A22A32 !�  L21L31 !U12: (11)Next we perform the factorizationP2  Â22Â32 ! =  L22L32 !U22 (12)and lastly the pivoting A23A33 !( P2  A23A33 ! and  L21L31 !( P2  L21L31 ! : (13)Observe that data accesses all occur to the left of the block column beingupdated. Moreover, the only write access occurs within this block column.Matrix elements to the right are referenced only for pivoting purposes, andeven this procedure may be postponed until needed with a simple rearrange-ment of the above operations.In evaluating the I/O cost for the left-looking out-of-core LU factorizationalgorithm two variants of the left-looking algorithm will be considered. In the�rst we always store the matrix on disk in unpivoted form at all intermediatephases of the algorithm, writing out the whole matrix in pivoted form onlyin the last step of the algorithm. In this case pivoting has to be done \onthe y" when matrix blocks are read in from disk. In the second version ofthe algorithm the matrix is stored on disk in pivoted form.Consider the version in which the matrix is stored in unpivoted form.Whenever a block is read in the whole M � nb block must be read so thatit can be pivoted. Upon completion of a step the newly-factored block isthe only block that is written to disk, except in the last step in which wewrite out all blocks in pivoted form so that the �nal matrix stored on disk ispivoted (although in some cases these writes may be omitted if an unpivotedmatrix is called for { the pivots can always be applied later since they arestored in the pivot vector). At some general step k of the algorithm the I/Ocost is (R +W )Mnb +RMnbk (14)7



where the �rst term corresponds to reading and writing the block to befactored in this step and the second term to reading in the blocks to the left.Summing over k and adding in the time to write out all pivoted blocks inthe last step, the total cost for this version of the left-looking algorithm isM32nb (1 +O(nb=M))R + 2M2 (1 +O(nb=M))W (15)Thus, to order nb=M the time to do the writes can be ignored. If we assumethat reads and writes take approximately the same time (i.e., R �W ), thencomparison with Eq. 7 shows that this version of the left-looking algorithmshould perform less I/O than the right-looking algorithm.Now consider the version of the left-looking algorithm in which blocks arealways stored on disk in pivoted form. In this case it is no longer necessaryto read in all rows of an M � nb block, but it is necessary to write outpartial blocks in each step. This is because the pivoting performed in thefactorization of the block column must also be applied to the blocks to theleft, which must then be written to disk. In some general step k all of theblock to be updated must be read in and written out. The parts of the blocksto the left that must be read in form a stepped trapeziodal shape (see Figure2(a)), while the parts of the blocks to the left that must be written out afterapplying the pivots for this step form a rectangle (see Figure 2(b)). Thus forstep k > 0 the I/O cost is(R +W )Mnb +Rnb k�1Xi=0(M � inb) +Wnb(M � knb)k (16)and for step k = 0 the I/O cost is (R+W )Mnb. Thus, the total I/O cost isM33nb (1 +O(nb=M))R + M36nb (1 +O(nb=M))W (17)It is interesting to note that if reads and writes take the same time thetwo left-looking versions of the algorithm have the same I/O cost, and theyboth have a lower I/O cost than the right-looking algorithm. We thereforeexpect a left-looking algorithm to be better than a right-looking algorithmfor out-of-core LU factorization. 8



(a) (b)Figure 2: This �gure pertains to the left-looking LU factorization algorithmthat stores the matrix in pivoted form. (a) The shaded blocks show the blockcolumns read from disk in step k = 5. The dark shaded block is the blockbeing updated in this step. (b) The shaded blocks show the block columnswritten to disk in step k = 5.
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3 Implementation of the Left-Looking Algo-rithmIn this section the implementation of the sequential, left-looking, out-of-coreLU factorization routine will be discussed. As we shall see in Section 6, oncethe sequential version has been implemented it is a relatively easy task toparallelize it using the BLACS, PBLAS, and ScaLAPACK, and the parallelout-of-core routines described in Section 5.In the out-of-core algorithm only two block columns of width nb may bein-core at any time. One of these is the block column being updated and fac-tored which we shall refer to as the active block. The other is one of the blockcolumns lying to the left of the active block column which we shall refer to asa temporary block. As we saw in Section 2.2, the three main computationaltasks in a step of the left-looking algorithm are a triangular solve (Eq. 10),a matrix-matrix multiplication (Eq. 11), and an LU factorization (Eq. 12).In the out-of-core algorithm the triangular solve and matrix-matrix multipli-cation steps are intermingled so that a temporary block can play its part inboth of these operations but be read only once. To clarify this, consider therole that block column i plays in the factorization of block column k (wherei < k). In Figure 3, the �rst i rows of block column i play no role in factoringblock column k. The lower triangular portion of the next nb rows of blockcolumn i are labeled T0, and the next k� i�nb rows are labeled T1. The lastM�k rows are labeled D. The corresponding portions of block column k arelabeled C0, C1, and E. Then the part played by block column i in factoringblock column k can be expressed in the following three operations,C0  T�10 C0 (18)C1  C1 � T1C0 (19)E  E �DC0 (20)where in Eqs. 19 and 20 we use the C0 given by Eq. 18. It should be notedthat Eqs. 19 and 20 can be combined in a single matrix-matrixmultiplicationoperation  C1E !  C1E !�  T1D !C0: (21)10
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EFigure 3: Partitioning of temporary block i and active block k.In updating block column k, the out-of-core algorithm sweeps over allblock columns to the left of block column k and performs for each the trian-gular solve in Eq. 18 and the matrix-matrix multiplication in Eq. 21. Afterall the block columns to the left of the block have been processed in this wayusing the Level 3 BLAS routines TRSM and GEMM [6], the matrix E isthen factored using the LAPACK routine GETRF [1].If the matrix is stored on disk without applying the pivots to it, thenwhenever a block column is read in the pivots found up to that point mustbe applied to it using LASWP, an LAPACK auxiliary routine. Also afterupdating and factoring the active block, the pivots must be applied to it inreverse order to undo the e�ect of pivoting before storing the block columnto disk. In this version of the left-looking algorithm complete block columnsare always read or written. In the version of the algorithm in which thematrix is stored on disk in pivoted form it is necessary to read in only thoseparts of the temporary blocks that play a role in the computation. When apartial temporary block is read in the pivots found when factoring E in theprevious step must be applied before using it, and it must then be written11



