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Abstract

In this report we give an overview of parallel- and vector computers which are
currently available or will become available within a short time frame from vendors; no
attempt is made to list all machines that are still in the research phase. The machines
are described according to their architectural class. Shared- and distributed memory
SIMD- and MIMD machines are discerned. The information about each machine is
kept as compact as possible. Moreover, no attempt is made to quote prices as these
are often even more elusive than the performance of a system. This document reflects
the technical state of the supercomputer arena as accurately as possible. However,
the authors nor their employers take any responsibility for errors or mistakes in this
document. We encourage anyone who has comments or remarks on the contents to
inform us, so we can improve this work. !
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1 Introduction and account

This is the sixth edition of a report in which we attempt to give an overview of parallel-
and vector systems that are commercially available or are expected to become available
within a short time frame (typically a few months to half a year). We choose the
expression “attempt” deliberately because the market of parallel- and vector machines
is highly evasive: the rate with which systems are introduced — and disappear again
— is very high and therefore the information will probably be only approximately
valid. Nevertheless, we think that such an overview will be useful for those who want
to obtain a general idea about the various means by which these systems strive at high
performance, especially when it is updated on a regular basis.

We will try to be as up-to-date and compact as possible and on these grounds we
think there is a place for this report. The present report will be somewhat shorter than
earlier ones: at this moment systems are disappearing at a faster rate than new ones
replace them. The reasons for this seem to be threefold:

e The competition is very fierce and only companies that can offer up-to-date sys-
tems, both hardware and software wise can keep in business.

o Generally, less money is available worldwide for purchasing new high performance
systems oriented to scientific and technical computing. This makes life more
difficult for both existing companies and for potential starters.

e Because of price/performance considerations the number of companies offering
systems with custom-made processors is decreasing because they cannot capitalise
on large volume sales as is the case with RISC processor based systems.

These effects make the high-performance computing scene somewhat more clear
(and also somewhat less adventurous). Still, the supercomputer market is very dynamic
and we too, cannot hope give a complete report for the reason already mentioned above:
the speed with which companies and systems appear and disappear makes this almost
impossible. However, by updating the report we can at least follow the main trends in
popular and emerging architectures.

The rules for including systems in this report are as follows: they should be either
available commercially at the time of appearance of this report, or within 6 months
thereafter. This is to avoid confusion by describing systems that are announced much
too early, just for marketing reasons and that will not be available to general users
within a reasonable time. We also have to refrain from including all generations of
a system that are still in use. Therefore, for instance, we do not include the Convex
(3000 series, the Cray Y-MP series, or the Thinking Machines CM-5 anymore although
these systems are still used widely. Generally speaking, we include machines that are
still marketed or will be marketed within 6 months. In this issue we add for the first
time Wold Wide Web addresses of vendors. The information on the Web pages of the
vendors may be more recent than what can be provided in this report. On the other
hand such pages should be read with care because it will not always be clear what the
status is of the products decscribed there.

We order the systems by their various architectural classes, which should facilitate
to find the information of systems that belong to a certain class. We also omit the
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price information which in most cases is next to useless. If available, we will give some
information about performances of systems based on user experiences instead of only
giving theoretical peak performances. Here we have adhered to the following policy: We
try to quote best measured performances, if available, thus providing a more realistic
upper bound than the theoretical peak performance. We hardly have to say that the
speed range of supercomputers is enormous, so also the best measured performance will
not always reflect the performance of a reader’s favorite application. When we give
performance information, it is not always possible to quote all sources and in any case
if this information seems (or is) biassed, this is entirely the responsibility of the author
of this report. He is quite willing to be corrected or to receive additional information
from anyone who is in the position to do so.

Before giving a recount of the systems proper, we first define the architectural classes
and some other terms in section 2 which will be used in section 3 in the description of
the machines. In section 4 some systems are listed that disappeared from the market
and in section 5 we present some systems that are under development and have a fair
chance to appear on the market.

The overview given in this report concentrates on the computational capabilities of
the systems discussed. To do full justice to all assets of present days high-performance
computers one should list their /O performance and their connectivity possibilities
as well. However, the possible permutations of configurations even for one model of a
certain system often are so large that they would multiply the volume of this report,
which we tried to limit for greater clarity. So, not all features of the systems discussed
will be present. Still we think (and certainly hope) that the impressions obtained from
the entries of the individual machines may be useful to many. We also omitted some
systems that may be characterised as “high-performance” in the fields of database
management, real-time computing, or visualisation. Therefore, as we try to give an
overview for the area of general scientific and technical computing, systems that are
primarily meant for database retrieval like the AT&T GIS systems or concentrate
exclusively on the real-time user community, like Concurrent Computing Systems, are
not discussed in this report.

Although most terms will be familiar to many readers, we still think it is worthwhile
to give some of the definitions in section 2 because some authors tend to give a meaning
that may slightly differ from the idea the reader already has acquired.



2 The Main Architectural Classes

Since many years the taxonomy of Flynn [5] has proven to be useful for the classification
of high-performance computers. This classification is based on the way of manipulating
of instruction- and data streams and comprises four main architectural classes. We will
first briefly sketch these classes and afterwards fill in some details when each of the
classes are described separately.

e SISD machines: These are the conventional systems that contain one CPU and
hence can accommodate one instruction stream that is executed serially. Nowa-
days many large mainframes may have more than one CPU but each of these ex-
ecute instruction streams that are unrelated. Therefore, such systems still should
be regarded as (a couple of) SISD machines acting on different data spaces. Ex-
amples of SISD machines are for instance most workstations like those of DEC,
Hewlett-Packard, and Sun Microsystems. The definition of SISD machines is
given here for completeness’ sake. We will not discuss this type of machines in
this report.

e SIMD machines: Such systems often have a large number of processing units,
ranging from 1,024 to 16,384 that all may execute the same instruction on different
datain lock-step. So, a single instruction manipulates many data items in parallel.
Examples of SIMD machines in this class are the CPP DAP Gamma and the
MasPar MP-2.

e Another subclass of the SIMD systems are the vectorprocessors. Vectorprocessors
act on arrays of similar data rather than on single data items using specially
structured CPUs. When data can be manipulated by these vector units, results
can be delivered with a rate of one, two and — in special cases — of three per
clock cycle (a clock cycle being defined as the basic internal unit of time for the
system). So, vector processors execute on their data in an almost parallel way
but only when executing in vector mode. In this case they are several times
faster than when executing in conventional scalar mode. For practical purposes
vectorprocessors are therefore mostly regarded as SIMD machines. Examples of
such systems are for instance the Convex C410, and the Hitachi S3600.

e MISD machines: Theoretically in these type of machines multiple instructions
should act on a single stream of data. As yet no practical machine in this class
has been constructed nor are such systems easily to conceive. We will disregard
them in the following discussions.

e MIMD machines: These machines execute several instruction streams in parallel
on different data. The difference with the multi-processor SISD machines men-
tioned above lies in the fact that the instructions and data are related because
they represent different parts of the same task to be executed. So, MIMD systems
may run many sub-tasks in parallel in order to shorten the time-to-solution for
the main task to be executed. There is a large variety of MIMD systems and
especially in this class the Flynn taxonomy proves to be not fully adequate for
the classification of systems. Systems that behave very differently like a four-
processor Cray Y-MP T94 and a thousand processor nCUBE 3 fall both in this



class. In the following we will make another important distinction between classes
of systems and treat them accordingly.

— Shared memory systems: Shared memory systems have multiple CPUs
all of which share the same address space. This means that the knowledge of
where data is stored is of no concern to the user as there is only one memory
accessed by all CPUs on an equal basis. Shared memory systems can be
both SIMD or MIMD. Single-CPU vector processors can be regarded as an
example of the former, while the multi-CPU models of these machines are
examples of the latter. We will sometimes use the abbreviations SM-SIMD
and SM-MIMD for the two subclasses.

— Distributed memory systems: In this case each CPU has its own associ-
ated memory. The CPUs are connected by some network and may exchange
data between their respective memories when required. In contrast to shared
memory machines the user must be aware of the location of the data in the
local memories and will have to move or distribute these data explicitly when
needed. Again, distributed memory systems may be either SIMD or MIMD.
The first class of SIMD systems mentioned which operate in lock step, all
have distributed memories associated to the processors. For the distributed
memory MIMD systems again a subdivision is possible: those in which the
processors are connected in a fixed topology and those in which the topology
is flexible and may vary from task to task. For the distributed memory sys-
tems we will sometimes use DM-SIMD and DM-MIMD to indicate the two
subclasses.

Although the difference between shared- and distributed memory machines seems
clear cut, this is not always entirely the case from user’s point of view. For instance, the
late Kendall Square Research systems employed the idea of “virtual shared memory”
on a hardware level. Virtual shared memory can also be simulated at the programming
level: The first draft proposal for High Performance Fortran (HPF) was published in
November 1992 [6] which by means of compiler directives distributes the data over the
available processors. The proposal was fixed by May 1993. Therefore, the system on
which HPF is implemented will act in this case as a shared memory machine to the
user. Other vendors of Massively Parallel Processing systems (the buzz-word MPP
systems is fashionable here), like Convex and Cray, also support proprietary virtual
shared-memory programming models which means that these physically distributed
memory systems, by virtue of the programming model, logically will behave as shared
memory systems. In addition, packages like TreadMarks [1] provide a virtual shared
memory environment for networks of workstations.

Another trend that has came up in the last few years is distributed processing. This
takes the DM-MIMD concept one step further: instead of many integrated processors in
one or several boxes, workstations, mainframes, etc., are connected by Ethernet, FDDI,
or otherwise and set to work concurrently on tasks in the same program. Conceptu-
ally, this is not different from DM-MIMD computing, but the communication between
processors is often orders of magnitude slower. Many packages to realise distributed
computing, commercial, and non-commercial are available. Examples of these are
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Figure 1: Block diagram of a vector processor.

Parasoft’s Express (commercial), PVM (standing for Parallel Virtual Machine, non-
commercial) citepvm, and MPI (Message Passing Interface, [14] also non-commercial).
PVM and MPI have been adopted for instance by Convex, Cray, IBM and Intel for
the transition stage between distributed computing and MPP on the clusters of their
favorite processors and they are available on a large amount of distributed memory
MIMD systems and even on shared memory MIMD systems for compatibility reasons.
In addition there is a tendency to cluster shared memory systems, for instance by
HIPPI channels, to obtain systems with a very high computational power. E.g., Sili-
con Graphics is already providing such arrays of systems, the Intel Paragon with the
MP (Multi Processor) nodes, and the NEC SX-4 also have this structure. The Convex
Exemplar SPP-1200 could be seen as a more integrated example (although the software
environment is much more complete and allows shared memory addressing).

2.1 Shared-memory SIMD machines

This subclass of machines is practically equivalent to the single-processor vectorpro-
cessors, although other interesting machines in this subclass have existed (viz. VLIW
machines). In the block diagram in Figure 1 we depict a generic model of a vector
architecture.

The single-processor vector machine will have only one of the vectorprocessors de-
picted and the system may even have its scalar floating-point capability shared with
the vector processor (as is the case in Cray systems, see 3.3.1). It may be noted that the
VPU does not show a cache. The majority of vectorprocessors do not employ a cache
anymore. In many cases the vector unit cannot take advantage of it and execution
speed may even be unfavourably affected because of frequent cache overflow.



Although vectorprocessors have existed that loaded their operands directly from
memory and stored the results again immediately in memory (CDC Cyber 205, ETA-
10), all present-day vectorprocessors use vector registers. This usually does not impair
the speed of operations while providing much more flexibility in gathering operands
and manipulation with intermediate results.

Because of the generic nature of Figure 1 no details of the interconnection between
the VPU and the memory are shown. Still, these details are very important for the
effective speed of a vector operation: when the bandwidth between memory and the
VPU is too small it is not possible to take full advantage of the VPU because it
has to wait for operands and/or has to wait before it can store results. When the
ratio of arithmetic to load /store operations is not high enough to compensate for such
situations, severe performance losses may be incurred. Because of the high costs of
implementing these datapaths between memory and the VPU, often compromises are
sought and the number of systems that have the full required bandwidth (i.e., two load
operations and one store operation at the same time) is limited.

The VPU is shown as a single block in Figure 1. Yet, again there is a considerable
diversity in the structure of VPUs. Every VPU consists of a number of vector functional
units, or “pipes” that fulfill one or several functions in the VPU. Every VPU will have
pipes that are designated to perform memory access functions, thus assuring the timely
delivery of operands to the arithmetic pipes and of storing the results in memory again.
Usually there will be several arithmetic functional units for integer/logical arithmetic,
for floating-point addition, for multiplication and sometimes a combination of both, a
so-called compound operation. The division is usually approximated in the multiply
pipe. In addition, there will almost always be a mask pipe to enable operation on a
selected subset of elements in a vector of operands. Lastly, such sets of vector pipes
can be replicated within one VPU (2- and 4-fold replication are common). Ideally, this
will increase the performance per VPU by the same factor.

2.2 Distributed-memory SIMD machines

Machines of this type are sometimes also known as processor-array machines [7]. Be-
cause the processors of these machines operate in lock-step, i.e., all processors execute
the same instruction at the same time (but on different data items), no synchronisa-
tion between processors is required. This greatly simplifies the design of such systems.
Figure 2 shows a generic model of a DM-SIMD machine of which actual models will
deviate to some degree.

All currently available DM-SIMD machines use a front-end processor to which they
are connected by a datapath. 1/0O may be through the front-end system, by the pro-
cessor array machine itself or both.

Figure 2 might suggest that all processors in such systems are connected in a 2-D
grid and indeed, the interconnection topology of this type of machines always includes
the 2-D grid. As opposing ends of each grid line are also always connected the topology
is rather that of a torus. For several machines this is not the only interconnection
scheme: They might also be connected in 3-D, diagonally, or more complex structures.

It is possible to exclude processors in the array from executing an instruction on
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Figure 2: A generic block diagram of a distributed memory SIMD machine.

certain logical conditions, but this means that for the time of this instruction these
processors are idle (a direct consequence of the SIMD type operation) which imme-
diately lowers the performance. Another factor that may adversely affect the speed
occurs when data required by processor ¢ resides in the memory of processor j (in fact,
as this occurs for all processors at the same time this effectively means that data will
have to be permuted across the processors). To access the data in processor j, the data
will have to be fetched by this processor and then send through the routing network
to processor ¢. This may be fairly time consuming. For both reasons mentioned DM-
SIMD machines are rather specialised in their use when one wants to employ their full
parallelism. Generally, they perform excellently on digital signal and image processing
and on certain types of Monte Carlo simulations where virtually no data exchange be-
tween processors is required and exactly the same type of operations is done on massive
datasets with a size that can be made to fit comfortable in these machines.

