
Memory Exclusion: Optimizing the Performanceof Checkpointing SystemsJames S. Plank yYuqun Chen zKai Li zMicah Beck yGerry Kingsley yy Department of Computer ScienceUniversity of TennesseeKnoxville, TN 37996[plank,beck,kingsley]@cs.utk.eduz Department of Computer SciencePrinceton University35 Olden StreetPrinceton, NJ 08544[yuqun,li]@cs.princeton.eduTechnical Report UT-CS-96-335University of TennesseeAugust, 1996Submitted for publicationSee http://www.cs.utk.edu/~plank/plank/papers/CS-96-335.html for up to date information1

Memory Exclusion: Optimizing the Performance of CheckpointingSystemsJames S. Plank� Yuqun Chen Kai Li Micah Beck Gerry KingsleyTechnical Report UT-CS-96-335University of TennesseeAugust, 1996This paper has been submitted for publication. Please see http://www.cs.utk.edu/~plank/plank/papers/CS-96-335.html for up to date infor-mation concerning the publication status. AbstractCheckpointing systems are a convenient way for users to make their programs fault-tolerant by intermittentlysaving program state to disk, and restoring that state following a failure. The main concern with checkpointing isthe overhead that it adds to running time of the program. This paper describes memory exclusion, an importantclass of optimizations that reduce the overhead of checkpointing. These optimizations have been implementedin two checkpointers: libckpt, which works on Unix-based workstations, and libNXckpt, which works on theIntel Paragon. Both checkpointers are publicly available at no cost. We have checkpointed various long-runningapplications with both checkpointers and have explored the performance improvements that may be gained throughmemory exclusion. Results from these experiments are presented and show that the improvements are signi�cant.We conclude that all checkpointing systems should include primitives allowing programmers and users to gain thefull bene�ts of memory exclusion.1 IntroductionCheckpointing has become an increasingly important tool for uniprocessors, multiprocessors and distributedsystems. It provides the backbone for fault-tolerant systems, migration systems, load-balancing systems, play-back debuggers and many other functionalities [WHV+95]. Currently, the major concern with checkpointing is�plank@cs.utk.edu. This material is based upon work supported by the National Science Foundation under grants CCR-9409496and MIP-9420653, by the ORAU Junior Faculty Enhancement Award, and by DARPA under grant N00014-95-1-1144 and contractDABT63-94-C-0049. 1

overhead [Vai95], de�ned as the amount of time added to a program due to checkpointing. Experimental researchhas shown that the main source of overhead in all checkpointing systems is the time required to save a checkpointto stable storage, and larger programming platforms with more processing elements and more memory simplyexacerbate the problem [EJZ92, PL94].Many techniques have been studied to reduce the overhead of saving checkpoints. These can be divided intotwo classes. Latency hiding techniques attempt to reduce or hide the overhead of disk writes, and size reductiontechniques attempt to minimize the amount of data that gets stored per checkpoint. An important concept insize reduction is memory exclusion. With memory exclusion, regions of a process's memory are excluded from acheckpoint because they are either read-only, meaning their values have not changed since the previous checkpoint,or dead, meaning their values are not necessary for the successful completion of the program.The challenge with memory exclusion is to identify the dead and read-only regions of memory with lowoverhead. This paper describes various techniques, both old and new, for performing this identi�cation. Alsoincluded are performance results of implementing these techniques on a uniprocessor checkpointer, libckpt,running on a Sparc-2 workstation, and on a multiprocessor checkpointer, libNXckpt, running on the IntelParagon. The conclusion that we draw from these implementations is that memory exclusion can often providedrastic improvements in the performance of checkpointing. These improvements are signi�cant enough that allimplementations of checkpointing should include some facilities that enable the user to gain the full bene�ts ofmemory exclusion.2 Overview of CheckpointingThe goal of checkpointing is to establish a recovery point in the execution of a program, and to save enoughstate to restore the program to this recovery point in the event of a failure. A checkpoint of a single process isusually composed of the process's address space and the state of its registers. To recover from a checkpoint, anew process is spawned which initializes its address space from the checkpoint �le and then resets its registers.This resetting of the registers (the last being the program counter) e�ects a restarting of the failed program.Checkpoints of multiprocessors and distributed systems require that the processors store a global system stateto stable storage. This state is composed of checkpoints for each processor in the system plus informationdescribing the causal relationship between the checkpoints.A checkpointer is a piece of code that is compiled or linked with an application and directs its checkpointingand recovery. Checkpointers strive to be as transparent as possible. In other words, the programmer should nothave to tailor his or her code to the checkpointer. A simple recompilation or relinking plus the setting of runtimevariables is all that is necessary.For fault-tolerance, the checkpointer periodically checkpoints the application program. Upon failure, theprogram is restored from its most recent checkpoint, thus reducing the amount of lost work.2

