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Problem Speci�cationLet there be n storage devices, D1; D2; : : : ; Dn, each of which holds k bytes. These are called the \DataDevices." Let there be m more storage devices C1; C2; : : : ; Cm, each of which also holds k bytes. Theseare called the \Checksum Devices." The contents of each checksum device will be calculated from thecontents of the data devices. The goal is to de�ne the calculation of each Ci such that if any m ofD1; D2; : : : ; Dn; C1; C2; : : : ; Cm fail, then the contents of the failed devices can be reconstructed fromthe non-failed devices.1 IntroductionError-correcting codes have been around for decades [Ber68, PW72, MS77]. However, the technique of dis-tributing data among multiple storage devices to achieve high-bandwidth input and output, and using one ormore error-correcting devices for failure recovery is relatively new. It came to the fore with \Redundant Arrays ofInexpensive Disks" (RAID) where batteries of small, inexpensive disks were used to combine high storage capacity,bandwidth, and reliability all at a low cost [PGK88, Gib92, CLG+94]. Since then, the technique has been used todesign multicomputer and network �le systems with high reliability and bandwidth [HO93, CLVW94], and to de-sign fast checkpointing systems where extra processors provide reliability instead of disks [PL94, PKD95, CD96].We call all such systems \RAID-like" systems.The above problem is central to all RAID-like systems. When storage is distributed among n devices, thechances of one of these devices failing becomes signi�cant. To be speci�c, if the mean time before failure of onedevice is F , then the mean time to failure of a system of n devices is Fn . Thus in such systems, fault-tolerancemust be taken into account.For small values of n and reasonably reliable devices, one checksum device is often su�cient for fault-tolerance.This is the \RAID Level 5" con�guration, and the coding technique is called \n+1-parity." [PGK88, Gib92,CLG+94]. With n+1-parity, the i-th byte of the checksum device is calculated to be the bitwise exclusive or(XOR) of the i-th byte of each data device. Thus if any one of the n+1 devices fails, it can be reconstructed as theXOR of the remaining n devices. N+1-parity is attractive because of its simplicity. It requires one extra storagedevice, and one extra write operation per write to any single device. Its main disadvantage is that it cannotrecover from more than one simultaneous failure.As n grows, the ability to tolerate multiple failures becomes important [BM93]. Several techniques have beendeveloped for this [GHK+89, BM93, BBBM94, Par95], the concentration being small values of m. The mostgeneral technique for tolerating m simultaneous failures with exactly m checksum devices is a technique basedon Reed-Solomon coding. This fact is cited in almost all papers on RAID-like systems. However, the techniqueitself is harder to come by.The technique has an interesting history. It was �rst presented in terms of secret sharing by Karnin [KGH83],and then by Rabin [Rab89] in terms of information dispersal. Preparata [Pre89] then showed the relationshipbetween Rabin's method and Reed-Solomon codes, hence the labeling of the technique as Reed-Solomon coding.2



