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least-squares problems [31], solution of integral equations [18], and calculationof splines [22].Speci�cally, the LLS problem consists in �nding the vector x that satis�esminx kAx� bk2 (1)where A is an m � n coe�cient matrix and b is a vector of n components.Basically, depending on the properties of A, the LLS problem has a uniquesolution or in�nite solutions. Consider m � n, then Ax = b de�nes an overde-termined linear system (there are more equations than unknowns). If A has fullrank (rank(A) = n), then there exists a unique solution to the LLS problem.Otherwise, if A is rank-de�cient (rank(A) < n), there exist in�nite solutionsand the minimum 2-norm solution,minx kxk2; (2)is usually the required solution to the LLS problem.On the other hand, when m < n, there exist in�nite solutions or no solutionto the underdetermined linear system Ax = b, but the LLS problem still has aunique minimum norm solution.A more detailed description of the LLS problem and related issues aboutexistence and uniqueness of solutions, sensitivity, etc., can be consulted in [12,20,30,37].Let us focus now on the existing LLS solvers. If A has full rank, a fastmethod based on the QR factorization with BLAS-3 can be applied to solvethe problem. However, if A is rank-de�cient or its rank is unknown, alterna-tive methods must be applied. Therefore, no general fast method is availableunless the matrix has full rank and it is known a priori. Currently, the twowidely accepted numerical tools for solving the rank-de�cient LLS problem arethe Singular Value Decomposition (SVD) and the complete orthogonal decom-position [20]. The former is considered as the most reliable algorithm for solvingthe LLS problem but it presents an important drawback: its higher computa-tional cost. In contrast, the complete orthogonal decomposition is based ona low-cost algorithm, the QR decomposition with column pivoting, hereafterQRP. It theoretically provides less reliable rank determination, yet it usuallyperforms well in practice. The LAPACK library provides driver subroutines forboth approaches [1].In this paper we present several faster algorithms for solving the LLS prob-lem. We have developed code that has been included in LAPACK release 3.0.The new methods are complete block-partitioned algorithms, that is, the maincomputations are block oriented and implemented by using BLAS-3.Our new algorithms can be categorized into two di�erent types. The �rsttype is based on a new BLAS-3 implementation of the QRP developed byG. Quintana-Ort��, X. Sun and C. H. Bischof [34]. The second type relies on2



a windowed version of the QRP developed by C. H. Bischof and G. Quintana-Ort�� [10,11].Our new LLS methods are faster than the existing methods on rank-de�cientmatrices and, when applied to full-rank matrices, they perform very close to theLLS solver for full-rank matrices. Therefore, these methods can be successfullyapplied to all types of matrices and achieve good performance.The organization of the paper is as follows. In section 2 we brie
y describethe LLS solvers currently included in LAPACK. In section 3 we introduce thebasic tools for our algorithms (BLAS-3 QRP and windowed QRP); then, wepresent the new LLS solvers and outline their advantages. In section 4 theresults of the experimental study are reported. Finally, section 5 contains theconcluding remarks.2 LLS solvers available in LAPACKCurrently, the LAPACK library provides three di�erent driver subroutinesfor solving the LLS problem: xGELS, xGELSX, and xGELSS.Subroutine xGELS solves (1) when rank(A) = min(m;n), that is, when A hasfull rank. If m > n, it computes the unique solution of the over-determined lin-ear system. On the other hand, ifm < n, then it computes the minimum2-normsolution of the undetermined problem. xGELS is based on the QR factorizationwith BLAS-3, thus providing a high-speed computational tool.When rank(A) < min(m;n), subroutines xGELSX and xGELSS compute thesolution that minimizes both kAx� bk2 and kxk2. The �rst subroutine is basedon the complete orthogonal factorization that uses the QR factorization withcolumn pivoting, whereas the second one is based on the SVD. xGELSX is usuallymuch faster than xGELSS, though it is completely based on BLAS-2.All the above mentioned subroutines allow the computation of several so-lutions x1; x2; : : : ; xk to di�erent problems de�ned by b1; b2; : : : ; bk with thesame coe�cient matrix in just one call. It should be noted that this processis di�erent from minimizing kAX �Bk2, where X = [x1; x2; : : : ; xk] and B =[b1; b2; : : : ; bk].Since our algorithms also compute a complete orthogonal factorization, nextwe will describe subroutine xGELSX.2.1 Subroutine xGELSXThe computational tasks carried out by this subroutine are the following:1. Matrices A andB are scaled (if necessary) to avoid over