For further details on checkpointing, the reader is referred to papers by Tannenbaum [TL95] (for uniprocessors)and Elnozahy [EJW96] (for multi-processor systems). Throughout this paper, we refer to libckpt, a public-domaincheckpointer for checkpointing programs on Unix-based workstations, and libNXckpt, an extension of libckptfor the Intel Paragon. Both libckpt and libNXckpt are available to the public at no cost. For more detail onlibckpt, the reader is referred the paper by Plank et al [PBKL95]. For more information on libNXckpt, thereader is referred to the URL http://www.cs.princeton.edu/~yuqun/checkpoint/libNXckpt.html.3 Overview of Memory ExclusionMemory exclusion can be motivated best by an example. Consider the C program in Figure 1. Suppose thearrays a and b are large. If a checkpoint is taken at the program location C1, then the contents of of array b donot need to be stored because they are never used. Instead, they are computed from array a in the loop. Sincearray b is large, excluding it from C1 will constitute a signi�cant savings.If checkpoints are taken at locations C1 and C2, then the contents of array a do not need to be stored incheckpoint C2 because its values have not changed since checkpoint C1. They can instead be retrieved fromcheckpoint C1.
void double_a(double a[], double b[], int n)
{
 int i;

 /* C1 */
 for (i = 0; i < n; i++) b[i] = 2.0 * a[i];
 /* C2 */

 return;
} Figure 1: Memory exclusion example programTo generalize the above example, there are two distinct ways in which memory can be excluded from check-points:Dead memory: If a location in memory is dead at the time of a checkpoint, then it does not have to be includedin the checkpoint. A dead memory location is one whose value is never read following the checkpoint. Arrayb at checkpoint C1 above is an example of dead memory.Read-only memory: If a location in memory has not been modi�ed since the most recent checkpoint, then aslong as its value is retained on disk, it does not have to be included in the current checkpoint. Array a atcheckpoint C2 above is an example of read-only memory.3

As will be shown in the later sections, there are many times when these two types of memory exclusion canreduce the size of checkpoint �les, and therefore the overhead of checkpointing, signi�cantly.4 Transparent Techniques for Memory ExclusionThere are two challenges for optimizing the performance of checkpointing with memory exclusion. These areidentifying the locations of memory to exclude, and maximizing the amount of memory excluded per checkpoint.There are two transparent techniques that have used to implement memory exclusion in checkpointing systems.They are outlined below:4.1 Excluding the Code Segment and Using the Stack PointerCheckpoints store the address space of a processor. Typically these address spaces have four segments: exe-cutable code, global data, heap and stack. In most computer systems, the code segment is initialized by loadingthe program into memory. Once loaded, it is never modi�ed. Thus, it is read-only for the lifetime of the compu-tation and does not have to be stored in any checkpoints. Upon recovery, it can be reloaded from the executable�le.The stack segment can also bene�t from memory exclusion. When taking a checkpoint, most checkpointingsystems do not save the memory addresses directly below the stack pointer (this is assuming that the stackgrows downward), because their current values will never be used. This is a primitive example of dead memoryexclusion. Sometimes the savings from this technique can be signi�cant if the checkpoints are taken in the rightplaces [LSF94].Both of these examples of memory exclusion are standard. They are employed by all known implementationsof transparent checkpointing.4.2 Incremental CheckpointingIncremental checkpointing [FB89, WM89] uses virtual memory protection hardware to perform page-basedread-only memory exclusion. While the program is executing, the checkpointer maintains a list of all pages thathave been modi�ed since the most recent checkpoint. This list can be maintained with user-level virtual memoryprimitives if the operating system supports them. For example, on most Unix systems, one can use mprotect()to set all pages to be read-only following the checkpoint, and then add a page to the changed-page list uponcatching the SEGV signal. The page is also set to be read-write at this time. When it is time to checkpoint, onlythe pages on this list are stored, since the remaining pages are composed solely of read-only variables.Incremental checkpointing can result in a signi�cant reduction in checkpoint size and overhead if the programbeing checkpointed shows good locality of modi�cation [FB89, EJZ92, PBKL95]. If the program modi�es most4

