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1AbstractOn the Error Analysis and Implementation of Some Eigenvalue Decomposition andSingular Value Decomposition AlgorithmsbyHuan RenDoctor of Philosophy in Applied MathematicsUniversity of California at BerkeleyProfessor James Demmel, ChairMany algorithms exist for computing the symmetric eigendecomposition, the singular valuedecomposition and the generalized singular value decomposition. In this thesis, we presentseveral new algorithms and improvements on old algorithms, analyzing them with respectto their speed, accuracy, and storage requirements.We �rst discuss the variations on the bisection algorithm for �nding eigenvaluesof symmetric tridiagonal matrices. We show the challenges in implementing a correct al-gorithm with oating point arithmetic. We show how reasonable looking but incorrectimplementations can fail. We carefully de�ne correctness, and present several implementa-tions that we rigorously prove correct.We then discuss a fast implementation of bisection using parallel pre�x. We showmany numerical examples of the instability of this algorithm, and then discuss its forwarderror and backward error analysis. We also discuss possible ways to stabilize it by usingiterative re�nement.Finally, we discuss how to use a divide-and-conquer algorithm to compute the sin-gular value decomposition and solve the linear least squares problem, and how to implementVan Loan's algorithm for the generalized singular value decomposition using this divide-and-conquer algorithm. We show how our implementations achieve good speedups over theprevious implementations. For example, on an IBM RS6000/590, our implementation runs50 times faster than LAPACK's implementation for computing the bidiagonal SVD, and 13times faster for computing the dense SVD for 1600� 1600 random matrices.
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10Chapter 1Introduction1.1 IntroductionThe symmetric eigenvalue decomposition (SED) and the singular value decompo-sition (SVD) are two of the most common problems in numerical linear algebra. There aremany algorithms to compute these two decompositions. We will discuss two popular algo-rithms which are suitable for serial computers as well as parallel computers: the bisectionalgorithm and the divide-and-conquer algorithm.In this chapter, we introduce some basic concepts and then give an overview ofthe thesis.1.2 Basic ConceptsThe eigendecomposition of an n� n real symmetric matrix A isA = U�UT ;where U is an n�n orthogonal matrix (UTU = I)and � 2 Rn�n is a diagonal matrix. Thecolumns of U are the eigenvectors of A and the diagonal elements of � are the eigenvaluesof A. We assume the eigenvalues are in increasing order:�1 � �2 � � � � � �n:The singular value decomposition (SVD) of an m� n real matrix B isB = U�V T ;



11where U 2 Rm�m and V 2 Rn�n are orthogonal matrices, and � 2 Rm�n is a nonnegativediagonal matrix. The columns of U are the left singular vectors of B, the columns of Vare the right singular vectors, and the diagonal elements of � = diag(�1; �2; : : : ; �n) are thesingular values.There are important relationships between the singular value decomposition of amatrix B and the eigendecomposition of BTB;BBT , and 24 0 BTB 0 35 [43]. In fact, if theSVD of B 2 Rm�n(m � n) is given by B = U�V T ; thenV T (BTB)V = �T� = diag (�21; : : : ; �2n) 2 Rn�nand UT (BBT )U = diag (�21; : : : ; �2n; 0; : : : ; 0) 2 Rm�m:Moreover, if U = [U1 U2]where U1 2 Rm�n and U2 2 Rm�(m�n), and we de�ne the (m+ n) � (m+ n) orthogonalmatrix Q by Q = 1p2 24 V V 0U1 �U1 p2U2 35then QT 24 0 BTB 0 35Q = diag (�1; : : : ; �n;��1; : : : ;��n; 0; : : : ; 0):The linear least squares problem is to compute the x which minimizeskAx� bk2where A 2 Rm�n, b 2 Rm and x 2 Rn. If m > n, we have more equations than unknowns,and the system is overdetermined. If m < n, the system is underdetermined.The generalized singular value decomposition of two matrices, A 2 Rm�n andB 2 Rp�n, is a pair of factorizations:A = U�1[0 R]QT and B = V �2[0 R]QT ;where U 2 Rm�m, V 2 Rp�p and Q 2 Rn�n are orthogonal matrices. R is an r � rnonsingular and upper triangular matrix, where r � n is the rank of 24 AB 35. �1 is an m�r



12diagonal matrix, �2 is a p� r diagonal matrix, the diagonal elements of both matrices arenonnegative, and they satisfy �T1�1 +�T2 �2 = I:1.3 Floating Point ArithmeticEach arithmetic operation is generally a�ected by roundo� error because themachine hardware can only represent a subset of real numbers which are called oatingpoint numbers. In more detail, let 
 be one of the operations +;�; �; =. When the truevalue of an operation a 
 b can not be represented exactly as a oating point number, itmust be approximated by a nearby oating point number before it can be stored in memory.We denote this approximation by fl(a
 b), and the di�erencea
 b� fl(a
 b)is the roundo� error. If fl(a 
 b) is the nearest oating point number to a 
 b, we saythe arithmetic rounds correctly. IEEE arithmetic [4, 5] has this attractive property. Whenrounding correctly and a
 b does not overow or underow, we can writefl(a
 b) = (a
 b)(1 + �); (1.3.1)where j�j is bounded bymachine precision ". In IEEE single precision, " = 2�24 � 6�10�8; inIEEE double precision, " = 2�53 � 1:1 �10�16. The IEEE standard for binary arithmetic [4]is used on SUN, DEC, HP and IBM workstations and all PCs. Exceptions include Crayvector computers, so to accommodate error analysis on a Cray-2, Cray-YMP, or Cray C-90and Cray T-90, we have to modify our model (1.3.1) to fl(a � b) = a(1 + �1) � b(1 + �2),fl(a � b) = (a � b)(1 + �3) and fl(a=b) = (a=b)(1 + �4) with j�ij � c � " where c is a smallinteger [27, 68].A op is any oating point operation a 
 b, where a and b are oating pointnumbers.1.4 Algorithms to Compute the Symmetric Eigendecompo-sitionIn general, algorithms for computing the symmetric eigendecomposition proceedin three steps [43, 27] except Jacobi methods which is slow.



13� Step 1: TridiagonalizationGiven a symmetric matrix A 2 Rn�n, �nd an orthogonal matrix Q such thatQAQT = Twhere T is a symmetric tridiagonal matrix and Q is the product of Householdermatrices.� Step 2: Compute Symmetric Tridiagonal EigendecompositionUse an algorithm to get the eigendecomposition of TT = UT�U:� Step 3: Computer EigenvectorCompute eigenvector matrix V = UQ of A.Therefore, the eigendecomposition of A is given by:A = (UQ)T�(UQ) = V T�V:It can be shown that the computed symmetric tridiagonal matrix T̂ from Step 1 satis�esT̂ = Q̂T (A+ E)Q̂;where Q̂ is exactly orthogonal and E is a symmetric matrix satisfying kEkF � c"kAkFwhere c is a small constant [97, 43].Step 2 can be accomplished by many algorithms like tridiagonal QR iteration[80, 27], bisection [43, 27, 80, 30], divide-and-conquer [22, 72, 84, 52, 89], etc. In chapter2, we will review bisection and discuss several implementations of bisection algorithm. Ourgoal in chapter 2 is to prove rigorously the correctness of those implementations undercertain assumptions, e.g. models of oating-point arithmetic.Bisection can be accelerated by a fast algorithm called parallel pre�x [26, 28, 32,94, 74], reducing the time that bisection takes from O(n) to O(log2 n) on a machine with nprocessors and su�cient fast communications. However, it can be very unstable [74, 30]. Inchapter 3 and 4, we will introduce the parallel pre�x algorithm and show many numericalexamples of its instability. We will also analyze its forward and backward stability.



141.5 Singular Value Decomposition and Least Squares Prob-lemThe algorithm to compute singular value decomposition of A 2 Rm�n also takesthree steps [41]. The �rst step is to use orthogonal matrices U and V to reduce A to abidiagonal matrix B, A = UBV T ;and then compute the SVD of B: B = Q�WT :Finally, compute the singular vectors ~U = UQ and ~V = VW . The SVD of A is thencomputed as A = (UQ)�(VW )T = ~U�~V :We will describe this process in details in chapter 5. There are also many algorithms tocompute the SVD of bidiagonal matrix, like QR-iteration [33, 41, 42], QD-iteration [38, 83]and divide-and-conquer [22, 51, 46, 6, 63].We will describe the bidiagonal SVD using divide-and-conquer in chapter 5. Wewill discuss the implementation of the algorithm and present its performance on a highperformance workstation, the IBM RS6000/590. For a 1600 � 1600 random matrix, ourimplementation achieves a 50-fold speedup over LAPACK's QR-iteration based SVD forstep 2, the SVD of a bidiagonal matrix, and a 13-fold speedup for the overall dense SVD.Given the SVD of A, A = U�V T , we can solve the least squares problem [43, 27, 2]minx2Rn kAx� bk2by w = UT b; y = 24 ��11 0 35w; x = V y;where �1 = diag (�1; �2; : : : ; �r) and r is the rank of A. This is the most reliable way to solvethe rank de�cient linear least squares problem. The other methods like QR factorizationand Rank-Revealing QR run faster than the SVD solver, but they are not as reliable whenA is rank de�cient. We will introduce various least squares solvers in chapter 5 and showtheir performance on an IBM RS6000/590. We will show that our implementation of a leastsquares solver using the divide-and-conquer SVD achieves a 28-fold speedup over LAPACK'sDGELSS, the solver based on the SVD with QR-iteration for a 1600� 1600 random matrix.



151.6 Generalized Singular Value DecompositionWe will discuss two ways to compute the generalized singular value decompositionin chapter 6, one based on Paige's algorithm [77] and one on Van Loan's algorithm [96].Paige's algorithm �rst reduces the matrix pair A and B to upper triangular formby QR factorization, and then use Jacobi rotations to compute the GSVD of the triangularmatrices [77, 10, 2].Van Loan's algorithm �rst computes the QR factorization of 24 AB 35,24 AB 35 = 24 Q1Q2 35R;and then computes the Cosine-Sine Decomposition (CSD) of 24 Q1Q2 35,24 Q1Q2 35 = 24 U1 00 U2 3524 �1�2 35V T :It uses two SVDs in the process of computing the CSD. We implemented Van Loan's algo-rithm using our implementation of the divide-and-conquer SVD algorithm. We achieve a 54-fold speedup over LAPACK's implementation of Paige's algorithm on an IBM RS6000/590,for 500� 500 random matrices. More performance data will be presented in chapter 6.



16Chapter 2Solving the Symmetric TridiagonalEigenproblem Using Bisection2.1 IntroductionBisection is a well known method for �nding eigenvalue of symmetric tridiagonalmatrices [43, 27, 80, 66]. We will review it briey below. Bisection relies on a functionwhich counts the eigenvalues less than x; we call it Count(x). Our goal in this chapteris to show how an incorrect implementation of Count(x) can cause failure of the bisectionalgorithm, and prove the correctness of several implementations of Count(x).2.2 Review of BisectionGiven an n� n symmetric tridiagonal matrixT = 266666666664 a1 b1b1 a2 b2. . . . . . . . .bn�2 an�1 bn�1bn�1 an 377777777775 ; (2.2.1)the symmetric tridiagonal eigenproblem is to �nd the eigendecomposition:T = U�UT ;



17where � is a diagonal matrix and U is an orthogonal matrix. The diagonal elements of �are the eigenvalues of T , and the columns of U are the corresponding eigenvectors. This isa basic problem in numerical linear algebra [27, 43, 80, 91, 97]. In this chapter, we discussthe bisection algorithm [27, 43, 80] to solve this problem.Before discussing the bisection algorithm, we introduce a classical result uponwhich it is based.De�nition 2.2.1 The inertia of a symmetric matrix A is a triple of integers: Inertia(A) �(�; �; �), where � is the number of negative eigenvalues of A, � is the number of zeroeigenvalues of A, and � is the number of positive eigenvalues of A.Theorem 2.2.1 (Sylvester's Law of Inertia [40]) Let A be a symmetric matrix and Xbe a nonsingular matrix. Then A and XTAX have the same inertia.Suppose A = AT and one does Gaussian Elimination to get A � xI = LDLTwhere L is lower triangular and nonsingular, D is diagonal and I is identity matrix. BySylvester's Law of Inertia, Inertia(A�xI) = Inertia(D). Therefore, Inertia(A�xI) is trivialto compute since D is diagonal:Inertia(A� xI) = (# negative eigenvalues of A� xI;# zero eigenvalues of A� xI;# positive eigenvalues of A� xI)= (# eigenvalues of A < x;# eigenvalues of A = x;# eigenvalues of A > x)= Inertia(D)= (# dii < 0;# dii = 0;# dii > 0)Suppose x1 < x2 and we compute Inertia(A�x1I) and Inertia(A�x2I). Then the numberof eigenvalues in the interval [x1; x2) equals(#eigenvalues of A < x2)� (#eigenvalues of A < x1):By de�ning the following function(also called Negcount)Count(x) = # eigenvalues of A < x;we can introduce the following algorithm:



18Algorithm 2.2.1 Bisection: Compute all the eigenvalues of A in the interval [left; right)to the desired accuracy � , given the initial task (left; right; nleft; nright) where nleft =Count(left), nright = Count(right) .1: if (nleft = nright or left > right) return; /* no eigenvalues in interval */2: enqueue (left; right; nleft; nright) on Worklist;3: while (Worklist is not empty)4: dequeue (�; �; n�; n�) from Worklist;5: if ( � � � small enough ) then6: print \Eigenvalue (�+ �)=2 has multiplicity n� � n�";7: else8: mid = (� + �)=2;9: nmid = Count(mid);10: if (nmid > n�) then/* bottom half of interval (�; �) contains eigenvalues */11: enqueue (�;mid; n�; nmid) on Worklist;12: end if13: if (nmid < n�) then/* top half of interval (�; �) contains eigenvalues */14: enqueue (mid; �; nmid; n�) on Worklist;15: end if16: end if17: end whileIn general, we say � � � small enough if� � � < min(�;max(j�j; j�j)");where � is used to bound absolute error and max(j�j; j�j)" is used to bound relative error.Let �1 � �2 � : : : � �n be the eigenvalues of n � n matrix A. The same idea canbe used to compute �j for j = j0; j0 + 1; : : : ; j1. This is because we know �nleft through�nright�1 lie in the interval [left; right). Also, by using the Gershgorin Disk Theorem, it iseasy to see that all eigenvalues must lie in the interval [left; eight] whereleft = min1�i�n(Aii �Xj 6=i jAij j) and right = max1�i�n(Aii +Xj 6=i jAij j);



19so that if we let the initial task on the Worklist be (left; right; 0; n), then bisection willcompute all the eigenvalues of A.Theorem 2.2.2 (Gershgorin Disk Theorem [27, 43]) Let A be an n � n arbitrarymatrix. Then the eigenvalues � of A are located in the union of the n disks.j�� Akkj �Xj 6=k jAkj jIf A were dense, we could implement Count(x) by doing symmetric GaussianElimination [16] with pivoting. But this would cost O(n3) ops and thus not be coste�ective. On the other hand, Count(x) is quite simple to compute for symmetric tridiagonalmatrix T :T � xI = 266666666664 a1 � x b1b1 a2 � x b2. . . . . . . . .bn�2 an�1 � x bn�1bn�1 an � x 377777777775 = LDLT= 266666666664 1l1 1. .. . . .ln�2 1ln�1 1 377777777775266666666664 d1 d2 . . . dn�1 dn 377777777775266666666664 1 l11 l2. . . 1 ln�11 377777777775Therefore, d1 = a1 � x, d1l1 = b1 and thereafter l2i�1di�1 + di = ai � x, dili = bi.Substituting li = bi=di yields:d1 = a1 � xdi = ai � x� b2i�1di�1Thus, given an n-by-n real symmetric tridiagonal matrix T with diagonals a1; :::; an ando�diagonals b1; :::; bn�1 (we let b0 � 0), and let �1 � � � � � �n be T 's eigenvalues, then thefollowing algorithm computes the function Count(x) which returns the number of eigenval-ues of T that are less than x (for all but the �nite number of x resulting in a divide by zero,which we call singular points) :



20Algorithm 2.2.2 Count(x) returns the number of eigenvalues of a real symmetric tridiag-onal matrix T that are less than x.1: Count = 0;2: d = 1;3: for i = 1 to n4: d = ai � x� b2i�1=d5: if d < 0 then6: Count = Count + 17: end if8: end for(If we wish to emphasize that T is the argument, we will write Count(x; T ) instead.)Remark 2.2.1 We de�ne Count(x) at singular points to be the number of eigenvalues lessthan x. This means that for all x, Count(x) is left continuous at x.The cost of a single call to Algorithm 2.2.2 is 4n. Therefore, the overall cost to �ndm eigenvalues is O(mn). To compute the corresponding eigenvectors, we can use inverseiteration [43, 80, 81, 61].2.3 Our Goals in This ChapterThe logic of bisection algorithm seems to depend on the simple fact that Count(x)is a monotonic increasing step function of x, since the number of the eigenvalues in thehalf-open interval [�1; �2) is Count(�2) � Count(�1). If its computer implementation,call it FloatingCount(x), were not also monotonic, so that one could �nd �1 < �2 withFloatingCount(�1) > FloatingCount(�2), then the computer implementation might well re-port that the interval [�1; �2) contains a negative number of eigenvalues, namely FloatingCo-unt(�2) �FloatingCount(�1). This result is clearly incorrect. In section 2.5 below, we willsee that this can indeed occur using the the Eispack routine bisect (using IEEE oat-ing point standard arithmetic [4, 5], and without over/underow). There are at least fourreasons why FloatingCount(x) might not be monotonic [30]:1. the oating point arithmetic is too inaccurate,



212. over/underow occurs, or is avoided improperly,3. FloatingCount(x) is implemented using a fast parallel algorithm called parallel pre�x,or4. heterogeneity | processors in a parallel environment may have di�ering oating pointarithmetics, or may just compile code slightly di�erently.In this chapter, we discuss the �rst two challenges to implementing bisection cor-rectly. In next chapter, we discuss parallel pre�x. For heterogeneity and other parallelissues, we refer to [30].We �rst give an example to show how monotonicity can fail, and cause incorrecteigenvalues to be computed; see sections 2.5 and 2.6.We then show that as long as the oating point arithmetic is monotonic (wede�ne this in section 2.4.1), and FloatingCount(x) is implemented on a single processorin a reasonable way, then FloatingCount(x) is also monotonic. A su�cient condition foroating point to be monotonic is that it be correctly rounded or correctly chopped; thusIEEE oating point arithmetic is monotonic. This result was �rst proven but not publishedby Kahan in 1966 for symmetric tridiagonal matrices [66]; here we extend this result tosymmetric acyclic matrices, a larger class including tridiagonal matrices, arrow matrices,and exponentially many others [31]; see section 2.6.Finally, we review the roundo� error analysis of FloatingCount(x), and how to ac-count for over/underow, thus rigorously prove several implementations of FloatingCountfunction are correct (we will de�ne correctness in section 2.4.3), which is a necessary condi-tion for an implementation of bisection algorithm (serial or parallel) to be correct [30]; partof this material may also be found in [31, 66]; see section 2.7.2.4 De�nitions and AssumptionsSection 2.4.1 de�nes the kinds of matrices whose eigenvalue problems we will con-sider, what monotonic arithmetic is, and what \jump points" of the functions Count(x) andFloatingCount(x) are. Section 2.4.2 presents our (mild) assumptions about oating pointarithmetic and the input matrices our algorithms will accept. Section 2.4.3 lists the criteriaan implementation of FloatingCount must satisfy to be correct.



