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1 IntroductionFor any matrix A, there exists a so-called rank-revealing QR factorization(RRQRF) AP = QR = (Q1Q2)� R11 R120 R22 � ; (1)where P is a permutationmatrix,R11 is upper triangular, and R22 is numericallynegligible [22]. The order r of R11 then reveals the numerical rank of A, the�rst r columns of Q form an orthonormal basis for the range space of A, andthe �rst r columns of AP are the largest independent set of columns of A. Thisinformation is needed, for example, in geodesy [17], computer-aided design [19],nonlinear least-squares problems [25], the solution of integral equations [15], andin the calculation of splines [18]. Other applications arise in beam-forming [8],spectral estimation [23], regularization [21,29], and eigenproblems [3].Algorithms for the reliable computation of rank-revealing factorizations haverecently received considerable attention (see, for example [6, 7, 10, 11, 20, 26,27]). However, the most common approach to computing such a RRQRF isthe column pivoting procedure suggested by Businger and Golub [9]. This QRfactorization with column pivoting (QRP) may fail to reveal the numerical rankcorrectly, but it is widely used due to its simplicity and practical reliability.Thus, it is also a very useful preprocessing step for the more reliable (and moreexpensive) RRQRF algorithms.The LINPACK [13] subroutine xQRDC and the LAPACK [1, 2] subroutinexGEQPF both implement the Businger/Golub scheme using Level 1 and 2 BLAS [24,14], respectively. As a rule of thumb, Level 2 BLAS perform better than Level 1BLAS, and Level 3 BLAS [12] using matrix-matrix kernels perform better still.However, on cache-based architectures, this rule of thumb must be used withcaution as a Level 1 BLAS based implementationmay exhibit better cache datalocality than a Level 2 BLAS implementation.This paper introduces a variant of the QR factorization with column piv-oting which allows the use Level 3 BLAS kernels, thus increasing cache datalocality while enabling the use of the most e�cient BLAS kernels. The paperis structured as follows: In Section 2 we describe the basic QRP algorithm andthe pertinent features of the Level 1 and 2 BLAS implementation. A blockalgorithm for implementing QRP, allowing for the use of Level 3 BLAS kernelswhile maintaining the behavior of the QRP algorithm, is presented in Section 3.Experimental results on IBM RS/6000, SGI R8000, and DEC Alpha/AXP plat-forms are presented in Section 4. Lastly, we summarize our work and outlinepotential avenues of further improvement.2 The Traditional QR Factorization with Column PivotingThe basic scheme for the QR factorization with column pivoting as proposedby Businger and Golub [9] can be described as shown in Figure 2, using theMATLAB notation. We assume that the reader is familiar with Householdertransformations and their application in the context of a QR factorization (see,2



Setup:Permutation vector: perm(j) = j; j = 1 : nColumn norm vector: colnorms(j) = kAej jj22; j = 1 : nReduction Steps:For j = 1 : n1. Pivoting: Choose p such that colnorms(p) = max(colnorms(j : n))If (colnorms(p) == 0) STOPIf (j 6= p) then % interchangeperm([j; p]) = perm([p; j]), A(: ; [j; p]) = A(: ; [p; j])colnorms([j; p]) = colnorms([p; j])Endif2. Reduction: Determine a Householder matrix Hj such thatHj A(j : m; j) = �kA(j : m; j)k2 e1.3. Matrix Update:A(j : m; j + 1 : n) = Hj A(j : m; j + 1 : n)4. Norm Downdate:colnorms(j + 1 : n) = colnorms(j + 1 : n)� A(j; j + 1 : n) :̂ 2EndforFigure 1: The Traditional Algorithm for the QR Factorization withColumn Pivotingfor example, [16, pp. 195-197,211-212]). The notation e1 is used to denote the�rst canonical unit vector (1; 0; : : :; 0)T of appropriate length.The LINPACK routine xQRDC and the LAPACK routine xGEQPF substan-tially di�er only in the implementation of the matrix update. Since a House-holder matrix H is a rank-1 modi�cation of the identity,H = I � �vvTits application requires the computationHA = A � �vvTA:xQRDC is column oriented in the sense that the matrix update is done columnby column. For each column j, j = 1 : n, it uses xDOT, a BLAS Level-1kernel, to compute vTAej and then updates Aej using a xAXPY call. In contrast,LAPACK's xGEQPF is matrix-vector oriented | it �rst computes the row vectorvTA using the BLAS Level-2 routine xGEMV for a matrix-vector product, thenapplies a rank-1 update with the BLAS Level-2 routine xGER.Hence, while xQRDC fetches and touches each column of A only once, xGEQPFhas to fetch and touch twice, both for the matrix-vector multiply and the rank-1 update. If the cache is big enough that the second fetch is from the cacheand not from memory, this does not matter, but otherwise the BLAS Level3