of its pages between checkpoints, then incremental checkpointing increases the overhead of checkpointing becauseof the extra time it spends processing SEGV signals.5 Non-transparent Techniques for Memory ExclusionThough often e�ective, the above two techniques do not realize the full potential of memory exclusion. Inparticular, there are three weaknesses with the transparent techniques:1. They do not exclude dead memory in the data and heap segments.2. User-level virtual memory primitives are not available in all machines and operating systems.3. A read-only memory location is only excluded if all the other bytes that share the same page are alsoread-only.One way to attack these weaknesses is for the programmer to have some control over the memory exclusion.What follows is a description of the way programmer-directed memory exclusion has been implemented in libckptand libNXckpt.5.1 Excluding free memoryMany programming languages like C require the programmer to allocate and deallocate memory explicitlyfrom the heap segment by employing procedures like malloc() and free(). Standard implementations of theseprocedures manage a list of free memory locations. When the program tries to allocate a region of memory, thefree list is checked to see if it can provide the memory. If not, a request is made to the operating system toenlarge the heap segment, and if granted, memory is given to the program from this new area of the heap. Theprocedure free() is called to put memory back on the free list.When these procedures are used correctly, all memory on the free list is dead. Libckpt and libNXckpt takeadvantage of this fact by instrumenting malloc(), free() and related procedure calls so that all memory onthe free list is excluded. This is a simple technique that can enable the programmer to take advantage of deadmemory exclusion in the heap.5.2 Memory Exclusion Procedure Calls (MEPC's)Although excluding free memory can help, there are opportunities for memory exclusion in non-free memory.For example, large portions of arrays can be read-only for long periods of time, or they can be dead at certainprogram locations. In order for the programmer to gain the full potential of memory exclusion, libckpt andlibNXckpt allow the programmer to direct the explicit exclusion and inclusion of any regions of memory withtwo memory exclusion procedure calls (MEPC's): 5

exclude bytes(char *addr, int size, int usage)include bytes(char *addr, int size)Exclude bytes() tells the checkpointer to exclude the region of memory speci�ed from subsequent checkpoints.It may be called when the programmer knows that these bytes are not necessary for the correct recovery of theprogram. Usage is an argument which may have one of two values: READONLY or DEAD. If READONLY is speci�ed,then this memory is included in the next checkpoint, but excluded from subsequent checkpoints. If DEAD isspeci�ed, then the memory is dead | it will not be read before it is next written. Thus, it is excluded from thenext and subsequent checkpoints.Include bytes() tells the checkpointer to include the speci�ed region of memory in the next and subse-quent checkpoints. Thus, include bytes() cancels the e�ect of calls to exclude bytes(), although calls toinclude bytes() do not have to match calls to exclude bytes().MEPC's allow the programmer to track memory usage as it a�ects checkpointing. When combined withsynchronous checkpointing, described below, they have the potential to improve the performance of checkpointingdrastically.5.3 Synchronous CheckpointingThere are times during the execution of a program when the amount of dead memory may be very large.If MEPC's are being used, then it is most bene�cial to checkpoint at these times. Libckpt and libNXckptallow the programmer to specify such program locations with the procedure checkpoint here(), which forcesthe checkpointer to take a checkpoint. Such checkpoints are called \synchronous" because they are not initiatedby timer interrupts, and thus the programmer knows exactly when they occur. Synchronous checkpoints shouldbe inserted by the programmer at points where memory exclusion can have the greatest e�ect.Synchronous checkpoints may be placed in program locations that are reached very often or very rarely.Checkpointing too often, however, can lead to poor performance, and checkpointing too infrequently can negatethe fault-tolerant bene�ts of checkpointing. Therefore, libckpt and libNXckpt contain two runtime parametersmaxtime and mintime, that only allow synchronous checkpoints to occur within a window of time following theprevious checkpoint. When that window expires, if a synchronous checkpoint has not been taken, the checkpointerforces an asynchronous checkpoint to be taken.Speci�cally:� mintime speci�es the minimum period of time that must pass between checkpoints. If mintime seconds have notpassed since the previous checkpoint, then checkpoint here() calls are ignored.� maxtime de�nes the maximum interval between checkpoints. At the beginning of the program, and after eachcheckpoint, libckpt calls alarm(maxtime) and takes an asynchronous checkpoint upon catching each ALRM signal.Setting the maxtime to zero turns o� all asynchronous checkpointing.6