222.4.1 Preliminary De�nitionsIn this section, we de�ne some fundamental concepts which we will use throughthis chapter.Symmetric Acyclic MatricesAlgorithm 2.2.2 was recently extended to the larger class of symmetric acyclicmatrices [31], i.e. those matrices whose graphs are acyclic (trees). The undirected graphG(T ) of a symmetric n-by-n matrix T is de�ned to have n nodes and an edge (i; j), i < j, ifand only if Tij 6= 0. A symmetric tridiagonal matrix is one example of a symmetric acyclicmatrix; its graph is a chain. An \arrow matrix" which is nonzero only on the diagonal, inthe last row and in the last column, is another example; its graph is a star.26666666666664 � �� �� �� �� �� � � � � � 37777777777775 26666666666664 � �� � �� � �� � �� � �� � 37777777777775Arrow Matrix Tridiagonal Matrix
From now on, we will assume T is a symmetric acyclic matrix unless we stateexplicitly otherwise. Also we will number the rows and columns of T in preorder suchthat node 1 is the root of the tree and so accessed �rst; node j is called a child of nodei if Tij 6= 0 and node j is visited after node i by the algorithm (see Algorithm 2.6.1 insection 2.6, TreeCount, for details). We let C denote the maximum number of children ofany node in the acyclic graph G(T )(C is never larger than the degree of G(T )).



23Monotonic Floating Point ArithmeticTo describe the monotonicity of FloatingCount(x), we need to de�ne monotonicarithmetic: An implementation of oating point arithmetic is monotonic if, whenever a, b,c and d are oating point numbers, 
 is any binary operation, and the oating point resultsfl(a 
 b) and fl(c
 d) do not overow, then a 
 b � c 
 d implies fl(a 
 b) � fl(c
 d).This is satis�ed by any arithmetic that rounds or truncates correctly such as IEEE oatingpoint arithmetic [4] but not by the oating point arithmetic of Cray XMP or YMP [68].In section 2.6, we will prove that the FloatingCount function (Floating TreeCount) for asymmetric acyclic matrix is monotonic if the oating point arithmetic is monotonic.Jump PointsWe now de�ne a jump-point of the function Count(x). �i is the ith jump-point ofthe function Count(x) if limx!��i Count(x) < i � limx!�+i Count(x)Note that �i is actually an eigenvalue of the input matrix T for Count(x). Anal-ogous to the above de�nition, we de�ne an ith jump-point of a possibly nonmonotonicfunction FloatingCount(x) as a oating point number �00i such thatFloatingCount(�00i ) < i � FloatingCount(nextafter(�00i ))where nextafter(�00i ) is the smallest oating point number greater than �00i . For a nonmono-tonic FloatingCount(x) function, there may be more than one such jump-point.2.4.2 Assumptions Required to Prove Correctness of BisectionIn order to prove correctness of the algorithms, we need to make some assumptionsabout the computer arithmetic and the inputs. The following is a list of all the assumptionswe will make; not all our results require all the assumptions, so we must be explicit aboutwhich assumptions we need.The �rst set of assumptions, Assumption 1, concerns the oating point arithmetic.Not all parts of Assumption 1 are necessary for all later results, so we will later refer toAssumptions 1A, 1B, etc. Assumption 2 is about the input matrix, and includes a mildrestriction on its size, and an easily enforceable assumption on its scaling.



24Assumption 1 (Properties of Floating Point Arithmetic)1A. Barring overow, the usual expression for roundo� may be extended to include under-ow as follows [25]: fl(a
 b) = (a
 b)(1+ �) + � (2.4.2)where 
 is a binary arithmetic operation, j�j is bounded by machine precision ", j�jis bounded by a tiny number �!, typically the underow threshold ! (the smallestnormalized number which can safely participate in, or be a result of, any oatingpoint operation)1 and at most one of � and � can be nonzero. In IEEE arithmetic,gradual underow lets us further assert that �! = "!, and that if 
 is addition orsubtraction, then � must be zero. We denote the overow threshold of the computer(the largest number which can safely participate in, or be a result of, any oatingpoint operation) by 
.In this paper, we will consider the following three variations on this basic oatingpoint arithmetic model:Model 1. fl(a
 b) = (a 
 b)(1 + �) + � as above, and overows terminate, i.e. themachine stops executing the running program.Model 2. IEEE arithmetic with �1, �0 and NaN, and with gradual underow.Model 3. IEEE arithmetic with �1, �0 and NaN, but with underow ushing tozero instead of gradual underow.1B. p! � " � 1 � 1=" � p
. This mild assumption is satis�ed by all commercial oatingpoint arithmetics.1C. Floating point arithmetic is monotonic. This is true of IEEE arithmetic (Models 2 and3) but is not true of all arithmetics satisfying Model 1. We don't know any commercialmachine which satis�es Model 1 but violates this assumption.\Indeed, the builder of any machine which failed to satisfy this assumption should beashamed of himself." | Kahan [66].Assumption 2 (Properties of the input matrix)1These caveats about \safe participation in any oating point operation" take machines like some Craysinto account, since they have \partial overow". On Cray, there are numbers for which addition by 1 doesnot cause overow although multiplication by 1 does [68].



25Table 2.1: Parameters for Di�erent ArithmeticsIEEE CrayParameters Single Single Extended Double Double Extended" 5:96 � 10�8 � 2:33 � 10�10 1:11 � 10�16 � 5:42 � 10�20 3:55 � 10�15! 1:18 � 10�38 � 2:23 � 10�308 2:23 � 10�308 � 3:36 � 10�4932 3:36 � 10�4932
 3:40 � 1038 � 1:79 � 10308 1:79 � 10308 � 1:19 � 104932 1:19 � 1049322A. Assumption on the problem size n: n" � 0:1. For example, in IEEE double precision,this limits us to matrices of dimension less than 4:5 � 1014, or 450 trillions. Virtuallyall numerical algorithms share a restriction like this.2B. Assumptions on the scaling of the input matrix. Let �B � mini 6=j T 2ij and �M �maxi;j jTijj.i. �M � p
 (largest matrix entry not too large).ii. �B � ! (smallest o�diagonal matrix entry not too small).These assumptions may be achieved by explicitly scaling the input matrix (multiplyingit by an appropriate scalar) to adjust �M , and then setting small o�-diagonal elementsT 2ij < ! to zero and so splitting the matrix into unreduced blocks [30, 8], each of whichsatis�es �B � !. By Weyl's Theorem [80], this may introduce a tiny error of amountno more than p! in the computed eigenvalues.2C. More assumptions on the scaling of the input matrix (that the largest entry is not toosmall). These are used to get re�ned error bounds in section 2.7.i. �M � !=".ii. �M � 1=("
).To end this section, we show a table of ", ! and 
 for some arithmetics (table 2.1)[4, 68].



262.4.3 De�nition of Correctness of FloatingCountWhen we say that an implementation of FloatingCount function is correct, we assertthat it terminates and the following hold:Let �(1)00i ; �(2)00i ; : : : ; �(k)00i be the ith jump-points of FloatingCount(x) and �i be the ithjump-points of Count(x). We assume that FloatingCount(x) satis�es the error bound,j�(j)00i � �ij � �i; 8j = 1; : : : ; kfor some small �i � 0 (usually we require �i to be O(")).We have permitted that FloatingCount(x) to have a bounded region of possiblenonmonotonicity, where the error bound �i is also a bound on the nonmonotonicity aroundeigenvalue �i. Di�erent implementations of FloatingCount(x) result in di�erent values of�i (see section 2.7). For some of the practical FloatingCount functions in use, we prove insection 2.7 that they satisfy the correctness property.We say that an implementation of FloatingCount function is incorrect when theabove fails to hold.2.5 An Incorrect Implementation of BisectionWe give an example of the failure of Eispack's bisect routine [88] which imple-ments a nonmonotonic FloatingCount(x). Suppose we use IEEE standard double precisionoating point arithmetic [4, 5] with " = 2�53 � 1:1�10�16 and we want to �nd the eigenvaluesof the following 2� 2 matrix: A = 0@ 0 "" 1 1A :A has eigenvalues near 1 and �"2 � �1:23 � 10�32. But bisect reports that the interval[�10�32; 0) contains �1 eigenvalues. No overow or underow occurs in this case. Thereason for this is bisect's incorrect provision against division by zero (See Algorithm 2.7.1in section 2.7.2). In section 2.6, in the proof of Theorem 2.6.1, we will show that this cannothappen for the LAPACK routine dstebz even for more general symmetric acyclic matrices.



272.6 Proof of Monotonicity of FloatingCount(x)In 1966 Kahan proved but did not publish the following result [66]: if the oatingpoint arithmetic is monotonic, then FloatingCount(x) is a monotonically increasing func-tion of x for symmetric tridiagonal matrices. That monotonic oating point arithmetic isnecessary for FloatingCount(x) to be monotonic is easily seen by considering 1-by-1 matri-ces: if addition fails to be monotonic so that x < x0 but fl(a1 � x) < 0 < fl(a1 � x0), thenFloatingCount(x) = 1 > 0 = FloatingCount(x0). In this section, we will extend this proofof monotonicity of FloatingCount(x) to symmetric acyclic matrices.As we mentioned before, Algorithm 2.2.2 was recently extended to the symmetricacyclic matrices. In [31] an implementation of Count(x) for acyclic matrices was given, seeAlgorithm 2.6.1 below. The algorithm refers to the tree G(T ) which is the graph of then�n symmetric matrix T , where node 1 is chosen (arbitrarily) as the root of the tree, andnode j is called a child of node i if Tij 6= 0 and node j has not yet been visited by thealgorithm. We are also explicit about where roundo� occurs in the algorithm.Algorithm 2.6.1 TreeCount(x) returns the number of eigenvalues of the symmet-ric acyclic matrix T that are less than x.call TreeCount(1; x; d1; s1)Count = s1procedure TreeCount(i; x; di; si)/* i and x are inputs, di and si are outputs */1: di = fl(Tii � x)2: si = 03: for all children j of i do4: call TreeCount(j; x; dj; sj)5: di = fl(di � fl(T 2ij=dj))6: si = si + sj7: endfor8: if di < 0 then9: si = si + 110: end if



28end TreeCountWithout loss of generality, from now on we ignore roundo� in computing T 2ij sincewe may as well consider T 2ij as the input data (see assumption 2B).Clearly, si is the total number of negative dj in the subtree rooted at i (includingdi). We may summarize Algorithm 2.6.1 more briey bydi = fl(fl(Tii� x)� fl( Xj2C(i)fl(T 2ijdj ))) (2.6.3)si = Xj2C(i) sj +8<: 0 if di � 01 if di < 0 (2.6.4)where the sums are over the set C(i) of all children of i.Let x be a oating point number, and let x0 denote the next oating point numberlarger than x. To distinguish the results of Algorithm 2.6.1 for di�erent x we will si and dias functions si(x) and di(x). The theorem we wish to prove is:Theorem 2.6.1 If the oating point arithmetic used to implement Algorithm 2.6.1 is mono-tonic, then si(x) � si(x0), i.e. TreeCount(x) is monotonic.We introduce some more de�nitions. In these de�nitions, y is always a oatingpoint number.De�nition 2.6.1 Zeros and Poles:i. The number y is a zero of di if di(y) � 0 > di(y0).ii. The number y is a pole of di if di(y) < di(y0).� It is called a positive pole if in addition to being a pole di(y)di(y0) > 0 or di(y) = 0.� It is called a negative pole if in addition to being a pole di(y)di(y0) < 0 ordi(y0) = 0.Now we suppose that for some i, si(x) > si(x0) is decreasing, we want to �nd acontradiction.Lemma 2.6.1 Let m be the largest m such that sm ever decreases. This means that forsome y, sm(y) > sm(y0). Then in fact dm(y) < 0 � dm(y0), i.e. y is a negative pole of dm.



29Proof. Since m is the largest integer for which sm is decreasing, we must havesk(y) � sk(y0) for all children k of m. Now write0 > sm(y0)� sm(y)= fsm(y0)� Xk2C(m) sk(y0)g+ f Xk2C(m) sk(y0)� Xk2C(m) sk(y)g+ f Xk2C(m) sk(y)� sm(y)g� t1 + t2 + t3 :From (2.6.4) we we conclude t1 � 0 and t3 � �1. From the de�nition of m we concludet2 � 0. These inequalities have one solution, namely t1 = t2 = 0 and t3 = �1. From t1 = 0we conclude that dm(y0) � 0, and from t3 = �1 we conclude dm(y) < 0. In particular, thismeans y is a negative pole of dm.Lemma 2.6.2 If y is a pole of di, then i must have a child j for which y is either a positivepole or a zero.Proof. If y is a pole of di, then for some child j of i we must havefl( T 2ijdj(y)) > fl( T 2ijdj(y0)) (2.6.5)Otherwise all children would satisfyfl( T 2ijdj(y)) � fl( T 2ijdj(y0))and so by the monotonicity of arithmeticfl( Xj2C(i)fl( T 2ijdj(y))) � fl( Xj2C(i) fl( T 2ijdj(y0)))Arithmetic monotonicity further impliesfl(Tii � y) � fl(Tii � y0)and �nallyfl(fl(Tii� y)� fl( Xj2C(i) fl( T 2ijdj(y)))) � fl(fl(Tii� y0)� fl( Xj2C(i) fl( T 2ijdj(y0))))



30or di(y) � di(y0), contradicting the assumption that y is a pole. Applying arithmeticmonotonicity to (2.6.5) we conclude T 2ijdj(y) > T 2ijdj(y0) :This means either dj(y) � 0 > dj(y0) (i.e. y is a zero of dj) or dj(y) < dj(y0) and dj(y) �dj(y0) > 0 (y is a positive pole of dj) or 0 = dj(y) < dj(y0) (y is a positive pole of dj).Remark 2.6.1 The proof of the last lemma does not depend on the order in which theadditions and subtractions of Tii, y, and T 2ij=dj are carried out. It is also not damaged byinserting the line \if jdij < tol then di = �tol" just before \if di < 0 then si = si + 1" inAlgorithm 2.6.1 since we can simply modify the de�nition of zero to: y is a zero of di ifdi(y) � tol and di(y0) � �tol (in fact, this is the de�nition in [66] to prove the monotonicityof Count(x) for symmetric tridiagonal matrix), and the proof will follow through. Thisis done in practice to avoid overow and division by zero; see Algorithm 2.7.3 and [3, 66].However, the proof does not work for the algorithm used to avoid overow in the subroutinebisect [88]. This is because bisect tests if a computed dj is exactly zero, and increasesif it is; this can increase di(y0) past di(y) even if inequalities (2.6.5) are not satis�ed. Theexample in section 2.5 shows that monotonicity can indeed fail in practice.Lemma 2.6.3 If y is a pole of di, then there must be a node l in the subtree rooted at isuch that y is a zero of dl and for all dj on the path from i to l, y is a positive pole of dj.Proof. We can apply Lemma 2.6.2 to i to �nd a child l which is either a zero ora positive pole. If it is a zero we are done, and otherwise we apply Lemma 2.6.2 again to l.This process must end in a zero since the leaves are of the form dl(x) = fl(Tll � x) and socan only be zeros by arithmetic monotonicity.Proof of Theorem 2.6.1: We use proof by contradiction, assume that some si(x)is not monotonic, we now use Lemma 2.6.1 to conclude that there is a largest m such thaty is a negative pole of dm, and Xk2C(m) sk(y) = Xk2C(m) sk(y0) : (2.6.6)Use Lemma 2.6.3 to conclude that there is some l in the tree rooted at m for which y is azero. This means dl(y) � 0 > dl(y0), so that dl contributes one more to the right hand side



31of (2.6.6) than to the left hand side. So to maintain (2.6.6) there must be another p in thetree rooted at m with dp(y) < 0 � dp(y0), i.e. y is a negative pole of dp. By Lemma 2.6.3,p cannot lie on the path from m to l, since only positive poles lie on this path. Therefore,again by Lemma 2.6.3, there must be a q 6= l in the tree rooted at p such that y is a zeroof dq. But this means dp and dq together contribute equally to both sides of (2.6.6), andso cannot balance dl. By the same argument, any other negative pole which would balancedl has a counterbalancing zero. Therefore (2.6.6) cannot be satis�ed. This contradictionproves Theorem 2.6.1.2.7 Roundo� Error AnalysisIn last section, we introduced Algorithm 2.6.1 which can be used to compute theeigenvalues of a symmetric acyclic matrix. In [31] it is shown that barring over/underow,the oating point version of Algorithm 2.6.1 has the same attractive backward error analysisas the oating point version of Algorithm 2.2.2. We reproduce the error analysis in [31].Results are summarized in tables 2.4 and 2.5.Let FloatingCount(x; T ) denote the value of Count(x; T ) computed in oatingpoint arithmetic. Then FloatingCount(x; T ) = Count(x; T 0), where T 0 di�ers from T onlyslightly: jTij � T 0ij j � f(C=2 + 2; ")jTijj if i 6= j and Tii = T 0ii; (2.7.7)where " is the machine precision, C is the maximum number of children of any node in thegraph G(T ) and f(n; ") is de�ned byf(n; ") = (1 + ")n � 1:By Assumption 2A (n" � :1), we have [97]:f(n; ") � 1:06n":(Strictly speaking, the proof of this bound is a slight modi�cation of the one in [31], andrequires that d be computed exactly as shown in TreeCount. The analysis in [31] makes noassumption about the order in which the sum for d is evaluated, whereas the bound (2.7.7)for TreeCount assumes the parentheses in the sum for d are respected. Not respecting theparentheses weakens the bounds just slightly, and complicates the discussion below, butdoes not change the overall conclusion.)