ow and under
ow.2. The QR factorization with column pivoting of the matrix A is computed:AP = QR: 3



3. From the triangular matrix R, the numerical rank r of A is obtained usingthe incremental condition estimator ICE [5, 6]. This value de�nes thefollowing partition of R: R = � R11 R120 R22 �where R11 is an r � r well-conditioned upper triangular matrix.4. R12 is zeroed applying unitary transformations from the right de�ned byY : (R11; R12) = (T11; 0)Y:5. The unitary transformations of stage 2 are also applied to B from the left:QHB:6. T�111 (QHB) is computed. Speci�cally, this stage consists in solving anupper triangular linear system with a possibly multiple right-hand sidematrix.7. Y H is applied to the previous result: Y H(T�111 QHB):8. The solution X is obtained by applying the permutation matrix P to theresult of the previous stage: X = P (Y HT�111 QHB):9. A and X are unscaled (if necessary).3 New algorithms for the LLS problemIn this section we �rst describe some key tools of our LLS solvers: a BLAS-3version of the QRP, and two windowed pivoting versions of the QRP. Then weoutline the main advantages of our LLS solvers.3.1 BLAS-3 QR factorization with column pivoting (xGEQP3)This algorithm, developed by G. Quintana-Ort��, X. Sun and C. H. Bischof [34]and called xGEQP3, is a BLAS-3 version of QRP with considerable performanceimprovements over LINPACK subroutine xQRDC (based on BLAS-1) and LA-PACK subroutine xGEQPF (based on BLAS-2), while maintaining the same nu-merical behavior as those implementations.For each column, both LINPACK and LAPACK implementations select onecolumn, permute it, compute the re
ector that zeroes its components underthe matrix diagonal, and apply it to the rest of the matrix. LINPACK codeperforms the update by means of BLAS-1, whereas LAPACK code performsthe update by means of BLAS-2. In contrast, for each stage the new methodonly updates one column and one row of the rest of the matrix (since that is theonly information needed for the next pivoting phase). Thus, the update of the4



rest of the matrix is delayed until nb columns have been processed and thereforenb re
ectors are available. This delay allows the use of BLAS-3 kernels, thusobtaining a faster execution speed.3.2 New block-algorithms for computing rank-revealingQR (RRQR)factorizations xGEQPX and xGEQPYThese two new methods, developed by C. H. Bischof and G. Quintana-Ort�� [10,11], are based on a faster approach.Both algorithms consist of two stages: preprocessing and postprocessing.The �rst stage is an e�cient block-oriented algorithm for computing an approx-imate RRQR factorization. Basically, it is a windowed version of the QRP,based on BLAS-3 and monitorized by Bischof's incremental condition estima-tion (ICE) [5, 6]. The second stage is an e�cient implementation of RRQRalgorithms well-suited for triangular matrices. Subroutine xGEQPX includes avariant of S. Chandrasekaran and I. Ipsen's algorithm [14] with improvementswith respect to condition estimation, termination criteria and Givens update.A theoretical study as well as the description of this postprocessing algorithmcan be found in [35]. Subroutine xGEQPY includes a variant of C. T. Pan andP. T. P. Tang's algorithm [32] with similar improvements.The experimental study in [10] shows that the performances of the these twonew algorithms are usually within 15% of the performance of QR factorization(LAPACK xGEQRF) but 2 to 3 times faster than the QR factorization withcolumn pivoting (LAPACK xGEQPF).3.3 New LLS solversUsing the above mentioned algorithms we have developed the following threeLLS solvers:xGELSY: One of the main di�erences of this solver is that it performs stage 2(the QR factorization with column pivoting of the coe�cient matrix) bymeans of subroutine xGEQP3.xGELSA: This algorithm performs stage 2 by using subroutine xGEQPX.xGELSB: This algorithm performs stage 2 by using subroutine xGEQPY.The advantages of our new methods over the current implementations arethe following:Faster QRP decomposition: (Step 2 in algorithm xGELSX). All the new solversuse BLAS-3 to compute the QRP factorization of the coe�cient matrix.Experience of previous experimental studies shows that xGEQP3, xGEQPX,and xGEQPY are much faster than LINPACK and LAPACK QRP [10,34].5