for (each block column, k=0,1,...,M/n_b-1)read block column k into active block_LASWP : apply pivots to active blockgo to start of filefor (each block column to left, i=0,1,...k-1)read block column i into temporary block_LASWP : apply pivots to temporary block_TRSM : triangular solve_GEMM : matrix multiplyend for_GETRF : factor matrix E_LASWP : unpivot active blockwrite active blockend forFigure 4: Pseudocode for out-of-core, left-looking LU factorization algorithmthat leaves matrix in unpivoted form.back out to disk.In Figure 4 the pseudocode is presented for the version of the left-lookingalgorithm in which the matrix is stored in unpivoted form. Since a vector ofpivot information is maintained in-core, the factored matrix can always beread in later to be pivoted. It has been assumed in Figure 4 that the matrixis M �M and that M is divisible by the block size nb. However, the generalcase is scarcely more complicated. It should be noted that it is necessaryto position the �le pointer (at the start of the �le) only once in each passthrough the outer loop.4 Approaches To Parallel I/OOur discussion of parallel I/O for dense matrices assumes that in-core ma-trices are distributed over processes using a block-cyclic data distribution asin ScaLAPACK [4, 2]. Processes are viewed as being laid out with a two-dimensional logical topology, forming a P �Q process mesh. Our approach12



to parallel I/O for dense matrices hinges on the number of �le pointers, andon which processes have access to the �le pointers. We divide parallel I/Omodes into two broad classes1. There is one �le pointer into the disk �le. In this case some of thepossibilities are(a) Only one process has access to the �le pointer. Thus only thatprocess can do I/O to the �le, and has to scatter to, or gatherfrom, the other processes when reading or writing the �le.(b) All processes in a group have individual access to the �le pointer.Synchronization is required if the order in which data are writtento, or read from, the �le is important.(c) All processes in a group have collective access to the �le pointerpermitting collective I/O operations in which all processes canread the same data from the �le, or collectively write to the �lein such a way that the data from exactly one of the processes isactually written to the �le.2. Each process in a group has its own �le pointer. We consider here twomain possibilities(a) The �le pointers can all access a global �le space. In this case werefer to the �le as a \shared �le."(b) each �le pointer can only access its own local �le space. This �lespace is physically and logically contiguous. In this case we referto the �le as a \distributed �le."Modes 1(a) and 1(b) correspond to the case in which there is no parallelI/O system, and all I/O is bound to be sequential. Modes 1(c), 2(a) and 2(b)corresponds to di�erent ways of doing parallel I/O. The shared �le mode isthe most general since it means a �le can be written using one particularprocess grid and block size and read later using a di�erent process grid andblock size. A distributed �le can only be read using the same process grid andblock size that it was written with. However, a major drawback of a shared�le is that, in general, each process can only read and write nb contiguouselements at a time. This results in very poor performance unless block sizes13