The control processor as depicted in Figure 2 may be more or less intelligent. It
issues the instruction sequence that will be executed by the processor array. In the
worst case (that means a less autonomous control processor) when an instruction is not
fit for execution on the processor array (e.g., a simple print instruction) it might be
offloaded to the front-end processor which may be much slower than execution on the
control processor. In case of a more autonomous control processor this can be avoided
thus saving processing interrupts both on the front-end and the control processor. Most
DM-SIMD systems have the possibility to handle /0O independently from the front/end
processors. This is not only favourable because the communication between the front-
end and back-end systems is avoided. The (specialised) 1/O devices for the processor-
array system is generally much more efficient in providing the necessary data directly
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to the memory of the processor array. Especially for very data-intensive applications
like radar- and image processing such 1/0O systems are very important.

A feature that is peculiar to this type of machines is that the processors sometimes
are of a very simple bit-serial type, i.e., the processors operate on the data items
bitwise, irrespective of their type. So, e.g., floating-point operations have either to be
implemented in software, or to be dealt with by floating-point coprocessors. As the
number of processors in this type of systems is mostly large (1024 or larger, the Alenia
Quadrics is a notable exception, however), the natural slowness of the processors can
be often offset by their number, while the cost per processor is quite low as compared
to full floating-point processors. When floating-point coprocessors are added their
number is usually much lower because of the cost argument. An advantage of bit-
serial processors is that they may operate on operands of any length. Both for random
number generation (which often boils down to logical manipulation of bits) and for
signal processing this is fortunate because in both cases operands of only 1-8 bits are
abundant. As the execution time for bit-serial machines is proportional to the length
of the operands, this may result insignificant speedups.
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2.3 Shared-memory MIMD machines

In Figure 1 already one subclass of this type of machines was shown. In fact, the
single-processor vector machine discussed there was a special case of a more general
type. The figure shows that more than one FPU and/or VPU may be possible in one
system.

The main problem one is confronted with in shared-memory systems is that of
the connection of the CPUs to each other and to the memory. As more CPUs are
added, the collective bandwidth to the memory ideally should increase linearly with
the number of processors, while each processor should preferably communicate directly
with all others without the much slower alternative of having to use the memory in
an intermediate stage. Unfortunately, full interconnection is quite costly, growing with
O(n?) while increasing the number of processors with O(n). So, various alternatives
have been tried. Figure 3 shows some of the interconnection structures that are (and
have been) used.

As can be seen from the figure, a crossbar uses n* connections, an {2-network uses
nlogy n connections while, with the central bus, there is only one connection. This is
reflected in the use of each connection path for the different types of interconnections:
for a crossbar each datapath is direct and does not have to be shared with other
elements. In case of the 2-network there are logon switching stages and as many data
items may have to compete for any path. For the central databus all data have to
share the same bus, so n data items may compete at any time.

The bus connection is the least expensive solution, but it has the obvious drawback
that bus contention may occur thus slowing down the computations. Various intricate
strategies have been devised using caches associated with the CPUs to minimise the bus
traffic. This leads however to a more complicated bus structure which raises the costs.
In practice it has proved to be very hard to design buses that are fast enough, especially
where the speed of the processors have been increasing very quickly and it imposes an
upper bound on the number of processors thus connected that in practice appears not
to exceed a number of 10-20. In 1992, a new standard (IEEE P896) for a fast bus
to connect either internal system components or to external systems has been defined.
This bus, called the Scalable Coherent Interface (SCI) should provide a point-to-point
bandwidth of 200-1,000 Mbyte/s. It is in fact used to in the HP/Convex SPP-1200,
but could also be used within a network of workstations. The SCI is much more
than a simple bus and it can act as the hardware network framework for distributed
computing, see [10].

The Q-network is a structure which is situated somewhere in between a bus and a
crossbar which respect to potential capacity and costs. At this moment of the com-
mercially available machines the IBM SP2, the Meiko CS-2, and the Cenju-3 use this
network structure, but a number of experimental machines also have used this or a sim-
ilar kind of interconnection. The BBN T(C2000 that acted as a virtual shared-memory
MIMD system used an analogous type of network (a Butterfly-network) and it is quite
conceivable that new machines may use it, especially as the number of processors grows.
For a large number of processors the nlog, n connections become quickly more attrac-
tive than the n? used in crossbars. Of course, the switches at the intermediate levels

2
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should be sufficiently fast to cope with the bandwidth required.

In all present-day multi-processor vectorprocessors crossbars are used. This is still
feasible because the maximum number of processors in a system is still rather small
(32 at most presently). When the number of processors would increase, however,
technological problems might arise. Not only it becomes harder to build a crossbar of
sufficient speed for the larger numbers of processors, the processors themselves generally
also increase in speed individually, doubling the problems of making the speed of the
crossbar match that of the bandwidth required by the processors.

Whichever network is used, the type of processors in principle could be arbitrary
for any topology. In practice, however, bus structured machines do not have vector
processors as the speeds of these would grossly mismatch with any bus that could be
constructed with reasonable costs. RISC processors are however employed for bus-
oriented systems. Caches can sometimes alleviate the bandwidth problem, but only
when the data-access pattern allows them to be used sufficiently.

The systems discussed in this subsection are of the MIMD type and therefore dif-
ferent tasks may run on different processors simultaneously. In many cases synchroni-
sation between tasks is required and again the interconnection structure is here very
important. Most vectorprocessors employ special communication registers within the
CPUs by which they can communicate directly with the other CPUs they have to
synchronise with. A minority of systems does synchronisation via the shared memory.
Generally, this is much slower but may still be acceptable when the synchronisation
occurs relatively seldom. Of course for bus-based systems communication also have to
be done via a bus. This bus is mostly separated from the databus to assure a maximum
speed for the synchronisation.

2.4 Distributed-memory MIMD machines

The class of DM-MIMD machines is undoubtly the fastest growing part in the family of
high-performance computers. Although this type of machines is more difficult to deal
with than shared-memory machines and DM-SIMD machines (where the distribution
of data is mostly obvious and/or transparent). The initial reluctance to use DM-MIMD
machines seems to have been decreased. Partly this is due to greatly improved software
and partly because, at least theoretically, this class of systems is able to outperform
all other types of machines.

The advantages of DM-MIMD systems are clear: the bandwidth problem that
haunts shared-memory systems is avoided because the bandwidth scales up automat-
ically with the number of processors. Furthermore, the speed of the memory which
is another critical issue with shared-memory systems (to get a peak performance that
is comparable to that of DM-MIMD systems, the processors of the shared-memory
machines should be very fast and the speed of the memory should match it) is less
important for the DM-MIMD machines, because more processors can be configured
without the afore mentioned bandwidth problems.

Of course, DM-MIMD systems also have their disadvantages: The communication
between processors is much slower than in SM-MIMD systems, and so, the synchroni-
sation overhead in case of communicating tasks is generally orders of magnitude higher
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Figure 4: 1-, 2-, 3-, and 4-dimensional hypercube connections.

than in shared-memory machines. Moreover, the access to data that are not in the
local memory belonging to a particular processor have to be obtained from non-local
memory (or memories). This is again on most systems very slow as compared to local
data access. When the structure of a problem dictates a frequent exchange of data be-
tween processors and /or requires many processor synchronisations, it may well be that
only a very small fraction of the theoretical peak speed can be obtained. As already
mentioned, the data- and task decomposition are factors that mostly have to be dealt
with explicitly, which may be far from trivial.

It will be clear from the paragraph above that also for DM-MIMD machines both
the interconnection and the speed of the datapaths are of crucial importance for the
practical usefulness of a system. Again, as in section 2.3, the richness of the connection
structure has to balanced against the costs. Of the many conceivable interconnection
structures only a few are popular in practice. One of these is the so-called hypercube
topology as depicted in Figure 4.

A nice feature of the hypercube topology is that for a hypercube with 2¢ nodes the
number of steps to be taken between any two nodes is at most d. So, the dimension
of the network grows only logarithmically with the number of nodes. In addition,
theoretically, it is possible to simulate any other topology on a hypercube: trees, rings,
2-D and 3-D meshes, etc. In practice, the exact topology for hypercubes do not matter
too much anymore because all systems in the market today employ what is called
“wormbhole routing”. This means that a message is send from one node to another node
that it wants to communicate with to set up a direct connection between them. As soon
this connection is established, the data proper is sent through this connection without
disturbing the operation of the intermediate nodes. Except for a small amount of
time in setting up the connection between nodes, the communication time has become
virtually independent of the distance between the nodes. Of course, when several
messages in a busy network have to compete for the same paths, waiting times are
incurred as in any network that does not directly connect any processor to all others.

Many of the newly introduced massively parallel DM-MIMD systems seem to favour
a 2- or 3-D mesh (torus) structure. The rationale for this seems to be that most
large-scale physical simulations can be mapped efficiently on this topology and that
a richer interconnection structure hardly pays off. However, some systems maintain
(an) additional network(s) besides the mesh to handle certain bottlenecks in data
distribution and retrieval.
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A non-negligible fraction of systems in the DM-MIMD class employ crossbars. For
relatively small amounts of processors (in the order of 64) this may be a direct or
1-stage crossbar, while to connect larger numbers of nodes multi-stage crossbars are
used, i.e., the connections of a crossbar at level 1 connect to a crossbar at level 2, etc.,
instead of directly to nodes at more remote distances in the topology. In this way it
is possible to connect in the order of a few thousands of nodes through only a few
switching stages. Butterfly-, {2-, or shuffle-exchange networks are often employed in
this case.

As with SM-MIMD machines, a node may in principle consist of any type of pro-
cessor together with local memory (with or without cache) and, in almost all cases, a
separate communication processor and the links to connect the node to its neighbours.
Nowadays, the node processors are mostly off-the-shelf RISC processors sometimes en-
hanced by vector processors. A problem that is peculiar to this type of system is the
mismatch of communication vs. computation speed that may occur when the node pro-
cessors are upgraded, without also speeding up the intercommunication. In some cases
this may result in turning computational-bound problems into communication-bound
problems.
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3 Recount of the (almost) available systems

In this section we give a recount of all types of systems as discussed in the former
section. When of a certain system various models are available, we will discuss them
all at once. So, for instance, we will discuss Convex systems under one entry, SM-
MIMD systems, even if a one-processor model of such a system strictly should be
discussed under the SM-SIMD heading. We rather regard such systems a special cases
of a general product line.

3.1 Shared-memory SIMD systems

In this class only one system is still actively marketed demonstrating the fact that this
type of machines is only interesting for a rather small (but not unimportant) group of
customers that have to do high-speed production work with well vectorised codes.
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3.1.1 The Hitachi S3600 series.

Machine type: Vectorprocessor.

Models: S3600/120, S3600/140, S3600/160, S3600/180.

Operating system: VOS3/HAP/ES (IBM MVS compatible) and OSF/1.
Compilers: FORT77/HAP vectorising Fortran 77.

System parameters:

Model S3600/120 S3600/140  S3600/160 S3600/180
Clock cycle VPU 4 ns 4 ns 4 ns 4 ns
Clock cycle scal. proc. 8 ns 8 ns 8 ns 8 ns

Theor. peak performance 0.25 Gflop/s 0.5 Gflop/s 1.0 Gflop/s 2 Gflop/s

Main memory 128-256 MB  256-512MB 256-512MB 512-1024MB
Extended memory <6GB <16GB <16GB <16GB
Remarks:

The speed differences between the different models stem from replication of the mul-
tiply /add pipe in the models S3600/120-180. The /160 and /180 models have respec-
tively two- and four-fold sets of a separate add- and a multifunctional multiply/add
vector pipes. This should lead to a maximum of 3 results per clock cycle per pipe set.
So, contrary to the information given by the vendor, the maximum performance of,
e.g., the /180 should in some situations be 3 Gflop/s instead of 2.

Note that the clock cycle of the scalar processor is twice that of the VPU. The
memory bandwidth from the memory from/to the CPU is 2 operands per clock cycle
via 1 load and 1 load/store pipe per arithmetic pipe set), which is somewhat less than
optimal. It is not possible to load two operands and store one result in one cycle. The
/120 model lacks a separate load pipe, only a load /store pipe is present.

A unique feature of the S3600, as in its direct predecessor the S-820, is that all
machines of the series are air cooled. All other machines in this class relied at least on
water cooling.

Unlike the S-820 series, the S3600 series is also marketed worldwide, not only in
Japan. This is also the case for the S3800 SM-MIMD machines (3.3.2).

Measured performances:

In [2] a speed of 851 Mflop/s for the solution of a full linear system of order 1000
is reported for the S3600/160. The S3600/180 attains a performance of 1672 Mflop/s
on the same problem.
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3.2 Distributed-memory SIMD systems
3.2.1 The Alenia Quadrics.

Machine type: Processor array.
Models: Quadrics Qx, QHz, 2 = 1, 16.
Front-end: Almost any Unix workstation.
Operating system: Internal OS transparent to the user, Unix on front-end
Connection structure: 3-D mesh, (see remarks).
Compilers: TAO: a Fortran 77 compiler with some Fortran 90 and some proprietary
array extensions.
System parameters:
Model Qz QHz
Clock cycle 40 ns 40 ns

Theor. peak performance

Per Proc. (32-bits) 50 Mflop/s 50 Mflop/s
Maximal (32-bits) 6.4 Gflop/s 100 Gflop/s
Memory <2 GB <32 GB
No. of processors 8-128 128-2048

Communication bandwidth

Per Proc. 50 MB/s 50 MB/s

Aggregate local <6 GB/s <96 GB/s

Aggregate non-local <1.5 GB/s <24 GB/s
Remarks:

The Quadrics is a commercial spin-off of the APE-100 project of the Italian National
Institute for Nuclear Physics. Systems are available in multiples of 8 processor nodes
in the Q-model where up to 16 boards can be fitted into one crate or in multiples of
128 nodes in the QH-model by adding up to 15 crates to the minimal 1-crate system.
The interconnection topology of the Quadrics is a 3-D grid with interconnections to
the opposite sides (so, in effect a 3-D torus). The 8-node floating-point boards (FPBs)
are plugged into the crate backplane which provides point-to-point communication and
global control distribution. The FPBs are configured as 2° cubes that are connected
to the other boards appropriately to arrive at the 3-D grid structure.