32This tiny componentwise backward error permits us to compute the eigenvaluesaccurately, as we now discuss. Suppose the backward error in (2.7.7) can change eigenvalue�k by at most �k. For example, Weyl's Theorem [80] implies that �k � kT � T 0k2 �2f(C=2+2; ")kTk2, i.e. that each eigenvalue is changed by an amount small compared withthe largest eigenvalue. If Tii = 0 for all i, then �k � ((1 � (C + 4)")1�n � 1)j�kj, i.e. eacheigenvalue is changed by an amount small relative to itself. See [12, 33, 66] for more suchbounds. Now suppose that at some point in the algorithm we have an interval [x; y), x < y,where i = FloatingCount(x; T ) < FloatingCount(y; T ) = j : (2.7.8)Let T 0x be the equivalent matrix for which FloatingCount(x; T ) = Count(x; T 0x), and T 0y bethe equivalent matrix for which FloatingCount(y; T ) = Count(y; T 0y), Thus x � �i+1(T 0x) ��i+1(T )+�i+1, or x��i+1 � �i+1(T ). Similarly, y > �j(T 0y) � �j(T )��j , or �j(T ) < y+�j .Altogether, x� �i+1 � �i+1(T ) � �j(T ) < y + �j : (2.7.9)If j = i+ 1, we get the simpler resultx� �j � �j(T ) < y + �j : (2.7.10)This means that by making x and y closer together, we can compute �j(T ) with an accuracyof at best about ��j ; this is when x and y are adjacent oating point numbers and j = i+1in (2.7.8). Thus, in principle �j(T ) can be computed nearly as accurately as the inherentuncertainty �j permits.We now describe the impact of over/underow, including division by zero. Wedenote the pivot d computed when visiting node i by di. We �rst discuss the way divisionby zero is avoided in Eispack's bisect routine [88], then the superior method in Lapack'sdstebz routine [3, 66], and �nally how our alternative Algorithm 2.7.2 (Flcnt IEEE) works(Algorithm 2.7.2 assumes IEEE arithmetic). The di�culty arises because if dj is tiny orzero, the division T 2ij=dj can overow. In addition, T 2ij can itself over/underow.The oating point operations performed while visiting node i aredi = fl((Tii � x)� ( Xall childrenj of i T 2ijdj )): (2.7.11)



33To analyze this formula, we will let subscripted "'s and �'s denote independent quantitiesbounded in absolute value by " (machine precision) and �! (underow threshold). Wewill also make standard substitutions like Qni=1(1 + "i) ! (1 + ~")n where j~"j � ", and(1 + "i)�1�j ! �j.2.7.1 Model 1: Barring Overow, Acyclic MatrixBarring overow, (2.7.11) and Assumption 2B(ii) leads todi = f(Tii � x)(1 + "ia) + �1i �Xall childrenj of i T 2ijdj (1 + ~"ij)C+1 � (2C � 1)�2ig(1 + "ib) + �3i:or di1 + "ib = (Tii � x)(1 + "ia)� Xall childrenj of i T 2ijdj (1 + ~"ij)C+1 + 2C � �02i + �03i:or di(1 + "ic)2 = Tii � x� Xall childrenj of i T 2ijdj (1 + "̂ij)C+2 + (2C + 1)�i;where (1 + "ic)2 � (1 + "ia)(1 + "ib). Let ~di = di=(1 + "ic)2, �nally,~di = Tii + (2C + 1)�i � x � Xall childrenj of i T 2ij~dj (1 + "ij)C+4: (2.7.12)Remark 2.7.1 Under Model 2, IEEE arithmetic with gradual underow, the underowerror (2C + 1)�i of the above equation can be replaced by C�i because addition and sub-traction never underow.If there is no underow during the computations of di either, then (2.7.12) simpli�es to:~di = Tii � x� Xall childrenj of i T 2ij~dj (1 + "ij)C+4:



34This proves (2.7.7), since the ~di are the exact pivots corresponding to T 0 where T 0 satis�es(2.7.7) and sign( ~di) = sign(di).Remark 2.7.2 We need to bar overow in principle for symmetric acyclic matrix withIEEE arithmetic, because if in (2.7.11), there are two children j1 and j2 of i such thatT 2ij1=dj1 overows to 1 and T 2ij2=dj2 overows to �1; then di will be NaN, not even well-de�ned.2.7.2 Models 2 and 3: Eispack's FlCnt bisect, Tridiagonal MatrixEispack's FlCnt bisect can overow for symmetric tridiagonal or acyclic matriceswith Model 1 arithmetic, and return NaN's for symmetric acyclic matrices and IEEE arith-metic since it makes no provision against overow (see Remark 2.7.2). In this section, weassume T is a symmetric tridiagonal matrix, whose graph is just a chain, i.e. C = 1. There-fore, to describe the error analysis for FlCnt bisect, we need the following assumptions:Assumption 2B(ii): �M � maxi;j jTijj � p
, and one ofAssumption 1A: Model 2. Full IEEE arithmetic with 1 and NaN arithmetic, and withgradual underow, orAssumption 1A: Model 3. Full IEEE arithmetic with 1 and NaN arithmetic, but withunderow ushing to zero.Algorithm 2.7.1 Eispack FlCnt bisect. FloatingCount(x) returns the number ofeigenvalues of a real symmetric tridiagonal matrix T that are less than x.1: FloatingCount = 0;2: d0 = 1;3: for i = 1 to n4: if (di�1 = 0) then5: v = jbi�1j="6: else7: v = b2i�1=di�18: endif9: di = ai � x� v



3510: if di < 0 then11: FloatingCount = FloatingCount + 112: endif13: endforUnder Models 2 and 3, our error expression (2.7.12) simpli�es to~di = ai + 3�i � x� b2i�1(1 + "ij)5~di�1 :where ai = Tii and bi�1 = Ti�1;i.However, FlCnt bisect's provision against division by zero can drastically increasethe backward error bound (2.7.7). When dj = 0 for some j in (2.7.11), it is easy to see thatwhat bisect does is equivalent to perturbing aj by "jbj j. This backward error is clearly smallin norm, i.e. at most "kTk2, and so by Weyl's Theorem, can perturb computed eigenvalue byno more than "kTk2. If one is satis�ed with absolute accuracy, this is su�cient. However, itcan clearly destroy any componentwise relative accuracy, because "jbjj may be much largerthan jaj j.Furthermore, suppose there is some k such that dk overows, i.e. jdkj � 
. Since�M � p
, it must be b2k�1=dk�1 that overows. So ~dk is �sign(b2k�1=dk�1) � 1 which hasthe same sign as the exact pivot corresponding to T 0. But this will contribute an extrauncertainty to ak+1 of at most �M2=
, since jb2k=dkj � �M2=
.Therefore we get the following backward error for FlCnt bisect:jTij � T 0ij j � f(2:5; ")jTijj if i 6= j:and jTii � T 0iij � "kTk2 + �M2
 +8<: "! Model 23! Model 3 :2.7.3 Models 2 and 3: FlCnt IEEE, Tridiagonal MatrixThe following code can work only for unreduced symmetric tridiagonal matricesunder Models 2 and 3 for the same reason as FlCnt bisect: otherwise we could get T 2ij1=dj1+T 2ij2=dj2 =1�1 = NaN . So in this section, we again assume T is a symmetric tridiagonalmatrix. By using IEEE arithmetic, we can eliminate all tests in the inner loop, and somake it faster on many architectures [34]. To describe the error analysis, we again make



36Assumptions 1A(Model 2 or Model 3) and 2B(ii), as in section 2.7.2, and Assumption 2B(i),which is �B � mini 6=j T 2ij � !.The function SignBit is de�ned as in IEEE oating point arithmetic, i.e., Sign-Bit(x) is 0 if x > 0 or x = +0, and 1 if x < 0 or x = �0.Algorithm 2.7.2 FlCnt IEEE. FloatingCount(x) returns the number of eigenval-ues of a real symmetric tridiagonal matrix T that are less than x.1: FloatingCount = 0;2: d0 = 1;3: for i = 1 to n/* note that there is no provision against overow and division by zero */4: di = (ai � x)� b2i�1=di�15: FloatingCount = FloatingCount + SignBit(di)6: endforBy Assumption 2B(i), b2i never underows. Therefore when some di underows,we do not have the headache of dealing with 0=0 which is NaN.Algorithm 2.7.2 is quite similar to FlCnt bisect except division by zero is permittedto occur, and the SignBit(�0) function (= 0 or 1) is used to count eigenvalues [30]. Moreprecisely, if di = +0, di+1 would be �1, so after two steps, Count will increase by 1. On theother hand, if di = �0, di+1 would be +1, hence Count also increases by 1 after two steps.Therefore, we can simply change any di = �0 to di = +0, and di+1 = +1 to di+1 = �1,to eliminate �0 from the analysis. Then using an analysis analogous to the last section, ifwe use Model 2(gradual underow), T 0 di�ers from T byjTij � T 0ij j � f(2:5; ")jTijj if i 6= j and jTii � T 0iij � �M2
 + "!:Using Model 3(ush to zero), we have the slightly weaker results thatjTij � T 0ij j � f(2:5; ")jTijj if i 6= j and jTii � T 0iij � �M2
 + 3!:Since �M � p
, so �M2=
�M � 1p
 � ":which tells us that �M � p
 is a good scaling choice.



372.7.4 Models 1, 2 and 3: Lapack's FlCnt stebz routine, Acyclic MatrixIn contrast to Eispack's FlCnt bisect and FlCnt IEEE, Lapack's FlCnt stebz canwork in principle for general symmetric acyclic matrices under all three models (althoughits current implementation only works for tridiagonal matrices). So in this section, T isa symmetric acyclic matrix. Let B = maxi 6=j(1; T 2ij) � 
, and p̂ = 2C � B=
 (p̂ is calledpivmin in dstebz). In this section, we need the Assumptions 1A (Model 1, 2 or 3) and2B(ii). Because of the Gerschgorin Disk Theorem, we can restrict our attention to thoseshifts x such that jxj � (n+ 1)p
.Algorithm 2.7.3 LAPACK Flcnt stebz. FloatingCount(x) returns the number ofeigenvalues of the symmetric acyclic matrix T that are less than x.call TreeCount(1; x; d1; s1)FloatingCount = s1procedure TreeCount(i; x; di; si) /* i and x are inputs, di and si are outputs */1: di = fl(Tii � x)2: si = 03: for all children j of i do4: call TreeCount(j; x; dj; sj)5: sum = sum+ T 2ij=dj6: si = si + sj7: endfor8: di = (Tii � x)� sum9: if (jdij � p̂) then10: di = �p̂11: endif12: if di < 0 then13: si = si + 114: endif15: end TreeCount



38It is clear that jdij � p̂ for each node i, sojTiij+ jxj+ Xall childrenj of i jT 2ijdj j � (n+ 2)p
+ C � B̂p � 
2 + C B2C �B=
 = 
:This tells us that FlCnt stebz never overows and it works under all three models. For allthese models, the assignment di = �p̂ when jdij is small can contribute an extra uncertaintyto Tii of no more than 2 � p̂. Thus we have the following backward error:jTij � T 0ijj � f(C=2 + 2; ")jTijj if i 6= j:and jTii � T 0iij � 2 � p̂+8>>><>>>: (2C + 1)�! Model 1C"! Model 2(2C + 1)! Model 3 :The driver routine which calls dstebz scales the input matrix (which is reducedto tridiagonal T before calling dstebz) such that B = O(!1=2
), therefore, p̂ = 2C �B=
 =O(p!).2.7.5 Models 1,2 and 3: FlCnt Best Scaling, Acyclic MatrixFollowing Kahan[66], let � = !1=4
�1=2 and M = � � 
 = !1=4
1=2. The followingcode assumes that the initial data has been scaled so that�M � Mp2C and �M � Mp2C :This code can be used to compute the eigenvalues of general symmetric acyclic matrix, so inthis section, T is a symmetric acyclic matrix. To describe the error analysis, we only needAssumption 1A. Again because of the Gerschgorin Disk Theorem, the shifts are restrictedto those x such that jxj � (n + 1)M .Algorithm 2.7.4 FlCnt Best Scaling. FloatingCount(x) returns the number ofeigenvalues of the symmetric acyclic matrix T that are less than x.call TreeCount(1; x; d1; s1)FloatingCount = s1



39procedure TreeCount(i; x; di; si) /* i and x are inputs, di and si are outputs */1: di = fl(Tii � x)2: si = 03: for all children j of i do4: call TreeCount(j; x; dj; sj)5: sum = sum+ T 2ij=dj6: si = si + sj7: endfor8: di = (Tii � x)� sum9: if (jdij � p!) then10: di = �p!11: endif12: if di < 0 then13: si = si + 114: endif15: end TreeCountSimilar to FlCnt stebz, jdij � p! for any node i, sojTiij+ jxj+ Xall childrenj of ijT 2ijdj j � (n+ 1)M + Mp2C + C � M2=2C!1=2 � 
2 + C � !1=2
=2C!1=2 = 
which tells us overow never happens and the code can work �ne under all the models wementioned. For all the models, The backward error bound becomes,jTij � T 0ij j � f(C=2 + 2; ")jTijj if i 6= j:and jTii � T 0iij � 2p! +8>>><>>>: (2C + 1)�! Model 1C"! Model 2(2C + 1)! Model 3 :2.7.6 Error Bounds For EigenvaluesWe need the following lemma to give error bounds for the computed eigenvalues.