are very large or unless the process grid is chosen to be 1 � Q (for Fortrancodes) so that each column of the matrix lies in one process. The potential forpoor performance arises because most I/O systems work best when readinglarge blocks. Furthermore, if only a small amount of data is written at atime systems such as the Intel Paragon will not stripe the data across disksso I/O is essentially sequentialized.5 Parallel I/O Routines For Dense MatricesWe propose a prototype library of Basic Linear Algebra Parallel I/O Subpro-grams (BLAPIOS) for dense matrices. As discussed in Section 3, we wouldlike the BLAPIOS to be compatible with any future standard for parallelI/O that emerges. Thus, we describe only the high-level functionality ofthe BLAPIOS, and defer specifying the detailed semantics and syntax. Asimilar approach has been taken by Toledo and Gustavson in the MatrixInput-Output Subroutines (MIOS) which forms part of the SOLAR libraryfor out-of-core dense matrix computations [15].Before describing the BLAPIOS we shall consider the fundamental I/Ooperation supported by the BLAPIOS in which a rectangular array of datais read from (written to) the out-of-core �le into (from) a given in-core array.Suppose the data in the out-of-core �le and the in-core array are representedby the index ranges (k : k+m�1; ` : `+n�1), and (i : i+m�1; j+n�1),respectively, as shown in Figure 5. As in the PBLAS and ScaLAPACKlibraries, submatrices are regarded as global entities and are referenced byglobal indices.For a shared �le the indices k and ` can refer to any element in the out-of-core �le. However, for a distributed �le the submatrix referenced in the out-of-core �le must have the same data distribution as that in the in-core array.This is because both the out-of-core distributed �le and the in-core array aredistributed data objects. An example of compatible and incompatible datadistributions for a distributed �le and an in-core matrix are shown in Figure6. The routines comprising the BLAPIOS library are arranged in threegroups.� Routines for opening and closing �les, and for manipulating �le point-ers. 14
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� Routines for reading and writing.� Auxiliary routines.We shall now present the functionality of each of these routines.5.1 File Management RoutinesThe BLAPIOS contain the following routines for handling shared and dis-tributed �les.POPEN. Opens a �le.PCLOSE. Closes a �le.P LSEEK. Independently positions the �le pointer to a speci�c location inthe �le.P ASEEK. Positions the �le pointers according to an explicit alignment.For a distributed �le the alignment must be compatible with the datadistributions of the out-of-core �le and the in-core array.P GSEEK. Positions the �le pointers according to an implicit alignmentobtained by applying a given data distribution over the out-of-core �le.For a distributed �le, the data distribution applied must be that of thedistributed �le. This is useful when it is known that a subsequent I/Ooperation will refer to a compatibly aligned in-core array.5.2 I/O RoutinesThe BLAPIOS provide the following blocking and nonblocking routines forreading and writing submatrices of an out-of-core �le. The nonblocking rou-tines permit the possibility of overlapping I/O to disk with computation andinterprocess communication.P READ. Reads a submatrix into speci�ed location of a matrix, and leavesthe �le pointer for each process at the next data element for the process.This is a blocking call. 16



P WRITE. Writes a submatrix from speci�ed location of a matrix, andleaves the �le pointer for each process at the next data element for theprocess. This is a blocking call.P IREAD. Reads a submatrix into speci�ed location of a matrix, and leavesthe �le pointer for each process at the next data element for the process.This is a nonblocking call.P IWRITE. Writes a submatrix from speci�ed location of a matrix, andleaves the �le pointer for each process at the next data element for theprocess. This is a nonblocking call.PIOTEST. Tests if a nonblocking parallel I/O call has completed.PIOWAIT. Blocks until a nonblocking parallel I/O call has completed.5.3 Auxiliary RoutinesThe BLAPIOS include the following auxiliary routines.P STOD. Converts a shared �le to a distributed �le.P DTOS. Converts a distributed �le to a shared �le.P RANM. Produces a random out-of-core �le using a parallel random num-ber generator.5.4 Implementation IssuesThe BLAPIOS outlined above have been implemented on the Intel Paragonusing Intel's Parallel File System (PFS). In these PFS-BLAPIOS a dis-tributed �le is implemented by having each process access its own distinct�le, though it could also have been implemented by partitioning a single�le into contiguous chunks and assigning each process one chunk. For bothshared and distributed modes the M ASYNC I/O mode of PFS is used. Al-though one might expect the best performance on a particular platform tocome from implementing the BLAPIOS directly on top of the native parallelI/O system, there are also distinct advantages to being able to implementthem on top of a portable parallel I/O system. Parallel I/O is an area ofmuch active research (see, for example, [12] and the parallel I/O archive at17