The basic floating-point processor, the so-called MAD chip, contains a register file
of 128 registers. Of these registers the first two hold permanently the values 0 and 1
to be able to express any addition or multiplication as a “normal operation”, i.e., a
combined multiply-add operation, where an addition is of the form, ¢ x 1 4+ b and a
multiplication is @ x b+ 0. In favourable circumstances the processor can therefore
deliver two floating-point operations per cycle. Instructions are centrally issued by the
controller at a rate of one instruction every two clock cycles.

Communication is controlled by the Memory Controller and the Communication
Controller which are both housed on the backplane of a crate. When the Memory
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Controller generates an address it is decoded by the Communication Controller. In case
non-local access is desired, the Communication Controller will provide the necessary
data transmission. The memory bandwidth per processor is 50 MB/s which means
that very 2 cycles an operand can be shipped in or out a processor. The bandwidth for
non-local communication turns out to be only four times smaller then local memory
access.

The Quadrics communicates with the front-end system via a T805 transputer-based
interface system, called the Local Asynchronous Interface (LAI). The interface can
write and read the memories of the nodes and the Controller. Presently, the bandwidth
of the interface to the front-end processor is not very large (1 MB/s). It is expected
that this can be improved by about a factor of 30 in the near future. 1/O has to be
performed via the front-end system and will therefore be relatively slow.

The TAO language has several extensions to employ the SIMD features of the
Quadrics. Firstly, floating-point variables are assumed to be local to the processor
that owns them, while integer variables are assumed to be global. Local variables can
be promoted to global variables. Other extensions are the ANY, ALL, and WHERE/END
WHERE keywords that can be used for global testing and control. Processors that not
meet a global condition effectively skip the operation(s) that are associated with it. For
easy referencing nearest-neighbour locations special constants LEFT, RIGHT, UP, DOWN,
FRONT, and BACK are provided. In addition, new data types and operators on these
data types are supported together with overloading of operators. This enables very
concise code for certain types of calculations.
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3.2.2 The Cambridge Parallel Processing Gamma II.

Machine type: Processor array. Models: Gamma II 1000, Gamma II 4000. Front-
end: Sun of HP workstation, stand-alone for dedicated applications.

Operating system: Internal OS transparent to the user, Unix on front-end
Connection structure: 2-D mesh, row- and column datapaths (see remarks).
Compilers: FORTRAN-PLUS (a Fortran 77 compiler with some Fortran 90 and some
proprietary array extensions), C++.

Vendors information Web page: http://TechCentral .www.com.

System parameters:

Model Gamma II 1000 Gamma I 4000
Clock cycle 33 ns 33 ns
No. of processors 1024 4096

Theor. peak performance

Per Proc. (Mflop/s) 1.2 1.2
1-bit Gop/s 30.7 122.8
8-bit Gop/s 30.7 122.8
Gflop/s (32-bit) total 1.2 4.8
Program memory < 4 MB < 4 MB
Data memory < 32 MB < 128 MB

Int. comm. speed

Across row, column 120 MB/s 480 MB/s
Memory to PE 3.84 GB/s 15.4 GB/s
Remarks:

In November 1995 the new Gamma Il models has been announced by CPP. In essence
there is not much difference with its predecessor the DAP Gamma. However, the
clock cycle has tripled to 33 ns with an equivalent rise in the peak performance of the
systems.

The Gamma 11 is presented as the fourth generation of this type of machine. Indeed,
the macro architecture of the systems has hardly changed since the first ICL DAP (the
first generation of this system) was conceived. As in the ICL DAP in the Gamma 1000
models the 1024 processors are ordered in a 32 X 32 array, while the Gamma 4000 has
4096 processors arranged in a 64 X 64 square.

The systems are able to operate byte parallel on appropriate operands to speed
up floating-point operations, however, for logical operations bit-wise operations are
possible, which makes the machines quite fast in this respect. As the byte parallel
code consists of separate sequences of microcode instructions, the bit processor plane
and the byte processor plane are in fact independent and can work in parallel. This is
also the case for 1/O operations. Also character-handling can be done very efficiently.
This is the reason that Gamma systems are often used for full text searches.

As in all processor-array machines, the control processor (called the Master Control
Unit (MCU) in the DAP) has a separate memory to hold program instructions while
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the data are held in the data memory associated with each Processing Element (PE) in
the processor array. So, for a Gamma 1000 with 32 MB of data memory each PE has 32
KB of data memory directly associated to it. To access data in other PE’s memories
these must be brought up to the data routing plane and shifted to the appropriate
processor.

As already mentioned under the heading of the connection structure, there are two
ways of connecting the PEs. One is the 2-D mesh that connects each element to its
North-, East-, West-, and South neighbour. In addition there are row- and column
data paths that enable the fast broadcast of a row or column to an entire matrix by
replication. Conversely, they can be used for row- or column wise reduction of matrix
objects into a column- or row vector of results from, e.g., a summing- or maximum
operation.

Separate 1/0 processors and disk systems can be attached to the Gamma directly
thus not burdening the front-end machine (and the connection between front-end and
DAP) with 1/O operations and unnecessary data transport. One of these [/O devices
is the GIOC that can transport data to the data memory at a sustained rate of 80
MB/s transposing the data to the vertical storage mode of the data memory on the
fly. Also, a direct video interface is available to operate a frame buffer.

A nice (non-standard) feature of the FORTRAN-PLUS compiler is the possibility
to use logical matrices as indexing objects for computational matrix objects. This
enables a very compact notation for conditional execution on the processor array. In
addition, recently C++ is available.

Measured Performances:

In [4] the speed of matrix multiplication on various DAP models (precursors of
the Gamma systems) is analyzed. The documentation states 32-bit floating-point add
speed of 1.68 Gflop/s on 4096 PEs, while a 32-bit 1,024 complex FFT would attain 2.49
Gflop/s. No independent performance figures for the Gamma Il systems are available.
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3.2.3 The Digital Equipment Corp. MPP series

These machines are identical to the MasPar machines described in 3.2.4 and 3.2.5.
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3.2.4 The MasPar MP-1.

Machine type: Processor array.

Models: MP1101, MP1102, MP1104, MP1208, MP1216.

Front-end: DECstation 5000 or DEC VAX.

Operating system: Internal OS transparent to the user, Ultrix or VMS on front-end.
Connection structure: 2-D mesh, crossbar (see remarks).

Compilers: MPL: (C with extensions), MPF: (Fortran 90-like with extensions).
System parameters:

Model MP1101 MP1102 MP1104 MP1208 MP1216
Clock cycle 83 ns 83 ns 83 ns 83 ns 83 ns
No. of processors 1024 2048 4096 8192 16384
Theor. peak performance
Per proc. (Mflop/s ) 0.034 0.034 0.034 0.034 0.034
Mop/s (32-bit) 1600 3200 6400 13000 26000
Mop/s (64-bit) 800 1600 3200 6400 13000
Mflop/s (32-bit) 75 150 300 600 1200
Mflop/s (64-bit) 34 69 138 275 550
Program memory 1-4MB 1-4MB 1-4MB 1-4MB 1-4MB
Data memory 16-64MB  32-128MB  64-256MB 128-512MB  256-1GB
Int. comm. speed
Via Xnet (n. neighbour) 1.4 GB/s 28GB/s 57GB/s 11.5GB/s 23.0 GB/s
Via global router 80 MB/s 160 MB/s 320 MB/s 640 MB/s 1.28 GB/s
Remarks:

The Processing Elements (PEs) of the MP-1 are more intricate than those from the
DAP Gamma Il (3.2.2). Each PE contains a 4-bit parallel Arithmetic/Logic Unit
together with a 1-bit functional unit, a 16-bit exponent unit and a 64-bit mantissa
unit. These units may be operated separately or in concord (e.g., for floating-point
calculations). Because of the hardware implementation of the PEs, only 1-, 8-, 16-,
32-, and 64-bit data types are allowed.

Unlike on the DAP Gamma II, on the MP-1 it is possible to address data items in
the data memories indirectly. This greatly facilitates manipulation of matrix objects
indexed through an index matrix.

One type of interconnection of the PEs is a 2-D rectangular mesh (with wrap-
around). This is however implemented by connecting the PEs diagonally via 3-way
switches. As the setting of the switches only takes 1 cycle, this means that every PE
can reach it 8 surrounding neighbours in 1 cycle. For more general routing schemes a
Global Router is available. This acts, in principle, as a three-stage crossbar. PEs are
arranged in clusters of 4 x 4, which connect to other clusters through the first level of
the crossbar. All clusters connect via an intermediate stage to the target stage (again
at cluster level). The ports from the clusters are multiplexed to the individual PEs
within a cluster. As this type of communication is fairly intricate, it is much slower
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than via the Xnet (see system parameter list above).

As with the DAP Gamma II, there are provisions for connecting a frame buffer
and /or disks directly to the MP-1. Also like the DAP, the MP-1 is essentially a single-
user machine, that is, only one user at a time can have a task on the MP-1. Of course,
tasks can be scheduled via a multi-user interface on the front-end system.

The MP-1 features a very nice X-window based programming environment, MPPE,
which integrates an interactive source debugger, a profiler, and output windows in one
environment.

Measured Performances:

In [2] the solution of a full linear system was reported on a 16384 PE machine with
a speed of 440 Mflop/s. The same report estimated the peak performance to be 580
Mflop/s in 64-bit precision.
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3.2.5 The MasPar MP-2.

Machine type: Processor array.

Models: MP2201, MP2202, MP2204, MP2208, MP2216.

Front-end: DECstation 5000 or DEC VAX.

Operating system: Internal OS transparent to the user, Ultrix or VMS on front-end.
Connection structure: 2-D mesh, crossbar (see remarks).

Compilers: MPL: (C with extensions), MPF: (Fortran 90-like with extensions).
System parameters:

Model MP2201 MP2202  MP2204 MP2208 MP2216
Clock cycle 80 ns 80 ns 80 ns 80 ns 80 ns
No. of processors 1024 2048 4096 8192 16384
Theor. peak performance

Per proc. (Mflop/s ) 0.15 0.15 0.15 0.15 0.15
Mop/s (32-bit) 4250 8500 17000 34000 68000
Mop/s (64-bit) 2100 4250 8500 17000 34000
Mflop/s (32-bit) 400 800 1600 3200 6300
Mflop/s (64-bit) 150 300 600 1200 2400
Program memory 1-4MB 1-4MB 1-4MB 1-4MB 1-4MB
Data memory 64MB 128MB 256MB 512MB 1GB
Int. comm. speed

Via Xnet (n. neighbour) 1.25 GB/s 25GB/s 5.0GB/s 10.0 GB/s 20.0 GB/s
Via global router 80 MB/s 160 MB/s 320 MB/s 640 MB/s 1.28 GB/s

Remarks:

Apart from being roughly 2.5 times faster than the MasPar MP-1 (3.2.4), there is little
difference between the MP-2 and the MP-1. The gain in speed relative to the MP-1 is
accomplished by using a processor with a higher degree of bit-parallelism. This resulted
in a higher performance at the expense of the number of data formats: only 32-bit and
64-bit data are allowed on the MP-2.

MasPar will market both the MP-1 and MP-2. In the view of the company there
is a market for both. With a fixed budget one can make a choice for a system with
larger memory, but slower or a faster system with a smaller memory.

Software and tools are exactly the same for both types of machines.

Measured Performances:

In [2] a speed of 1.6 Gflop/s was reported for a 16,384 processor machine in solving

a 11,264 order full linear system.

3.3 Shared-memory MIMD systems

For some systems in this category it will not always be possible to discuss all models
of a particular product line because the number of configurations is simply too large.
However, we attempt to give the representative configurations for such systems. In
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addition, when single-processor versions of a certain machine are available, this is
regarded as a special case of a multi-processor version and the one-processor versions
are omitted from section 3.1 where they could have been treated.

Furthermore, we have included systems here that a have shared-memory model as a
basis but that may be extended by coupling several of these systems together in a
distributed memory way. The distinction is not always very clear when looking at
the end product: a multi-frame DEC AlhpaServer (3.3.4) and an HP/Convex SPP-
1200 (3.4.8) look very much alike. The difference lies in the integration. In the latter
machine the distributed memory extension of multi-CPU nodes was a basis for the
architecture while in the former DEC system it is more like an added feature.
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3.3.1 The Cray Research Inc. Cray J90-series, T90 series.

Machine type: Shared-memory multi-vectorprocessor.
Models: Cray J90, T90.

Operating system: UNICOS (Cray Unix variant).
Compilers: Fortran, C, C++, Pascal, ADA.

Vendor information Web page: http://www.cray.com.
System parameters:

Model Cray J90 Cray T90
Clock cycle 10 ns 2.2 ns
Theor. peak performance

Per processor 200 Mflop/s 1.8 Gflop/s
Maximal 3.2 Gflop/s  58Gflop/s
Main memory <4 GB <8 GB

Memory bandwidth
Single proc. bandwidth 1.6 GB/s 24 GB/s

No. of processors 4-32 1-32
Remarks:
Cray Research Inc. (CRI) supports at this moment 3 product lines (apart from the
SuperSparc-based CS6400 which is targeted to the commercial market and is not dis-
cussed in this report). Two of these are multi-headed vector processors which are
discussed here. The third is the T3E, a DM-MIMD machine that will be described in
section 3.4.

The Cray J90 series is the entry level model marketed by CRI announced in Septem-
ber 1994. The J90 series is based on CMOS technology which has a low power con-
sumption (all J90s are air cooled) and low production costs. The machine is binary
compatible with the high-end systems. It has one multiply and add vector pipe set per
CPU at a clock cycle of 10 ns which results in a theoretical peak performance of 200
Mflop/s. Furthermore, a cache has been added to speed up scalar processing (as in the
Convex C4 series, see 3.3.3). It is interesting to note that the strategy of using more
(four) multi-functional pipes as in the predecessor, the Y-MP EL has been left again
to return to the classic two-pipe/CPU design.

The Cray T90 series is built in ECL logic and has therefore a much lower clock
cycle (2.2 ns) and correspondingly faster SRAM memory. As its direct predecessor,
the Cray C90, every CPU contains two vector add and multiply pipes. This gives rise
to a maximum of 4 floating-point results/clock cycle/CPU equivalent to a theoretical
peak performance of 1.8 Gflop/s per CPU or 58 Gflop/s for a maximal system.