Faster annihilation of R12: (Step 4). LAPACK subroutine xGELSX nulli�esR12 from the right by using BLAS-2 code, while the three new drivers useBLAS-3.Faster update of B: (Steps 5 and 7). LAPACK subroutine xGELSX updatesmatrix B by means of BLAS-2 code (subroutine xORM2R for stage 5 andxLATZM for stage 7), whereas the new drivers use BLAS-3 code in bothcases. Solver xGELSY uses subroutine xORMQR for stage 5 and xORMRZ forstage 7). On the other hand, solvers xGELSA and xGELSB do not usesubroutine xORMQR since that update is carried out while matrixA is beingtriangularized and, therefore, the same block re
ectors are used in bothtasks.Faster permutation: (Step 8). The original code in LAPACK uses a 
oat-ing point vector as workspace to control the components that have beenpermuted. Our new algorithms use this vector in a faster and more sim-ple way: each column to be permuted is copied to this vector and thenit is moved to its proper position. The new method requires the sameworkspace and is faster since no comparisons between 
oating point num-bers are required.All these advantages provide faster LLS solvers. The important improve-ments in the execution speed of our new algorithms are due to the fact that allstages in the process have been redesigned to use BLAS-3 and are block-oriented.Thus, we expect that the improvement of the new drivers will be similar to thatobtained when migrating an application from BLAS-2 to BLAS-3.Single, double, complex, and double complex code for xGELSY, xGELSA, andxGELSB have been developed.4 Experimental ResultsWe report in this section the experimental results comparing the doubleprecision codes DGELS, DGELSX, and DGELSS from LAPACK, and our new solversDGELSY, DGELSA and DGELSB. The tests included a wide range of platforms: IBMRS/6000-370, SUN HyperSPARC @ 150MHz, SGI MIPS R8000 @ 90MHz, DECAlpha/AXP, and HP 9000/715. In each case, we used the vendor-supplied BLAS(ESSL, Performance Library, SGIMATH, DXML, and Blaslib, respectively).We only present the results on the IBM and the SUN since similar resultswere obtained on the other platforms.We generated 18 di�erent matrix types to evaluate the algorithms, withvarious singular value distributions and numerical rank ranging from 3 to fullrank. Details of the test matrix generation are beyond the scope of this paper,and we give only a brief synopsis here.Test matrices 1 through 5 were designed to exercise column pivoting. Matrix6 was designed to test the behavior of the condition estimation in the presence6



Table 1: Test Matrix Types (p = min(m;n)).N# Description r1 Matrix with rank p=2� 1 p=2� 12 A(:;2 : p) has full rank, R(A) = R(A(:;2 : p)) p� 13 Full rank p4 A(:;1 : 3) small in norm, A(:;4 : n) of full rank p� 35 A(:;1 : 3) small in norm, R(A) = R(A(:;1 : 3)) 36 5 smallest singular values clustered p7 Break1 distribution p=2 + 18 Reversed break1 distribution p=2 + 19 Geometric distribution p=2 + 110 Reversed geometric distribution p=2 + 111 Arithmetic distribution p=2 + 112 Reversed arithmetic distribution p=2 + 113 Break1 distribution p� 114 Reversed break1 distribution p� 115 Geometric distribution 3p=4 + 116 Reversed geometric distribution 3p=4 + 117 Arithmetic distribution p� 118 Reversed arithmetic distribution p� 1of clusters for the smallest singular value. For the other cases, we employedthe LAPACK matrix generator xLATMS, which generates random symmetricmatrices by multiplying a diagonal matrix with prescribed singular values byrandom orthogonal matrices from the left and right. For the break1 distribution,all singular values are 1.0 except for one. In the arithmetic and geometricdistributions, they decay from 1.0 to a speci�ed smallest singular value in anarithmetic and geometric fashion, respectively. In the \reversed" distributions,the order of the diagonal entries was reversed. For test cases 7 though 12,we used xLATMS to generate a matrix of order n2 + 1 with smallest singularvalue 5.0e-4, and then interspersed random linear combinations of these \full-rank" columns to pad the matrix to order n. For test cases 13 through 18, weused xLATMS to generate matrices of order n with the smallest singular valuebeing 2.0e-7. We believe this set to be representative of matrices that can beencountered in practice.4.1 Computing performanceIn all the �gures, we employ the solid line for the performance of DGELSX,the dotted line with symbol \+" for DGELSY, the dotted line with symbol \x"7