http://www.cs.dartmouth.edu/pario.htmlfor more information.) Although there is currently no generally acceptedparallel I/O standard, MPI-IO, the proposed extensions to MPI [14] for per-forming parallel I/O, is a strong contender [5]. We shall, therefore, brieyconsider how the BLAPIOS might be implemented on top of MPI-IO.MPI-IO contains routines for collective and independent I/O operations.All the I/O operations in the BLAPIOS are independent. MPI-IO partitionsa �le using �letypes, which are an extension of MPI datatypes. Each processin a given group (speci�ed by an MPI communicator) creates a �letype thatpicks out just the data assigned to it. A routine for creating a �letypefor block-cyclicly distributed matrices is provided by MPI-IO. This �letype,together with MPI-IO's absolute o�set mode, can be used to create andaccess the equivalent of a BLAPIOS shared �le. A BLAPIOS distributed �lecan be handled by creating a datatype that divides the �le into contiguoussegments with one segment being assigned to each process. In this caseMPI-IO's relative o�set mode would be used to access data.In MPI-IO the �letype and communicator are speci�ed as input argu-ments when a �le is opened. This is somewhat more restrictive than accessto a shared �le using the BLAPIOS in which the partitioning is determineddynamically by the distribution of the in-core matrix being read from or writ-ten to. The usefullness of dynamic partitioning (or alignment) is apparentwhen performing the LU factorization of A, an M �N matrix with N > M .In this case there are two phases to the computation: �rst the LU factor-ization of the �rst M columns is found (call this matrix B), and then thetransformations are applied to the remaining N �M columns (call this ma-trix C). It is natural, and convenient, in performing the second phase of thealgorithm to treat matrices B and C as unrelated matrices with independentpartitionings. However, complications can arise if the number of columnsspanning the process grid, Qnb, does not exactly divideM , so that C beginsin the middle of a block. If we are dealing with a shared �le the BLAPIOSroutine P ASEEK can be used to dynamically partition C so it starts at thebeginning of a block. For a distributed �le, which has a �xed partitioning,we have to o�set the in-core matrix involved in I/O operations so that itis aligned with the partitioning. To make the BLAPIOS compatible withMPI-IO we need to either permit multiple alignments for a �le in MPI-IO,or else permit only �xed alignments for shared �les in the BLAPIOS.18



6 A Parallel AlgorithmAlthough in section 2 we saw that the left-looking LU factorization routinehas a lower I/O cost that the right-looking variant, the left-looking algo-rithm has less inherent parallelism since it acts only on single blocks. Wetherefore propose a hybrid parallel algorithm in which a single block actuallyspans several widths of the process grid, say ng. In e�ect, the matrix is nowblocked at two levels. It is divided into blocks of size nb elements, whichare distributed cyclicly over the process grid, but we apply the left-lookingalgorithm to \superblocks" of width nbngQ columns where the process gridis assumed to be of size P �Q. If ng is chosen large enough we have a pureright-looking algorithm, and if ng and Q are both 1 we essentially recoverthe pure left-looking algorithm. Within a superblock we use a right-lookingLU factorization algorithm (P GETRF) to get good parallelism, but at thesuperblock level we employ a left-looking algorithm to control I/O costs. Theparameter ng can be used to trade o� parallelism and I/O cost.In Figure 7 we show an example for a 2� 3 process grid, and ng = 2. Forclarity we consider here a matrix consisting of only four column superblocks,though in a \real" application we would expect the number to be muchlarger. In Figure 7 the �rst two superblocks have been factored, while thethird and fourth superblocks have not yet been changed. We now considerthe next stage of the algorithm in which the third superblock, for which thedata distribution is shown explicitly, is factored. Note that each of the smallnumbered squares is actually an nb�nb block, with the numbering indicatingthe position in the process grid to which it is assigned. At the end of thisstage of the algorithm the �rst three superblocks will have been factored,and the fourth will still be unchanged. In the following we shall refer to thesuperblock being factored as the active superblock.The parallel implementation closely follows the sequential implementationpresented in Section 3. Block columns are read and written using the rou-tines P READ and P WRITE. The �le pointer is positioned with P GSEEK.These routines are part of the BLAPIO library introduced in Section 5. Thetriangular solve and matrix multiplication are done using PBLAS routines.Pivoting is performed by the ScaLAPACK auxiliary routine P LAPIV, whilethe factorization is done by the ScaLAPACK routine P GETRF. Since allthese routines reference matrices as global data structures, parallelization ofthe sequential algorithm is almost trivial. Pseudocode for the parallel version19
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Figure 7: Schematic view of the parallel hybrid out-of-core algorithm for thecase P �Q = 2� 3 and ng = 2.
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P_GSEEK : go to start of filefor (each superblock column, k=0,1,...,M/n_b-1)P_READ : read superblock column k into active superblockP_LAPIV : apply pivots to active superblockP_GSEEK : go to start of filefor (each superblock column to left, i=0,1,...k-1)P_READ : read superblock column i into temporary superblockP_LAPIV : apply pivots to temporary superblockP_TRSM : triangular solveP_GEMM : matrix multiplyend forP_GETRF : factor lower portion of active superblockP_LAPIV : unpivot active superblockP_WRITE : write active superblockend forFigure 8: Pseudocode for parallel, out-of-core, left-looking LU factorizationalgorithm that leaves matrix in unpivoted form.is given in Figure 8.7 Performance ResultsIn this section some preliminary performance results are presented for theparallel left-looking LU factorization algorithm running on an Intel Paragonconcurrent computer. These results are intended to illustrate a few generalpoints about the performance of the algorithms used, and do not constitute adetailed performance study. In the work presented here we were constrainedby di�culties encountered in getting exclusive access to the Paragon forsu�ciently long periods. In addition we found that the parallel �le systemof the Paragon to which we had access was close to full much of the time.We hope to overcome these problems in the future and undertake a detailedperformance study in future work. All the runs were made in exclusive usemode, i.e., with logins disabled to prevent other users accessing the system.21