The Cray T90 machines are at this moment the only ones with a memory bandwidth
as seems optimal for vector processors: two operands can be loaded and one result can
be stored in one cycle for each pipe set. For the T90 this meant that the relative
bandwidth has to be 48 bytes/cycle/CPU. This has indeed been accomplished and
observed results indicate that for the T90 the performance scales up with the clock
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cycle and the number of functional units (see measured performances below). For the
J90 series the bandwidth is lower: 16 bytes/cycle. This is regrettably less than was
available in its predecessors, Y-MP EL machines, and it might adversely affect the
efficiency.

Another property that is unique for the Cray T90 systems is that they do not have
a separate scalar processor but that scalar- and vector code have to share the same
functional units. However, a small scalar cache is added to speed up scalar calculations.
The Cray J90 series has separate scalar processors. Theoretically, the absence of sep-
arate scalar processors might impair the throughput speed (Hitachi (3.3.2) even adds
an extra scalar processor in the S-3800 series to combat excessive context switching).
However, in practice the drawbacks seem rather limited.

Contrary to earlier high-end Cray systems, the T90 now features compatibility with
the IEEE 754 floating-point standard. Formerly, Cray-specific floating-point arithmetic
was employed which could give rise to problems in data exchange with other systems
and in different computational results due to the difference in arithmetic.

Measured Performances:

On the T90 in [2] a speed of 29.4 Gflop/s was found on a 32 processor machine for
the solution of an order 1000 dense linear system. For a J90 series machine with 32
processors a speed of 4.486 Gflop/s was observed for the same problem, which amounts
to efficiencies of 51 and 70% for the T90 and the J90, respectively.
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3.3.2 The Hitachi S3800 series.

Machine type:Vectorprocessor.

Models: S-3800/260, S-3800/y8z; x = 1,2 y=1,2,4 z=0,2.
Operating system: VOS3/HAP/ES (IBM MVS compatible) and OSF/1.
Compilers: FORT77/HAP vectorising Fortran 77.

System parameters:

Model S3800/260 S3800/y8z
Clock cycle VPU 2 ns 2 ns
Clock cycle scal. proc. 6 ns 6 ns

Theor. peak performance 4-8 Gflop/s 8-32 Gflop/s
No. of processors

Scalar 1-2 1-4

Vector 1-2 1-4

Main memory 256-1024MB  512-2048MB

Extended memory <16GB <32GB
Remarks:

The S3800 is the current top-end system of Hitachi’s S-3000 series. Five different
models are offered: The 160 and the 260 in which the 260 is simply the 2-CPU version
of the the 160. Furthermore, there is a sub-series 180, 280, and 480, of which the 280
and 480 are again 2-CPU and 4-CPU versions of the 180. However, in addition, there is
a model 182 with 2 scalar processors and 1 vector processor as is offered in the Fujitsu
VPX200 series and for the same reason: context switching delay between jobs should
be reduced by this scheme. The smallest model, the S-3800/160 has 4 multi-functional
multiply/add pipes which may deliver up to 8 results per clock cycle. This is equivalent
to 4 Gflop/s. In the /180 the number of pipes is doubled to 8 with a corresponding
peak performance of 8 Gflop/s. All models feature one or more separate divide pipes.
As the multi-headed systems can work in parallel, the top model, the S-3800/480, may
theoretically attain a speed of 32 Gflop/s.

Hitachi now delivers an auto-parallelising compiler, which features parallelising
compiler directives similar to those of Cray and NEC. The OSF/1 system can be
run under the MVS-like VOS3/HAP/ES, but it can also be run as a native operating
system.

Measured Performances:

The first S-3000 system, a S-3800/480, was installed in January 1993 at the Uni-
versity of Tokyo. Tests with the EuroBen benchmark were done on this system in
July-September 1993. During these tests a speed of 5.7 Gflop/s was observed for the
evaluation of a 9th degree polynomial on a single processor. In matrix-vector multi-
plication, speeds of 6.5 Gflop/s on one processor were measured (see [15, 16]). In [2]
a speed of 28.4 Gflop/s on 4 processors is reported for the solution of an order 15,500
dense linear system. The efficiency is here 89%.
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3.3.3 The HP/Convex C4 series.

Machine type: Shared-memory multi-vectorprocessor.

Models: C4620, 2 =1,...,4

Operating system: ConvexOS (Convex’s Unix variant).

Compilers: Fortran, C, C++4, ADA, Lisp.

Vendors Information Web page: http://www.convex.com/prod serv/prod serv.html.
System parameters:

Model C4600
Clock cycle 7.41 ns

Theor. peak performance

Per proc. (64-bit prec.) 810 Mflop/s
Per proc. (32-bit prec.) 1620 Mflop/s
Maximal, 64-bit precision 3240 Mflop/s
Maximal, 32-bit precision 6480 Mflop/s
No. of processors 1-4
Main memory <4GB

Memory bandwidth
Single proc. bandwidth 1080 MB/s

Remarks:

Recently (November 1995), Convex Computer Corp. has become a subsidiary of
Hewlett Packard. This has, at least for the moment no impact on the products that
are marketed by HP /Convex. Both the vectorprocessors and the Exemplar SPP series
(see section 3.4) will stay on the market. The C4600 series is the fourth generation of
vectorprocessors from Convex. Unlike in the former C3800 series, with a maximum of
8 processors, the highest number of processors is four in the C4640 model. A major
difference with the former generations is that more functional unit sets per CPU are
present: six general purpose functional units. This brings the number of floating-point
results per cycle to 6 in the ideal case. Because the floating-point units are general the
opportunities for linking or independent processing are increased with respect to spe-
cialised multiply and add pipes which increases the scheduling density of operations.
In addition, some logical operations can be done in the functional units which enables
32-bit convolutions to be done in excess of 1 Gflop/s (this is called the “extended
architecture” in Convex jargon).

As in the former C3400 and C3800 GaAs components are used to arrive at the cycle
time of 7.41 ns. Also like in these former models, there is difference in speed of a factor
of two between single precision (32 bits) and double precision (64 bits) calculations.

As for the Convex Exemplar SPP-1200 (see 3.4.8) an ”application compiler” is
available that is capable of interprocedural analysis. This can greatly enhance the
vectorisability of some codes and in general is beneficial in optimising large codes.
Measured performances:

Traditionally, Convex systems are able to obtain a significant fraction of their the-
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oretical peak performance. On a C220 (functionally equivalent to a C3220) 77.6 and
88.9 Mflop/s out of the theoretical 100 Mflop/s have been observed for a Fortran 77
and a library implementation of a linear system solver, respectively [12]. The C4600
proves to be no exception: on one processor the solution of a dense linear system of
order N = 1000 shows a speed of 683 Mflop/s on one processor for 64-bits precision
and of 1320 Mflop/s on a C4620. At 32-bits precision speeds of resp. 1227 and 2252
Mflop/s were found on the C4610 and the C4620. In [2] a speed 1.933 Gflop/s out of
3.24 Gflop/s at maximum is reported.
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3.3.4 The Digital Equipment Corp. AlphaServer.
Machine type: RISC-based distributed-memory multi-processor.

Models: AlphaServer 8200 5/300, 8400 5/300.

Operating system: Digital Unix (DEC’s flavour of Unix).
Connection structure: Crossbar.

Compilers: Fortran 77, HPF, C, C++.

Vendors information Web page: http://www.digital.com:80/info/hpc.
System parameters:

Model 8200 8400

Clock cycle 3.3 ns 3.3 ns

Theor. peak performance

Per proc. (64-bit) 600 Mflop/s 600 Mflop/s
Maximal (64-bit) 3.6 Gflop/s 7.2 Gflop/s
Main memory <6 GB <14 GB

Memory bandwidth

Processor/memory 1.6 GB/s 1.6 GB/s
No. of processors 6 12
Remarks:

The AlphaServers are symmetric multi-processing systems which are based on the
Alpha 21164 processor. The 8200 model is a somewhat smaller copy of the 8400 model:
in the 8200 a maximum of 6 CPUs can be accomodated while this number is 12 for
the 8400 model. Also, there is room for at most 6 GB of memory in the 8200 while the
8400 can house 14 GB. However, the amount of CPUs and memory is not independent.
For instance, the 8400 has 9 system slots. One of these is reserved for 1/0O and one
will have to contain at least one CPU module which can contain 1 or 2 CPUs. From
the remaining slots 6 can be used either for memory or for a CPU module. So, one
has to choose for either higher computational power or for more memory. This can
potentially be a problem for large applications that require both.

As with the SGI PowerChallenge (see 3.3.6), AlphaServers can be clustered using a
PCI bus Memory channel for interconnection of the systems. The systems need not be
of the same model. The bandwidth of this interconnect is 100 MB/s. Eight systems can
be coupled in this way. To support this kind of cluster computing, HPF and optimised
versions of PVM and MPI are available.

Measured Performances:
As yet, only single system results for the AlphaServer 8400 are available. No cluster
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results are known. In [2] a speed of 5.0 Gflop/s for an 8-processor system are reported
for the solution of a dense linear system of order 9548. In [13] results for the NAS
parallel benchmarks are given. For the class B EP benchmark a time of 78.43 seconds
was measured for 8 processors. For the class B LU, SP, and BT benchmarks times of
296.19, 364.54, and 458.21 seconds were found, respectively.
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3.3.5 The NEC SX-4.

Machine type: Distributed-memory multi-vector processor.

Models: SX-4C, SX-4.

Operating system: EWS-UX/V (Unix variant based on Unix System V.4).

Connection structure: Multi-stage crossbar (see Remarks).

Compilers: Fortran 77, Fortran 90, HPF, ANSI C, C++.

Vendors information Web page: http://www.nec.co.jp/english/product/computer/sx.
System parameters:

Model SX-4Ce SX-4C SX-4
Clock cycle 8 ns 8 ns 8 ns

Theor. peak performance

Per Proc. (64 bits) 1 Gflop/s 2 Gflop/s 2 Gflop/s
Single frame:

Maximal (64 bits) 1 Gflop/s 8 Gflop/s 64 Gflop/s
Multi frame: Maximal (64 bits) — — 1 Tflop/s
Main memory < 2GB <2GB <« 128GB

Communication bandwidth
(see Remarks) — — —

No. of processors 1 1-4 4-512

Remarks:

The SX-4 series is comprised of a large range of machine sizes. The smallest of these
is the SX-4Ce. This machine has one CPU housing 4 vector pipe sets. As the clock
cycle is 8 ns and each pipe set is able to deliver 2 floating-point results per cycle, the
total maximum performance is 1 Gflop/s for this system. In all other systems the
replication factor of the pipe sets is 8 which doubles the speed per CPU to a maximum
of 2 Gflop/s. The bandwidth from memory to the CPUs is 16 64-bit words per cycle
per CPU. With a replication factor of 8 this is enough to provide two operands per
pipe set but it is not sufficient to transport the results back to the memory at the same
time. So, some trade-offs with the re-use of operands have to be made to attain the
peak performance.

The technology used is CMOS. This lowers the fabrication costs and the power
consumption appreciably (the same approach is being used in the Fujitsu VPP300, see
3.4.6) and all models are air cooled. This enables the placement of up to 32 CPUs
in one frame (for the SX-4 model). Beyond this maximum single frame system, it
is possible to couple up to 16 frames together to form a distributed memory system.
This is equivalent to the PowerChallenge Array idea (see 3.3.6). There are two ways to
couple the SX-4 frames: NEC provides a full crossbar, the so-called 1XS, crossbar to
connect the various frames together at a speed of 16 GB/s for poit-to-point out-of-frame
communication (128 GB/s bi-sectional bandwidth for a maximum configuration). In
addition, a HiPPI interface is available for interframe communication at lower cost and
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speed.
For distributed computing there is an HPF compiler and for message passing an
optimised MPI (MP1/SX) is available. The SX-4 is the only system that supports three

floating-point number systems: IBM-compatible, Cray-compatible, and the IEEE 754
standard.

Measured Performances:
The SX-4 will be available from the first quarter of 1996. Therefore, at this moment
no performance results are available.
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3.3.6 The Silicon Graphics Power Challenge

Machine type: Shared-memory multi-processor.

Models: Power Challenge L, XL.

Operating system: [RIX (SGI’s Unix variant).

Compilers: Fortran 77, C, C++ , Pascal.

Vendors information Web page: http://www.sgi.com/Products/hardware/Power/index.html.
System parameters:

Model Model L Model XL

Clock cycle 13.3 ns 13.3 ns

Theor. peak performance

Per proc. (64-bit) 300 Mflop/s 300 Mflop/s
Maximal (64-bit) 1.8 Gflop/s 5.4 Gflop/s
Main memory <6 GB <16 GB

Memory bandwidth

Proc. to cache/proc. 1.2 GB/s 1.2 GB/s

Main memory/cache 1.2 GB/s 1.2 GB/s

No. of processors 2-6 2-18
Remarks:

The Power Challenge systems are shared-memory multiple-instruction multiple-data
parallel (MIMD) computers. So, several different instructions can be going on at the
same time using different data items in these instructions. All data are stored in a
single shared memory from which the multiple processors draw the data items they
need and in which the results are stored again. In most high performance systems the
main problem is to provide the CPUs with enough data and to transport the results
back at such a rate that they can be kept busy continuously. In this, the Powerchallenge
is no exception. The data is transported from the main memory to the CPUs by a
central bus. The so-called POWERpath-2 bus is 256 bits wide and has a bandwidth of
1.2 GB/s. This is very fast as busses go but even then the data rates that are needed
by the CPUs cannot possibly be fulfilled when no special provisions would exist. These
provisions are present in the form of data and instruction caches for each of the CPUs.

The Power Challenge series uses MIPS R8000 RISC processors (formerly called the
TFP processor standing for True Floating Point) with a nominal peak speed of 300
Mflop/s. Although the clock rate of this processor is two times lower than that of its
predecessor, the R4400, the performance is 4 times higher. As the need for data is
even higher than that of the R4400 processors with this speed of processing, there is
a special extra cache called the “Streaming cache” of up to 16 MB. This is very large
and it should reduce the bus traffic as much as possible. All floating-point operations
are done by streaming the operands from this large off-chip cache to the floating-point
registers. In contrast to the R4400 processor, the R8000 is able to do a combined
multiply-add operation which in many cases doubles the operation speed. In addition,
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the floating-point functional units are doubled with respect to the R4400 which should
explain the four-fold increase in performance with respect to this predecessor.

Power Challenge systems can be coupled by HiPPI channels to form a cluster of
systems using very efficient “shared-memory” PVM and MPI implementations that
can be used homogeneously (for the user) both within a single Power Challenge system
and between them. This could be used for the solution of extremely large application
problems. Such clusters are called Power Challenge Arrays by SGI. SGI wants to
extend this technique by providing faster coupling and switching between the systems.
This trend is also to be seen with other vendors (see 3.4.6 and 3.3.5(SX-4)).