The technique has recently been discussed in varying levels of detail by Gibson [Gib92], Schwarz [SB92] andBurkhard [BM93], with citations of standard texts on error correcting codes [Ber68, PW72, MS77, vL82, WB94]for completeness.There is one problem with all the above discussions of this technique | they require the reader to have adecent knowledge of algebra and coding theory. Any programmer with a bachelor's degree in computer sciencehas the skills to implement this technique, however few such programmers have enough background in algebraand coding theory to understand the presentations in these papers and books.The goal of this paper is to provide a presentation that can be understood by any systems programmer. Nobackground in algebra or coding theory is assumed. We give a complete speci�cation of the technique plusimplementation details. A programmer should need no other references besides this paper to implement Reed-Solomon coding for reliability from multiple device failures.2 General StrategyFormally, our failure model is that of an erasure. When a device fails, it shuts down, and the system recognizesthis shutting down. This is as opposed to an error, in which a device failure is manifested by storing and retrievingincorrect values that can only be recognized by sort of embedded coding [PW72, Wig88].The calculation of the contents of each checksum device Ci requires a function Fi applied to all the datadevices. Figure 1 shows an example con�guration using this technique (which we henceforth call \RS-Raid") forn = 9 and m = 2. The coding on the checksum devices C1 and C2 is computed by using functions F1 and F2respectively.
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words each. The coding functions Fi operate on a word-by-word basis, as in Figure 2, where xi;j represents thej-th word of device Xi.D1 D2 C1 C2d1;1 d2;1 c1;1 = F1(d1;1; d2;1) c2;1 = F2(d1;1; d2;1)d1;2 d2;2 c1;2 = F1(d1;2; d2;2) c2;2 = F2(d1;2; d2;2)d1;3 d2;3 c1;3 = F1(d1;3; d2;3) c2;3 = F2(d1;3; d2;3)... ... ... ...d1;l d2;l c1;l = F1(d1;l; d2;l) c2;l = F2(d1;l ; d2;l)Figure 2: Breaking the storage devices into words (n = 2, m = 2, l = 8kw )To make the notation simpler, we can assume that each device holds just one word and drop the extra subscript.Thus we view our problem as consisting of n data words d1; : : : ; dn and m checksum words c1; : : : ; cm which arecomputed from the data words in such a way that the loss of any m words can be tolerated.To compute a checksum word ci for the checksum device Ci, we apply function Fi to the data words:ci = Fi(d1; d2; : : : ; dn):If a data word on device Dj is updated from dj to d0j, then each checksum word ci must be recomputed byusing a function Gi;j such that: c0i = Gi;j(dj; d0j; ci):When up to m devices fail, we reconstruct the system as follows. First, for each failed data device Dj , weconstruct a function to restore the words in Dj from the words in the non-failed devices. When that is completed,we recompute any failed checksum devices Ci with Fi.For example, suppose m = 1. We can describe n+1-parity in the above terms. There is one checksum deviceC1, and words consist of one bit (w = 1). To compute each checksum word c1, we take the parity (XOR) of thedata words: c1 = F1(d1; : : : ; dn) = d1 � d2 � : : :� dn:If a word on data device Dj changes from dj to d0j, then c1 is recalculated from the parity of its old value andthe two data words: c01 = G1;j(dj; d0j; c1) = c1 � dj � d0j:If a device Dj fails, then each word may be restored as the parity of the corresponding words on the remainingdevices: dj = d1 � : : :� dj�1 � dj+1 � : : :� dn � c1:In such a way, the system is resilient to any one device failure.To restate, our problem is de�ned as follows. We are given n data words d1; d2; : : : ; dn all of size w. We willde�ne functions F and G which we use to calculate and maintain the checksum words c1; c2; : : : ; cm. We will then4



describe how to reconstruct the words of any lost data device when up to m devices fail. Once the data wordsare reconstructed, the checksum words can be recomputed from the data words and F . Thus, the entire systemis reconstructed.3 Overview of the RS-Raid AlgorithmThere are three main aspects of the RS-Raid algorithm: the use of the Vandermonde matrix to calculate andmaintain checksum words, the use of Gaussian Elimination to recover from failures, and the use of Galois Fieldsto perform arithmetic. Each is detailed below:Calculating and Maintaining Checksum WordsWe will de�ne each function Fi as a linear combination of the data words:ci = Fi(d1; d2; : : : ; dn) = nXj=1 djfi;jIn other words, if we represent the data and checksum words as the vectors D and C, and the functions Fi asrows of the matrix F , then the state of the system adheres to the following equation:FD = C:We de�ne F to be the m � n Vandermonde matrix: fi;j = ji�1, and thus the above equation becomes:2666664 f1;1 f1;2 : : : f1;nf2;1 f2;2 : : : f2;n... ... ...fm;1 fm;2 : : : fm;n 37777752666664 d1d2...dn 3777775 =2666664 1 1 1 : : : 11 2 3 : : : n... ... ... ...1 2m�1 3m�1 : : : nm�1 37777752666664 d1d2...dn 3777775 = 2666664 c1c2...cm 3777775 :When one of the data words dj changes to d0j, then each of the checksum words must be changed as well. Thiscan be e�ected by subtracting out the portion of the checksum word that corresponds to dj, and adding therequired amount for d0j . Thus, Gi;j is de�ned as follows:c0i = Gi;j(dj; d0j; ci) = ci + fi;j(d0j � dj):Thus, the calculation and maintenance of checksum words can be done by simple arithmetic (however, it is aspecial kind of arithmetic, as explained below). 5