This was done because the performance of PFS is a�ected by the load on theservice nodes, even if other users are just editing or compiling.The �rst runs were done using the version of the algorithm that maintainsthe partially factored matrix in unpivoted form throughout the algorithm.Timing results are shown for 4� 4 and 8� 8 process meshes in Tables 1 and2 for a distributed out-of-core matrix. In these cases we say that the matrixwas both logically and physically distributed because each processor opensa separate �le. As expected for this version of the algorithm, the time spentwritting to PFS is much less than the time spent reading. However, the moststriking aspect of the timings is the fact that pivoting dominates. The largeamount of time spent pivoting arises because each time a superblock is readin all the pivots evaluated so far must be applied to it. For a sequentialalgorithm (i.e., P = Q = ng = 1), a total of M3=(3n2b ) superblocks of widthnb elements must be pivoted. Thus, pivoting entails M3=(3nb) exchanges ofelements, which is of the same order as the I/O cost. In the parallel case,we must replace nb by the width of a superblock, Qngnb. Thus, in order forthe version of the algorithm that stores the matrix in unpivoted form to beasymptotically faster than the version that stores the matrix in pivoted formwe require W6 < R6 + P3 ; (22)whereW and R are the costs of writing and reading an element, respectively,and P is the cost of pivoting an element.In general, there is no reason why writing should be substantially fasterthen reading, so we would not expect Eq. 22 to hold. Thus, the versionof the algorithm that stores the matrix in pivoted form is expected to befaster. This is borne out by the timings presented in Table 3 for an 8 � 8process mesh. These timings are directly comparable with those of Table 2,and show that the version of the algorithm that stores the matrix in pivotedform is faster by 10-15%. Note that the time for writing is slightly more thanhalf the time for reading, suggesting that it takes slightly longer to write asuperblock than to read it.We next attempted to investigate the e�ect of varying the width of thesuperblock by increasing ng from 2 to 10. The results are shown in Table 4.A problem will �t in core if the memory required in each process to hold two22



Task 5,000 8,000 10,000Read 67.32 196.73 325.16Write 9.21 24.39 31.97Pivot 156.55 538.38 1006.03Triangular solve 52.88 139.14 219.75Matrix multiply 115.21 483.37 955.33Factorization 29.98 65.32 95.76Total 427.74 1557.16 2802.84Table 1: Timings in seconds for the main phases of out-of-core LU factoriza-tion of M �M matrices. Results are shown for M = 5000, 8000 and 10000.In all cases nb = 50, ng = 2, P = 4, and Q = 4. The version of the algorithmthat stores the matrix in unpivoted form and performs pivoting on the ywas used. The out-of-core matrix was physically and logically distributed.Task 5,000 8,000 10,000Read 31.56 94.95 193.04Write 7.93 18.59 45.91Pivot 56.62 159.55 319.34Triangular solve 50.18 136.41 218.77Matrix multiply 28.37 118.79 242.29Factorization 22.74 45.18 63.87Total 222.48 615.67 1158.39Table 2: Timings in seconds for the main phases of out-of-core LU factoriza-tion of M �M matrices. Results are shown for M = 5000, 8000 and 10000.In all cases nb = 50, ng = 2, P = 8, and Q = 8. The version of the algorithmthat stores the matrix in unpivoted form and performs pivoting on the ywas used. The out-of-core matrix was physically and logically distributed.23



superblocks exceeds that required to hold the entire matrix, i.e., if2:MP :ng:nb < MP :MQ ;or 2Qngnb < M . Thus, for the parameters of Table 4 the M = 5000 andM = 8000 cases �t in core, so we just read in the whole matrix, factorize itusing the standard ScaLAPACK routine P GETRF, and then write it outagain. In Table 4 it takes about 58 seconds to perform an in-core factoriza-tion of a 5000 � 5000 matrix, compared with 191 seconds for an out-of-corefactorization (see table 3). The M = 8000 case in Table 4 failed, presum-ably because PFS was not able to handle the need to simultaneously read8 Mbytes from each of 64 separate �les. The M = 10000 case ran success-fully out-of-core, and the results in Table 4 should be compared with thosein Table 3, from which we observe that increasing ng increases the time forI/O and factorization, but decreases the times for all other phases of thealgorithm. The increase in I/O is an unexpected result since increasing ngshould decrease the I/O cost. Perhaps the larger value of ng increases theI/O cost because larger amounts of data are being read and written, leadingto congestion in the parallel I/O system.To understand the e�ect of varying the superblock width on the time forthe triangular solve, matrix multiplication, and factorization phases of thealgorithm we derive the following expressions for the number of oating-pointoperations in each phase,Triangular solve: = 12M2nb � 12Mn2bMatrix multiply: = 23M3 �M2nb + 13Mn2bFactorization: = 12M2nb + 16Mn2bThese expressions apply in the sequential case (Q = ng = 1), but the corre-sponding expression for the parallel algorihm is obtained by replacing nb byQnbng. It should be noted that the total oating-point operation count forall three computational phases is (2=3)M3, but the above expressions showthat the way these operations are distributed among the phases dependson the width of the superblock, nb. Thus, an increase in the superblockwidth results in an increase in the factorization time, and a decrease in thetime for matrix multiplication. If the superblock width is su�ciently smallcompared with the matrix size then a small increase results in an increase24