6 Examples of Programs That Impact Memory ExclusionIn this section, we present �ve example programs that we checkpoint in the next section. Each program isa long-running application that can bene�t from checkpointing. Moreover, each program exempli�es a di�erenttype of behavior that can a�ect the performance of checkpointing when memory exclusion is employed.STSWM | A program with a large, contiguous, read-only data spaceSTSWM is a public-domain fortran program from the National Center for Atmospheric Research that im-plements the \spectral transform shallow water model," an important technique in oceanic and atmosphericresearch. It models a complex system over several time steps and is a challenging computational problem. Themain feature of STSWM that a�ects checkpointing is that it initializes a very large and contiguous data space atthe beginning of the program that remains read-only for the lifetime of the program. This means that read-onlymemory exclusion, as implemented by incremental checkpointing, can provide great savings when this programis checkpointed.NNET | A program with a large, non-contiguous read-only data spaceThis is a neural network simulation program that processes continuously generated input with a large neuralnetwork. NNET is typical of many graph-processing programs in its memory usage. In particular, its datastructures for nodes and links contain both read-only and non-read-only components, and they are all allocatedtogether at the beginning of the program. As such, the read-only and non-read-only variables are interleaved inmemory at a relatively �ne granularity. Thus, although there is great potential for read-only memory exclusion,it cannot be realized by incremental checkpointing, since most pages contain both read-only and non-read-onlyportions. To realize the bene�ts of memory exclusion, we traverse the network following its creation and insertMEPC's to mark the read-only part of nodes and links.SOLVE | A problem that iterates over several large data setsThis is a testing program from LAPACK, a high-performance package of linear-algebra subroutines available onNetlib. The program reads input data to generate a linear system of equations represented by a square matrix ofdouble precision oating point numbers. LU decomposition is used to solve the system, and the solution is thenwritten to disk. This process is repeated for several sets of input data.This program is typical of many driver programs for scienti�c applications | a complex procedure is executedseveral times on di�erent sets of input data, and output is written at the end of each iteration. The importantfeature of these programs is that they share little to no information from iteration to iteration. In other words,between iterations, most of their data space is dead. For example, in SOLVE, the matrix, which composes the7