Power Challenge systems can be coupled by HiPPI channels to form a Parallelisation
is done either automatically by the (Fortran or C) compiler or explicitly by the user,
mainly through the use of directives. As synchronisation, etc., has to be done via
memory the parallelisation overhead is fairly large. In fact, experiments as reported in
citebmtut show that a distributed memory implementation of the same problem can
be much faster on a single PowerChallenge.

Measured Performances:

On a SGI PowerChallenge Array equipped with 128 processors a performance of

26.7 Gflop/s was measured when solving an order 53,000 dense linear system [2]

38



3.3.7 The Tera MTA

Machine type: Distributed-memory multi-processor.

Models: MTA.

Operating system: Unix BSD4.4 + proprietary micro kernel.
Compilers: Fortran 77 (Fortran 90 extensions), HPF, C, C++.
Vendors information Web page: http://www.tera.com.
System parameters:

Model MTA-2C
Clock cycle < 3 ns

Theor. peak performance

Per proc. (64-bit) 1 Gflop/s
Maximal (64-bit) 256 Gflop/s
Main memory <16 GB

Memory bandwidth

CPU-to-memory > 8 GB/s
No. of processors 16256
Remarks:

Although the memory in the MTA is physically distributed, the system is emphatically
presented as a shared memory machine (with non-uniform access time). The latency
incurred in memory references is hidden by multi-threading, i.e., usually many con-
current program threads (instruction streams) may be active at any time. Therefore,
when for instance a load instruction cannot be satisfied because of memory latency the
thread requesting this operation is stalled and another thread of which an operation
can be done is switched into execution. This switching between program threads only
takes 1 cycle. As there may be up to 128 instruction streams and 8 memory references
can be issued without waiting for preceding ones, a latency of 1024 cycles can be tol-
erated. References that are stalled are retried from a retry pool. A construction that
works out similarly is to be found in the Stern Computing Systems SSP machines (see
3.3.9).

The connection network connects a 3-D cube of p processors with sides of p% of
which alternately the z- or y axes are connected. Therefore, all nodes connect to four
out of six neighbours. Furthermore, there is an 1/O port at every node. Each network
port is capable of sending and receiving a 64-bit word per cycle which amount to a
bandwidth of 22.6 GB/s per port. In case of detected failures, ports in the network
can be bypassed without interrupting operations of the system.

Although the MTA should be able to run “dusty-deck” Fortran programs because
parallelism is automatically exploited as soon as an opportunity is detected for multi-
threading, it may be (and often is) worthwhile to explicitly control the parallelism in
the program and to take advantage of known data locality occurrences. MTA provides
handles for this in the form of library routines, including synchronisation, barrier,
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and reduction operations on defined groups of threads. Controlled and uncontrolled
parallelism approaches may be freely mixed. HPF will also be supported for SPMD-
style programming.
Measured Performances:

The MTA will be benchmarkable from the beginning of 1996, therefore, no perfor-
mance figures are available yet.
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3.4 Distributed-memory MIMD systems

In particular for this class of systems we cannot claim completeness of this overview.
This has two reasons: First, at present this is the most dynamic area of development of
new machines and it is quite probable that already new systems appear on the market
while this report goes to print. This in no way implies that the systems not mentioned
here should be in any way inferior to the ones that appear in this section. It is rather
felt that many of these systems are in some sense equivalent and listing (almost) all
of the systems would be counterproductive in the sense that the descriptions of the
systems might lead to confusion.

For distributed-memory MIMD machines obviously the internode bandwidth and
latency are very important system parameters. Unfortunately, it is very hard to come
by reliable figures for these parameters. Therefore, we only can state the internode
bandwidth point-to-point for the majority of systems, not for all. Where we do not
have these figures we give the aggregate bandwidth which is less informative but better
than nothing. We were not able to give latency figures for the systems for two reasons:
manufacturers mostly state hardware latencies which, regrettably, does not say very
much about the actual latency, except that the hardware latency is a guaranteed lower
bound. The second reason is that the actual (software) latency, even if known at some
point in time, decreases very fast, as better implementation of the communication
software occurs continuously. Therefore, stating figures for this system parameter is
next to useless at the moment even when very much desired.
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3.4.1 The Alex AVX 2.

Machine type: RISC-based distributed-memory multi-processor.
Models: AVX series 2.

Operating system: Trollius (Unix-like variant with extentions).
Connection structure: Crossbar.

Compilers: Fortran, C, C++, Linda.

System parameters:
Model AVX series 2

Clock cycle 25 ns

Theor. peak performance

Per proc. (64-bit) 60 Mflop/s
Maximal (64-bit) 3.84 Gflop/s
Main memory <1,280 MB
Memory /node <20 MB
Memory bandwidth 5 GB/s

Communication bandwidth <10 MB/s

No. of processors 8—64

Remarks:

The AVX system is reminiscent to the Meiko i860 CS (see 3.4.12) in that the sys-
tem can be configured with and without Intel i860 processors in the processing nodes
while each node always contains a T805 transputer which is responsible for inter-node
communication. The i860s are used for computational intensive tasks. Instead of com-
putational nodes with or without i860s special function nodes, like SCSI interface nodes
or graphics nodes may be installed to make the machine more balanced with respect
to 1/O requirements or graphics performance.

Up to 8 simultaneous users can be allocated on the (virtual) machine leaving the
users the freedom to define the topology for their machine in software.

Third party programming environments available are Perihelion’s Helios which
should be able to attract users which migrate from transputer based machines and
Parasoft’s Express which runs on many DM-MIMD platforms.

Measured Performances:

Alex is fairly new in the field, so no measured performance figures were available

at the moment of writing.
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3.4.2 The Avalon A12.

Machine type: RISC-based distributed-memory multi-processor.

Models: Avalon A12.

Operating system: AVALON micro kernel based Unix (Image compatible with

Digital Unix).

Connection structure: Multistage variable (see remarks).

Compilers: Fortran 77, Fortran 90, HPF, ANSI C.

System parameters:
Model Al12
Clock cycle 3.3 ns

Theor. peak performance
Per proc. (64-bit) 600 Mflop/s
Maximal (64-bit) —

Memory/node —
Memory (maximal) —

Communication bandwidth
Point-to-point 128-400 MB/s
Bisectional (full system) —

No. of processors —

Remarks:

The Avalon technical documentation is not entirely helpful in providing complete infor-
mation with regard to system configurations. Therefore the list of system parameters
above is somewhat incomplete. The A12 will be based on the DEC Alpha 21164 RISC
procesor. This processor has a clock cycle of 3.3 ns. Because the Alpha 21164 has dual
floating-point arithmetic pipes it will deliver a theoretical peak performance of 600
Mflop/s. The total performance of the system, however, cannot be specified because
the maximum number of processors is not given. In addition to the usual first and
second level cache that reside on chip, a 1 MB third level cache is provided on each
A12 CPU card. The bandwidth to/from the first level cache is sufficient to transport
two operands to the CPU and to ship one result back in one cycle. The second level
cache has two-thirds of is bandwidth, while the third level cache has the capability
of providing an 64-bit word every two cycles. The bandwidth to/from memory is 400
MB/s or one 64-bit word every 6 cycles. The memory has two-way interleaved banks
but the size of the memory is not specified in the documentation.

Each CPU card contains a Alpha 21164 processor, the third level or B cache and the
local memory for that node. Twelve CPU cards can be housed in one crate which has a
full crossbar backplane. This yields a internode bandwidth of slightly under 400 MB /s
between the cards within one crate. Apart from the 12 slots for CPU cards, there are
two extra dual channel slots that can accomodate communication cards that provide
the connections with other crates. For the in-crate crossbar CMOS technology is used.
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However, for the intercrate connections ECL logic is employed. The actual connections
between crates are made by coaxial cables. This way of connection provides a large
flexibility in the overall interconnection topology: one could build trees or toruses or
a secondary level crossbar (is the last case one crate should be filled entirely with
communication cards to build a 144 processor system). The communication speed
between crates is less fast (but still respectable): 128 MB/s.

1/O can be configured in various ways: It is possible to put 32-bit or 64-bit PCI
expansion cards on each CPU card to obtain what Avalon calls “Type 1 1/O nodes”.
Also, a direct switch connection via a variant of the communication card can be made
to the outside world. Depending on the number of cards the bandwidth is 400 or 800
MB/s for this type 3 1/O node. The type 2 I/O node is in fact a dedicated TCP/IP
connection as needed for the control workstation as required by the system.
Measured Performances:

The A12 is expected to be available by the first quarter of 1996. As yet no systems
are benchmarkable. So, no performance figures are known at this moment.
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3.4.3 The C-DAC PARAM 9000/SS.

Machine type: RISC-based distributed-memory multi-processor.

Models: P9S/4-P9S/200.

Operating system: PARAS 9000/SS (Mach-like micro-kernel).

Connection structure: Multistage crossbar.

Compilers: Fortran 77, Fortran 90, HPF, ANSI C, C++ (soon).
System parameters:

Model P9S
Clock cycle 16.6 ns

Theor. peak performance

Per proc. (64-bit) 60 Mflop/s
Maximal (64-bit) 12 Gflop/s
Memory /node <128 MB
Memory (maximal) <25.6 GB

Communication bandwidth

Point-to-point 10-40 MB/s

Bisectional (full system) 3.2 GB/s

No. of processors 4-200
Remarks:

The PARAM 9000/SS is the third generation of systems that is produced by C-DAC,
the Centre for Development of Advanced Computing, an institute in India that has as
its mission to develop an manufacture “state-of-the-art open architecture supercom-
puters”. This system, however, is the first one to be marketed abroad. The machine is
based on the Sun SuperSparC Il as a processing node. The nodes are connected by a
multistage crossbar with dynamically adaptive wormhole routing which is highly useful
in terms of fault-tolerance. The point-to-point bandwidth is 10 MB/s per link. With
a maximum of 4 links this bandwidth can be scaled up to 40 MB/s. The bisectional
bandwidth for a full 200-node system is a very respectable 3.2 GB/s. For every four
compute nodes one 1/O node can be configured for distributed 1/0.

The amount of available software shows that the PARAM 9000/SS is not a first-
generation system. Apart from Fortran 77, Fortran 90, HPF, and C++ are available
and the CORE, MPI, and PVM message passing interfaces are available. There is
a parallel debugger, a proprietary performance evaluation tool called AIDE, while
TOTALVIEW can be delivered at request.

In addition, a library of parallel routines, PARUL, is available. This library contains
PVM versions of dense linear algebra routines, eigenvalue routines, and FFTs.
Measured Performances:

No measured performances of the PARAM 9000/SS are available. The performance
of the computing node is rather optimistically estimated to be 60 Mflop/s for a 60 MHz
processor. It is not very likely that the processing node will attain even half of this
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performance in practice. Even then, the system could be quite interesting in terms of
price/performance.
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3.4.4 The Cray Research Inc. T3E.

Machine type: RISC-based distributed-memory multi-processor.

Models: T3E.

Operating system: UNICOS MAX (micro-kernel Unix).

Connection structure: 3-D Torus.

Compilers: CFT77_M (Fortran 77 with extensions), C.

Vendors information Web page: http://www.cray.com/PUBLIC/T3E/.
System parameters:

Model T3E
Clock cycle 3.3 ns

Theor. peak performance

Per proc. (64-bit) 600 Mflop/s
Maximal (64-bit) 1229 Gflop/s
Main memory <4096 GB

Memory /node <2GB

Communication bandwidth 300 MB/s

No. of processors 16-2048

Remarks:

The T3E is the second generation of DM-MIMD systems from CRI. Lexically, it follows
in name after its predecessor T3D which name referred to its connection structure: a
3-D torus. In this respect it has still the same interconnection structure as the T3D. In
many other respects, however, there are quite some differences. A first and important
difference is that no front-end system is required anymore (although it is still possible
to connect to a Cray T90). The systems up to 128 processors are air-cooled. The larger
ones, from 256-2,048 processors, are liquid cooled.

The T3E uses the DEC Alpha 21164 RISC processor for its computational tasks
just like the Avalon A12. Cray stresses, however, that the processors are encapsulated
in such a way that they can be exchanged easily for any other (faster) processor as
soon as this would be available without affecting the macro-architecture of the system.

Each node in the system contains one processing element (PE) which in turn con-
tains a CPU, memory, and a communication engine that takes care of communication
between PEs. The bandwidth between nodes is quite high: 300 MB/s. Like the T3D,
the T3E has hardware support for fast synchronisation. E.g., barrier synchronisation
takes only one cycle per check.

In the microarchitecture most changes have taken place with the transition from the
T3D to the T3E. First, there is only one CPU per node instead of two, which removes a
source of asymmetry between processors. Second, the new node processor has a 96 KB
3-way set-associative secondary cache which may relieve some of the problems of data
fetching that were present in the T3D where only a primary cache was present. Third,
the Block Transfer Engine has been replaced by a set of E-registers that are believed to

47



be much more flexible and at least removes some odd restrictions on the size of shared
arrays and the number of processes when using Cray-specific PVM. An interesting
additional feature is the availability of 32 contexts per processor which opens the door
for multiprocessing.

In the T3D all 1/O had to be handled by the front-end, a system at least from the
Cray Y-MPE class. In the T3E distributed 1/O is present. For every 8 PEs an 1/0
channel can be configured in the air-cooled systems and 1 I/O channel per 16 nodes in
the liquid-cooled systems. The maximum bandwidth for a channel is about 1 GB/s,
the actual speed will be in the order of 700 MB/s.

The T3E supports various programming models. Apart from PVM 3.x for message
passing and HPF for data distribution, a Cray proprietary work sharing model, called
CRAFT, can be employed. Cray views HPF and Fortran 90 array syntax as subsets
of the CRAFT model. Within this model data can be exchanged implicitly, thus
looking effectively as a shared-memory system to the user. As several other vendors,
Cray has extended /altered the implementation of PVM to enhance the communication
performance. For small messages this can give an improvement of a factor 3 (20-25 us
instead of 70-80 us). For SPMD programs channel send/receive functions can be used
which reduces the communication time to 4-5 us. The faster implementations are not
portable, however.

Measured Performances:

The Cray T3E has only recently been announced (November 1995). At this moment

no performance figures are available.
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3.4.5 The Fujitsu AP1000.