Recovering From FailuresTo explain recovery from errors, we de�ne the matrixA and the vector E as follows: A =h IF i , and E =h DC i.Then we have the following equation (AD = E):266666666666666664 1 0 0 : : : 00 1 0 : : : 0... ... ... ...0 0 0 : : : 11 1 1 : : : 11 2 3 : : : n... ... ... ...1 2m�1 3m�1 : : : nm�1
3777777777777777752666664 d1d2...dn 3777775 = 266666666666666664 d1d2...dnc1c2...cm

377777777777777775 :We can view each device in the system as having a corresponding row of the matrix A and of the vector E.When a device fails, we reect the failure by deleting the device's row from A and from E. What results a newmatrix A0 and a new vector E0 that adhere to the equation:A0D = E0:Suppose exactly m devices fail. Then A0 is a n � n matrix. Because matrix F is de�ned to be a Vandermondematrix, every subset of n rows of matrix A is guaranteed to be linearly independent. Thus, the matrix A0 isnon-singular, and the values of D may be calculated from A0D = E0 using Gaussian Elimination. Hence all datadevices can be recovered.Once the values ofD are obtained, the values of any failed Ci may be recomputed fromD. It should be obviousthat if fewer than m devices fail, the system may be recovered in the same manner, choosing any n rows of A0 toperform the Gaussian Elimination. Thus, the system can tolerate any number of device failures up to m.Arithmetic over Galois FieldsA major concern of the RS-Raid algorithm is that the domain and range of our computation are binary wordsof a �xed length w. Although the above algebra is guaranteed to be correct when all the elements are in�niteprecision real numbers, we must make sure that it is correct for these �xed-size words. A common error in dealingwith these codes is to perform all arithmetic over the integers modulo 2w. This does not work, as division is notde�ned for all pairs of elements (for example, (3� 2) is unde�ned modulo 4), rendering the Gaussian Eliminationunsolvable in many cases. Instead, we must perform addition and multiplication over a �eld with more than n+melements [PW72].Fields with 2w elements are called Galois Fields (denoted GF (2w)), and are a fundamental topic in algebra(e.g. [Her75, MS77, vL82]). This section de�nes how to perform addition, subtraction, multiplication, and divisione�ciently over a Galois Field. We give such a description without fully explaining Galois Fields in general.6



Appendix A contains a more detailed description of Galois Fields, and provides justi�cation for the arithmeticalgorithms in this section.The elements of GF (2w) are the integers from zero to 2w � 1. Thus, they may be represented by binary wordsof length w. As detailed in Appendix A, arithmetic of elements in a Galois Field is analogous to polynomialarithmetic modulo a primitive polynomial of degree w over GF (2). However, we can describe this arithmeticwithout going into the details of such polynomials.Addition and subtraction of elements of GF (2w) are simple. They are the XOR operation. For example, inGF (16): 11 + 7 = 1011� 0111 = 1100 = 12:11� 7 = 1011� 0111 = 1100 = 12:Multiplication and division are more complex. They require two mapping tables, each of length 2w, which areanalogous to logarithm tables for real numbers:� gflog[ NW ]: A table that maps an integer to its logarithm in the Galois Field. (NW = 2w.)� gfilog[ NW ]: An inverse table table that maps an integer to its inverse logarithm in the Galois Field.With these two tables, we can multiply two elements of GF (2w) by adding their logs and then taking theinverse log, which yields the product. To divide two numbers, we instead subtract the logs. Figure 3 shows animplementation in C: This implementation makes use of the fact that the inverse log of an integer i is equal tothe inverse log of i mod (2w � 1). (This fact is explained in Appendix A).
int mult(int a, int b)
{
  int sum_log;