majority of the address space, is dead between iterations. Therefore, if a synchronous checkpoint is taken betweeniterations, then the bulk of the checkpoint may be excluded either through malloc()/free() or through MEPC's.CELL | A problem with a large dead regions of memoryThis is a simple program that executes a grid of cellular automata for numerous iterations. Like most cellularautomaton programs, this one employs two automaton grids | a current grid and a previous grid. During asingle iteration, the values of the current grid are calculated from the values of the previous grid. At the endof an iteration, the identities of the two grids are reversed so that the current grid becomes the previous grid,and vice versa.The important feature of CELL as it impacts checkpointing is that between iterations, the previous gridbecomes dead { its values are not read before they are next written. Thus, with synchronous checkpointing andMEPC's, almost half of the checkpoint may be eliminated due to dead memory exclusion.EIGEN | A program that with little potential for improvement due to memory exclusionEIGEN is a program that computes the eigenvalues of a general complex matrix using the cgeev subroutinefrom LAPACK. Like many subroutines from LAPACK, cgeev works in iterations (one per column of the matrix)and modi�es almost all of the matrix during each iteration. As such, there is no signi�cant amount of read-only ordead memory to exclude at any point in the program. EIGEN is included to show that there do exist programsthat memory exclusion cannot help.7 ExperimentsIn this section, we detail our experiments with memory exclusion on a uniprocessor checkpointer (libckpt) anda multicomputer checkpointer (libNXckpt). Each checkpointer implements incremental checkpointing and theMEPC's described above. In addition, libckpt implements the copy-on-write checkpointing optimization [LNP90,EJZ92], which enables the application to continue executing while the checkpoint is written to disk.For each program, we selected input parameters that resulted in fairly long running times and the use of almostall of physical memory. Thus the programs represent a challenge to the checkpointing system. In particular, thelarge checkpointing sizes preclude simple bu�ering strategies such as taking an in-memory checkpoint, and writingthat checkpoint asynchronously to disk [LNP90].7.1 Experiments with libckpt on the SPARC-2Each of the applications described in section 6 was compiled with libckpt and executed on a Sparcstation-2 containing 16 MBytes of physical memory. Checkpoints were taken via NFS over a standard Ethernet to acentral �le server. The disk bandwidth in this con�guration is poor (around 140 Kbytes/second) but is typical8

Name Language Parameters Running time Memory Checkpoint # ofUsage Interval Check-(sec) (h:mm:ss) (Mbytes) (min) pointsSTSWM Fortran \Test 5", MM=170, TAUE=9.0 13406 3:43:26 36.8 22 10NNET C 22,500 nodes, 900,000 links, 187 iterations 13077 3:37:57 13.8 22 10SOLVE C/Fortran Nine di�erent 1400 X 1400 matrices 13961 3:52:41 15.1 29 8CELL C 2850 X 2850 grid for 85 iterations 13407 3:43:27 15.6 20 11EIGEN Fortran 1000 X 1000 matrix of complex doubles 14794 4:06:34 16.0 21 12Table 1: Basic parameters for the uniprocessor applicationsfor many workstation environments. In all cases, the checkpoint interval is between 20 and 30 minutes. The basicparameters for each application are in Table 1.1
0 I

STSWM

0

10

20

30

40

A
vg

. C
he

ck
po

in
t

Si
ze

 (
M

by
te

s)

0 I E IE

NNET

0

5

10

15

0 I E IE

SOLVE

0

5

10

15

(0
.0

9)

(0
.0

3)

0 I E IE

CELL

0

5

10

15

0 I

EIGEN

0

5

10

15

0 -- No memory exclusion
I -- Incremental checkpointing

E -- Malloc & memory exclusion procedure calls
IE -- Incremental, malloc & memory exclusion proc. callsFigure 2: Checkpoint sizes of the uniprocessor applicationsThe impact of memory exclusion on the checkpoint size is shown in Figure 2. As expected, incrementalcheckpointing has a large impact on STSWM, but little on the other programs as they modify almost all oftheir pages between checkpoints. In NNET and CELL, signi�cant portions (9.2 and 7.8 Mbytes respectively percheckpoint) of the checkpoints are excluded with MEPC's, while in SOLVE, almost all of the checkpoints (15.0Mbytes) are excluded as free memory.It should be noted that inNNET, incremental checkpointing with MEPC's excludes an average of 0.55 Mbytesmore per checkpoint than using MEPC's without incremental checkpointing. This is because in NNET, manysmall regions of memory are excluded, requiring 0.55 Mbytes of data structures to keep track of the regions.These data structures are read-only once the MEPC's are made, and since they are all stored contiguously inmemory, they can be tracked and excluded with incremental checkpointing.The impact of memory exclusion on the checkpoint overhead is shown in Figure 3. Results for normal andcopy-on-write checkpointing are given. The overheads are displayed as the average overhead per checkpoint. The1Due to space constraints, we do not tabulate the data, and instead present it graphically. For the interested reader, the data isavailable at the URL http://www.cs.utk.edu/~plank/plank/libckpt/raw.html.9