Machine type: RISC-based distributed-memory multi-processor.
Models: AP1000.
Operating system: Cell OS (transparent to the user) and SunOS (Sun’s Unix
variant) on the front-end system.
Connection structure: T-net (2-D torus), B-net (common bus + hierarchical ring),
S-net (tree) (see remarks).
Compilers: Fortran 77 and C with extensions.
System parameters:
Model AP1000
Clock cycle 40 ns

Theor. peak performance

Per proc. (64-bit) 12.5 Mflop/s
Maximal (64-bit) 12.8 Gflop/s
Main memory <16 GB
Memory /node 16 MB

Communication bandwidth

B-net 50 MB/s

T-net 25 MB/s

No. of processors 8-1024
Remarks:

The AP1000 is put together from computing cells each of which contains a 25 MHz
SPARC processor (IU) and an additional floating-point processor (FPU). The processor
cells are complemented by routing- and message controllers, a B-net interface (see
below), cell memory, and cache memory (128 KB). The peak performance of the FPU
is estimated to be 12.5 Mflop/s which brings the aggregate peak rate to 12.8 Gflop/s
for a full 1024 cell system. The system is front-ended by a Sun 4 machine.

Fujitsu has attempted to diminish the communication problems that are inherent
to DM-MIMD machines by implementing different networks for broadcasting and col-
lection of data (the B-net), for synchronisation (the S-net), and for communication on
the processor grid (the T-net). As the broadcasting or multicasting (i.e., broadcasting
to a selected subset) of data often constitutes a bottleneck in the execution of a com-
putational task, the B-net has a two times higher bandwidth than the interprocessor
T-net (50 vs. 25 MB/s). Because the gather and scatter of data over the processors
is generally less structured a combination od a common bus and a hierarchical ring
structure is used. The B-net interface has FIFO buffers and scatter-gather controllers
to allow for sending/receiving data independent the other active components in the
cell. The message controller seeks to minimise the overhead for data transfer setup
and relieves the 1U from doing the message passing proper.

For the T-net which connects the cells in a 2-D grid the transfer speed is two times
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lower than that of the B-net, but as data movement will often be more regular, it is
expected to give good throughput, especially as a new conflict-free wormhole routing
scheme has been implemented by allocating routed messages to alternating buffer pairs
in the intermediate cells. Experiments have shown relatively low message overhead for
this system [9].

There is a tree-structured S-net for barrier synchronisation of processes with again
quite low overheads (a maximum of 5.2 us for a full configuration).

Recently an entry model of the AP1000, the AP1000C, is being offered. The
AP1000C starts at a configuration of 8 processor cells instead of the original 64. Also
the housing has been made more compact for this model, saving a factor 3 in space.
Measured Performances;

In [8] the performance on the solution of a full linear system on a 256 cell machine
is given. A system of order 100 performed at about 40 Mflop/s, an order 300 system
attained 180 Mflop/s, while a 1000 x 1000 system reached more than 300 Mflop/s. In
[2] a speed of 2.3 Gflop/s on a dense system of order 25,600 on 512 cells.
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3.4.6 The Fujitsu VPP300 series.

Machine type: Distributed-memory vector multi-processor.

Models: VX series, VPP300.

Operating system: UXP/VPP (a V5.4 based variant of Unix).

Connection structure: Full distributed crossbar.

Compilers: Fortran 90/VP (Fortran 90 Vector compiler), Fortran 90/VPP (Fortran

90 Vector Parallel compiler),C/VP (C Vector compiler), C, C++.

Vendors information Web page:

http://www.fujitsu.co. jp/hypertext/Products/Info process/vpp300/vpp300br.html.
System parameters:

Model VX VPP300
Clock cycle 7/10 ns 7/10 ns
Theor. peak performance

Per proc. (64-bit) 1.6/2.2 Gflop/s  1.6/2.2 Gflop/s
Maximal (64-bit) 6.4/8.8 Gflop/s  25.6/35.2 Gflop/s
Main memory <8 GB <32 GB
Memory/node <2 GB <2 GB

Memory bandwidth
Memory banwidth/proc. 12.8/18.2 GB/s  12.8/18.2 GB/s
Communication bandwidth 400/570 MB/s  400/570 MB/s

No. of processors 1-4 1-16

Remarks:

The VPP300 is a succesor to the earlier VPP500. It is a much cheaper CMOS im-
plementation of its predecessor with some important differences. First, no VPX200
front-end system is required anymore. Second, the crossbar that is used to connect
the vector nodes is distributed. Therefore, the cost of a system is scalable: one does
not need to buy a complete enclosure with the full crossbar for only a few nodes. The
VX series is in fact a smaller version of the VPP300 with a maximum of 4 processors.
Both the VX machines and the larger VPP300 systems are air-cooled. The systems
are marketed either with a 10 ns or a 7 ns clock.

At this moment the VPP300 is officially only available with 16 processors connected
by a direct crossbar. However, it is presumed that an announcement of larger systems
will be made in the first quarter of 1996 in which multiple 16-processor machines are
connected by a second level crossbar.

The architecture of the VPP300 nodes is almost identical to that of the VPP500:
Each node, called a Processing Element (PE) in the system is a powerful (2.2 Gflop/s
peak speed with a 7 ns clock) vector processor in its own right. The vector processor
is complemented by a RISC scalar processor with a peak speed of 200 or 285 Mflop/s
dependent on the clock speed. The scalar instruction format is 64 bits wide and may
cause the execution of three operations in parallel. Each PE has a memory of up to
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2 GB MB while a PE communicates with its fellow PEs at a point-to-point speed of
400 or 570 MB/s. This communication is cared for by separate Data Transfer Units
(DTUs). To enhance the communication efficiency, the DTU has various transfer
modes like contiguous, stride, sub array, and indirect access. Also translation of logical
to physical PE-ids and from Logical in-PE address to real address are handled by the
DTUs. When synchronisation is required each PE can set its corresponding bit in the
SR. The value of the SR is broadcast to all PEs and synchronisation has occurred if
the SR has all its bits set for the relevant PEs. This method is comparable to the use
of synchronisation registers in shared-memory vector processors and much faster than
synchronising via memory.

The Fortran compiler that comes with the VPP300 has extensions that enable data
decomposition by compiler directives. This evades in many cases restructuring of the
code. The directives are different from those as defined in the High Performance For-
tran Proposal but it should be easy to adapt them. Furthermore, it is possible do define
parallel regions, barriers, etc., via directives, while there are several intrinsic functions
to enquire about the number of processors and to execute POST/WAIT commands. Fur-
thermore, also a message passing programming style is possible by using the PVM or
PARMACS communication libraries that are available.

Measured Performances:

The first VPP300 systems will be delivered in the first quarter of 1996 (first only

with the 10 ns clock). Therefore, no performance figures are available yet.
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3.4.7 The Hitachi SR2201 series.

Machine type: RISC-based distributed memory multi-processor.
Models: SR2201.
Operating system: HI-UX/MPP (Micro kernel Mach 3.0).
Connection structure: Hyper crossbar.
Compilers: Fortran 77, Fortran 90, Parallel Fortran, HPF, C, C++.
System parameters:

Model SR2201

Clock cycle 6.7 ns

Theor. peak performance

Per proc. (64-bit) 300 Mflop/s
Maximal (64-bit) 307 Gflop/s
Main memory <256 GB
Memory /node <256 MB

Communication bandwidth 300 MB/s

No. of processors 32-1024

Remarks:

The SR2201 is the second generation of distributed memory parallel systems of Hi-
tachi. The basic node processor is again an Hitachi implementation of the PA-RISC
architecture of HP running at a clock cycle of 6.7 ns. However, in contrast with its
predecessor, the SR2001, in the SR2201 the node processors are somewhat modified
to allow for “pseudo vector processing” (both hardware and instructions). This means
that for operations on long vectors one does not have to care about the detrimental
effects of cache misses that often ruin the performance of RISC processors unless code
is carefully blocked and unrolled. First experiments have shown that this idea seems
to work quite well. THe system supports distributed 1/O with a possibility to connect
disks to every node.

As in the earlier SR2001, the connection structure is a hyper (3-D) crossbar which
connects all nodes directly at high speed (300 MB/s point-to-point). In February 1996
two 1024-node systems will be to in stalled at the Universities of Tokyo and Tsukuba
respectively.

Like in some other systems as the Cray T3E (3.4.4) and the Meiko CS-2 (3.4.12),
and the NEC Cenju-3 (3.4.14), one is able to directly access the memories of remote
processors. Together with the very fast hardware-based barrier synchronisation this
should allow for writing distributed programs with very low parallelisation overhead.

The following software products will be supported in addition to those already
mentioned above: PVM, MPI, PARMACS, Linda, Express, FORGE90, and PARAL-
LELWARE. In addition a numerical libraries (MATRIX/MPP, MATRIX/MPP/SSS)
will be offered. These libraries support basic linear algebra operations with dense and
band matrices, Fast Fourier Transformations, and skyline solvers.
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Measured Performances:
Some preliminary (but not yet officially certified) results of class A NAS parallel

benchmarks show that the SR2201 runs at about 1.3 Gflop/s on 16 processors for the
MG benchmarks and about 700 Mflop/s for the CG benchmark also on 16 processors

([11]
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3.4.8 The HP/Convex Exemplar SPP-1200.

Machine type: RISC-based distributed-memory multi-processor.
Models: SPP-1200.
Operating system: SPP-UX, based on OSF/1 AD microkernel.
Connection structure: Ring.
Compilers: Fortran, C.
Vendors information Web page: http://www.convex.com/prod serv/exemplar/exemplar.html.
System parameters:
Model SPP-1200
Clock cycle 8.3 ns

Theor. peak performance

Per proc. (64-bit) 240 Mflop/s
Maximal (64-bit) 30.7 Gflop/s
Main memory <32 GB
Memory /node <256 MB
Communication bandwidth
aggregate (see remarks) 16 GB/s, 4GB/s
No. of processors 4-128
Remarks:

The SPP-1200 is the second generation in Exemplar SPP series. In fact, in almost
every respect the system is identical to its predecessor, the SPP-1000 except the clock
cycle (10 instead of 8.3 ns) and the use of PA/RISC 7200 instead of 7100 processors.
Because of the prefetch and poststore capabilities of the 7200 processors the number
of floating-point operations per cycles should be somewhat higher than in the 7100
processor, thus increasing the floating-point performance beyond the amount that is
caused by the reduction of the clock cycle. Up to 8 HP PA/RISC 7200 processors can
be placed in what is called a hypernode by Convex. A maximal system consists of 16
nodes, i.e., 128 processors.

Within each hypernode up to 2 GB of memory can be accommodated which can be
reached by the local processors via a crossbar with an aggregate bandwidth of 16 GB/s.
The hypernodes in turn are connected to each other by a crossbar with an aggregate
bandwidth of 4 GB/s. So, the system concept is somewhat hybrid: within a hypernode
the machine is effectively a shared-memory system, while between hypernodes it is a
distributed memory system. Each node supports local 1/0O, while external global 1/0O
can be done at an aggregate rate of 4 GB/s.

The Exemplar programming environment complements the SPP-1200 at the soft-
ware side. This environment includes a message passing programming model (PVM)
and a virtual shared memory model which allows the user to have a shared-memory
view of the system. The underlying communication is hidden from the user, thus en-
abling the execution of standard Fortran 77, C, or C++ programs. The efficiency of
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this mode of operation is determined by the extent to which the original code is paral-
lelisable. In many cases it might be enhanced using another (possibly message passing)
implementation. The application compiler included in the Exemplar environment may
help in parallelising the original program and in generating the necessary parallel code.
Measured Performances:

First results for the solution of a linear system of order N = 1000 are 123, 213, 383,
and 656 Mflop/s for 1, 2, 4, and 8 processors (within one hypernode), respectively. In
[2] also a speed of 3.72 Gflop/s is reported for the solution of a dense system of order
25,100.
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3.4.9 The IBM 9076 SP2

Machine type: RISC-based distributed-memory multi-processor cluster.
Models: IBM9076 SP2.
Operating system: AIX (IBMs Unix variant).
Connection structure: Dependent on type of connection (see remarks).
Compilers: XL Fortran, XI. C, XL C++.
Vendors information Web page: http://ibm.tc.cornell.edu/ibm/pps/sp2/sp2.html.
System parameters:
Model 9076 SP2
Clock cycle 15 ns

Theor. peak performance

Per Proc. (64-bit) 267 Mflop/s
Maximal (64-bit) 34.1 Gflop/s
Memory /node 64-512/2048 MB (see remarks)
Communication bandwidth
Point-to-point 204+ MB/s
Bisectional 25 GB/s
No. of processors 8-128

Remarks:

As a basis for the computational nodes in the SP2 RS/6000 processors with a clock
cycle of 15 ns are used. This amounts to a peak performance of 266 Mflop/s per node
because the floating-point units of the SP2 processors can deliver up to 4 results/cycle.
The SP2 configurations are housed in columns that each can contain 8-16 processor
nodes. This depends on the type of node employed: there are two types, thin nodes and
wide nodes. Although the processors in these nodes are basically the same there are
some differences. Wide nodes have the double amount of microchannel slots (8 instead
of 4) as compared to the thin nodes. Furthermore, the maximum memory of a wide
node can be 2 GB whereas the maximum for thin nodes is 512 MB. More important
in terms of performance is the fact that the data cache of a wide node is four times
larger than that of a thin node (256 KB instead of 64 KB) and that the memory bus
is two times wider than that of a thin node (8 instead of 4 words/cycle). The latter
differences explain than a performance gain of a factor 1.5 has been observed for wide
nodes over the thin nodes. However, the newer Thin-node2 is except with regard to the
number of micro-channel slots almost identical to a wide node. Also the performance
is very simlar to that of a wide node (see Measured performance). IBM envisions the
wide node more or less as server for a column and recommends configurations of one
wide node packaged with 14 thin nodes per column (although this may differ with
the needs of the user). The SP2 is accessed through a front-end control workstation
that also monitors system failures. Failing nodes can be taken off line and exchanged
without interrupting service. In addition, fileservers can be connected to the system
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while every node can have up to 2 GB. This can greatly speed up applications with
significant [/O requirements.

There is a choice in the way communication is done: Ethernet, Token Ring, FDDI,
etc., are all possible. However, it is also possible to connect the processors by an
optional high-speed switch with a speed of 40 MB/s. Therefore, depending on the
communication type the speed can range from 1-40 MB/s. The high-speed switch
has some redundancy built into it for greater reliability. The structure is that of a
multi-stage crossbar (2-switch).