  if (a == 0 || b == 0) return 0;
  sum_log = gflog[a] + gflog[b];
  if (sum_log >= NW-1) sum_log -= NW-1;
  return gfilog[sum_log];
}

int div(int a, int b)
{
  int diff_log;

  if (a == 0) return 0;
  if (b == 0) return -1; /*Can’t divide by 0*/
  diff_log = gflog[a] - gflog[b];
  if (diff_log < 0) diff_log += NW-1;
  return gfilog[diff_log];
}Figure 3: C code for multiplication and division over GF (2w)As with regular logarithms, we must treat zero as a special case, as the logarithm of zero is �1. Unlike regularlogarithms, the log of any non-zero element of a Galois Field is an integer, allowing for exact multiplication anddivision of Galois Field elements using these logarithm tables.7



An important step, therefore, once w is chosen, is generating the logarithm tables for GF (2w). The algorithmto generate the logarithm and inverse logarithm tables for any w can be found in Appendix A. As an example,we include the tables for GF (16) in Table 1:i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15gflog[i] �1 0 1 4 2 8 5 10 3 14 9 7 6 13 11 12gfilog[i] 1 2 4 8 3 6 12 11 5 10 7 14 15 13 9 1Table 1: Logarithm tables for GF (16)For example, in GF (16):3 � 7 = gfilog[gflog[3]+gflog[7]] = gfilog[4+10] = gfilog[14] = 913 � 10 = gfilog[gflog[13]+gflog[10]] = gfilog[13+9] = gfilog[7] = 1113� 10 = gfilog[gflog[13]-gflog[10]] = gfilog[13-9] = gfilog[4] = 33� 7 = gfilog[gflog[3]-gflog[7]] = gfilog[4-10] = gfilog[9] = 14Therefore, a multiplication or division requires one conditional, three table lookups (two logarithm tablelookups and one inverse table lookup), an addition or subtraction, and a modulo operation. For e�ciency in theC code above, we implement the modulo operation as a conditional and a subtraction or addition.4 The Algorithm SummarizedGiven n data devices and m checksum devices, the RS-Raid algorithm for making them fault-tolerant to upto m failures is as follows.1. Choose a value of w such that 2w � n + m. It is easiest to choose w = 8 or w = 16, as words then falldirectly on byte boundaries. Note that with w = 16, n+m can be as large as 65; 536.2. Set up the tables gflog and gfilog as described in Appendix A.3. Set up the matrix F to be the m � n Vandermonde matrix: fi;j = ji�1 (for 1 � i � m; 1 � j � n) wheremultiplication is performed over GF (2w).4. Use the matrix F to calculate and maintain each word of the checksum devices from the words of the datadevices. Again, all addition and multiplication is performed over GF (2w).5. If any number of devices up to m fail, then they can be restored in the following manner. Choose any n ofthe remaining devices, and construct the matrix A0 and vector E0 as de�ned previously. Then solve for Din A0D = E0. This enables the data devices to be restored. Once the data devices are restored, the failedchecksum devices may be recalculated using the matrix F .8



5 An ExampleAs an example, suppose we have three data devices and three checksum devices, each of which holds onemegabyte. Then n = 3, and m = 3. We choose w to be four, since 2w > n + m, and since we can use thelogarithm tables in Table 1 to illustrate multiplication.Next, we set up gflog and gfilog to be as in Table 1. We construct F to be a 3 � 3 Vandermonde matrix,de�ned over GF (16): F = 2664 10 20 3011 21 3212 22 32 3775 = 2664 1 1 11 2 31 4 5 3775Now, we can calculate each word of each checksum device using FD = C. For example, suppose the �rst word ofD1 is 3, the �rst word of D2 is 13, and the �rst word of D3 is 9. Then we use F to calculate the �rst words ofC1; C2, and C3: C1 = (1)(3) � (1)(13)� (1)(9)= 3� 13� 9= 0011� 1101� 1001 = 0111 = 7C2 = (1)(3) � (2)(13)� (3)(9)= 3� 9� 8= 0011� 1001� 1000 = 0010 = 2C3 = (1)(3) � (4)(13)� (5)(9)= 3� 1� 11= 0011� 0001� 1011 = 1001 = 9Suppose we change D2 to be 1. Then D2 sends the value (1 � 13) = (0001 � 1101) = 12 to each checksumdevice, which uses this value to recompute its checksum:C1 = 7� (1)(12) = 0111� 1100 = 11C2 = 2� (2)(12) = 2� 11 = 0010� 1011 = 9C3 = 9� (4)(12) = 9� 5 = 1001� 0101 = 12Suppose now that devices D2, D3, and C3 are lost. Then we delete the rows of A and E corresponding to D1,D2, and C3 to get A0D = E0: 2664 1 0 01 1 11 2 3 3775D = 2664 3119 37759