40Table 2.2: Backward Error Bounds for Symmetric Tridiagonal MatricesAlgorithms Model 1 Model 2 Model 3�(") � �(") � �(") �FlCnt bisect | | f(2:5; ") "kTk2+ �M2
 +"! f(2:5; ") "kTk2+ �M2
 +3!FlCnt stebz f(2:5; ") 2p̂+3�! f(2:5; ") 2p̂+"! f(2:5; ") 2p̂+3!Flcnt Best Scal f(2:5; ") 2p!+3�! f(2:5; ") 2p!+"! f(2:5; ") 2p!+3!FlCnt IEEE | | f(2:5; ") �M2
 +"! f(2:5; ") �M2
 +3!Lemma 2.7.1 Assume T is an acyclic matrix and FloatingCount(x; T ) = Count(x, T 0),where T 0 di�ers from T only slightly:jTij � T 0ij j � �(")jTijj if i 6= j and jTii � T 0iij � �:where �(") � 0 is a function of " and � � 0. Then this backward error can change theeigenvalues �k by at most �k where�k � 2�(") k T k2 +�: (2.7.13)Proof. By Weyl's Theorem [80],�k � kT � T 0k2 � kjT � T 0jk2 � k�(")jT � �j+ �Ik2 � �(")kjT � �jk2+ �:and kjT � �jk2 = kT � �k2 � kTk2 + k�k2 � 2kTk2:where � = diag(di) which is the diagonal part of T . Therefore,�k � 2�(")kTk2 + �:In Tables 2.2 through 2.5, we present the backward errors �(") and �, and the cor-responding error bounds �k for the various algorithms under di�erent models of arithmetic.2.7.7 Correctness of the Gerschgorin BoundIn section 2.1, we mentioned that to compute all the eigenvalues of an n � nsymmetric tridiagonal matrix T , we need to �nd an interval [left; right), such thatFloatingCount(left) = 0 and FloatingCount(right) = n:



41Table 2.3: Error Bounds �k of Eigenvalues for Symmetric Tridiagonal MatricesAlgorithms Model 1 Model 2 Model 3FlCnt bisect | [2f(2:5;")+"]kTk2+ �M2
 +"! [2f(2:5; ")+"]kTk2+ �M2
 +3!FlCnt stebz 2f(2:5; ")kTk2+2p̂+3�! 2f(2:5;")kTk2+2p̂+"! 2f(2:5; ")kTk2+2p̂+3!Flcnt Best Scal 2f(2:5; ")kTk2+2pw+3�! 2f(2:5;")kTk2+2pw+"! 2f(2:5; ")kTk2+2pw+3!FlCnt IEEE | 2f(2:5;")kTk2+ �M2
 +"! 2f(2:5; ")kTk2+ �M2
 +3!Table 2.4: Backward Error Bounds for Symmetric Acyclic MatricesAlgorithms Model 1 Model 2 Model 3�(") � �(") � �(") �FlCnt bisect | | | | | |FlCnt stebz f(C=2+2; ") 2p̂+(2C+1)�! f(C=2+2; ") 2p̂+C"! f(C=2+2; ") 2p̂+(2C+1)!Flcnt Best S f(C=2+2; ") 2p!+(2C+1)�! f(C=2+2; ") 2p!+C"! f(C=2+2; ") 2p!+(2C+1)!FlCnt IEEE | | | | | |Table 2.5: Error Bounds �k of Eigenvalues for Symmetric Acyclic Matrices, g(") = f(C=2+2; ")Algorithms Model 1 Model 2 Model 3FlCnt bisect | |FlCnt stebz 2g(")kTk2+2p̂+(2C+1)�! 2g(")kTk2+2p̂+C"! 2g(")kTk2+2p̂+(2C+1)!Flcnt Best Scal 2g(")kTk2+2pw+(2C+1)�! 2g(")kTk2+2pw+C"! 2g(")kTk2+2pw+(2C+1)!FlCnt IEEE | |



42function Compute Gerschgorin(n,T ) /* returns the Gerschgorin Interval [gl,gu] */1: gl = minni=1(Tii �Pj 6=i jTijj); /* Gerschgorin left bound */2: gu = maxni=1(Tii +Pj 6=i jTij j); /* Gerschgorin right bound */3: bnorm = max(jglj; jguj);4: gl = gl� bnorm � 2n"� �0; gu = gu+ bnorm � 2n"+ �n; /* see Table 2.6 */5: gu = max(gl; gu);6: return(gl,gu);end functionFigure 2.1: Compute Gerschgorin computes the Gerschgorin interval for TIn this section, we will prove the correctness of the Gerschgorin interval returned by thefunction Compute Gerschgorin [30] (see �gure 2.1). We will need assumptions 1A andthe correctness property of FloatingCount(x).In exact arithmetic,glexact = mini (Tii �Xj 6=i jTijj); guexact = maxi (Tii +Xj 6=i jTij j):So, bnorm = max(jglexactj; jguexactj) = kTk1. Notice thatfl((Tii �Xj 6=i jTijj)) = (Tii(1 + �i)ki �Xj 6=i jTijj(1 + �j)kj ):Therefore,jfl(glexact)� glexactj � f(C; ")kTk1 � 2n"kTk1 = 2n" � bnorm:Similarly, jfl(guexact) � guexactj � 2n" � bnorm. With correctness property ofFloatingCount(x), this proves that if we letgl = fl(glexact)� 2n" � bnorm� �0; gu = fl(guexact) + 2n" � bnorm+ �n:then we can claim FloatingCount(gl) = 0; FloatingCount(gu) = n:



43Table 2.6: Upper Bounds for �k for Di�erent Algorithms under Di�erent ModelsAlgorithms Matrix Additional Assumptions Bounds of �kFlCnt bisect Tridiagonal Assumption 2C(i) 11" � bnormFlCnt stebz Acyclic Assumptions 2C(i), 2C(ii) (8n+ 6)" � bnormFlcnt Best Scaling Acyclic | (4n+ 8)" � bnormFlCnt IEEE Tridiagonal Assumption 2C(i) 10" � bnormFor the algorithms we mentioned in the previous sections, we can obtain theupper bounds for �k under certain additional appropriate assumptions, which enable usto give more speci�c and explicit Gerschgorin bounds computed by the routine Com-pute Gerschgorin (see Table 2.6). For instance, the error bound of FlCnt bisect forsymmetric tridiagonal matrices is at most [2f(2:5; ")+ "]kTk2+ �M2=
+3!, with Assump-tion 2C(i): �M � !=", we have[2f(2:5; ") + "]kTk2 + �M2=
+ 3! � (2 � 2:5 � 1:06"+ ")kTk2 + �M
 �M + 3" �M� 7" � bnorm+ " � bnorm+ 3" � bnorm = 11" � bnorm:According to Table 2.6, if we letgl = fl(glexact)�(10n+6)"�bnorm; gu = fl(guexact)+(10n+6)"�bnorm: (2.7.14)Then we have FloatingCount(gl) = 0; FloatingCount(gu) = nin all situations, which shows the Gerschgorin Bound ( 2.7.14) is correct for Eispack'sFlCnt bisect, Lapack's FlCnt stebz, FlCnt IEEE and Flcnt Best Scal.2.8 SummaryTo end this chapter, we present two tables to summarize all the di�erent imple-mentations of FloatingCount(x) we introduced and all the results we concluded. Tables 2.7describes the algorithms, and Tables 2.8 describe their properties. For each implementationof FloatingCount, Table 2.8 lists which parts of Assumptions 1{2 are needed for correctnessproperty of FloatingCount, and possibly monotonicity, to hold.



44Table 2.7: Di�erent implementations of FloatingCountAlgorithms Description WhereFlCnt bisect algorithm used in Eispack's bisect routine; See section 2.7.2most oating point exceptions avoided by and [88]tests and branchesFlCnt IEEE IEEE standard oating point arithmetic used See section 2.7.3to accommodate possible exceptions; and [8, 66]tridiagonals onlyFlCnt stebz algorithm used in Lapack's dstebz routine; See section 2.7.4oating point exceptions avoided by tests and [3]and branchesFlcnt Best Scaling like FlCnt stebz, but prescales for optimal See section 2.7.5error bounds and [8, 66]Table 2.8: Results of Roundo� Error Analysis and MonotonicityAssumptions about Results ProofsArithmetic and Input MatrixT is symmetric tridiagonal ^ For FlCnt bisect, Correctness Property See section 2.7.2(1A(Model 2) _ 1A(Model 3)) ^ holds but FloatingCount(x) can be1B ^ 2A ^ 2B(ii) nonmonotonicT is symmetric tridiagonal ^ For FlCnt IEEE, Correctness Property See section 2.6(1A(Model 2) _ 1A(Model 3)) ^ holds and FloatingCount(x) is and section 2.7.31B ^2A ^ 2B monotonicT is symmetric acyclic ^ For FlCnt stebz, Correctness Property See section 2.61A ^ 1B ^ 1C ^ holds and FloatingCount(x) is and section 2.7.42A ^ 2B(ii) monotonicT is symmetric acyclic ^ For Flcnt Best Scaling, Correctness See section 2.61A ^ 1B ^ 1C ^ Property holds and FloatingCount(x) and section 2.7.52A is monotonic



45Chapter 3The Instability andNonmonotonicity ofFloatingCount ImplementedUsing Parallel Pre�x3.1 IntroductionTHE Parallel Pre�x operation is very useful to parallelize many numerical linearalgebra algorithms [26, 28, 32]. The bisection algorithm is one of its many applications. Inthis chapter, we will present numerical examples to show that when FloatingCount(x) isimplemented using parallel pre�x, it can be nonmonotonic and very unstable.3.1.1 Another Way to Count Eigenvalues Less Than xLet Tk be the leading k�k principal submatrix (sometimes called leading principalminor) of the symmetric tridiagonal matrix T in (2.2.1) and de�ne the polynomials pk(x) =det(Tk�xI) where I is an k�k identity matrix, for k = 1 : n. Since T is tridiagonal, it canbe easily shown that the sequence pk(x) satis�es the following three term recurrence [43]:pk(x) = (ak � x)pk�1(x)� b2k�1pk�2(x) (3.1.1)where we let p0(x) = 1.



46We state the following classical result [43, 97]:Theorem 3.1.1 (Sturm Sequence Property) If the symmetric tridiagonal matrix T in(2.2.1) is unreduced, then the eigenvalues of Tk�1 strictly separate the eigenvalues of Tk:�1(Tk) < �1(Tk�1) < �2(Tk) < : : : < �k�1(Tk) < �k�1(Tk�1) < �k(Tk): (3.1.2)Moreover, if s(x) denotes the number of sign changes in the sequence (which we call aSturm sequence) fp0(x); p1(x); : : : ; pn(x)g;then s(x) equals the number of T 's eigenvalues that are less than x. Here the polynomialspk(x) are de�ned by (3.1.1) and we have the convention that pk(x) has the opposite sign ofpk�1(x) if pk(x) = 0.The function Count(x) can be computed in a di�erent way from Algorithm 2.2.2 as follows:Algorithm 3.1.1 Count(x) returns the number of eigenvalues of a real symmetric tridiag-onal matrix T that are less than x.1: Count = 0;2: p0 = 1;3: p�1 = 0;4: b0 = 0;5: for i = 1 to n6: pi = (ai � x)pi�1 � b2i�1pi�27: if (pipi�1 < 0 or (pi�1 6= 0 and pi = 0)) then8: Count = Count + 19: end if10: end for(If we wish to emphasize that T is the argument, we will write Count(x; T ) instead.)Remark 3.1.1 There is a simple relationship between Algorithm 2.2.2 and Algorithm 3.1.1:pk = d1d2 : : : dk:



47Proc # 0 1 2 3 4 5 6 7Step 0 x0 x1 x2 x3 x4 x5 x6 x7Step 1 x0:1 x2:3 x4:5 x6:7Step 2 x0:3 x4:7Step 3 x0:7Step 4 x0:5Step 5 x0:2 x0:4 x0:6Figure 3.1: Parallel Pre�x on 8 data itemsThis relationship can be easily veri�ed by using equation (2.2.2) and noticing thatdet(Tk) = det(LkDkLTk ) = det(Lk) det(Dk) det(LTk )and pk = det(Tk); det(Lk) = 1; det(Dk) = d1d2 : : : dk;where Tk, Lk and Dk are the leading principal submatrices of T , L and D respectively.3.1.2 Parallel Pre�xThe parallel pre�x operation [26, 28, 32, 94], also called scan, is de�ned as follows:De�nition 3.1.1 Parallel Pre�x Operation(Scan) Let x0; x1; : : : ; xn be data items,and 
 any associative operation. Then the scan of these n data items yields another n dataitems de�ned byy0 = x0; y1 = x0 
 x1; : : : ; yi = x0 
 x1 
 : : :
 xi; : : : ; yn = x0 
 x1 
 : : :
 xn: (3.1.3)We also say yi is the reduction of x0 through xi.The attraction of this operation, other than its usefulness, is its ease of implementationusing a simple tree of processors [28, 32]. We illustrate in �gure 3.1.2 for n = 8; in the�gure we denote xi � � �xj by xi:j , i-th column contains all the data held by i-th processor,and only the data that changes are indicated.Parallel pre�x can be used to solve linear recurrence relations For example, toevaluate zi+1 = aizi + bi; i � 0; z0 = 0, we do the following operations [32]:



48Compute pi = a0 � � �ai using parallel pre�x multiplicationCompute �i = bi=pi in parallelCompute si = �0 + � � �+ �i�1 using parallel pre�x additionCompute zi = si � pi�1 in parallelThis approach extends to n term linear recurrences zi+1 = Pn�2j=0 ai;jzi�j + bi, but theassociative operation becomes n� 1 by n� 1 matrix multiplication.Similarly, we can use parallel pre�x to evaluate certain rational recurrences zi+1 =(aizi + bi)=(cizi + di) by writing zi = ui=vi and reducing to linear recurrence for ui andvi [32]: 24 ui+1vi+1 35 = 24 ai bici di 35 � 24 uivi 35 : (3.1.4)We may ask more generally about evaluating the scalar rational recurrence zi+1 =fi(zi) in parallel. Let deg be the maximum of the degrees of the numerators and denomina-tors of the rational functions fi. Kung [69] has shown that zi can be evaluated faster thanlinear time (i.e. zi can be evaluated in o(i) steps) if and only if deg � 1; in this case theproblem reduces to 2�2 matrix multiplication parallel pre�x in (3.1.4). Basic linear algebraoperations which can be solved in this way include tridiagonal Gauss elimination(three termrecurrence), solving bidiagonal linear systems(two term recurrence), Sturm sequence evalua-tion for the symmetric tridiagonal eigenproblem(three term recurrence), and the bidiagonaldqds algorithm for singular values(three term recurrence)[38].The numerical stability of these algorithms is not completely understood. Forsome application, it is easy to see that the error bounds are rather worse than the those ofthe sequential implementation [85].For the case of Sturm sequence evaluation for the symmetric tridiagonal eigen-problem, instead of computing pi as pi = (ai � x)pi�1� b2i�1pi�2, we can do this as follows:[pi; pi�1] = [pi�1; pi�2] � 24 ai � x 1�b2i�1 0 35 = [pi�1; pi�2] �Mi:Therefore, [pi; pi�1] = [p0; p�1]M1M2 � � �Mi;where p0 = 1; p�1 = 0 and b0 = 0. So we can compute M1M2 � � �Mi, for i = 1; : : : ; n,by parallel pre�x in time (O(log2 n)) on n processors. The (1; 1) element of the product



49M1M2 � � �Mi will give us the pi. From now on, we will denote the product MiMi�1 � � �MjbyMi:j . Thus we have the following algorithm, which we call Count Pre�x, and computesCount(x) using parallel pre�x:Algorithm 3.1.2 Count Pre�x. Count(x) returns the number of eigenvalues of a realsymmetric tridiagonal matrix T that are less than x.1: Count = 0;2: p0 = 1;3: p�1 = 0;4: b0 = 0;5: for i = 1 to n6: Mi = 24 ai � x 1�b2i�1 0 357: end for8: Compute M1:i for i = 1; : : : ; n using parallel pre�x.9: for i = 1 to n9: pi =M1:i(1; 1)7: if (pipi�1 < 0 or (pi�1 6= 0 and pi = 0)) then8: Count = Count + 19: end if10: end forSeveral work has been done concerning the numerical stability of the above al-gorithm [94, 74]. In some cases, the reasonably accurate results can be obtained in prac-tice [94]. However, Mathias [74] has shown that even for positive de�nite matrices, therelative error in the computed Sturm sequence can be as large as "�3, where " is machineprecision and � is the condition number for the problem of computing the eigenvalues of T .Therefore, if we can not �nd a cheap way to detect the instability or to correct the wrongresults, the parallel pre�x algorithm is not a reliable algorithm to use in practice.In this chapter, we discuss the backward error analysis for general matrices, andpresent some numerical experiment results to show the instability and nonmonotonicity ofFloatingCount(x) implemented using parallel pre�x.