0 I 0 I

STSWM

0

100

200

300

O
ve

rh
ea

d
pe

r
C

he
ck

po
in

t
(s

ec
)

Normal Copy-on-write

10%

20%

0 I E IE 0 I E IE

NNET

0

50

100

Normal Copy-on-write

5%

10%

0 I E IE 0 I E IE

SOLVE

0

50

100

150

Normal Copy-on-write

5%

0 I E IE 0 I E IE

CELL

0

50

100

150

O
ve

rh
ea

d
pe

r
C

he
ck

po
in

t
(s

ec
)

Normal Copy-on-write

5%

10%

0 I 0 I

EIGEN

0

50

100

150

Normal Copy-on-write

5%

10%

15%
0 -- No memory exclusion
I -- Incremental checkpointing

E -- Malloc & memory exclusion
procedure calls

IE -- Incremental, malloc &
memory exclusion proc. callsFigure 3: Checkpoint overheads of the uniprocessor applicationslines across the graphs represent the overhead as a percentage of the program's running time.2As shown previously [LNP90, EJZ92, PBKL95], the copy-on-write optimization consistently improves theperformance of checkpointing, though in varying degrees depending on the memory access patterns of the program.For example, although both programs modify all their pages between checkpoints, SOLVE has a very poor localityof modi�cation, which penalizes the performance of copy-on-write checkpointing as compared to CELL.SOLVE and STSWM show the most dramatic improvements in checkpoint overhead due to memory exclu-sion. In SOLVE, the per-checkpoint overhead is reduced from 107 seconds (using copy-on-write) to 3.3 (withoutcopy-on-write) with memory exclusion, while in STSWM, incremental checkpointing improves the performanceof copy-on-write checkpointing by 50.7 seconds per checkpoint. The other applications show more marked im-provements when copy-on-write is not employed; however memory exclusion improves the performance of thecopy-on-write cases too.These results show that memory exclusion in combination with copy-on-write checkpointing can result in low-overhead checkpointing with very little programmer e�ort. To summarize, Table 2 displays the best combinationof optimizations for each application. For the applications where extra code is inserted by the programmer, the2There is an apparent anomaly in Figure 3 that should be explained. This is the fact that in NNET, SOLVE and CELL,incremental checkpointing improves the overhead even though the checkpoint sizes are the same. This should not be the case |incremental checkpointing should actually penalize performance here because since the same amount of data is being written to disk,and there is extra overhead processing SEGV signals. This anomaly arises because the operating system bu�ers user writes that donot fall on page boundaries, and libckpt does not take account of this fact in non-incremental checkpointing. This bug will be �xedshortly, and new data will be taken so that this anomaly is no longer present.10