By applying Gaussian elimination, we can invert A0 to yield the following equation: D = (A0)�1E0, or:D = 2664 1 0 02 3 13 2 1 37752664 3119 3775 :From this, we get: D2 = (2)(3)� (3)(11)� (1)(9) = 6� 14� 9 = 1D3 = (3)(3) � (2)(11)� (1)(9) = 5� 5� 9 = 9And then: C3 = (1)(3)� (4)(1) � (5)(9) = 3� 4� 11 = 12Thus, the system is recovered.6 Implementation DetailsIn this section, we examine three implementation and performance issues. These are computing the contents ofthe checksum devices from scratch, updating the checksum devices when a data device changes, and performingrecovery.Computing the Checksum DevicesAssume that the data devices hold data, but that the checksum devices are uninitialized. This is the situationwhen this technique is used for checkpointing, and when an entire stripe is updated in disk-striping applications.There are two basic approaches that can be taken to initializing the checksum devices:
D D

D

D

D

D

D

D

C

C

C

1 2

3 4

5 6

N-1 N

1

2

m

Step 1

D D

D

D

D

D

D

D

C

C

C

1 2

3 4

5 6

N-1 N

1

2

m

Step 2

D D

D

D

D

D

D

D

C

C

C

1 2

3 4

5 6

N-1 N

1

2

m

Step NFigure 4: The broadcast algorithmThe Broadcast Algorithm (Figure 4): Each checksum device ci initializes its data to zero. Then each datadevice dj broadcasts its contents to every checksum device ci. Upon receiving dj's data, ci multiplies it by fi;j10