Applications can be run using PVM or Express. FORGE 90 MIMDizer can be
used to assist in parallelising the code by generating the necessary calls to PVM or
Express communication routines. Under Express Fortran 77 or 90, C, and C++ can
be used. Also High Performance Fortran is supported. IBM uses its own PVM version
from which the data format converter XDR, has been stripped. This results in a lower
overhead at the cost of generality. Recently an optimised version of MPI has also
become available.

Measured Performances:

In [2] a performance of 88.4 Gflop/s in solving a dense linear system of order
N =73,500 with 512 Thin-node2 nodes. In [13] it appears that at 128 nodes the
Thin-node2 is consistently slower than the Wide-nodel. The differences range from
4-20% with an average of about 9%. The Wide-nodel times for the Class B problems
EP, MG, CG, FT, IS, LU, SP, and BT are 4.99, 2.46, 25.44, 14.52, 1.98, 47.8, 54.8,
and 67.0 seconds, respectively.
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3.4.10 The Intel Paragon XP.

Machine type: RISC-based distributed-memory multi-processor.

Models: Paragon XP/S (MP), XP/E

Operating system: OSF/1, SunMos.

Connection structure: 2-D mesh (torus).

Compilers: Fortran 77, ADA.

Vendors information Web page: http://www.ssd.intel.com/pubs.html.

System parameters:
Model Paragon XP/S Paragon XP/E

Clock cycle 20 ns 20 ns

Theor. peak performance

Per Proc. (64-bits) 75 Mflop/s 75 Mflop/s

64-bits precision 300 Gflop/s 2.1 Gflop/s

Main memory <128 GB <4.5 GB

Memory/node <128 MB <128 MB

Communication bandwidth 200 MB/s 200 MB/s

No. of processors 64-4000 4-32
Remarks:

The Paragon is a commercialised offspring of the experimental Touchstone Delta sys-
tem. The latter machine was built for the Concurrent Supercomputing Consortium at
CalTech. The Delta system used 1860 processors as computational elements in its nodes
but, unlike its predecessor, the iPSC/860, the nodes were not arranged in a hypercube
topology but in a 2-D grid (for many physical simulation phenomena, as well as for the
solution of linear systems this is a quite natural topology). The Delta system proved
to be quite fast for a variety of problems (a speed of 11.9 Gflop/s was reported for an
order 20,000 full linear system). The Paragon machine should do better because of the
faster i860/XP processor that is used in the nodes. In addition, the i860/XP has pro-
cessor communication hardware on-chip which makes the communication bandwidth
faster.

In November 1993 the Paragon XP/E was introduced. This is an entry-level system
with the same characteristics as the XP/S and up to 32 processors. The maximal
configuration of the XP/E, the XP/E-28N has 32 nodes of which 28 are compute
nodes. The others are used for assisting the routing, 1/0, and other operating system
tasks.

The Paragons retain compatibility with the former iPSC/860 systems, an Intel hy-
percube system preceding them. In particular the the transparent parallel Distributed
File System can be used in applications migrated from the iPSC/860. The Paragon
has its own parallel file system.

In 1995 the MP (Multi Processor) node was introduced. In such an MP node 3
i860/XP processors reside on one board and the processors share one address space.
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Fortran and C compilers take care of the automatic parallelisation within a MP node.
The Intel-provided information claims a better performance than with single processor
nodes. Until now this seems consistently but not spectacularly true (see Measured
Performances).

Measured Performances:

As on many systems a results are available for the solution of a large dense linear
system. In [2] a speed of 281.1 Gflop/s is reported for a system of size 128,600 on
a 6768-node ensemble of XP/S MP systems. No actual systems of this size are in
operation. Results as quoted above are obtained by systems that are put together
for the occasion. In [13] results for the class B EP, MG, and FT benchmarks, the
times obtained on 512 processors were 3.98, 7.01, and 16.17 seconds for the single-node
XP, while on the MP-node XP of the same size these times were 2.98, 6.72, and 12.4
seconds, respectively.
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3.4.11 The Matsushita ADENART.

Machine type: RISC-based distributed-memory multi-processor.
Models: ADENART64, ADENART256.
Operating system: Internal OS transparent to the user, SunOS (Suns Unix variant)
on the front-end system.
Connection structure: HX-net (see remarks).
Compilers: ADETRAN, an extended Fortran 77.
System parameters:
Model ADENART64 ADENART256
Clock cycle 50 ns 50 ns

Theor. peak performance

Per Proc. (64 bits) 10 Mflop/s 10 Mflop/s

Maximal (64 bits) 0.64 Gflop/s 2.56 Gflop/s

Main memory 0.5GB 0.5GB

Memory /node 8SMB 2MB

Communication bandwidth 20 MB/s 20MB/s

No. of processors 64 256
Remarks:

The ADENART has an interesting interconnection structure that is somewhere halfway
between a crossbar and a grid. The processors are organised in planes, where for each
plane all processors are connected by a crossbar. Between planes there is a connection
structure that connects each crossbar node in a plane directly with its corresponding
counterpart on all other planes. So, for a processor (¢, 7) in plane data that are required
by processor (k, 7) in the same plane can be transported by simply shifting it through
the in-plane crossbar which can be accomplished in one step. For processors in different
planes the number of steps is at most two. In the first step the data is routed to the
right crossbar node in one plane and after being send to the plane where the target
processor resides, send there from the corresponding crossbar node to the processor that
requires them. The connection structure is called HX-net by Matsushita. Because of
the connection structure the number of processors is constrained to be of the form 227
and presently in the two model numbers available n is 3 or 4 (a machine with 1024
processors, n = b, is being considered). As remarked, the complexity of the network is
lower than that of a crossbar: O(n?/2) instead of O(n?) while the efficiency is half of
that of a crossbar: a maximum of 2 steps instead of 1.

The processors consist of a proprietary RISC processor with a peak speed of 20
Mflop/s in perfect pipeline mode, however, a “sustained speed” of 10 Mflop/s is quoted
by Matsushita to arrive at the peak performance given in the system parameters list
above. The inter-processor bandwidth is 20 MB/s, which is quite reasonable with
respect to the processor speed. At this moment nothing is known about the message
setup overhead however. Curiously enough, the amount of memory per node is 4 times
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larger for the ADENART64 than for the 256-processor model (8MB against 2MB per
node). The latter memory size seems fairly small for a processor node that is meant
to process large amounts of data. The front-end machine that hosts the ADENART is
a Solbourne (Sun 4 compatible) workstation.

Measured Performances:

In [3] a speed of 475 Mflop/s for a PDE solver using a Splitting-up Conjugate Gra-
dient algorithm was reported for an ADENART256. Also, results for some Livermore
kernels were given of which the highest reported speed was 520.1 Mflop/s. In the arti-
cle there are some complaints about the rigidness of existing benchmark codes which
should be a disadvantage for massively parallel computers. It could of course also be
argued that massively parallel machines are too rigid to run general codes well. In [13]
some class A results for the ADENART256 are quoted: EP, FT, IS, SP, and BT times
are 32.9, 72.7, 46.6, 209.9, 314.1 seconds respectively.
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3.4.12 The Meiko Computing Surface 2.

Machine type: Distributed-memory multi-vectorprocessor.
Models: Computing Surface 2.
Operating system: Internal OS transparent to the user, SunOS (Sun’s Unix variant)
on the front-end system.
Connection structure: Multistage crossbar.
Compilers: Extended Fortran 77, ANSI C.
Vendors information Web page: http://www.meiko.com.
System parameters:
Model Computing Surface 2
Clock cycle 20 ns

Theor. peak performance

Per Proc. (64 bits) 200, 40 Mflop/s
Maximal (64 bits) 204.8 Gflop/s
Main memory < 128 GB
Memory/node 32-128, 32-512MB

Communication bandwidth —

No. of processors 8-1024 PEs
Remarks:
The CS-2 features 8-1,024 processor elements (PEs) which can be either scalar or vector
nodes. Apart from a separate communications module, these PEs contain either a
SuperSparc or a SuperSparc 4+ 2 VP vectorprocessors. The speed of a scalar PE is
estimated to be 40 Mflop/s (at a 20 ns clock) and 200 Mflop/s for the vector PEs for
64-bit precision. The pVP modules are manufactured by Fujitsu. The speed at 32-bit
precision is doubled with respect to 64-bit operation and, unlike the earlier Fujitsu VP
products, use IEEE 754 floating-point format. The memory has 16 banks and to avoid
memory bank conflicts the CS-2 has the interesting option to have scrambled allocation
of addresses, thus guaranteeing good access at potential problematic strides 2, 4, etc.

The point-to-point communication speed is 100 MB/s (50 MB/s in each direction).
Because the communication happens through multi-level crossbars, called “layers” by
Meiko, the aggregate bandwidth of the system scales with the number of PEs, with
a very respectable latency of 200 ns per layer. As the maximum configuration of the
machine contains 1,024 PEs, the theoretical peak performance at 64-bit precision is
200 Gflop/s. It is possible to connect each PE to its own 1/O devices to have scalable
parallel 1/O with the scaling of other resources.

The Portland Group which has won some renown for its excellent i860 compilers
has developed the compilers for the CS-2. These include Fortran 77 and ANSI C but
also Fortran 90. The current compiler already offers data distribution directives as
proposed in [6].

In the USA the machine will be marketed by Meiko, however, in Europe and the
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rest of the world marketing is done by Parallel Computing Industries, a consortium of
Meiko, Parsys, and Telmat.
Measured Performances:

In [2] a speed of 5.0 Gflop/s on a 64 processor CS-2 is reported for the solution of
an order 18688 dense linear system. From the NAS parallel benchmarks some results
on a 128 processor machine are given for class B problems: EP took 21.16 seconds
while 6.52 seconds was measured for the MG problem.
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3.4.13 The nCUBE 3.

Machine type: Distributed-memory multi-processor.

Models: nCUBE 3.

Operating system: Internal OS transparent to the user, SunOS (Sun’s Unix variant)
on the front-end system.

Connection structure: Hypercube.

Compilers: Extended Fortran 77, ANSI C, C++.

System parameters:
Model nCUBE 3
Clock cycle 10 ns

Theor. peak performance

Per Proc. (64-bits) 100 Mflop/s
Maximal(64-bits) 1024 Gflop/s
Main memory <1 TB
Memory /node <1 GB

Communication bandwidth

Point-to-point 115 MB/s
No. of processors 8-10244
Remarks:

The nCUBE 3 is presently the only commercially available machine with a hypercube
structure. The nCUBE uses in-house developed processors implemented in 0.5 pm
CMOS which have a performance of 100 Mflop/s in 64-bit precision (in contrast to
the former 2S model the new processor is entirely 64-bit wide). The node processor
has 8 KB instruction an data caches, both 2-way set associative. Furthermore, each
processor has miss and write buffers of four operands deep that allows for 4 cache
misses (or deferring four cache writes) before disturbing the data cache.

There are 16 outward DMA channels per node (8 send and 8 receive) for inter-
processor communication while an additional one is used for the distributed 1/0 system
which therefore has the nice property that it scales with the number of nodes. The
speed of these 1/0 nodes is 20 MB/s full-duplex. The communication latency is quite
low: about 3 ps while the single channel bandwidth is 50 MB/s. By “folding” multiple
channels higher point-to-point bandwidth can be achieved. For the instruction cache
an autoprefetch facility is implemented while prefetch for the data cache is compiler
directed. On 1024 processors with 6 ports folded a bisectional bandwidth of 45.5 GB/s
can be realised.

Apart from the fixed wormhole routing scheme that already was employed in the
former nCUBE systems, a new fault-tolerant adaptive routing scheme is available. This
scheme is also essentially a wormhole routing but with the additional constraint that
after the first hop the distance to the target node should strictly decrease. Therefore,
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no cycles can occur and delivering of a message is guaranteed to be done in a finite
number of hops.

Within the hypercube sub-cubes can be allocated to accommodate more users. A
queue of tasks is set up with (sub)-cubes of the required size. Programs may be written
to determine the sub-cube dimensions just before execution.

Measured Performances:

The first system is expected to be realised in the 2nd quarter of 1995, so no real
performance figures are available. Simulations showed a single node speed of 96 Mflop/s
on a matrix-matrix multiply and of 40 Mflop/s on a matrix-vector multiply.
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3.4.14 The NEC Cenju-3.

Machine type: RISC-based distributed-memory multi-processor.
Models: Cenju-3S, Cenju-3.
Operating system: EWS-UX/V (Unix variant based on Unix System V.4).
Connection structure: Multi-stage crossbar.
Compilers: Fortran 77, ANSI C.
System parameters:
Model Cenju-3S Cenju-3
Clock cycle 20 ns 13.3 ns

Theor. peak performance

Per Proc. (64 bits) 33 Mflop/s 50 Mflop/s

Maximal (64 bits) 533 Mflop/s 12.8 Gflop/s

Main memory <1GB < 16 GB

Memory/node < 64 MB < 64 MB

Communication bandwidth 40 MB/s 40MB/s

No. of processors 8-16 16— 256
Remarks:

The name Cenju-3 suggests that there have been predecessors, Cenju-1 and Cenju-
2. This is indeed the case but these systems have only been used internally by NEC
for research purposes and were never officially marketed. The Cenju-3 is based on the
same RISC processor as the Silicon Graphics Challenge, the MIPS R4400 processor (see
3.3.8). It is confusing that the peak performance of the processor is rated differently
by Silicon Graphics and NEC respectively. The lower estimates of 33 vs. 50, and 50
vs. 75 Mflop/s as quoted by NEC seem to be more realistic. All processors have apart
from their on-chip primary cache a secondary cache of 1 MB to mitigate the problems
that arise in the high data usage of the CPU.

The interconnection type used in the Cenju is a multistage crossbar build from 4 x
4 modules that are pipelined. So, in a full configuration the maximal number of levels
in the crossbar to be traversed is four. The peak transfer rate of the crossbar is quoted
as 40 MB/s irrespective of the data placement.

The system needs a front-end processor of the EWS4800 type (functionally equiv-
alent to Silicon Graphics workstations). The I/O requirements have to be fulfilled by
the front-end system as the Cenju does not have local (distributed) 1/O capabilities.

There is some software support that should make the programmer’s life somewhat
easier. The library PARALIB/CJ contains proprietary functions for forking processes,
barrier synchronisation, remote procedure calls, and block transfer of data. Like on the
Cray T3D (3.4.4) and on the Meiko CS-2 (3.4.13) the programmer has the possibility
to write/read directly to/from non-local memories which avoids much message passing
overhead.

Measured Performances:
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Delivery of the systems have started in the second quarter of 1994 but no perfor-
mance figures are available ever published for the Cenju-3.