Task 5,000 8,000 10,000Read 33.36 95.20 181.61Write 18.85 53.87 117.91Pivot 11.01 28.98 47.19Triangular solve 50.20 136.65 218.74Matrix multiply 28.38 118.55 242.21Factorization 22.70 45.24 63.91Total 191.46 549.94 977.05Table 3: Timings in seconds for the main phases of out-of-core LU factoriza-tion of M �M matrices. Results are shown for M = 5000, 8000 and 10000.In all cases nb = 50, ng = 2, P = 8, and Q = 8. The version of the algorithmthat stores the matrix in pivoted form was used. The out-of-core matrix wasphysically and logically distributed.Task 5,000 8,000 10,000Read 20.93 Fail 273.08Write 59.39 238.66Pivot | 23.89Triangular solve | 177.48Matrix multiply | 117.24Factorization 58.47 138.62Total 148.86 1104.66Table 4: Timings in seconds for the main phases of out-of-core LU factor-ization of M �M matrices. Results are shown for M = 5000, 8000 and10000. In all cases nb = 50, ng = 10, P = 8, and Q = 8. The version of thealgorithm that stores the matrix in pivoted form was used. Note that theM = 5000 and 8000 cases ran in-core, and that the M = 8000 case failed.The out-of-core matrix was physically and logically distributed.25



in the triangular solve time. However, if the superblock width is large anincrease will decrease the triangular solve time. It should be rememberedthat all three of these phases are running in parallel so communication timealso inuences the total running time. In general, increasing the nb or ngshould decrease communication time on the Paragon as data are communi-cated in larger blocks. If the times for the computational phases in Tables3 and 4 are summed we get about 524 seconds for ng = 2 and about 432seconds for ng = 10 which suggests that a larger value of ng results in moree�cient parallel compputation overall. Communication overhead, togetherwith the oating-point operation count, determines the performance of thecomputational phases of the algorithm as ng changes.The failure of the M = 8000 case in Table 3 prompted us to devise asecond way of implementing logically distributed �les. Instead of opening aseparate �le for each process, the new method opens a single �le and dividesit into blocks, assigning one block to each process. This does not change theuser interface to the BLAPIOS described in Sec. 5. We refer to this type of�le as a physically shared, logically distributed �le. It should be noted thatthe terms \physically shared" and \physically distributed" refer to the viewof the parallel �le system from within the BLAPIOS. At the hardware levelthe �le, or �les, may be striped across multiple disks, as is the case for theIntel Paragon.The rest of the results presented in this section are for physically shared,logically distributed �les, and the version of the algorithm that stores thematrix in pivoted form. In Tables 5 and 6 results are presented for the sameproblems on 4 � 4 and 8 � 8 process meshes. It is interesting to note thatincreasing the number of processors from 16 to 64 results in only a verysmall decrease in the time for the triangular solve phase, indicating that theparallel e�ciency for this phase is low. This is in contrast with the matrixmultiplication phase which exhibits almost perfect speedup.In Table 7 timings are presented for the case ng = 10 for an 8� 8 processmesh. Comparing these results �rst with those given in Table 4 for a physi-cally and logically distributed �le, the decrease in the times for reading andwriting is striking. Secondly, of course, the physically shared case no longerfails for the M = 8000 in-core case. Comparison between Tables 6 and 7shows that a for physically shared �le an increase in ng results in a decreasein I/O time, as expected from the dependency of the I/O time on M3=nb.However, the decrease is less than the expected factor of 5, particularly for26