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Figure 1: Average Performance (in seconds) versus Block Size onthe IBM RS/6000-370 for 150 � 150 (left) and 300 � 150 matrices(right).for DGELSA, and the dotted line with symbol \*" for DGELSB.In �gures 1 through 4 (IBM), and �gures 5 through 8 (SUN), we presentthe results on square and rectangular matrices of size 150, 250, 300, 500, and1000 using a block size (nb) of 1, 5, 8, 12, 16, 20, and 24. These �gures showthe average performances of algorithms DGELSX, DGELSY, DGELSA, and DGELSBon the 18 matrix types versus the block size.Let us focus now on the di�erence between our new LLS solvers and DGELSX.The latter solver is based on BLAS-2 and it is not block-oriented. Therefore,its execution time, as shown in all the �gures, is not a�ected by the block sizeat all. The behavior of our LLS solvers is very di�erent. Since all of themare mainly based on BLAS-3 subroutines, the new solvers perform better thanDGELSX in all cases except for very small matrices. DGELSA and DGELSB obtainvery similar execution times since they di�er only in the post-processing stageand it has very little in
uence on the overall execution time of the algorithm.Besides, both solvers achieve better results than DGELSY.Figure 9 does not show the average performance, but the exact behaviorof the solvers on every one of the 18 matrix types for block size 20. We onlypresent the required seconds for 1000 � 500 on the SUN. The plot shows thatin some cases the new solvers are up to 3 times faster.Table 2 compares all the solvers in LAPACK and our new solvers. In orderto compare DGELS, the tested matrices have full rank. The solver based on theSVD, DGELSS, is much slower than the others. The new solvers DGELSY, DGELSA,and DGELSB obtain performances much higher than the LAPACK solver DGELSX8
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Figure 2: Average Performance (in seconds) versus Block Size onthe IBM RS/6000-370 for 250 � 250 (left) and 500 � 250 matrices(right).
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Figure 3: Average Performance (in seconds) versus Block Size onthe IBM RS/6000-370 for 500� 500 (left) and 1000� 500 matrices(right). 9
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Figure 4: Average Performance (in seconds) versus Block Size onthe IBM RS/6000-370 for 1000� 1000 matrices.
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Figure 5: Average Performance (in seconds) versus Block Size on theSUN Hypersparc for 150� 150 (left) and 300� 150 matrices (right).10
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Figure 6: Average Performance (in seconds) versus Block Size on theSUN Hypersparc for 250� 250 (left) and 500� 250 matrices (right).
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Figure 7: Average Performance (in seconds) versus Block Size onthe SUN Hypersparc for 500 � 500 (left) and 1000 � 500 matrices(right). 11
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Figure 8: Average Performance (in seconds) versus Block Size onthe SUN Hypersparc for 1000� 1000 matrices.
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Figure 9: Performance (in seconds) versus Matrix Type on the SUNHypersparc for 1000� 500 matrices.12



Table 2: Performance (in seconds) on several full-rank matrix sizeson the SUN Hypersparc with block size 20.Matrix Size DGELSS DGELSX DGELSY DGELSA DGELSB DGELS150� 150 1.30 0.016 0.013 0.013 0.013 0.011300� 150 1.60 0.068 0.048 0.048 0.048 0.040250� 250 6.80 0.43 0.31 0.15 0.15 0.13500� 250 8.64 2.10 1.44 0.97 0.97 0.41500� 500 57.13 9.42 5.63 2.94 2.92 2.531000� 500 74.48 23.76 13.99 6.75 6.75 5.881000� 1000 456.30 77.75 44.93 21.14 21.07 18.38and very close to those of the solver for full-rank matrices based on BLAS-3,DGELS.4.2 Numerical accuracyWe have conducted several experiments to evaluate the accuracy of the newalgorithms on di�erent matrix types and sizes. Some of the tests were obtainedfrom the LAPACK Test Suite. We have computed the following residuals andtests:� kB �AXk=(max(n;m)kAkkXk�), where � is the precision machine.� kRTAk=(kAkkBkmax(m;n; k)�), where k is the number of right handsides.� The norm of the trailing block of the triangular factor of the QR factor-ization with column pivoting of matrix [A;X].� The norm of the subtraction of the singular values of R and the singularvalues of A.The new algorithms obtained results very similar to those of DGELSX. Thesolver DGELSB gave a higher residual in a few cases because it did not reveal thenumerical rank, though it revealed a well conditioned R11.5 Concluding RemarksWe have developed three new solvers based on BLAS-3 and block orientedfor solving the linear least squares problem. The new subroutines perform muchfaster than the LAPACK code for rank-de�cient matrices and very close to theLAPACK code for full-rank matrices. Some of the drivers have already beenincluded in the latest release of LAPACK.13
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