503.2 An Example of Instability of Count Pre�xIn this section, we show that when we use parallel pre�x algorithm (Algorithm3.1.2) to compute Count(x) instead of using a serial algorithm like Algorithm 3.1.1 orAlgorithm 2.2.2, the computed result can be very inaccurate.We implement both Algorithm 3.1.2 and Algorithm 3.1.1 in MATLAB1, and usethem to compute the counts for the following matrix:TWilkinson = 0BBBBBBBBBBBBBBBBBBB@
32 11 31 1.. . . . . . . .1 1 11 1 1. . . . . . . . .1 31 11 32

1CCCCCCCCCCCCCCCCCCCA64�64 : (3.2.5)(Matrix TWilkinson is very similar to the well known Wilkinson W+21 matrix [97], except thatthere are no zeros on the diagonal.)When we computed the counts for TWilkinson at a few shifts x = 14, 15, 16, 17, 18,19, the results are very inaccurate. For example, the computed Count(14) is 14 while thetrue count should be 27. These shifts are very close to the double eigenvalues of TWilkinson(seetable 3.2).To explain why this loss of accuracy happens, we consider the shift x = 14 only,the other shifts can be explained in a similar way. We plotted the computed functionCount(x) in a tiny interval centered at 14, see �gure 3.2. We can observe that the curve ofthe computed Count(x) has a very sharp spike at 14, which is clearly incorrect. We can alsolook at table 3.2 to see how di�erent the results computed by parallel pre�x algorithm arefrom those computed by serial algorithm(for parallel pre�x, pi = 0 for i � 32 while serialalgorithm gets completely di�erent results).As we mentioned earlier in section 3.1.2, when we use parallel pre�x to computethe Sturm sequence, we �rst generate a sequence of 2 � 2 matrices, which are denoted byM1;M2; : : : ;M64, we also use Mi:j to denote the product MiMi+1 : : :Mj .1IEEE double precision oating point arithmetic, with machine precision " = 2�53 � 1:1� 10�16



51
order eigenvalues order eigenvalues order eigenvalues1 -0.4641321726904621 23 11.99999999999999 45 23.000000000000622 0.7126628425131144 24 12.00000000000000 46 23.000000000000633 1.578164406734629 25 12.99999999999999 47 24.000000000054494 2.154730092254134 26 13.00000000000001 48 24.000000000054505 2.900771751580554 27 13.99999999999999 49 25.000000003808136 3.113723558709666 28 14.00000000000001 50 25.000000003808157 3.986274955522141 29 15.00000000000000 51 26.000000205070438 4.017639311060099 30 15.00000000000000 52 26.000000205070449 4.998968620932772 31 16.00000000000000 53 27.0000081586729510 5.001192469653752 32 16.00000000000001 54 27.0000081586729611 5.999953844648227 33 17.00000000000000 55 28.0002256801851512 6.000050238625582 34 17.00000000000000 56 28.0002256801851713 6.999998623277990 35 18.00000000000000 57 29.0039520026653614 7.000001455954138 36 18.00000000000001 58 29.0039520026653815 7.999999970478815 37 19.00000000000000 59 30.0389411193064416 8.000000030730062 38 19.00000000000000 60 30.0389411193064817 8.999999999521551 39 20.00000000000000 61 31.2106786473330518 9.000000000493216 40 20.00000000000000 62 31.2106786473330519 9.999999999993923 41 21.00000000000000 63 32.7461941829033220 10.00000000000622 42 21.00000000000000 64 32.7461941829033621 10.99999999999993 43 22.0000000000000122 11.00000000000006 44 22.00000000000001Table 3.1: Eigenvalues of 64� 64 TWilkinson



52serial pre�x serial pre�xp1 1.8000e+01 1.8000e+01 p33 6.7763e+04 0p2 3.0500e+02 3.0500e+02 p34 -8.8578e+05 0p3 4.8620e+03 4.8620e+03 p35 9.6758e+06 0p4 7.2625e+04 7.2625e+04 p36 -9.5872e+07 0p5 1.0119e+06 1.0119e+06 p37 8.5318e+08 0p6 1.3082e+07 1.3082e+07 p38 -6.7295e+09 0p7 1.5597e+08 1.5597e+08 p39 4.6254e+10 0p8 1.7026e+09 1.7026e+09 p40 -2.7079e+11 0p9 1.6870e+10 1.6870e+10 p41 1.3077e+12 0p10 1.5013e+11 1.5013e+11 p42 -4.9600e+12 0p11 1.1842e+12 1.1842e+12 p43 1.3572e+13 0p12 8.1389e+12 8.1389e+12 p44 -2.2185e+13 0p13 4.7649e+13 4.7649e+13 p45 8.6124e+12 0p14 2.3011e+14 2.3011e+14 p46 2.2185e+13 0p15 8.7278e+14 8.7278e+14 p47 1.3572e+13 0p16 2.3882e+15 2.3882e+15 p48 4.9600e+12 0p17 3.9037e+15 3.9037e+15 p49 1.3077e+12 0p18 1.5155e+15 1.5155e+15 p50 2.7079e+11 0p19 -3.9037e+15 -3.9037e+15 p51 4.6254e+10 0p20 2.3882e+15 2.3882e+15 p52 6.7295e+09 0p21 -8.7278e+14 -8.7278e+14 p53 8.5318e+08 0p22 2.3011e+14 2.3011e+14 p54 9.5872e+07 0p23 -4.7649e+13 -4.7649e+13 p55 9.6758e+06 0p24 8.1389e+12 8.1389e+12 p56 8.8578e+05 0p25 -1.1842e+12 -1.1842e+12 p57 6.7763e+04 0p26 1.5013e+11 1.5013e+11 p58 -7.2625e+04 0p27 -1.6870e+10 -1.6870e+10 p59 -1.0119e+06 0p28 1.7026e+09 1.7026e+09 p60 -1.4094e+07 0p29 -1.5597e+08 -1.5606e+08 p61 -2.1040e+08 0p30 1.3082e+07 1.4006e+07 p62 -3.3522e+09 0p31 -1.0119e+06 -1.2010e+07 p63 -5.6778e+10 0p32 7.2625e+04 0 p64 -1.0186e+12 0Table 3.2: Comparison of Computed Sturm Sequences of 64� 64 TWilkinson Matrix by usingserial and parallel pre�x algorithms at x = 14
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x = 14Figure 3.2: Computed Count(x) for 64�64 TWilkinsonMatrix in interval [14(1�200"); 14(1+200")] by Parallel Pre�x AlgorithmSince each element of TWilkinson is an integer, therefore all the elements of Mi areintegers, so are the elements of any matrix product Mi:j . As we compute the products Mi:jby parallel pre�x, we �nd that until M1:16, M17:32, M33:48, M49:64, the computed Mi:j areexactly the same as the corresponding true products(the products computed using exactarithmetic). However, when we multiply M1:16 and M17:32 together, due to the limitedprecision, the computed result of M1:32 is exactly a zero matrix, and so is M33:64. As aconsequence, all of the computed M1:i's, when i � 32, are zero matrices. Therefore, thecomputed Sturm sequence pi is zero when i � 32. Since we lost the information for a hugepart(more than half) of the Sturm sequence, it is not surprising that the count dramaticallydecreases at the shift x = 14.More precisely, we haveM1:16 = 0@ 217586071308601 1331168159890000 0 1A ;



54
14

20

21

22

23

24

25

26

27

28

29

30

x = 14Figure 3.3: Computed Count(x) for 64�64 TWilkinsonMatrix in interval [14(1�200"); 14(1+200")] by Serial Algorithmand M17:32 = 0@ 33043478329 �2373373752�54011212472 3879397705 1A :When we use IEEE double precision in MATLAB,M1:16�M17:32 is a zero matrix;on the other hand, the true matrix product M1:32 is the following matrix(we use MATHE-MATICA with in�nite precision, i.e. exact arithmetic):0@ �271 40480 0 1A :To compare the result of parallel pre�x algorithm, we also use the serial algorithmto compute the Count(x) in the same tiny interval around 14. The results are plotted in�gure 3.3. The computed function Count(x) is a monotonicly increasing function and thecount at x = 14 is 27.To conclude this section, there is an interesting phenomenon we want to mention.We computed the counts by parallel pre�x for the oating-point numbers right before andafter 14, the results turn out to be quite correct: the count for oating-point number rightbefore 14 is 26 and after 14 is 28.



553.3 Examples of Nonmonotonicity of Count Pre�xWe have found many matrices for which parallel pre�x algorithm computes anonmonotonic Count(x). In this section, we show the computed Count(x) for two classesof test matrices.� Glued random matrices. These matrices are generated by gluing 4�4 matrices whoseindependent random entries are uniformly distributed in [�1; 1]. More precisely, wegenerate a series of 4 � 4 random symmetric diagonal matrices, T1; T2; : : : ; Tk, theglued matrix is: 266666666664 T1 �1�1 T2 �2�2 . . . . . .. . . Tk�1 �k�1�k�1 Tk 377777777775where �i are small numbers.� Glued positive de�nite matrices. These matrices are very similar to the examplesin [74]. They are generated by gluing following 2� 2 matrices:24 1 1� �1� � 1 35 :We use parallel pre�x algorithm to compute Count(x) in a small interval aroundthe cluster of eigenvalues. Figure 3.4 plots the computed Count(x), by both parallel pre-�x(dotted red line) and serial algorithm(solid blue line) of a 32� 32 glued random matrixin an interval contains a cluster of 7 eigenvalues; the magnitude of the eigenvalues are closeto 0.8963, the length of the interval is 4 � 10�6 and we sampled 400 oating point numbersin the interval. Similarly, �gure 3.5 plots the computed Count(x) of a 32�32 glued positivede�nite matrix in an interval contains a cluster of 15 eigenvalues; the magnitude of theeigenvalues are close to 2, the length of the interval is 2 � 10�5, we also sampled 400 oatingpoint numbers in the interval.
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Figure 3.4: Computed Count(x) for 32 � 32 Glued Random Matrix by Serial (solid blueline) and Parallel Pre�x (dotted red line) Algorithms
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Figure 3.5: Computed Count(x) for 32� 32 Glued Positive De�nite Matrix by Serial (solidblue line) and Parallel Pre�x (dotted red line) Algorithms



573.4 Backward Error AnalysisOur goal in this section is to analyze the backward stability of the parallel pre�xalgorithm, from which to see whether we can use the backward error to get some informationof Count(x) even when the computed count is not correct.When we compute Count(x) for T by either parallel pre�x or serial algorithm,in exact arithmetic, the Sturm sequence pi (i = 1; 2; : : : ; n) is essentially computed by thethree term recurrence (3.1.1)(without loss of generality, we assume shift x = 0):pi = aipi�1 � b2i�1pi�2 i = 1; 2; : : : ; n;where p0 = 1, p�1 = 0 and b0 = 0.We denote the computed Sturm sequence by p̂i (i = 1; 2; : : : ; n), such that p̂i isthe exact Sturm sequence of a perturbed symmetric tridiagonal matrix T̂ . We denote theperturbation matrix by �T so that T̂ = T + �T where�T = 0BBBBBBBBBB@ �a1 �b1�b1 �a2 �b2. . . . . . . . .�bn�2 �an�1 �bn�1�bn�1 �an 1CCCCCCCCCCA :Thus, for i = 1; 2; : : : ; n, we havep̂i = (ai + �ai)p̂i�1 � (bi�1 + �bi�1)2p̂i�2;let �i = maxfj�aij; j�bi�1jg and for i = 1; 2; : : : ; n,P̂i = aip̂i�1 � b2i�1p̂i�2:Then the residuals can be bounded as follows by ignoring the second order term �b2i�1:jp̂i � P̂ij = j�aip̂i�1 � 2bi�1�bi�1p̂i�2j� �i(jp̂i�1j+ 2jbi�1jjp̂i�2j);where the equality can be attained when �ai = �i�sign (p̂i�1) and �bi�1 = ��i�sign (bi�1p̂i�2).Therefore, �i = jp̂i � P̂ijjp̂i�1j+ 2jbi�1jjp̂i�2j :



58Let � = maxif�ig, which is a componentwise bound for backward error, we havek�Tk1 = maxi (j�aij+ j�bij+ j�bi�1j) � 3maxi �i � 3�:Since �T is a symmetric tridiagonal matrix, therefore k�Tk2 � k�Tk1 [80]. Hence,k�Tk2 � k�Tk1 � 3�:Since � can be estimated very cheaply, we like to know what kind of extra informa-tion � can o�er, such that we are able to get the correct count even though parallel pre�xmight give us an incorrect one. We discuss two cases: when the computed counts at twoshifts are equal, and when they are not equal.3.4.1 When Computed Counts at Two Di�erent Shifts are EqualAssume that we have computed the counts at two di�erent shifts: x and y, withx < y. The absolute backward error bounds, �, for x and y are denoted by �x and �yrespectively. Also we assume T̂x = T + �Tx and T̂y = T + �Ty, where �Tx and �Ty areperturbation matrices of T at x and y. Therefore,k�Txk2 � 3�xand k�Tyk2 � 3�y:For i = 1; 2; : : : ; n, let �̂xi and �̂yi be the eigenvalues of T̂x and T̂y and �i be the exacteigenvalues of T . By Weyl's Theorem [80], we know that for each i, we have the followingbounds: �i � 3�x � �i � k�Txk2 � �̂xi � �i + k�Txk2 � �i + 3�x: (3.4.6)�i � 3�y � �i � k�Tyk2 � �̂yi � �i + k�Tyk2 � �i + 3�y : (3.4.7)As before, we denote the computed count by FloatingCount, and the exact countby Count. Assume FloatingCount(x) = FloatingCount(y) = k, so�̂x1 � �̂x2 � : : : � �̂xk < x:From (3.4.6), we know that for i = 1; 2; : : : ; k,�i � �̂xi + 3�x < x+ 3�x:



59which implies Count(x+ 3�x) � k:On the other hand, since FloatingCount(y) = k, thus�̂yk+1 � y:From (3.4.7), we can conclude that�k+1 � �̂yk+1 � 3�y � y � 3�y;which implies Count(y � 3�y) � k:If �x and �y are small enough, then we can assume that x + 3�x < y � 3�y, therefore, wehave k � Count(x+ 3�x) � Count(y � 3�y) � k:Equivalently, Count(x+ 3�x) = Count(y � 3�y) = k:This implies that there is no eigenvalue in the interval (x+ 3�x; y � 3�y).3.4.2 When Computed Counts at Two Di�erent Shifts are UnequalWe make the same assumptions as those in last subsection except we assume thatthe computed counts at x and y are k1 and k2 respectly, and k2 � k1 = k.Since FloatingCount(x) = k1, thus�̂xk1+1 � x:From (3.4.6), we have x� 3�x � �̂xk1+1 � 3�x � �k1+1:Therefore, Count(x� 3�x) � k1:On the other hand, since FloatingCount(y) = k2, so�̂y1 � �̂y2 � : : :� �̂yk2 < y:



60From (3.4.7), we know that for i = 1; 2; : : : ; k2,�i � �̂yi + 3�y < y + 3�y:Therefore, Count(y + 3�y) � k2:Hence, we know that there are at least k eigenvalues of T in the interval (x� 3�x; y+ 3�y).However, the numerical experiments show that � is often too large to be useful.We show the numerical experiments in next subsection.3.4.3 Numerical ExperimentsBesides considering �, an absolute backward error bound, we also consider therelative backward error. Again, let T̂ = T + �T , but we express �T in a di�erent way:�T = 0BBBBBBBBBB@ a1 � 4a1 b1 � 4b1b1 � 4b1 a2 � 4a2 b2 � 4b2. . . . . . . . .bn�2 � 4bn�2 an�1 � 4an�1 bn�1 � 4bn�1bn�1 � 4bn�1 an � 4an 1CCCCCCCCCCA :Thus, p̂i = ai(1 +4ai)p̂i�1 � b2i�1(1 +4bi�1)2p̂i�2;let �i = maxfj4aij; j4bi�1jg and P̂i = aip̂i�1 � b2i�1p̂i�2, then,jp̂i � P̂ij = jai4aip̂i�1 � 2b2i�14bi�1p̂i�2 � b2i�14b2i�1p̂i�2j= jai4aip̂i�1 � 2b2i�14bi�1p̂i�2j� �i(jaijjp̂i�1j+ 2b2i�1jp̂i�2j);by ignoring the second order term 4b2i�1. Therefore,�i = jp̂i � P̂ijjaijjp̂i�1j+ 2b2i�1jp̂i�2j :Finally, the relative backward error bound � can be expressed as follows:� = maxi �i = maxi jp̂i � P̂ijjaijjp̂i�1j+ 2b2i�1jp̂i�2j :
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Absolute Backward BoundFigure 3.6: Computed Count(x) and Backward Errors for 16� 16 Glued Positive De�niteMatrix, length of interval = 10�5We present the numerical experiments for four kinds of test matrices: glued pos-itive de�nite matrix, glued random matrix, glued Wilkinson-like matrix which is glued bytwo 32 � 32 Wilkinson-like matrices, and random matrix with entries independently anduniformly distributed on [�1; 1]. Each �gure contains four plots, the computed Count(x) byparallel pre�x, the relative error of computed Count(x), the relative and absolute backwarderror bounds � and �. The relative error of computed Count(x) by parallel pre�x meansrelative to the serial algorithm. More precisely, let p̂i be the Sturm sequence computedby parallel pre�x, and let p̂seriali be the Sturm sequence computed by the serial algorithm.Then the relative error is expressed by the following formula:Relative Error = maxi jp̂seriali � p̂ijjp̂seriali j : (3.4.8)Figure 3.6 plots the results of a 16� 16 glued random matrix; �gure 3.7 plots the results ofa 32� 32 glued random matrix; �gure 3.8 plots the results of a 64� 64 glued Wilkinson-likematrix; and �gure 3.9 plots the results of a 64 � 64 random matrix. Each plot is sampledat 400 oating point numbers.Clearly, for the error analysis in the two previous subsections to be useful, the
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64Chapter 4Forward Error Analysis andIterative Re�nement4.1 IntroductionIn this chapter, we analyze the instability of the parallel pre�x algorithm by us-ing forward error analysis, and also discuss using iterative re�nement with parallel pre�x.We �rst review some results for symmetric positive de�nite tridiagonal matrix [74]. Thenwe present a rather complicated error bound for a general symmetric tridiagonal matrix,and show some examples of computed forward error bounds, and �nally discuss iterativere�nement.4.2 Previous Work for Symmetric Positive De�nite Tridi-agonal MatrixWe review some analysis developed for symmetric positive de�nite tridiagonal ma-trices by Mathias [74], and compare the results with the results obtained for conventional al-gorithms [12, 35, 33]. Let M̂i:j be the computed productMi:j , whereMi:j =Mi �Mi+1 � � �Mj ,and jMi:j j be the matrix whose elements are the absolute values of the elements of Mi:j .Suppose that during the process of computing M1:r, 1 � r � n, all the matrix multi-plications are computed exactly except multiplication of Mi+1:j and Mj+1:k . Denote the



65corresponding error by Ei;j;k, soEi;j;k = fl(Mi+1:jMj+1:k)�Mi+1:jMj+1:k = M̂i+1:k �Mi+1:k :Therefore,M̂1:r =M1:iM̂i+1:kMk+1:r =M1:i(Mi+1:k + Ei;j;k)Mk+1:r =M1:r +M1:iEi;j;kMk+1:r :Thus, jE1:rj = jM̂1:r �M1:rj = jM1:iEi;j;kMk+1:r j � jM1:ijjEi;j;kjjMk+1:rj:Assume we use inner(or outer) products to perform matrix multiplication. From [43], weknow that jEi;j;kj = jfl(Mi+1:jMj+1:k)�Mi+1:jMj+1:k j � 2"jMi+1:j jjMj+1:kj:Hence, jE1:rj � 2"jM1:ijjMi+1:j jjMj+1:kjjMk+1:rj:We should mention that the indices i, j, k can not be chosen arbitrarily: i and k depend onj and n. Finally, taking into account the error made for each matrix multiplication duringthe process of computing M1:r, and ignoring the second and higher order terms, we havethe following forward error bound:jM̂1:r �M1:rj � 2" r�1Xj=1 jM1:ijjMi+1:jjjMj+1:kjjMk+1:rj: (4.2.1)In particular, jM̂1:n �M1:nj � 2" n�1Xj=1 jM1:ijjMi+1:j jjMj+1:kjjMk+1:nj: (4.2.2)Since the Sturm sequence component pr is the (1; 1) element of the matrix M1:r, the errorjpr � p̂rj in the computed Sturm sequence component p̂r is bounded by the (1; 1) elementof the matrix 2"Pr�1j=1 jM1:ijjMi+1:j jjMj+1:kjjMk+1:rj.De�nition 4.2.1 Given a symmetric tridiagonal n � n matrix T and indices ij satisfying1 � i1 < i2 < � � � < ik � n� 1,i. For indices 1 � ij � n � 1, j = 1; 2; : : : ; k, T [i1; i2; : : : ; ik] is a symmetric tridiagonalmatrix such that Tpq[i1; i2; : : : ; ik] = Tpq for all p and q;