68



3.4.15 The Parallel Computing Industries system.

This system is identical to the Meiko CS-2 (see 3.4.12 for details). Parallel Computing
Industries does the marketing of this system in Europe, while it is offered as the CS-2
in the USA and the rest of the world.

69



3.4.16 The Parsys TA9000.

Machine type: Distributed-memory multi-processor.
Models: TA9800 (TA9400, TA9500).

Operating system: Idris (a real-time sub-Unix variant).
Connection structure: Multi-stage crossbar.

Compilers: Extended Fortran 77, ANSI C, Pascal, Modula 2.
System parameters:

Model TA9800
Clock cycle 4.3 ns

Theor. peak performance

Per Proc. (32 bits) 233 Mflop/s
Maximal (32 bits) 119.3 Gflop/s
Main memory <32 GB
Memory /node <64 MB

Communication bandwidth 25 MB/s/link

No. of processors <512

Remarks:
The Parsys TransAlpha TA9000 series systems are the successors of the Parsys SN9000
machines. The latter had the Thomson T9000 transputer as their basic processors. The
new TA9000 systems use the DEC Alpha 21066 transputers for that purpose.

The TA9000 is roughly 10 times faster than its predecessor, the SN9000, which had
a maximal speed of roughly 25 Mflop/s per node. However the communication speed
has remained the same still using T9000 transputers for the internode communication.
The use of the T9000 as a communication engine enables employment of the fast
C104 communication switch. The same multistage crossbar switch is also used in the
Meiko CS-2 (see 3.4.12) and allows for very good latency and bandwidth characteristics
(although at this stage no figures are available to show how much of these are realised).

Apart from the largest model, the SN9800, there are smaller models, like the desktop
models SN9400 and SN9500. The latter houses up to 12 processors and can be driven
either as a Sun SparC back-end system or as a network device via Ethernet. An
optimised PVM library is available for standard message passing programs.
Measured Performances:

Although the TransAlpha machines were announced and available from May 1995,
until now no measured performances are known to the author.
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3.4.17 The Parsytec GC/Power Plus.

Machine type: RISC-based distributed-memory multi-processor.
Models: Parsytec GC/Power Plus.
Operating system: Unix on host processor, Parix (GC OS, transparent to the user).
Connection structure: 2-D grid.
Compilers: Fortran 77, ANSI C, Pascal, Modula-2.
Vendors information Web page: http://www.parsytec.de/products/gcl.html.
System parameters:
Model GC/Power Plus
Clock cycle 7.5 ns

Theor. peak performance

Per proc. (64-bits) 266 Mflop/s
Maximum (64-bits) ...Gflop/s
Main memory ...GB
Memory /node 16-128 MB
Communication bandwidth
Point-to-point 8.8 MB/s
No. of processors 8—. ..
Remarks:

The Parsytec GC Power Plus system (GC standing for Grand Challenge) is based on
the IBM /Motorola MC604 processor. Initially, the CG series was planned to be built
around the T9000 transputer. However, the T9000 is still not available in sufficient
quantity and quality. Therefore, the MC601 was chosen to replace the T9000. It is
not clear what is the maximum configuration for the Power Plus system. Therefore we
could not give maximum performance, memory capacity, etc.

Each “node” (the term node not used here in the usual sense) of a GC Power Plus
system contains two MC601 processors and 4 T805 transputers which are responsible
for the communication. Two nodes are placed on one board, while 4 boards are inter-
connected with 16 C004 static routers to maintain the intercommunication within a
so-called GC-cube. For every 4 nodes one redundant node is present for fault-tolerance.
To complement the computing power, a parallel 1/O system, the Parallel Storage Sys-
tem is available to aid in the handling of large-scale applications which require massive
1/0.

The communication speed of the system is presently not particularly high with
respect to the processor speed (although Parsytec from its PowerStone project claims
that the present choice of computational versus communication capacity is optimal
from the viewpoint of cost-effectiveness). There are plans to use T9000 transputers
for communication instead of the present T805s and to replace the C004 routers by its
successor, the C104. This would speed up the communication by at least a factor of
10, making the computation/communication speeds more balanced.
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In the Parsytec CC series, also equipped with the MC604 but with ATM HS links,
the link speed is up to about 75 MB/s. The CC series, however, is primarily directed
to the embedded systems market.

The PARIX operating system is Unix-like. It allows to specify various virtual
topologies onto the actual 2-D grid topology to match possible natural application
topologies. Besides Parsytecs own communication library, PVM and PARMACS are
available. An MPI communication library is presently developed.

Measured Performances:

Early experiments have been done on a 64-processor system. On 4 processors the
solution of an order N = 1000 dense linear system attained a speed of 141 Mflop/s. For
a scaled-up system on 32 processors a speed of 1007 Mflop/s was found, while for the
NAS Embarassingly Parallel benchmark (see [13] a speed of 2.8 Gflop/s was observed
on 64 processors.
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4 Systems Disappeared from the List

As already stated in the introduction the list of systems is not complete. On one hand
this caused by the sheer number of systems that are presented to the market and are
often very similar to systems described above (for instance, the Volvox system not
listed is very similar but not equivalent to the listed Alex AVX system and there are
numerous other examples). On the other hand there many systems that are still in
operation around the world, often in considerable quantities that for other reasons are
excluded. The most important reasons are:

e The system is not marketed anymore. This is generally for one of two reasons:

— The manufacturer is out of business.

— The manufacturer has replaced the system by a newer model of the same
type or even of a different type.

e The system has become technologically obsolete in comparison to others of the
same type. Therefore, listing them is not sensible anymore.

Below we present a table of systems that fall into one of the categories mentioned
above. We think this may have some sense to those who come across machines that
are still around but are not the latest in their fields. It may be interesting at least to
have an indication how such systems compare to the newest ones and to place them in
context.

It is good to realise that although systems have disappeared from the section above
they still may exist and are actually sold. However, their removal stems in such cases
mainly from the fact that they are not serious candidates for high-performance com-
puting anymore.

The table is, again, not complete and admittedly somewhat arbitrary. The data
are in a highly condensed form: the system name, system type, theoretical maximum
performance of a fully configured system, and the reason for their disappearance is
given. The arbitrariness lies partly in the decision which systems are still sufficiently
of interest to include and which are not. For instance, the Convex C-1 is not included,
while the Alliant FX/80 is. The reason is that the C-1 is conceptually is not differ-
ent from the later generations of single-processor Convex vector processors, while the
Alliant FX /80 was fairly different from its successor the Alliant FX/2800.

Machine: Alliant FX/2800.

Type: Shared memory vector-parallel, max. 28 processors.
Theoretical Peak performance: 1120 Mflop/s

Reason for disappearance:Manufacturer out of business.

Machine: BBN TC2000.

Type: Virtual shared memory parallel, max. 512 processors.

Theoretical Peak performance: 1 Gflop/s

Reason for disappearance: Manufacturer has discontinued marketing parallel com-
puter systems.
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Machine: Cambridge Parallel Processing DAP Gamma.

Type: Distributed memory processor array system.

Theoretical Peak performance: 1.6 Gflop/s (32-bit)

Reason for disappearance: replaced by newer Gamma Il series (see 3.2.2).

Machine: Convex C3200, C3400, C3800.

Type: Shared memory vector-parallel, max. 8 processors (C3880).
Theoretical Peak performance: 960 Mflop/s

Reason for disappearance: replaced by newer C4 series (see 3.3.3).

Machine: Convex Meta Series.

Type: Distributed memory network of workstations.

Theoretical Peak performance: 200 Mflop/s per processor

Reason for disappearance: replaced by newer SPP-1200 series (see 3.4.8).

Machine: Convex SPP-1000.

Type: Distributed memory RISC based system, max. 128 processors.
Theoretical Peak performance: 25.6 Gflop/s

Reason for disappearance: replaced by newer SPP-1200 series (see 3.4.8).

Machine: Cray Computer Corporation Cray-2.

Type: Shared memory vector-parallel, max. 4 processors.
Theoretical Peak performance: 1.95 Gflop/s

Reason for disappearance: Manufacturer out of business.

Machine: Cray Computer Corporation Cray-3.

Type: Shared memory vector-parallel, max. 16 processors.
Theoretical Peak performance: 16 Gflop/s

Reason for disappearance: Manufacturer out of business.

Machine: Cray Research Inc. APP.

Type: Shared memory RISC based system, max. 84 processors.

Theoretical Peak performance: 6.7 Gflop/s

Reason for disappearance: Product line discontinued, gap expected to be filled by
Cray J90 (see 3.3.1).

Machine: Cray T3D.

Type: Distributed memory RISC based system, max. 2048 processors.
Theoretical Peak performance: 307 Gflop/s

Reason for disappearance: replaced by newer T3E (see 3.4.4).

Machine: Cray Research Inc. Cray Y-MP, Cray Y-MP M90.
Type: Shared memory vector-parallel, max. 8 processors.
Theoretical Peak performance: 2.6 Gflop/s

Reason for disappearance: replaced by newer T90 (see 3.3.1).
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Machine: Cray Y-MP C90.

Type: Shared memory vector-parallel, max. 16 processors.
Theoretical Peak performance: 16 Gflop/s

Reason for disappearance: replaced by newer T90 (see 3.3.1).

Machine: Digital Equipment Corp. Alpha farm.

Type: Distributed memory RISC based system, max. 4 processors.

Theoretical Peak performance: 0.8 Gflop/s

Reason for disappearance: replaced by newer AlphaServer clusters (see 3.3.4).

Machine: Fujitsu VPP500 series.

Type: Distributed memory multi-processor vectorprocessors, max. 222 processors.
Theoretical Peak performance: 355 Gflop/s

Reason for disappearance: replaced by the VPP300 series (see 3.4.6).

Machine: Fujitsu VPX200 series.

Type: Single-processor vectorprocessors.

Theoretical Peak performance: 5 Gflop/s

Reason for disappearance: replaced by the VPP300 series (see 3.4.6).

Machine: Hitachi SR2001 series.

Type: Distributed memory RISC based system, max. 128 processors.
Theoretical Peak performance: 23 Gflop/s

Reason for disappearance: Replaced by the newer SR2201 (see 3.4.7).

Machine: IBM ES/9000 series.

Type: Shared memory vector-parallel system, max. 6 processors.

Theoretical Peak performance: 2.67 Gflop/s

Reason for disappearance: IBM does not pursue high-performance computing by
this product line anymore.

Machine: IBM Power /4.

Type: Shared memory RISC based system, max. 4 processors.

Theoretical Peak performance: 336 Mflop/s

Reason for disappearance: Product line discontinued, gap expected to be filled by
SP2 (see 3.4.9).

Machine: IBM SP1 series.

Type: Distributed memory RISC based system, max. 64 processors.
Theoretical Peak performance: 8 Gflop/s

Reason for disappearance: Replaced by the newer SP2 (see 3.4.9).
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Machine: Intel iPSC/860.

Type: Distributed memory parallel hypercube, max. 128 processors.

Theoretical Peak performance: 7.7 Gflop/s

Reason for disappearance: replaced by newer Intel Paragon XP (MP) series (see
3.4.10).

Machine: Kendall Square Research KSR2.

Type: Virtually shared memory parallel, max. 1088 processors.
Theoretical Peak performance: 400 Gflop/s

Reason for disappearance: Kendall Square has terminated its business.

Machine: Meiko CS-1 series.

Type: Distributed memory RISC based system.

Theoretical Peak performance: 80 Mflop/s per processor

Reason for disappearance: Replaced by the newer CS-2 (see 3.4.12).

Machine: NEC SX-2.

Type: Single-processor vector processors.

Theoretical Peak performance: 1.3 Gflop/s

Reason for disappearance: replaced by newer SX-4 series (see 3.3.5).

Machine: NEC SX-3R.

Type: Shared memory multi-processor vector processors, max. 4 processors.
Theoretical Peak performance: 1.3 Gflop/s

Reason for disappearance: replaced by newer SX-4 series (see 3.3.5).

Machine: Parsys SN9000 series.

Type: Distributed memory RISC based system, max. 2048.

Theoretical Peak performance: 51.2 Gflop/s

Reason for disappearance: Replaced by the newer TA9000 (see 3.4.16).

Machine: Siemens-Nixdorf VP2600 series.

Type: Single-processor vectorprocessors.

Theoretical Peak performance: 5 Gflop/s

Reason for disappearance: replaced by the VPP300 series (see 3.4.6).

Machine: Stern Computing Systems SSP.

Type: Shared memory multi-processor, max. 6 processors.

Theoretical Peak performance: 2 Gflop/s

Reason for disappearance: Vendor terminated its business just before delivering
first systems.
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Machine: Thinking Machine Corporation CM-2(00).

Type: SIMD parallel machine with hypercube structure, max. 64K processors.
Theoretical Peak performance: 31 Gflop/s

Reason for disappearance: was replaced by the newer CM-5 (but see below).

Machine: Thinking Machine Corporation CM-5.

Type: Distributed memory RISC based system, max. 16K processors.

Theoretical Peak performance: 2 Tflop/s

Reason for disappearance: Thinking Machine Corporation has stopped manufac-
turing hardware and hopes to keep alive as a software vendor.

Machine: Transtech Paramid series.

Type: Distributed memory RISC based system, max. 64 processors.

Theoretical Peak performance: 6.4Gflop/s

Reason for disappearance: Transtech now mostly manufactures PC extension
boards with IBM MC603 processors as performance boosters..
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5 Systems under development

Although we wanted mainly to discuss real, marketable systems and no experimental,
special purpose, or even speculative machines, we want to include a section on systems
that are in a far stage of development and have a fair chance of reaching the market.
For inclusion in section 3 we set the rule that the system described there should be on
the market within a period of 6 months from announcement. The systems described in
this section will in all probability appear within one year from the publication of this
report.

However, there are vendors who do not want to disclose any specific data on their
new machines until they are actually beginning to ship them (an example is the Convex
C4). We recognise the wishes of such vendors (it is generally wise not to stretch the
expectation of potential customers too long) and will not disclose such information.

Below we discuss systems that are expected to appear on the market between
somewhat more than half a year to a year from now.

5.1 The Fujitsu VPP300 successor

No new name or details has been disclosed for this system (the new product announce-
ment is scheduled for the 1st quarter of 1996). The following facts are known about
the system: it will connect several of the 16-processor VPP300 as its basic units to-
gether. Very probably a second level will be added to the crossbar that now connects
the processors in a VPP300 frame. The number of processors is also as yet unknown.
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