Name Copy-on-write Synchronous Incremental MEPC/Malloc Lines ofCheckpoints Checkpointing code addedSTSWM yes no yes no |NNET yes no yes yes 6SOLVE no yes no yes 1CELL yes yes no yes 5EIGEN yes no yes no |Table 2: Optimization used for the best checkpointing performancenumber of additional lines of code is also noted.7.2 Experiments with libNXckpt on the Intel ParagonWe compiled three application programs with libNXckpt and executed them on a 32-node Paragon at CalTech.Each node of the Paragon is an Intel 80860 processor with around 22 Mbytes of physical memory available foruser processes. Unlike the Sparc-2 environment, �le I/O on the Paragon is extremely fast. It performs stripingwith 64 Kbyte blocks to six I/O nodes and can achieve a disk bandwidth of up to 29 Mbytes per second.LibNXckpt periodically forces the system to take a global checkpoint using the \Sync-and-stop" algorithm [PL94].All processors synchronize to eliminate message state, and then they checkpoint themselves before resuming theapplication. LibNXckpt implements all varieties of memory exclusion and synchronous checkpointing; howeverdue to problems reconstructing the network state, libNXckpt does not implement copy-on-write checkpointing.Name Language Parameters Running time Memory Usage Checkpoint # ofPer Node Interval Check-(sec) (h:mm:ss) (Mbytes) (min) pointsPRISM C Norder=7, Nsteps=2400 7656 2:07:36 17.8 11 12PCELL C 17408 X 17408 grid for 800 iterations 7099 1:58:19 19.5 12 10PSOLVE Fortran 10 6100 X 6100 matrices 4791 1:19:51 22.2 8 10Table 3: Basic parameters for the parallel applicationsTable 3 summarizes the basic characteristics of the three applications. PCELL and PSOLVE are paral-lelized versions of CELL and SOLVE respectively (PSOLVE coming from ScaLAPACK instead of LAPACK).PRISM is a uid dynamics modeling code from the Aeronautics & Applied Mathematics at CalTech. Like theiruniprocessor counterparts, PCELL and PSOLVE both bene�t from dead memory exclusion and synchronouscheckpointing. PRISM is a program with a very large and contiguous read-only portion, and thus can bene�tfrom incremental checkpointing. Additionally, PRISM performs a good deal of memory allocation and deallo-cation during each iteration, meaning that dead memory exclusion via malloc()/free() should be e�ective.Due to the high desirability of the CalTech Paragon, the program runs are shorter than the uniprocessor11

runs. However, they do attempt to use most of the available physical memory so that the checkpointer is againchallenged.The checkpoint size and overhead information is displayed in Figure 4. As expected, PCELL and PSOLVEshow signi�cant space savings (306 and 548 Mbytes per checkpoint respectively) due to dead memory exclusion.This results in a corresponding decrease in checkpointing overhead for both applications. In PRISM, 397 Mbytesare saved per checkpoint due to incremental checkpointing, and an additional 43 Mbytes are saved by excludingfree memory. Again, these savings are reected in lower checkpoint overheads.
0 I E IE

PRISM

0

100

200

300

400

500

T
ot

al
 A

ve
ra

ge
C

he
ck

po
in

t
Si

ze
(M

B
yt

es
)

0 I E IE

PCELL

0

200

400

600

0 I E IE

PSOLVE

0

100

200

300

400

500

0 I E IE

PRISM

0

5

10

15

A
ve

ra
ge

 O
ve

rh
ea

d
pe

r
C

he
ck

po
in

t
(S

ec
)

2%

0 I E IE

PCELL

0

10

20

30

5%

0 I E IE

PSOLVE

0

5

10

15

20 4%

0 -- No memory exclusion
I -- Incremental checkpointing

E -- Malloc & memory exclusion
procedure calls

IE -- Incremental, malloc &
memory exclusion proc. calls

Figure 4: Checkpoint sizes and overheads of the parallel applicationsIn sum, the results from the Paragon mirror the uniprocessor results, although the checkpoint sizes, andtherefore the savings due to memory exclusion, are much larger. The overheads, and (therefore the savingsin overhead) are lower because of the faster �le operations. However, percentage-wise, the savings in theseapplications due to memory exclusion are indeed signi�cant.8 More advanced memory exclusion techniquesThere have been several research projects targetted at optimizing the performance of memory exclusion. Sinceeach is too complex to describe fully, they are summarized below.� Compiler-assisted memory exclusion (CAME) [PBK95]: One weakness of MEPC's is that the pro-grammer can err. If the programmer excludes memory that is neither read-only nor dead, then the check-points may become invalid. With the CAME technique, the programmer inserts compiler directives into theprogram, telling the compiler when to take synchronous checkpoints, and when to exclude memory. The12