66except Tijij+1 [i1; i2; : : : ; ik] = 0 for 1 � j � k:ii. For 1 � i < j � n, T (i : j) is the principal submatrix of rows and columns i; i+1; : : : ; jof T .We use \det" to denote the determinant of a matrix. By using the properties of symmetricpositive de�nite tridiagonal matrix, the following inequalities can be proved:Lemma 4.2.1 (Mathias [74]) Let T be a symmetric positive de�nite tridiagonal matrix,and let i1; : : : ; ik 2 f1; 2; : : : ; n� 1g. Thendet(T ) � det(T [i1; i2; : : : ; ik]) � �n(A)k�1(A) � � ��k(A) det(T )where A = DTD and D is any n � n nonsingular diagonal matrix,Lemma 4.2.2 (Mathias [74]) Let T be a symmetric positive de�nite tridiagonal matrixand let Mi = 24 ai 1�b2i�1 0 35 :Let 1 � i � j � k � n, P = jM1:ijjMi+1:jjjMj+1:kjjMk+1:nj;and D = det(T (1 : i)) det(T (i+ 1 : j)) det(T (j + 1 : k)) det(T (k + 1 : n)):Then D � P11 � 8D;where P11 is the (1; 1) element of matrix P .By using these two lemmas and some other properties of symmetric positive de�nite tridi-agonal matrix, the forward error bounds can be obtained.Theorem 4.2.1 (Mathias [74]) Let T be a symmetric positive de�nite tridiagonal matrix.Let p̂i be the computed Sturm sequence by parallel pre�x, then for 1 � r � n,jpr � p̂rpr j � 16" r�1Xj=1 det(T [i; j; k(r)])det(T (1 : r))� 16" n�1Xj=1 det(T [i; j; k])det(T (1 : n)) :



67Corollary 4.2.1 (Mathias [74]) Let T be a symmetric positive de�nite tridiagonal matrix.Let p̂i be the computed Sturm sequence by parallel pre�x. Let A = DTD, where D is diagonaland chosen so that the main diagonal entries of A are all 1. Then for 1 � r � n,jpr � p̂rpr j � 16(r� 1) " � �n(A)3�1(A)�2(A)�3(A) :Moreover, if the smallest eigenvalues of A are close to each other, i.e. �1(A) � �2(A) ��3(A), then jpr � p̂rpr j � 16(r� 1)"�3;where � = �n(A)=�1(A) is the condition number.In contrast, if we use the conventional serial algorithm, we can get high relative accuracyresults for computing the eigenvalues and singular values. The following theorems can befound in [12, 33, 35]. Here we present two of them.Theorem 4.2.2 (Demmel and Veseli�c [35]) Let H = DAD be a symmetric positivede�nite matrix, and D = diag(H1=2ii ) so Aii = 1. Let �H = D�AD be a perturbation suchthat k�Ak2 � � < �min(A). Let �i be the ith eigenvalue of H and �̂i be the ith eigenvalueof H + �H. Then j�i � �̂i�i � ��min(A) j � �(A) � �;where �(A) is the condition number of A.For singular values, we haveTheorem 4.2.3 ((Barlow and Demmel [12], Demmel and Kahan [33]) Let B andB + �B be bidiagonal with singular values �1(B) � � � � � �n(B) and �1(B + �B) � � � � ��n(B + �B), respectively. If for all nonzero entries Bij ,��1 � j(B + �B)ijBij j � �for some � � 1, then 1�2n�1 � �i(B + �B)�i(B) � �2n�1:Thus, relative perturbations of at most � in the entries of B can cause relative perturbationsof at most �2n�1 in its singular values. If � = 1+� is close to 1, so is �2n�1 � 1+(2n�1)�.If we use the serial algorithm, the errors in the computed Sturm sequence can be boundedas follows.



68Theorem 4.2.4 (Mathias [74]) Let T be a symmetric positive de�nite tridiagonal matrix.Let p̂i be the serially computed Sturm sequence values. Let A = DTD, where D is diagonaland chosen so that the main diagonal entries of A are all 1. If �1(A) � 4", then for1 � r � n, jpr � p̂rpr j � 4r"�1(A) : (4.2.3)The theorems we have presented explain why Count(x) computed by parallel pre�x is soinaccurate, at least when the symmetric tridiagonal matrix is positive de�nite. The forwardrelative error for computed Sturm sequence p̂i by parallel pre�x can be as large as "�3,whereas it can be bounded by "� when computed serially.Since in general we need to compute the Sturm sequence of T � xI , for x insidethe spectrum of T , T � xI will not be positive de�nite. Therefore, to fully explain theinaccuracy of computed Count(x) by parallel pre�x, we need to extend the forward analysisto the general symmetric tridiagonal matrix. In the next several sections, we will presentsuch a general analysis.4.3 Numerical ExperimentsWe �rst present several �gures which plot the Count(x) and the correspondingforward error bound 2" n�1Xj=1 jM1:ijjMi+1:jjjMj+1:kjjMk+1:nj (4.3.4)in some intervals containing some eigenvalue or clusters of eigenvalues. As we did for back-ward error bounds, we present the numerical experiments for four kinds of test matrices:glued positive de�nite matrix, glued random matrix, glued Wilkinson-like matrix which isglued by two 32 � 32 Wilkinson-like matrices, and random matrix with entries indepen-dently and uniformly distributed on [�1; 1]. Each �gure contains three plots, the computedCount(x) by parallel pre�x, the relative error (see de�nition in (3.4.8)) and the forwardrelative error bound 4.3.4.Figure 4.1 plots the results of a 16� 16 glued random matrix; �gure 4.2 plots theresults of a 32 � 32 glued random matrix; �gure 4.3 plots the results of a 64 � 64 gluedWilkinson-like matrix; and �gure 4.4 plots the results of a 64� 64 random matrix.
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714.4 Some Properties of Symmetric Tridiagonal MatricesIn this section we introduce some interesting relations between singular values ofa symmetric tridiagonal matrix T and T ([i1; i2; : : : ; ik]).Lemma 4.4.1 Let T be an n � n symmetric tridiagonal matrix and let i1, i2, : : :, ik 2f1; 2; : : : ; n� 1g. Then�i(T [i1; i2; : : : ; ik]) � �n(T ) i = 1; 2; : : : ; n;where �1 � �2 � � � � � �n are the singular values.Proof. By the Cauchy-Interlace Theorem [80], the eigenvalues of each diagonal block Ti ofT [i1; i2; : : : ; ik] = 0BBBBBB@ T1 T2 . . . Tk+1 1CCCCCCAsatis�es �1(T ) � �(Ti) � �n(T ):So for every eigenvalue � of T [i1; i2; : : : ; ik], it must satisfy:�1(T ) � �(T [i1; i2; : : : ; ik]) � �n(T );and j�(T [i1; i2; : : : ; ik])j � max(j�1(T )j; j�n(T )j):Therefore, �i(T [i1; i2; : : : ; ik]) � �n(T ):Lemma 4.4.2 Let T be an n�n symmetric tridiagonal matrix, let i1, i2, : : :, ik 2 f1; 2; : : : ; n�1g, then �i�2k(T [i1; i2; : : : ; ik]) � �i(T ) i = 2k + 1; 2k+ 2; : : : ; n:



72Proof. When k = 1,T [i1] = 0@ T1 T2 1A = T � 0BBBBBBBBBBBBB@ 0 .. . 0 bb 0 .. . 0 1CCCCCCCCCCCCCA :Without loss of generality, we can assume b > 0. Notice thatT [i1] = T + 12 0BBBBBBBBBBBBB@ 0 . .. b �b�b b . . . 0 1CCCCCCCCCCCCCA� 12 0BBBBBBBBBBBBB@ 0 .. . b bb b . . . 0 1CCCCCCCCCCCCCA= T + B1 �B2:Since B1 and B2 are both semide�nite, rank-1 matrices, by Weyl's MonotonicityTheorem [80],�i�1(T ) � �i(T �B2) � �i(T [i1]) � �i(T +B1) � �i+1(T ); (4.4.5)i.e., �i(T [i1]) 2 [�i�1(T ); �i+1(T )].It is well known that the singular values of a symmetric matrix are simply theabsolute values of the eigenvalues. Assume that �l(T ) = j�i(T )j for some i. If �i(T ) > 0,we argue that i � l. In fact, there are n � i of �p(T ) which are larger than �i(T ), namely�i+1; �i+2; : : : ; �n. Therefore, there are at least n� i singular values are larger than �l(T ) =�i(T ), hence i � l.By (4.4.5), we know that �i�1(T [i1]) � �i(T ), therefore, there are at most n� i+1of �j(T [i1]) which are larger than �i(T ), namely �i(T [i1]); �i+1(T [i1]); : : : ; �n(T [i1]).Since �l(T ) = �i(T ), there must be l � 1 eigenvalues of T (those eigenvalueswhose absolute values are the singular values �1(T ); �2(T ); : : : ; �l�1(T )) in the interval(��i(T ); �i(T )); otherwise, it contradicts with the fact that �i(T ) is the l-th singular valueof T . Therefore, �i�l(T ) � ��i(T ) < �i�l+1(T ):



73By (4.4.5), �i�l+1(T ) � �i�l+2(T [i1]), so we conclude that there are at most i � l + 1 of�j(T [i1]) which are less than ��i(T ). Therefore, there are at most (n� i+1)+(i� l+1) =n� l+ 2 of �j(T [i1]) which are greater than �l(T ), which implies�l�2(T [i1]) � �l(T ):By doing a similar count, we can prove the above inequality for �i(T ) < 0.By induction, if the lemma is true for k, then for k + 1, we have�i(T [i1; i2; : : : ; ik; ik+1]) � �i�2k(T [ik+1]) � �i�2(k+1)(T ):Lemma 4.4.3 Let T be an n � n symmetric tridiagonal matrix and i1, i2, : : :, ik 2f1; 2; : : : ; n� 1g. Thenj det(T [i1; i2; : : : ; ik])j � �2kn (T )�1(T ) : : :�2k(T ) j det(T )j:Proof. j det(T [i1; i2; : : : ; ik])j = n�2kYi=1 �i(T [i1; i2; : : : ; ik]) nYi=n�2k+1 �i(T [i1; i2; : : : ; ik])� �2kn (T ) n�2kYi=1 �i+2k(T ) by Lemma 4:4:2= �2kn (T ) nYi=2k+1 �i(T )= �2kn (T )�1(T ) : : :�2k(T ) j det(T )jLemma 4.4.4 LetH be the n�1�n�1 principal submatrix of rows and columns 1; 2; : : : ; n�1 or 2; 3; : : : ; n of the symmetric tridiagonal matrix T , Then�i(H) � �i+1(T ) i = 1; 2; : : : ; n� 1:Proof. When H is the leading principal matrix,T = 0@ H ��T � 1A ;



74where � is a vector and � is a real number. Notice thatT 2 = TT � T = 0@ H2 + ��T T � 1A ;where  is a vector and � is a real number. By the Cauchy-Interlace Theorem and Weyl'sMonotonicity Theorem [80], we know that for i = 1; 2; : : : ; n� 1,�2i (H) = �i(H2) � �i(H2 + ��T ) � �i+1(T 2) = �2i+1(T ):which implies �i(H) � �i+1(T ).Similarly, we can prove the same result when H is the principal matrix of rowsand columns 2; 3; : : : ; n.Lemma 4.4.5 Let H be the (n � 1) � (n � 1) principal submatrix of rows and columns1; 2; : : : ; n� 1 or 2; 3; : : : ; n of the symmetric tridiagonal matrix T , Thenj det(H)j � j det(T )j�1 :Proof. j det(H)j = n�1Yi=1 �i(H) � n�1Yi=1 �i+1(T )= nYi=2 �i(T ) = j det(T )j�1(T ) :4.5 Forward Error Bound for Symmetric Tridiagonal Ma-trixIn the previous section, we introduced a general forward error bound (4.2.1). Inthis section, we discuss in particular how to relate the error bound (4.2.2)jM̂1:n �M1:nj � 2" n�1Xj=1 jM1:ijjMi+1:jjjMj+1:kjjMk+1:njto the singular values of the symmetric tridiagonal matrix T , i.e. the case of r = n in(4.2.1). The similar discussion can also be applied to 1 � r < n.



75There is an explicit formula for the matrix product Mi:j =MiMi+1 � � �Mj [74]:Mi:j = 24 det(T (i : j)) det(T (i : j � 1))�b2i�1 det(T (i+ 1 : j)) �b2i�1 det(T (i+ 1 : j � 1)) 35 :Therefore, we can express the following products explicitly:jM1:ij = 24 j det(T (1 : i))j j det(T (1 : i� 1))j0 0 35 ;jMi+1:j j = 24 j det(T (i+ 1 : j))j j det(T (i+ 1 : j � 1))jb2i j det(T (i+ 2 : j))j b2i j det(T (i+ 2 : j � 1))j 35 ;jMj+1:kj = 24 j det(T (j + 1 : k))j j det(T (j + 1 : k � 1))jb2j j det(T (j + 2 : k))j b2j j det(T (j + 2 : k � 1))j 35 ;jMk+1:nj = 24 j det(T (k+ 1 : n))j j det(T (k+ 1 : n � 1))jb2kj det(T (k+ 2 : n))j b2kj det(T (k + 2 : n� 1))j 35 :SojM1:ijjMi+1:j j = 24 j det(T (1 : i)) det(T (i+ 1 : j))j+ b2i j det(T (1 : i� 1)) det(T (i+ 2 : j))j0j det(T (1 : i)) det(T (i+ 1 : j � 1))j+ b2i j det(T (1 : i� 1)) det(T (i+ 2 : j � 1))j0 35 :and jMj+1:k jjMk+1:nj =24 j det(T (j + 1 : k)) det(T (k + 1 : n))j+ b2kj det(T (j + 1 : k � 1)) det(T (k+ 2 : n))jb2j j det(T (j + 2 : k)) det(T (k + 1 : n))j+ b2jb2kj det(T (j + 2 : k � 1)) det(T (k + 2 : n))jj det(T (j+1:k)) det(T (k+1:n�1))j+ b2kj det(T (j+1:k�1)) det(T (k+2:n�1))jb2j j det(T (j+2:k)) det(T (k+1:n�1))j+ b2jb2kj det(T (j+2:k�1)) det(T (k+2:n�1))j 35 :Let P = jM1:ijjMi+1:j jjMj+1:kjjMk+1:nj, and let P11 be the (1; 1) element of P ,which is the inner product of the �rst row of of jM1:ijjMi+1:jj and the �rst column ofjMj+1:kjjMk+1:nj. We denote the �rst row of jM1:ijjMi+1:j j by uT and �rst column ofjMj+1:kjjMk+1:nj by v.By Lemma 4.4.5,j det(T (1 : i� 1))j � j det(T (1 : i))j=�min(T (1 : i)):



76and j det(T (i+ 2 : j))j � j det(T (i+ 1 : j))j=�min(T (i+ 1 : j)):Therefore, we can bound u byuT � f(1 + b2i�min(T (1 : i))�min(T (i+ 1 : j)))j det(T (1 : i)) det(T (i+ 1 : j))j;(1 + b2i�min(T (1 : i))�min(T (i+ 1 : j � 1)))j det(T (1 : i)) det(T (i+ 1 : j � 1))jg;and bound v byvT � f(1 + b2k�min(T (j + 1 : k))�min(T (k + 1 : n)))j det(T (j + 1 : k)) det(T (k + 1 : n))j;b2j (1 + b2k�min(T (j + 2 : k))�min(T (k + 1 : n)))j det(T (j + 2 : k)) det(T (k + 1 : n))jg:Therefore,P11 = uT � v= (1 + b2i�min(T (1 : i))�min(T (i+ 1 : j)))(1 + b2k�min(T (j + 1 : k))�min(T (k+ 1 : n)))�j det(T (1 : i)) det(T (i+ 1 : j)) det(T (j + 1 : k)) det(T (k + 1 : n))j+ b2j(1 + b2i�min(T (1 : i))�min(T (i+ 1 : j � 1)))�(1 + b2k�min(T (j + 2 : k))�min(T (k+ 1 : n)))�j det(T (1 : i)) det(T (i+ 1 : j � 1)) det(T (j + 2 : k)) det(T (k + 1 : n))j:Again by Lemma 4.4.5, j det(T (i+ 1 : j � 1))j � j det(T (i+ 1 : j))j�min(T (i+ 1 : j))and j det(T (j + 2 : k)j � j det(T (j + 1 : k))j�min(T (j + 1 : k)) ;P11 � j det(T [i; j; k])j�f(1 + b2i�min(T (1 : i))�min(T (i+ 1 : j)))(1 + b2k�min(T (j + 1 : k))�min(T (k+ 1 : n)))+ b2j�min(T (i+ 1 : j))�min(T (j + 1 : k))(1 + b2i�min(T (1 : i))�min(T (i+ 1 : j � 1)))�(1 + b2k�min(T (j + 2 : k))�min(T (k + 1 : n)))g� j det(T [i; j; k])j � F (n; i; j; k; T ):