and XOR's it into its data space. When this is done, all the checksum devices are initialized. The time complexityof this method is roughly nSdevice� 1Rbroadcast + 1Rmult + 1Radd� ;Where Sdevice is the size of the device, Rbroadcast is the rate of message broadcasting, Rmult is the rate of performingGalois Field multiplication, and Radd is the rate of performing Galois Field addition (XOR). This assumes thatmessage-sending bandwidth dominates latency, and that the checksum devices do not overlap computation andcommunication signi�cantly.
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Cost of RecoveryIn the RS-Raid algorithm, recovery consists of performing Gaussian Elimination of an equation A0D = E0so that (A0)�1 is determined. Then, the contents of all the failed data devices may be calculated as a linearcombination of the devices in E0. Thus, recovery has two parts: the Gaussian Elimination, and the recalculation.Since at least n � m rows of A0 are identity rows, the Gaussian Elimination takes O(m2n) steps. As m islikely to be small this should be very fast (i.e. milliseconds), and thus should be performed redundantly by allthe devices (as opposed to performing the Gaussing Elimination with some sort of distributed algorithm).The recalculation of the failed devices can then be performed using either the broadcast or fan-in algorithm asdescribed above. The cost of recovery will be slightly greater than the cost of computing the checksum devices.7 ConclusionThis paper has presented a complete speci�cation for implementing Reed-Solomon coding for RAID-like sys-tems. With this coding, one can add m checksum devices to n data devices, and tolerate the failure of any mdevices. This has application in disk arrays, network �le systems and distributed checkpointing systems.This paper does not claim that RS-Raid coding is the best method of coding for all applications in this domain.For example, in the case where m = 2, evenodd coding [BBBM94] solves the problem with better performance,and one-dimensional parity [GHK+89] solves a similar problem with even better performance. However, RS-Raidcoding is the only general solution for all values of n and m.The table-driven approach for multiplication and division over a Galois Field is just one way of performingthese actions. For values where n+m � 65; 536, this is an e�cient software solution that is easy to implement anddoes not consume much physical memory. For larger values of n + m, other approaches (hardware or software)may be necessary. See papers by Broder [Bro91] and Clark [CW94], and Peterson's book [PW72] for examples ofother approaches.8 AcknowledgementsThe author thanks Joel Friedman, Kai Li, Norman Ramsey, Brad Vander Zanden and Michael Vose for theirvaluable comments and discussion concerning this paper.References[BBBM94] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An optimal scheme for tolerating doubledisk failures in RAID architectures. In 21st Annual International Symposium on Computer Architec-ture, pages 245|254, Chicago, IL, April 1994.[Ber68] E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, 1968.12
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Appendix A: Galois Fields, as Applied to this AlgorithmGalois Fields are a fundamental topic of algebra, and are given a full treatment in a number of texts [Her75,MS77, vL82]). This Appendix does not attempt to de�ne and prove all the properties of Galois Fields necessaryfor this algorithm. Instead, our goal is to give enough information about Galois Fields that anyone desiring toimplement this algorithm will have a good intuition concerning the underlying theory.A �eld GF (n) is a set of n elements closed under addition and multiplication, for which every element has anadditive and multiplicative inverse (except for the 0 element which has no multiplicative inverse). For example,the �eld GF (2) can be represented as the set f0; 1g, where addition and multiplication are both performed modulo2 (i.e. addition is XOR, and multiplication is the bit operator AND). Similarly, if n is a prime number, then we canrepresent the �eld GF (n) to be the set f0; 1; : : : ; n � 1g where addition and multiplication are both performedmodulo n.However, suppose n > 1 is not a prime. Then the set f0; 1; : : :; n� 1g where addition and multiplication areboth performed modulo n is not a �eld. For example, let n be four. Then the set f0; 1; 2; 3g is indeed closedunder addition and multiplication modulo 4, however, the element 2 has no multiplicative inverse (there is noa 2 f0; 1; 2; 3g such that 2a � 1 (mod 4)). Thus, we cannot perform our coding with binary words of size w > 1using addition and multiplication modulo 2w. Instead, we need to use Galois Fields.To explain Galois Fields, we work with polynomials of x whose coe�cients are in GF (2). This means, forexample, that if r(x) = x+ 1, and s(x) = x, then r(x) + s(x) = 1. This is becausex+ x = (1 + 1)x = 0x = 0:Moreover, we will be taking such polynomials modulo other polynomials, using the following identity:If r(x) mod q(x) = s(x), then s(x) is a polynomial with a degree less than q(x), and r(x) = q(x)t(x)+s(x), where t(x) is any polynomial of x.Thus, for example, if r(x) = x2 + x, and q(x) = x2 + 1, then r(x) mod q(x) = x+ 1.Let q(x) be a primitive polynomial of degree w whose coe�cients are in GF (2). This means that q(x) cannot befactored, and that the polynomial x can be considered a generator of GF (2w). To see how x generates GF (2w),we start with the elements 0, 1, and x, and then continue to enumerate the elements by multiplying the lastelement by x and taking the result modulo q(x) if it has a degree � w. This enumeration will end at 2w elements{ the last element multiplied by x mod q(x) will equal 1.For example, suppose w = 2, and q(x) = x2 + x + 1. To enumerate GF (4) we start with the three elements0, 1, and x, then then continue with x2 mod q(x) = x + 1. Thus we have four elements: f0; 1; x; x+ 1g. If wecontinue, we see that (x+ 1)x mod q(x) = x2 + x mod q(x) = 1, thus ending the enumeration.The �eld GF (2w) is constructed by �nding a primitive polynomial q(x) of degree w over GF (2), and thenenumerating the elements (which are polynomials) with the generator x. Addition in this �eld is performedusing polynomial addition, and multiplication is performed using polynomial multiplication and taking the resultmodulo q(x). Such a �eld is typically written GF (2w) = GF (2)[x]=q(x).15