2 style of implementation requires roughly twice the number of main memoryaccesses. Even though most assembler implementations of BLAS 2 kernels wouldexploit architectural features and the known and regular data access pattern ofa BLAS 2 kernel, the memory access penalty may outweigh these factors. Theexperimental results for the DEC Alpha platform in Section 4 illustrate thispoint.3 A Block Algorithm for the QR Factorization with Column Pivot-ingWe describe in this section a new variant of the QRP algorithm that canemploy BLAS Level 3 kernels. What seems to have kept the QRP procedure inFigure 2 from using BLAS Level 3 is the norm downdate scheme (step 4.) |at every step we must downdate all column norms before we can select the nextpivot column among the remaining ones. The formula for the norm downdatewe used in Figure 2 is obviously not numerically reliable, and G. W. Stewartdeveloped a robust scheme for LINPACK which is also adopted in LAPACK.This scheme monitors the accuracy of the downdate and recomputes the columnnorms only when serious cancellation occurs. The norm downdate scheme hasat least two noticeable features: 1) it makes the computation of column normsa�ordable and hence make the column pivoting scheme practical, and 2) itgoverns the numerical aspects of the QRP procedure. For example, it ensuresthat the diagonal elements of the upper triangular matrixR be arranged in non-increasing order. This property is important, for instance, for graded matrices.Given the practical reliability of the QR factorization with column pivot-ing, our goal then is to design a block algorithm that maintains the same normdowndating and pivoting scheme, and hence computes the same numerical fac-torization. Consulting the algorithm in the previous section, we notice that inorder to downdate the column norms after the jth step we only need to knowthe updated jth row. This allows us to choose the next pivot column p, say.Next, to determine the next Householder transformation, it is su�cient to applythe previous Householder transformation only to the pth column. The updateof elements in other rows and columns can be delayed. This analysis underpinsour block algorithm: for every consecutive nb steps, we update in each step onlyone row and one column, leaving the rest to be updated at the end of the nbsteps with a block update, namely, a rank-nb update. If this scheme can becarried out successfully for nb > 1, the number of memory accesses of A can bereduced by around 50% compared to the BLAS Level 2 version, while openingup the possibility of using the typically very e�cient BLAS Level 3 kernels.Let us now consider the details of the block update. Assume we use theso-called compact WY form [28]Q = I � Y TY Tto represent the product Q of nbHouseholder matricesHi. Y is lower trapezoidalwith nb columns and T is upper triangular of order nb. At �rst glance, the block4



QP3Step ( m, n, nb, rowk, A )Setup:perm(j) = j; colnorms(j) = kAej jj22; j = 1 : nF (1:n; 1: nb) = 0Reduction Steps:For j = 1 : nb0. k = rowk + j � 1 % current row index1. Pivoting: Choose p such that colnorms(p) = max(colnorms(j : n))If (colnorms(p) == 0) STOPIf (j 6= p) then % interchangeperm([j; p]) = perm([p; j]), A(: ; [j; p]) = A(: ; [p; j])colnorms([j; p]) = colnorms([p; j]), F ([j; p]; : ) = F ([p; j]; : )end2. Update of pivot column:A(k : m; j)� = A(k : m; 1 : j � 1) � F (1 : j � 1; j)3. Reduction: Generate Hj = I � tau(j)Y (j)Y (j)T such thatHjA(k : m; j) = �k(k2A(k : m; j)e1.4. Incremental Computation of F :F (j + 1 : n; j) = tau(j)A(j : m; j + 1 : n)TY (j : m; j):F (1 : n; j)� = tau(j)F (1 : n; 1 : j � 1)Y (j : m; 1 : j � 1)TY (j : m; j):5. Update of pivot row:A(k; j + 1 : n)� = A(k; 1 : j) � F (j + 1 : n; 1 : j)T6. Norm downdate :colnorms(j + 1:n) = colnorms(j + 1 : n)� A(k; j + 1 : n) :2.End ForBlock update:A(k + 1 : m; nb+1 : n)� = A(k + 1 : m; 1 : nb) � F (nb+1 : n; 1 : nb)TFigure 2: Algorithm for Reduction of A(rowk : m; 1 : nb) and Up-date of A(rowk : m; 1 : n)updateA(nb+ 1 : m;nb+ 1 : n)�= Y (nb+ 1 : n; 1 : nb)TY TA(:; nb+ 1 : n);(where ��= � is shorthand for � = � � �) requires the values of the �rst nbrows of A before the nb column reductions. Yet, owing to the need for the normdowndating, these rows must have been updated by the time that we want tocompute the block update.We solve this problem by computing and savingFT = TY TA(:; 1 : n)adaptively, row by row, along with the generation of Y and T and the updateof A(1 : nb :; nb+1 : n). Notice that since Y T is upper trapezoidal and T upper5



Algorithm QP3 ( m;n; idealnb; A; � � � )Initialize vectors perm and colnorms and set j = 1While j � nnb = min(idealnb; n�j+1)QP3S ( m; n�j+1; j; nb; A(:; j : n); � � � );j = j + nbEnd WhileEnd AlgorithmFigure 3: Block QR Factorization with Column Pivotingtriangular, the computation of the �rst row of FT accesses all rows of A andit is needed for updating the �rst row of A. The computation of the secondrow of FT accesses all rows of A but the �rst one (which is already updated bynow) and the second row of FT is needed for updating the second row of A,and so on. With careful programming, the use of F causes no increase in theworkspace requirement for a block update. We summarize our discussion so farin the algorithm for one step of a block reduction shown in Figure 2.The incremental update procedure for the auxiliary array F does not onlyresolve the coherence problem in the block update, it also makes the updateof the pivot row and the pivot column easy. The block update can be carriedout by a call to the BLAS Level kernel xGEMM and we touch A only once in theupdate of F . Thus, using QP3Step, the QRP factorization can be computedblock by block.We mentioned earlier that we aim to arrive at the same factorization asLINPACK and LAPACK by implementing the same norm downdate schemeand pivoting scheme. In particular, this means that if severe cancellation takesplace in a norm downdate, the norm of the remaining column is computed fromscratch. Thus, in the block scheme, we must update the column in questionwith all previously generated Householder transformations, even if we have notaccumulated nb of them yet. If this happens, we shortcircuit the block accu-mulation and update all columns with the Householder transformations alreadygenerated. The actual number of reduced columns may be less than the givenblock size nb, but it is at least 1, not worse that the unblocked algorithm.So, unless we experience the (rare) case of frequent occurrences of catastrophiccancellation, we should still be able to perform a signi�cant number of blockupdates. With this modi�cation, the subroutine parameter nb is both an inputand an output parameter. The overall block QRP algorithm is then shown inFigure 3.4 Experimental ResultsWe report in this section experimental results comparing the double precisioncodes DQRDC from LINPACK, DGEQPF from LAPACK, and our block algorithm6



DGEQP3. The tests were carried out on an IBM RS/6000-370, SGI R8000, andDEC Alpha 3000 Model 600. In each case, we employed the vendor-suppliedBLAS in the ESSL, SGIMATH, and DXML libraries, respectively. We gen-erated 18 di�erent matrix types to test the algorithms, with various singularvalue distributions and numerical rank ranging from 4 to full rank. The matrixcollection was constructed to exercise column pivoting, and thus we expect thatthe need for norm downdating might be if anything more pronounced than inwhat might be experienced in practice. Thus, we expect this collection to berepresentative of the pivoting behavior that could be expected in practice. Sin-gle, double, complex, and double complex code for xGEQP3 as well as the testand timing drivers used in these experiments are accessible via anonymous ftpfrom ftp.super.org in pub/prism/qp3.tar.gz.We present results on matrices of size 150, 250, 500, and 1000, using a blocksize (idealnb in Figure 3) of 1, 5, 8, 12, 16, and 24. Figures 4 through 6 showthe M