77By Lemma 4.4.3, we can bound j det(T [i; j; k])j byj det(T [i; j; k])j � �6n(T )�1(T ) : : :�6(T ) j det(T )j:Therefore, we can bound the forward error of parallel pre�x as follows,jpn � p̂njjpnj � 2" �6n(T )�1(T ) : : :�6(T ) � n�1Xj=1 F (n; i; j; k; T):In general,jpr � p̂rjjprj � 2" �6r(T (1 : r))�1(T (1 : r)) : : :�6(T (1 : r)) � n�1Xj=1 F (r; i; j; k; T (1 : r)):Theorem 4.5.1 Let T be a symmetric tridiagonal matrix, let p̂r be the computed Sturmsequence by parallel pre�x. Thenjpr � p̂rjjprj � 2" �6r(T (1 : r))�1(T (1 : r)) : : :�6(T (1 : r)) � n�1Xj=1 F (r; i; j; k; T(1 : r)):In particular, jpn � p̂njjpnj � 2" �6n(T )�1(T ) : : :�6(T ) � n�1Xj=1 F (n; i; j; k; T ):Corollary 4.5.1 Let T be a symmetric tridiagonal matrix, let p̂n be the computed Sturmsequence by parallel pre�x. Thenjpn � p̂njjpnj � 2"�6 � n�1Xj=1 F (n; i; j; k; T ):where � is the condition number of the matrix T .Proof. jpn � p̂njjpnj � 2" �6n(T )�1(T ) : : :�6(T ) � n�1Xj=1 F (n; i; j; k; T )� 2"�6n(T )�61(T ) � n�1Xj=1 F (n; i; j; k; T )= 2"�6 � n�1Xj=1 F (n; i; j; k; T ):The above corollary leads to the following conjecture:



78Conjecture: For general symmetric tridiagonal matrices, the forward relative error forthe computed Sturm sequence by parallel pre�x algorithm can be as large as O("�6),where � is the condition number of matrix T .We have done many numerical experiments to search for an example such that the errorbound O("�6) in above conjecture can be attained, but we haven't found one yet. Howlarge the forward error can be for general symmetric tridiagonal matrix still remains as anopen problem.4.6 Computing the Sturm Sequence is Equivalent to Solv-ing A Linear System of EquationsIn this section, we prove that computing a Sturm sequence is equivalent to solvinga unit lower triangular banded linear system of equations. Let p̂i and pi be the computedand exact Sturm sequence, respectively. Let �i be the di�erence of pi and p̂i, i.e. �i = pi� p̂i.Since pi = aipi�1 � b2i�1pi�2;we can write p̂i + �i = ai(p̂i�1 + �i�1)� b2i�1(p̂i�2 + �i�2)= aip̂i�1 � b2i�1p̂i�2 + ai�i�1 � b2i�1�i�2:Let Pi = aip̂i�1 � b2i�1p̂i�2, sop̂i + �i = Pi + ai�i�1 � b2i�1�i�2:Equivalently, b2i�1�i�2 � ai�i�1 + �i = �(p̂i � Pi):Notice the fact that p0 = 1 = p̂0 and p1 = a1 = p̂1, hence, �0 = �1 = 0.To solve for �i for i = 2; 3; : : : ; n, all we need to do is to solve the following lower



79triangular linear system of equations:266666666666666664 1�a3 1b23 �a4 1. .. . . . . . .b2i�1 �ai 1. .. . . . . . .b2n�1 �an 1
377777777777777775266666666666666664 �2�3�4...�i...�n

377777777777777775 = �266666666666666664 p̂2 � P2p̂3 � P3p̂4 � P4...p̂i � Pi...p̂n � Pn
377777777777777775 : (4.6.6)Denote the coe�cient matrix in (4.6.6) by L, and letp̂i = 0 i = 2; 3; : : : ; n;so that �i = pi for i � 2. Therefore, computing the Sturm sequence is equivalent to solvingthe following linear system of equations:L � d � L � 266666666666666664 p2p3p4...pi...pn

377777777777777775 = 266666666666666664 a2a1 � b21�b22a10...0...0
377777777777777775 � e: (4.6.7)There is no need to solve for p1 since p1 = a1. We summarize our derivation in the followingtheorem.Theorem 4.6.1 In exact arithmetic, the solution components pi for the lower triangularlinear system of equations (4.6.7) form the Sturm sequence of T for i = 2; : : : ; n. Thereforesolving the linear system (4.6.7) is equivalent to computing the Sturm sequence.Because of the above theorem, we can compute the Sturm sequence in parallel in an alter-native way: parallel linear equation solver plus iterative re�nement.



80Algorithm 4.6.1 Compute Sturm sequence by parallel linear system solver and itera-tive re�nement.1: Solve lower triangular equation L � p = e using some parallel method.2: Compute the residual r = e� L � p̂ where p̂ is the computed solution.3: while the residual r is above some tolerance � , do4: Solve L � f = r by the same parallel method.5: Update the solution p̂ by p̂ = p̂+ f .6: Compute the residual r = e � L � p̂ where p̂ is the updated solution.7: endSeveral alternatives to the standard substitution algorithm for solving triangularlinear systems have been proposed for parallel computation and several parallel implementa-tions have been developed [54, 71, 82]. In [58], four parallel triangular linear system solversand their stabilities have been discussed: Fan-In algorithm, Block Elimination, Power Se-ries and Matrix Inversion by Divide-and-Conquer. Based on some results from [58], we willanalyze the errors of Algorithm 4.6.1 by using these four parallel triangular solvers. Ouranalysis will be in both conventional norm accuracy style and in Skeel's componentwiseaccuracy style [86, 87].4.7 Four Parallel Triangular Equation SolversIn this section, we introduce the four parallel triangular linear equation solverswhose stablity are discussed in [58]: Fan-In algorithm, Block Elimination, Power Series andMatrix Inversion by Divide-and-Conquer.



814.7.1 Fan-In AlgorithmAny unit n�n lower triangular matrix L can be factorized L = L1L2 � � �Ln, whereLi equals the identity matrix except for colum i where it matches L:Li = 266666666666666664 1 . . . 1 1li+1;i 1... . . .ln;i 1
377777777777777775 :Therefore, the solution to a linear system Lx = b can be solved as follows [60]:x = L�1b = WnWn�1 � � �W1b; (4.7.8)where Wi = L�1i = 266666666666666664 1 .. . 1 1=lii�li+1;i=lii 1... . . .�ln;i=lii 1

377777777777777775 ;i.e. L�1i equals the identity matrix except for the column i, where the diagonal element is1=lii and the subdiagonals are the negative of Li divided by lii.The Fan-In algorithm solves Lx = b by computing the product (4.7.8) in O(log2 n)steps by the fan-in operation. For example, when n = 7, x can be computed as follows:x = ((W7W6)(W5W4))((W3W2)(W1b)):The computation takes log2 n parallel steps using a tree, where each parallel step involvesmultiplying n� n matrices, and so takes about log2 n parallel substeps, for a total of log22 nsteps. More precisely, it can be implemented in 12 log22 n+ 32 log2 n+3 steps on 168n3+O(n2)processors [85]. The error analysis [85] yields an error bound proportional to "�(L)3 where



82�(L) is the condition number; in contrast to the error bound "�(T ) for the conventionalsubstitution algorithm. The error bound may be pessimistic, but an example can be foundwhich has an error growing like "�(L)1:5 [32]. Also, the requirement of O(n3) processors toachieve the maximum speedup is unrealistic for large n.4.7.2 Block Elimination AlgorithmIn addition to the fan-in algorithm, Sameh and Brent [85] introduce a parallelblock elimination algorithm. It requires the same time as the fan-in algorithm but roughlytwice the number of processors. The advantage of this algorithm is that it can be adaptedto band structure [20].Let L(0) = DL and b(0) = Db whereD = diag (l�111 ; l�122 ; : : : ; l�1nn). We formmatricesD(j), j = 0; 1; : : : ; m� 1, such that ifL(j+1) = D(j)L(j) and b(j+1) = D(j)b(j);then L(m) = I and x = b(m) = L�1b. For example, when n = 8,L(1) = D(0)L(0)= diag (24 1�l21 1 35 ;24 1�l43 1 35 ;24 1�l65 1 35 ;24 1�l87 1 35)L(0)= 26666664 I2L(1)21 I2L(1)31 L(1)32 I2L(1)41 L(1)42 L(1)43 I2 37777775 ;b(1) = D(0)b(0);L(2) = D(1)L(1) = diag (24 I2�L(1)21 I2 35 ;24 I2�L(1)43 I2 35)L(1) = 24 I4L(2)21 I4 35 ;b(2) = D(1)b(1);and �nally ;L(3) = D(2)L(2) = 24 I4�L(2)21 I4 35L(2) = I;x = b(3) = D(2)b(2) = 24 I4�L(2)21 I4 35 b(2):



83Thus in log2 n steps L is reduced to the identity matrix and b is transformed to x = L�1b.If the n � n lower triangular matrix L has bandwidth m + 1, then Lx = b can be solvedin (2 + log2m) log2 n � 12(log22m + log2m) + 3 steps using no more than 12m2n + O(mn)processors.4.7.3 Power Series MethodThe following method has been discussed by Heller [55] and Orcutt [76]. LetL = D(I �N) be the n� n lower triangular matrix, where n = 2k, D = diag (L) and N isthe strictly lower triangular part. Thenx = L�1b = (I �N)�1D�1b= (I +N + � � �+Nn�1)D�1b= (I +N2k�1)(I +N2k�2) � � �(I +N)D�1b:We use the fact that Nn = 0 in the above equation. The powers M2;M4; : : : ;M2k�1, areformed by repeated squaring. This method can be implemented in log22 n + log2 n steps onn3 + n2 processors [56].4.7.4 Matrix Inversion by Divide and ConquerBorodin and Munro [15] and Heller [56] discuss the following method for invertinga triangular matrix based on the divide and conquer technique:L = 24 L11 0L21 L22 35 ; W = L�1 = 24 L�111 0�L�122 L21L�111 L�122 35 :The size of the diagonal blocks L11 and L22 are about same, the inversion L�111 and L�122 arecomputed by the same method recursively. This method can be implemented in O(log2 n)steps in O(n3) processors.4.8 Conventional Error AnalysisFor the four parallel triangular solvers we introduced in last section section, Highamproved that they all satisfy a universal forward error bound [58]:jLx̂� bj � cn"jLjM(L)�1jbj+O("2): (4.8.9)



84where M(A) = (mij) = 8<: jaiij�jaij j i 6= j ;cn is a lower order function of n and x̂ is the computed solution. Let(L+4L)x̂ = b:where 4L is the backward error for L, and de�ne� = inff" : (L+4L)x̂ = b; k4Lk � "kAkg:where k � k is k � k1. It can be shown that� = kLx̂� bkkLkkx̂k :Since k4Lk1kLk1 � � = kLx̂� bk1kLk1kx̂k1 � "cnkLk1kM(L)�1k1kbk1kLk1kx̂k1� "cnkLk1kM(L)�1k1kLk1kx̂k1kLk1kx̂k1 ;therefore, k4Lk1 � "kLk1:where  � cnkLk1kM(L)�1k1. For di�erent algorithms, we will have di�erent 's. Nowwe show that if  satis�es some constraints, the iterative re�nement in Algorithm 4.6.1 willconverge.Theorem 4.8.1 If we compute the residual r of Algorithm 4.6.1 by double precision, and"�1(L)( + 1) � c < 1, then the iterative re�nement will converge.Proof. Let r = fl(Lx̂i � b) = Lx̂i � b+ fwhere jf j � n"2(jLjjx̂ij + jbj) + "jLx̂i � bj � "jLx̂i � bj, because r is computed in doubleprecision. From previous discussion, we know that the backward error 4L such that(L+4L)d = rmust satisfy k4Lk1 � "kLk1.



85Assume that x̂i+1 = x̂i � d be computed exactly, thend = (L+4L)�1r = (I + L�14L)�1L�1r= (I + L�14L)�1L�1(Lx̂i � b+ f) = (I + L�14L)�1(x̂i � x+ L�1f)� (I � L�14L)(x̂i� x+ L�1f)� x̂i � x� L�14L(x̂i � x) + L�1fTherefore, x̂i+1 � x = x̂i � d� x = L�14L(x̂i � x)� L�1f:and (the following k � k is k � k1)kx̂i+1 � xk1 � kL�1kk4Lkkx̂i� xk+ kL�1k"kLx̂i � bk� kL�1kk4Lkkx̂i� xk+ "kL�1kkL(x̂i � x)k� "kL�1kkLkkx̂i � xk+ "kL�1kkLkkx̂i � xk� "( + 1)�1(L)kx̂i � xk1� ckx̂i � xk1Since c < 1, we know that the iterative re�nement converges.By applying the above theorem, we will show under what circumstances Algorithm4.6.1 will converge when we use the four parallel triangular solvers to solve the linearequations.i. Fan-In Algorithm: In [85] it was shown when we use fan-in algorithm to solve thetriangular system, the backward error 4L satis�es:k4Lk1 � �n"�1(L)2kLk1:where �n = n2 logn=4 +O(nlogn). From a forward bound in [58]:jLx̂� bj � dn"jLjjL�1jjLjjL�1jjLjjxj;an improved backward error bound can be obtained:k4Lk1 � kLx̂� bk1kx̂k1 � dn"kLk21kL�1k21kLk1 = dn"�21(L)kLk1:where dn = an logn, a = O(1). Therefore, Fan�In = dn�21(L). By Theorem 4.8.1,to guarantee the convergence of iterative re�nement, we have to make the followingassumption: dn"�31(L) < 1:



86ii. Block Elimination: The error bound is about the same as universal bound (4.8.9),so it is not necessary to discuss further details.iii. Power Series: As with Block Elimination, the analysis of this algorithm adds nothingnew.iv. Matrix Inversion by Divide-and-Conquer: This algorithm has the best backwarderror bound of the four triangular solvers, let X̂ be the computed inversion of L,then [58]: jLX̂ � I j � cn"jLjjX̂j:and x̂ = X̂b+ f:where f is the roundo� error, f = O("). Therefore,jLx̂� bj � 2cn"jLjjX̂jjbj;and k4Lk1 � kLx̂� bk1kx̂k1� 2cn"kLk1kX̂k1kLk1� 2cn"�1(L)kLk1Therefore, Divide�&�Conquer = 2cn�1(L);which is the best that we can expect. To achieve the convergence of the iterativere�nement, we need 2cn"�21(L) < 1 i:e: "�21(L) = O(1):The conventional error analysis can only give us the normwise error bound ofthe backward error 4L. However, when we solve the linear system (4.6.7), we want thecomponentwise error bound of the solution vector p, so that we can estimate the relativeerror of the Sturm sequence pi. The conventional normwise error clearly won't achieve this.Indeed, We can scale T to be a bit less than 1 in norm, which guarantees �(L) = O(1). Butthen the vector of pi is strongly graded, and norm error bounds are irrelevant. Therefore,in next section, we will discuss the componentwise error analysis of Algorithm 4.6.1.



874.9 Componentwise Error BoundIn this section, we �rst introduce a universal result which is true for any linearsystem solver [57], and then apply this universal result to the four triangular solvers wehave discussed. For an approximate solution x̂ to linear system Ax = b, the componentwisebackward error is de�ned by:! = minf" : (A+4A)y = b+4b; j4Aj � "jAj; j4bj � "jbjg:where jAjij = jAij j and jxji = jxij. In [75], Oettli and Prager proved that! = maxi jb� Ayji(jAjjyj+ jbj)i :In last section, we showed the error analysis for the iterative re�nement when the residual iscomputed in double precision. If we are willing to compute the residual in single precision,Theorem 4.8.1 does not hold anymore. A lot of error analysis has been done for the iterativere�nement when the residual is computed in single precision [7, 87, 57], it can be provedthat under certain conditions, iterative re�nement converges after one update [87]. Here wegive a short review of the analysis in [57]. To do this, we need to introduce the measure ofill-scaling of the vector jAjjxj [86]:�(A; x) = maxi(jAjjxj)imini(jAjjxj)i :We assume the computed solution x̂ of linear system Ax = b satis�esjb�Ax̂j � "[g(A; b)jx̂j+ h(A; b)]; (4.9.10)and when compute the residual r = b� Ax̂, the computed residual r̂ satis�esjr̂ � rj � " � t(A; b; x̂): (4.9.11)If we use SAXPY [70], to compute r, we can taket(A; b; x̂) = �n+1" (jAjjx̂j+ jbj): (4.9.12)where �n+1 = (n+ 1)"=(1� (n+ 1)").Theorem 4.9.1 (Higham [57]) Suppose we solve the linear system Ax = b with one stepof iterative re�nement. Assume the computed solution x̂ satis�es (4.9.10) and the computed



88residual r̂ satis�es (4.9.11), and t(A; b; x̂) satis�es (4.9.12). If there exist two matrices Gand H whose entries are nonnegative, such that g(A; b) = GjAj and h(A; b) = H jbj, and"2(h(kGk1 + n + 1) + 2(kGk1 + n + 2)2(1 + "kHk1)2cond(A�1)) � �n+1;where cond(A�1) = kjAjjA�1jk1, then the re�ned solution ŷ will satisfy:jb� Aŷj � 2�n+1jAjjŷj:Corollary 4.9.1 (Higham [57]) Under the assumptions of Theorem 4.9.1, if H = 0, thenif 2"2�(A; ŷ)(kGk1 + n+ 2)2cond(A�1) � �n+1; (4.9.13)the re�ned solution ŷ will satisfy:jb�Aŷj � 2�n+1jAjjŷj = O(")jAjjŷj:Since �n+1 = (n+ 1)"=(1� (n+ 1)") � (n+ 1)", (4.9.13) can be simplied to:" � �(A; ŷ) � 2(kGk1 + n+ 2)2n+ 1 � cond(A�1) � 1: (4.9.14)Based on the Corollary 4.9.1, we can apply the general error analysis to the fourparallel triangular solvers.i. Fan-In Algorithm: The computed solution x̂ of Lx = b solved by fan-in algorithmsatis�es [57] jLx̂� bj � dn"jLjjL�1jjLjjL�1jjLjjx̂j:So g(L; b) = (jLjjL�1j)2jLj, therefore,G = (jLjjL�1j)2 and g = kGk1 = kjLjjL�1jk21:Because of (4.9.14), to achieve the componentwise accuracy of the corrected solutionŷ, approximately, the corrected solution ŷ has to satisfy" � cn � �(L; x̂)kjLjjL�1jk51 = O(1):ii. Block Elimination and Power Series: As with the conventional error analysispresented earlier, we will not discuss the error analysis for these algorithms.