Task 5,000 8,000 10,000Read 61.45 178.43 303.99Write 36.61 124.11 211.67Pivot 22.59 60.20 94.17Triangular solve 52.84 139.09 219.66Matrix multiply 114.70 482.79 948.93Factorization 29.16 64.00 93.92Total 350.12 1149.64 2042.41Table 5: Timings in seconds for the main phases of out-of-core LU factoriza-tion of M �M matrices. Results are shown for M = 5000, 8000 and 10000.In all cases nb = 50, ng = 2, P = 4, and Q = 4. The version of the algorithmthat stores the matrix in pivoted form was used. The out-of-core matrix waslogically distributed, but physically shared.Task 5,000 8,000 10,000Read 34.29 95.74 201.18Write 24.35 62.53 130.08Pivot 10.94 28.85 47.27Triangular solve 50.20 136.45 218.82Matrix multiply 28.34 118.72 242.36Factorization 22.70 45.05 63.87Total 200.26 536.89 1006.34Table 6: Timings in seconds for the main phases of out-of-core LU factoriza-tion of M �M matrices. Results are shown for M = 5000, 8000 and 10000.In all cases nb = 50, ng = 2, P = 8, and Q = 8. The version of the algorithmthat stores the matrix in pivoted form was used. The out-of-core matrix waslogically distributed, but physically shared.27



the writes. Results in Table 8 for the case ng = 5 show a read time for theM = 10000 case which is about the same as for ng = 10, and a write timethat is substantially less. This again shows that as ng increases, therebyincreasing the amount of data being read and written in each I/O operation,I/O performance starts to degrade quite signi�cantly once ng is su�cientlylarge.Table 8 shows timings for the M = 10000 case for the same problem pa-rameters as in Table 7, but for ng = 5. Comparing the results in Tables 6, 7,and 8 we see that the time for writing data does not decrease montonically asng increase, but is smallest for ng = 5. Again we ascribe this behavior to theapparent degradation in I/O performance when the volume of simultaneousI/O is large. Task 5,000 8,000 10,000Read 4.16 11.10 75.04Write 3.59 14.25 99.60Pivot | | 24.13Triangular solve | | 180.25Matrix multiply | | 130.12Factorization 58.57 181.55 141.17Total 69.47 206.90 709.22Table 7: Timings in seconds for the main phases of out-of-core LU factor-ization of M �M matrices. Results are shown for M = 5000, 8000 and10000. In all cases nb = 50, ng = 10, P = 8, and Q = 8. The version of thealgorithm that stores the matrix in pivoted form was used. Note that theM = 5000 and 8000 cases ran in-core. The out-of-core matrix was logicallydistributed, but physically shared.8 Summary and ConclusionsIn this paper we have described a parallel left-looking algorithm for perform-ing the out-of-core LU factorization of dense matrices. Use of out-of-core28



Task 5,000 8,000 10,000Read | | 77.92Write | | 56.30Pivot | | 32.51Triangular solve | | 209.22Matrix multiply | | 176.60Factorization | | 92.69Total | | 681.89Table 8: Timings in seconds for the main phases of out-of-core LU factor-ization of M �M matrices. Results are shown for M = 10000 with nb = 50,ng = 5, P = 8, and Q = 8. The version of the algorithm that stores thematrix in pivoted form was used. The out-of-core matrix was logically dis-tributed, but physically shared.storage adds an extra layer to the hierarchical memory. In order to man-age exible and e�cient access to this extra layer of memory an extra levelof partitioning over matrix columns has been introduced into the standardScaLAPACK algorithm. This is represented by the superblocks in the hy-brid algorithm that we have described. The hybrid algorithm is left-lookingat the outermost loop level, but uses a right-looking algorithm to factorthe individual superblocks. This permits the trade-o�s between I/O cost,communication cost, and load imbalance overhead to be controlled at theapplication level by varying the parameters of the data distribution and thesuperblock width.We have implemented the out-of-core LU factorization algorithm on anIntel Paragon parallel computer. The implementation makes use of a smalllibrary of parallel I/O routines called the BLAPIOS, together with ScaLA-PACK and PBLAS routines. From a preliminary performance study we haveobserved the following.1. On the Paragon the version of the algorithm that stores the matrix inpivoted form is faster than the version that stores matrices in unpivotedform.2. On the Paragon the parallel I/O system cannot e�ciently and reliably29



manage large numbers of open �les if the volume of data being read issu�ciently large. We have therefore implemented logically distributed�les using a single �le partitioned among the processes.3. We have a broad qualitative understanding of the performance. In-creasing the superblock width by increasing ng should decrease I/Ocosts, but this was found to be true only up to a point on the Paragonbecause when the volume of parallel I/O becomes too great, I/O perfor-mance starts to degrade. Thus, although it might be expected that theoptimal approach would be a make the superblock as large as possible,this will not be fastest on all systems.Future work will follow two main directions. We will seek to implementour out-of-core algorithm on other platforms, such as the IBM SP-2, sym-metric multiprocessors, and clusters of workstations. The use of the MPI-IOlibrary will be considered as a means of providing portability for our code,rather than implementing the BLAPIOS directly on each machine. We willalso develop a more sophisticated analytical performance model, and use itto interpret our timings. The IBM SP-2 will be of particular interest as eachprocessor is attached to its own disk. Hence, unlike our Paragon implemen-tation, it may prove appropriate on the IBM SP-2 to implement logicallydistributed matrices as physically distributed matrices.As network bandwidths continue to improve, networks of workstationsmay prove to be a good environment for research groups needing to performvery large LU factorizations. Such a system is cost-e�ective compared withsupercomputers such as the Intel Paragon, and is under the immediate controlof the researchers using it. Moreover, disk storage is cheap and easy toinstall. Consider the system requirements if we want to factor a 105 � 105matrix in 24 hours. In a balanced system we might expect to spend 8 hourscomputing, 8 hours communicating over the network, and 8 hours doing I/O.Such a computation would require about 6:7�1014 oating-point operations,or 23 Gop/s. If there are Np workstations and each has 128 Mbytes ofmemory, then the maximum superblock width is 80Np elements. The I/Oper workstation is then, 8� �12� M380Np! 1Np!30