Now, to use GF (2w) in the RS-Raid algorithm, we need to map the elements of GF (2w) to binary words ofsize w. Let r(x) be a polynomial in GF (2w). Then we can map r(x) to a binary word b of size w by setting theith bit of b to the coe�cient of xi in r(x). For example, in GF (4) = GF (2)[x]=x2+ x + 1, we get the followingtable: Generated Polynomial Binary DecimalElement Element Element b Representationof GF (4) of GF (4) of GF (4) of b0 0 00 0x0 1 01 1x1 x 10 2x2 x+ 1 11 3Addition of binary elements of GF (2w) can be performed by bitwise exclusive or. Multiplication is a little moredi�cult. One must convert the binary numbers to their polynomial elements, multiply the polynomials moduloq(x), and then convert the answer back to binary. This can be implemented, in a simple fashion, by using thetwo logarithm tables described in Section 3: one that maps from a binary element b to power j such that xj isequivalent to b (this is the gflog table, and is referred to in the literature as a \discrete logarithm"), and onethat maps from a power j to its binary element b. Each table will have 2w � 1 elements (there is no j such thatxj = 0). Multiplication then consists of converting each binary element to its discrete logarithm, then addingthe logarithms modulo 2w� 1 (this is equivalent to multiplying the polynomials modulo q(x)) and converting theresult back to a binary element. Division is performed in the same manner, except the logarithms are subtractedinstead of added. Obviously, elements where b = 0 must be treated as special cases. Therefore, multiplicationand division of two binary elements takes three table lookups and a modular addition.Thus, to implement multiplication over GF (2w), we must �rst set up the tables gflog and gfilog. To dothis, we �rst need a primitive polynomial q(x) of degree w over GF (2w). Such polynomials can be found in textson error correcting codes [Ber68, PW72]. We list examples for powers of two up to 64 below:w = 4 : x4 + x+ 1w = 8 : x8 + x4 + x3 + x2 + 1w = 16 : x16 + x12 + x3 + x+ 1w = 32 : x32 + x22 + x2 + x+ 1w = 64 : x64 + x4 + x3 + x+ 1We then start with the element x0 = 1, and enumerate all non-zero polynomials over GF (2w) by multiplyingthe last element by x, and taking the result modulo q(x). This is done in Table 2 below for GF (16), whereq(x) = x4 + x+ 1.It should be clear how this enumeration can be used to generate the gflog and gfilog arrays in Table 1. TheC code in Figure 6 shows how to generate these arrays for w = 16:16



Generated Polynomial Binary DecimalElement Element Element Element0 0 0000 0x0 1 0001 1x1 x 0010 2x2 x2 0100 4x3 x3 1000 8x4 x + 1 0011 3x5 x2 + x 0110 6x6 x3 + x2 1100 12x7 x3 + x + 1 1011 11x8 x2 + 1 0101 5x9 x3 + x 1010 10x10 x2 + x + 1 0111 7x11 x3 + x2 + x 1110 14x12 x3 + x2 + x + 1 1111 15x13 x3 + x2 + 1 1101 13x14 x3 + 1 1001 9x15 1 0001 1Table 2: Enumeration of the elements of GF (16)
unsigned int q_x = 0210013;
unsigned int x_to_16 = 0200000;
unsigned short gflog[0200000];
unsigned short gfilog[0200000];

setup_tables()
{
  unsigned int binary_el, log;

  binary_el = 1;
  for (log = 0; log < 0177777; log++) {
    gflog[binary_el] = (short) log;
    gfilog[log] = (short) binary_el;
    b = b << 1;
    if (b & x_to_16) b = b ^ q_x;
  }
}Figure 6: C Code for Generating the logarithm tables of GF (216)17