compiler uses these directives to determine what memory to exclude, and it inserts the proper MEPC's intothe code. The CAME technique is advantageous because it will never err, and it can often discover morememory to exclude than the programmer.� Compiler-assisted full checkpointing [LSF94]: This technique takes a collection of potential syn-chronous checkpoint locations and attempts to checkpoint only at the ones that maximize memory ex-clusion during the speci�ed checkpointing interval. This can be done adaptively at runtime, or o�-line usinga \training" run. This technique may be combined with the techniques described in this paper to optimizethe selection of synchronous checkpoint locations.� Variable-level tracking of memory exclusion [NW94]: This is a technique for tracking read-onlyand dead memory at the variable level in order to minimize checkpoint sizes. To perform this tracking,memory reads and writes are monitored by executable rewriting. This enables the checkpointer to obtainoptimally small checkpoint �les. The monitoring incurs a very high overhead (a factor of 1.7 to 7 in theirmeasurements), meaning that this technique is useful only in debugging applications where minimizingcheckpoint size is more important than the time overhead.9 ConclusionMemory exclusion is an important concept in reducing the space and time overhead of checkpointing. We havepresented several old and new techniques for excluding memory from checkpoints, and detailed results from twocheckpointers that have implemented these techniques. The conclusions that can be drawn from these resultsis that memory exclusion can optimize the performance of checkpointing signi�cantly for many long-runningprograms. The degree of optimization is, of course, dependent on the memory access patterns of the application.However, as shown by NNET, SOLVE and CELL, di�erent kinds of access patterns may be converted intosavings in checkpoint overhead with very little programmer e�ort.It should be noted that while often bene�cial (e.g. for STSWM and PRISM), incremental checkpointing isnot su�cient for getting the most out of memory exclusion. Given the results of this paper, we believe that allcheckpointing implementations should follow the lead of libckpt and libNXckpt by merging memory exclusionwith memory allocation, and implementing memory exclusion procedure calls.References[EJW96] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang. A survey of rollback-recovery protocols in message-passing systems. To appear,1996.[EJZ92] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The performance of consistent checkpointing. In 11th Symposium onReliable Distributed Systems, pages 39{47, October 1992.13

[FB89] S. I. Feldman and C. B. Brown. Igor: A system for program debugging via reversible execution. ACM SIGPLAN Notices,Workshop on Parallel and Distributed Debugging, 24(1):112{123, January 1989.[LNP90] K. Li, J. F. Naughton, and J. S. Plank. Real-time, concurrent checkpoint for parallel programs. In Second ACM SIGPLANSymposium on Principles and Practice of Parallel Programming, pages 79{88, March 1990.[LSF94] C-C. J. Li, E. M. Stewart, and W. K. Fuchs. Compiler-assisted full checkpointing. Software { Practice and Experience,24(10):871{886, October 1994.[NW94] R. H. B. Netzer and M. H. Weaver. Optimal tracing and incremental reexecution for debugging long-running programs. In ACMSIGPLAN '94 Conference on Programming Language Design and Implementation, pages 313{325, Orlando, FL, June 1994.[PBK95] J. S. Plank, M. Beck, and G. Kingsley. Compiler-assisted memory exclusion for fast checkpointing. IEEE Technical Committeeon Operating Systems and Application Environments, 7(4):10{14, Winter 1995.[PBKL95] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing under unix. In Conference Proceedings,Usenix Winter 1995 Technical Conference, pages 213{223, January 1995.[PL94] J. S. Plank and K. Li. Ickp | a consistent checkpointer for multicomputers. IEEE Parallel & Distributed Technology, 2(2):62{67,Summer 1994.[TL95] T. Tannenbaum and M. Litzkow. The Condor distributed processing system. Dr. Dobb's Journal, #227:40{48, February 1995.[Vai95] N. H. Vaidya. On checkpoint latency. In Paci�c Rim International Symposium on Fault-Tolerant Systems, Newport Beach,December 1995.[WHV+95] Y-M. Wang, Y. Huang, K-P. Vo, P-Y. Chung, and C. Kintala. Checkpointing and its applications. In 25th InternationalSymposium on Fault-Tolerant Computing, pages 22{31, Pasadena, CA, June 1995.[WM89] P. R. Wilson and T. G Moher. Demonic memory for process histories. In SIGPLAN '89 Conference on Programming LanguageDesign and Implementation, pages 330{343, June 1989.

14