or 50000=N2p Gbyte per workstation. The total amount of data communi-cated between processes can be approximated by the communication volumeof the matrix multiplication operations that asymptotically dominate. Thetotal amount of communication is approximately (2=3)(M3=wsb) elements,where wsb is the superblock width. Assuming again that the superblockwidth is wsb = 80Np, the total amount of communication is approximately(1=120)(M3=Np) elements. So for 16 workstations, each would need to com-pute at about 1.5 Gop/s, and perform I/O at about 6.8 Mbyte/s. A net-work bandwidth of about 145 Mbyte/s would be required. Each workstationwould require 5 Gbyte of disk storage. These requirements are close to thecapabilities of current workstation networks.References[1] E. Anderson, Z. Bai, C. H. Bischof, J. Demmel, J. J. Dongarra,J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrou-chov, and D. C. Sorensen. LAPACK Users' Guide. SIAM, Philadelphia,PA, USA, 2nd edition, 1995.[2] J. Choi, J. Demmel, I. Dhillon, J. J. Dongarra, S. Ostrouchov, A. P.Petitet, K. Stanley, D. W. Walker, and R. C. Whaley. ScaLAPACK:a portable linear algebra library for distributed memory computers {design issues and performance. LAPACK Working Note No.95. Techni-cal Report CS-95-283, Department of Computer Science, University ofTennessee, 107 Ayres Hall, Knoxville, TN 37996-1301, USA, 1995.[3] J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W. Walker,and R. C. Whaley. A proposal for a set of Parallel Basic Linear AlgebraSubprograms. LAPACK Working Note No.100. Technical Report CS-95-292, Department of Computer Science, University of Tennessee, 107Ayres Hall, Knoxville, TN 37996-1301, USA, 1995.[4] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: Ascalable linear algebra library for distributed memory concurrent com-puters. In Proceedings of the Fourth Symposium on the Frontiers ofMassively Parallel Computation, pages 120{127. IEEE Computer Soci-ety Press, 1992. 31



[5] Peter Corbett, Dror Feitelson, Sam Fineberg, Yarsun Hsu, Bill Nitzberg,Jean-Pierre Prost, Marc Snir, Bernard Traversat, and Parkson Wong.Overview of the MPI-IO parallel I/O interface. In IPPS '95 Workshopon Input/Output in Parallel and Distributed Systems, pages 1{15, April1995.[6] J. J. Dongarra, J. Du Croz, I. S. Du�, and S. Hammarling. A set ofLevel 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Soft-ware, 16:1{28, 1990. (Algorithm 679).[7] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. Anextended set of FORTRAN Basic Linear Algebra Subprograms. ACMTrans. Math. Software, 14:1{32, 1988. (Algorithm 656).[8] J. J. Dongarra, F. G. Gustavson, and A. Karp. Implementing linear al-gebra algorithms for dense matrices on a vector pipeline machine. SIAMReview, 26:91{112, 1984.[9] J. J. Dongarra and R. C. Whaley. A users' guide to the BLACS v1.0.LAPACK Working Note No.94. Technical Report CS-95-281, Depart-ment of Computer Science, University of Tennessee, 107 Ayres Hall,Knoxville, TN 37996-1301, USA, 1995.[10] A. Edelman. Large dense numerical linear algebra in 1993: The parallelcomputing inuence. International Journal Supercomputer Applications,7:113{128, 1993.[11] A. Edelman. Large dense numerical linear algebra in 1994: The contin-uing inuence of parallel computing. In Proceedings of the 1994 ScalableHigh Performance Computing Conference, pages 781{787. IEEE Com-puter Society Press, 1994.[12] Proceedings of the Third Annual Workshop on I/O in Parallel and Dis-tributed Systems. Held in conjunction with IPPS`95, Santa Barbara,April 1995.[13] J. Ortega and C. Romine. The ijk forms of factorization II. Parallelsystems. Parallel Computing, 7(2):149{162, 1988.32



[14] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. J. Don-garra. MPI: The Complete Reference. MIT Press, Cambridge, MA,USA, 1996.[15] S. Toledo and F. Gustavson. The design and implementation of SOLAR,a portable library for scalable out-of-core linear algebra computations.In Fourth Annual Workshop on I/O in Parallel and Distributed Systems.ACM Press, May 1996.

33