op performance, averaged over the 18 matrix types, of the IBM, DEC,and SGI platforms versus block size. In all cases, the dotted line denotes theperformance of DQRDC, the solid one that of DGEQPF, and the dashed onethat of DGEQP3.On the IBM, the BLAS hierarchy is intact, so to speak, in that performanceincreases with the BLAS Level employed. The overall performance of the ma-chine also increases with matrix size, and so does the relative performance gainof DGEQP3 over DGEQPF: from 16 % for matrices of size 150 to 40 % for matricesof size 1000.The DEC Alpha presents quite a di�erent picture. First of all, the LINPACKcode always outperforms the LAPACK code. Second, the overall performanceof the machine drops substantially for matrix size 1000. However, the relativegain of DGEQP3 over DGEQPF is monotonically increasing: from 11 % for matricesof size 150 to 53% for matrices of size 1000.The SGI presents a di�erent picture still. Of the machines tested, it hasby far the largest data cache memory: 4 MB. In contrast, the IBM and DECplatforms have only a 32KB data cache. Thus, matrices up to order 500 �tin cache, but matrices of order 1000 do not. Therefore, for matrices of size500 or less we observe limited bene�ts from the better inherent data locality ofthe BLAS 3 implementation. However, the transition from BLAS1 to BLAS2makes a big di�erence. Nonetheless, for n = 500, DGEQP3 outperforms DGEQPFby about 25% and achieves a performance of almost 125 M
ops. For n = 1000,overall performance degrades, but the relative advantage of DGEQP3 improves toabout 38%.We also note that on all three machines, the performance of DGEQP3 is ratherrobust with respect to variations in the block size, and, except for small matri-ces on the SGI, always superior to that of both the LINPACK and LAPACKimplementations. Thus, while not being able to completely shield the user frommachine peculiarities, DGEQP3 does signi�cantly better in this respect than theother two implementations. 7
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5 Concluding RemarksWe developed a new block variant of the QR factorization with columnpivoting which allows the use of Level 3 BLAS. While maintaining the numer-ical behavior of the LINPACK and LAPACK implementations, it consistentlyoutperforms them on IBM RS/6000, DEC Alpha, and SGI R8000 workstationplatforms. Thus, it does a good job of insulating the user from the particu-lars of a particular machine, in particular its cache behavior. In contrast, theLINPACK code actually outperforms the LAPACK code on the DEC Alphaplatform.In order to achieve even better performance, we believe it necessary to eithermodify the norm downdating scheme or to relax the global pivoting criterion.In our tests we observed cases where columns were involved quite a few timesin \catastrophic" cancellation scenaria, prompting the recomputation of theirnorm. How to relax the downdating criterion causing dramatic change in nu-merical properties of the QR factorization with column pivoting is an openquestion.A di�erent approach is to avoid the need for a global pivot search throughthe introduction of a \pivot window" [4,5]. The resulting algorithms have evenhigher data locality, but the rank-revealing properties of the resulting orthogonalfactorization deteriorate. Thus, such an approach is unlikely to be reliable unlesscoupled with a post-processing step that tests, and, if necessary, improves therank-revealing nature of the factorization. How the overall algorithm wouldperform is unclear at this point.AcknowledgementsQuintana and Sun thank Jack Dongarra for providing a friendly and productivity-enhancing environment during their visit to the University of Tennessee.References[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,J. DuCroz, A. Greenbaum, S. Hammarling, A. McKenney, S. Os-trouchov, and D. Sorensen, LAPACK User's Guide, SIAM, Philadel-phia, 1992.[2] , LAPACK User's Guide Release 2.0, SIAM, Philadelphia, 1994.[3] Z. Bai and J. Demmel, Design of a parallel nonsymmetric eigenroutinetoolbox, Part I, in Proceedings of the Sixth SIAM Conference on Paral-lel Processing for Scienti�c Computing, R. F. S. et al, ed., SIAM, 1993,pp. 391{398.[4] C. H. Bischof, A block QR factorization algorithm using restricted pivot-ing, in Proceedings SUPERCOMPUTING '89, Baltimore, Md., 1989, ACMPress, pp. 248{256. 11
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