89iii. Matrix Inversion by Divide-&-Conquer: Since the computed solution x̂ satis�es[58] jLx̂� bj � 2cn"jLjjX̂jjLjx̂j;where X̂ is the computed L�1, andjLX̂ � I j � cn"jLjjX̂j:It is easy to show that x̂ satis�esjLx̂� bj � 2cn"jLjjL�1jjLjx̂j:Therefore, G = jLjjL�1j and g = kjLjjL�1jk1:To achieve the componentwise accuracy of the corrected solution ŷ, we need the fol-lowing condition to be satis�ed:" � cn � �(L; ŷ)kjLjjL�1jk31 = O(1):Since the matrix L of the triangular system we want to solve is very special, infact L has only two subdiagonals(see(4.6.7)), the measure of ill-scaling of the vector jLjjp̂jis: �(L; p̂) = maxi(jLjjp̂j)imini(jLjjp̂j)i= maxi(jp̂ij+ jaip̂i�1j+ jb2i�1p̂i�2j)mini(jp̂ij+ jaip̂i�1j+ jb2i�1p̂i�2j) :In particular, when the tridiagonal matrix T is a positive de�nite matrix,�(L; p̂) � maxi(ai det(T (1 : i� 1)))mini(ai det(T (1 : i� 1))) :Therefore, �(L; p̂) can be arbitrarily large.From both the conventional and componentwise analysis, we conclude that whenwe use fast parallel triangular solvers like the fan-in algorithm, we can not compute theSturm sequence with as much guaranteed accuracy as the serial algorithm, when the matrixis not very well-conditioned. However, inspired by the idea of iterative re�nement to solvelinear system of equations, we can apply this idea for parallel pre�x algorithm which appearsin next section.



904.10 Iterative Re�nement for Parallel Pre�x AlgorithmIn section 4.6, we showed that if �i = pi � p̂i, where pi and p̂i are the exact andcomputed Sturm sequence components, then �i satis�es the following relation:b2i�1�i�2 � ai�i�1 + �i = �(p̂i � Pi):Or �i = ai�i�1 � b2i�1�i�2 + ri: (4.10.15)where Pi = aip̂i�1�b2i�1p̂i�2 and ri = �(p̂i�Pi). Inspired by the idea of iterative re�nementfor solving linear system of equations, if we can solve equation (4.10.15) for the residual�i in parallel, and iteratively re�ne the computed Sturm sequence p̂i, then after converge,the computed Sturm sequence should be accurate enough for computing the count. In fact,equation (4.10.15) can be considered as nonhomogeneous three term linear recurrence, itcan be solved by parallel pre�x operation as follows.[�i; �i�1; 1] = [�i�1; �i�2; 1] � 26664 ai 1 0�b2i�1 0 0ri 0 1 37775 = [�i�1; �i�2; 1] �Ri (4.10.16)Therefore, [�i; �i�1; 1] = [�0; ��1; 1] �R1R2 � � �Ri: (4.10.17)Hence, we can solve for �i by parallel pre�x as the way we solve for Sturm sequence, excepthere we use 3� 3 matrix multiplication instead of 2� 2. So we have the following parallelpre�x + iterative re�nement algorithm.



91Algorithm 4.10.1 Compute Sturm sequence by parallel pre�x operation and iterativere�nement.1: Compute Sturm sequence by 2� 2 parallel pre�x matrix multiplication./* denote the computed Sturm sequence by p̂ */2: Pi = aip̂i�1 � b2i�1p̂i�2.3: Compute residual ri = Pi � p̂.4: while the residual ri is above some tolerance � , do4: Solve �i by 3� 3 parallel pre�x matrix multiplication.5: Update the solution p̂ by p̂ = p̂+ �i.6: Pi = aip̂i�1 � b2i�1p̂i�2.7: Compute the residual ri = Pi � p̂.8: endNow the question remains is whether Algorithm 4.10.1 will converge in constant steps oro(n) steps, where n is the order of the symmetric tridiagonal matrix T .We implemented Algorithm 4.10.1 in MATLAB, our numerical experiments showthat for certain matrices, it takes O(n) steps for the algorithm to converge, making thecomplexity of the parallel algorithm to O(n log2 n), which is even larger than the serialalgorithm.Table 4.1 shows the sequence of the updated Sturm sequence for a glued 16 � 16positive de�nite matrix, when we use parallel pre�x to compute the count at x = �2 � 10�8,the computed count is 1 and the true count is 0. We denote the relative error of the Sturmsequence by "i = jpi � p̂ijjpij :Figure 4.5 plots the sequence of the updated Sturm sequence for a glued 64� 64positive de�nite matrix and the maximum relative error maxi "i at each iterate, it takes 63steps to converge. We compute at x = �2 � 10�10, the computed count by parallel pre�x is7 and the true count is 0.



92Iteration # Computed Count maxi "i0 1 5.2333e+011 1 5.2333e+012 1 4.8049e+063 3 8.7467e+114 5 4.2877e+175 5 1.7959e+186 5 2.6166e+187 4 6.2610e+228 4 2.5043e+239 3 3.7564e+2310 3 3.7564e+2311 2 2.5043e+2312 1 6.2607e+2213 1 1.0000e+0014 0 0Table 4.1: Iterative re�nement of parallel pre�x algorithm for 16�16 glued positive de�nitematrix
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Figure 4.5: Iterative re�nement of parallel pre�x algorithm for 64�64 glued positive de�nitematrix



934.11 Criterion to Determine the Accuracy of Parallel Pre�xParallel pre�x algorithm can be very unstable when being used to compute clustersof eigenvalues, as we have shown earlier. However, it works well for a random matrix withentries independently and uniformly distributed in [�1; 1] (see �gure 3.9 and �gure 4.4).It also works well for several other types of matrices [94]. If we can �nd a criterion whichcan estimate the error made by parallel pre�x quite accurately, then we can use a generaltechnique to take advantage of the superior speed of parallel pre�x algorithm. The techniqueis used to deal with the tradeo� between parallelism and stability in order to make the wholealgorithm go as fast as possible, but not sacri�cing much accuracy [28]. It takes the followingthree steps:� Compute the solution for the problem by fast but not very stable parallel algorithm.� Quickly and reliably con�rm or deny the accuracy of the computed solution.� If computed solution is denied, recompute the counts by serial algorithm.The key issue to apply this technique is to �nd a satisfactory criterion. The backward error� = maxi �i = maxi jp̂i � P̂ijjaijjp̂i�1j+ 2b2i�1jp̂i�2j :is a reasonable one, but from our numerical experiments, (�gure 3.6|�gure 3.9), it's di�cultto decide what magnitude of � is large enough for us to deny the computed solution.Another reasonable proposal is to use� = maxi Pi � p̂ip̂i ;but for the same reason as for �, � can not provide enough information for us to decidewhen to reject the computed solution. Therefore, to �nd a satisfactory criterion remains asan open problem.



94Chapter 5Applying the Divide-and-ConquerMethod to the Singular ValueDecomposition and Least SquaresProblem5.1 IntroductionComputing the singular value decomposition (SVD) is one of the most importantproblems in numerical linear algebra. The SVD reveals a great deal about the structure ofa matrix, e.g. its rank. The most reliable methods to solve a linear least squares problemare based on the SVD, in particular when the matrix is nearly rank-de�cient [43, 2]. In thischapter, we discuss the divide-and-conquer method for computing the SVD. We comparethe performance of the divide-and-conquer method with the method based on QR-iteration[41, 33]. We also compare the performance of various linear least squares solvers:� xGELS, the fastest and least reliable method based on plain QR decomposition.� xGELSX, based on QR with column pivoting, runs twice as slowly as xGELS1.� xGELSY, also based on QR with column pivoting but using BLAS 3, runs 1.3 times asslowly as xGELS.1all the performance mentioned here is on an IBM RS6000/590 for 1600 � 1600 random matrices



95� xGELSA and xGELSB, based on rank-revealing QR (RRQR), run 1.1 times as slowly asxGELS.� xGELSS, based on SVD using QR-iteration, runs 96 times as slowly as xGELS.� xGELSF, also based on SVD using QR-iteration but using \factored form", runs only3.3 times as slowly as xGELS.� xGELSD, based on divide-and-conquer SVD, runs 3.5 times as slowly as xGELS.In section 5.6, we show that for 1600� 1600 random matrices whose elements are indepen-dently and uniformly distributed, our implementation of divide-and-conquer method runs50 times faster than the QR based SVD for bidiagonal matrices, and 13 times faster fordense matrices. The least squares solver based on divide-and-conquer SVD runs 28 timesfaster than DGELSS, the solver based on QR-iteration SVD.5.2 Review of the SVD and Least Squares ProblemGiven an m�n real matrix A, the singular value decomposition (SVD) of Ais the factorization A = U�V T ;where U = [u1; u2; : : : ; um] 2 Rm�m and V = [v1; v2; : : : ; vn] 2 Rn�nare orthogonal matrices, and� = diag(�1; �2; : : : ; �r; 0; : : : ; 0) 2 Rm�n r = min(m;n)with �1 � �2 � � � � � �r � 0.The �i are called the singular values of A and for i = 1; : : : ; r, the vectors ui andvi are called the ith left singular vector and right singular vector respectively. It is easy tosee that Avi = �iui and ATui = �vi:If A is complex, then its SVD is A = U�V H where U and V are unitary matrices,and � is a diagonal matrix with real nonnegative diagonal elements. From now on, weassume A is real.



96One of the many important applications of the SVD is to �nd the solution of a(possibly) rank-de�cient linear least squares problem:minx2Rn kAx� bk2; (5.2.1)where b 2 Rm is a given vector.In the case m > n and rank(A) = n, i.e., A has full column rank, the problem isreferred to as �nding a least squares solution to an overdetermined system of linearequations. It is well known that the solution to the problem is unique,xLS = V (��11 0n�(m�n))UT b;where �1 2 Rn�n is the leading n� n submatrix of �.In the case m < n and rank(A) = m, there are an in�nite number of solutionsx which satisfy Ax = b. It is often useful to �nd the unique solution x which also mini-mizes kxk2, and the problem is referred to as �nding a minimum norm solution to anunderdetermined system of linear equations. The solution can be expressed as:xLS = V 24 ��120(n�m)�m 35UT b;where �2 2 Rm is the leading m�m submatrix of �.In the general case when we may have rank(A) < min(m;n), which is calledrank-de�cient linear least squares problem, the solution x should minimize both kxk2 andkb� Axk2.The SVD of a dense matrix (we call it dense SVD) is usually computed in twostages [41]:Stage 1 The matrix A is reduced to bidiagonal form:A = UBV T ;where U and V are orthogonal matrices and B is a bidiagonal matrix. B is upperbidiagonal when m � n and lower bidiagonal when m < n, so that B is nonzero onlyon the main diagonal and either on the �rst superdiagonal (if m � n) or the �rst



97subdiagonal (if m < n):B = 266666664 �1 �1�2 . . .. . . �n�1�n 377777775when m � nor B = 26666664 �1�1 �2. . . . . .�n�1 �n 37777775when m < nStage 2 Compute the SVD of bidiagonal matrix B (we call this the bidiagonal SVD todi�erentiate it from the dense SVD):B = Q�WT ;where Q and W are orthogonal matrices and � is the diagonal matrix we describedbefore.The SVD of A is then computed asA = (UQ)�(VW )T :Stage 2 has previously been implemented using QR-iteration [33, 41, 42] or QD-iteration(singular values only) [38, 83]. This has been the bottleneck of the whole algorithm, it cantake as much as 95% of the total time when n is large (see table 5.10).Without loss of generality, from now on, we will assume A is an m�n matrix withm � n, therefore, the bidiagonal matrix B will be upper bidiagonal.We have implemented a divide-and-conquer algorithm to compute the bidiagonalSVD to overcome this bottleneck. We call it xBDSDC which follows the LAPACK namingconvention [2]. Based on this, we implemented a dense SVD algorithm, called xGESDD, whichuses xBDSDC SVD algorithm for Stage 2. All the implementations will appear in LAPACKRelease 2.1. The bidiagonal divide-and-conquer algorithm which xBDSDC uses is a variationof the Gu and Eisenstat algorithm [51], which is based on previous work by Arbenz andGolub [6], Cuppen [22], Golub [45], Gu and Eisenstat [49], and Jessup and Sorensen [63],



98for computing the SVD of B. Our numerical experiments on an IBM RS6000/590 showthat DBDSDC (double precision implementation) runs at least 47 times faster for n = 1600than the LAPACK implementation DBDSQR [33, 3] of the traditional QR based algorithm(see section 5.6 for details on the RS6000/590 con�guration). DGESDD, the implementationof dense SVD, is from 7.6 to 13.5 times faster than DGESVD (the corresponding LAPACKimplementation [2] for computing the dense SVD) of A when n = 1600. We should mentionthat in general, for a bidiagonal matrix, xBDSQR computes the singular values to high relativeaccuracy, whereas xBDSDC can only guarantees the absolute accuracy.xBDSDC uses a \factored form", which allows us to compute the SVD of B in O(n2)ops by representing Q and W as products of O(log2 n) structured orthogonal matrices [48,47]. Once A has been reduced to upper bidiagonal form (Stage 2), this new version ofthe bidiagonal SVD allows us to �nish the rest of the computation for solving the denselinear least squares problem in O(mn) ops. The implementation of this algorithm is calledxGELSD. Since the cost of Stage 1 is about 4mn2 � 4n3=3 ops [43], about twice the cost ofcomputing a QR factorization on A, our result means that the op count of the SVD basedleast squares solver is only about twice that of the QR based solver. The \factored form"version is also useful for the case where the least squares solution is subject to some simpleconstraints [43].Demmel [29, 48] implemented a technique for representing the SVD using QR-iteration in factored form, originally suggested in [21], and also known to Rutishauser inthe context of Jacobi's method [83]. The idea is to store all the Givens rotations producedduring bidiagonal QR iteration and apply them directly to the solution vector, rather thanaccumulating them. This simple change to the current LAPACK routine xGELSS for solvingthe least squares problem with the SVD, also reduces the op count to just twice that ofQR decomposition, but at the cost of O(n2) storage. This new implementation is calledxGELSF. Based purely on operation counts, we expect either of our two least squares algo-rithms, xGELSD and xGELSF to take only about twice as long as the fastest method (QRdecomposition). However, when using optimized ESSL BLAS on the RS6000, the new SVDbased least squares solvers are about 2.9 to 3.6 times slower than QR decomposition forn = 1600, not twice as slow. This is because the QR decomposition can be reorganized todo almost all its oating point operations by calls to Level 3 BLAS [36], whereas Stage 1of the SVD does half its ops in the Level 3 BLAS and half in Level 2 BLAS [37].



99It may be possible to break the \BLAS 2" barrier in reduction to bidiagonal formby exploiting successive band reduction techniques proposed for the symmetric eigenproblem[14], but we have not yet pursued this.The new routines we mentioned above are implemented by a group of people. Inparticular, xBDSDC is implemented by Ming Gu, the root �nder is implemented by RencangLi, xGELSF is implemented by James Demmel, xGESDD is implemented by author, and xGELSDis implemented by Ming Gu and author.5.3 xBDSDC and \Factored Form"xBDSDC recursively divides B into two subproblems as follows [48, 47]:B = 0BBB@ B1 0�keTk �keT10 B2 1CCCA ; (5.3.2)where B1 2 R(k�1)�k and B2 2 R(n�k)�(n�k) are upper bidiagonal matrices, and ej is thej-th column of an identity matrix with appropriate dimension. We take k = bn=2c.Remark 5.3.1 xBDSDC actually uses the dividing strategy used in [6]; the algorithm in [51]takes out a column (instead of a row) of B at a time.Assume that we are given the SVDs of B1 and B2:B1 = Q1(D1 0)WT1 and B2 = Q2D2WT2 ;where Qi and Wi are orthogonal matrices of appropriate dimensions, and the Di's are non-negative diagonal matrices. Let (lT1 �1) be the last row of W1, and let fT2 be the �rst rowof W2. Plugging these into (5.3.2), we getB = 0BBB@ Q1 0 00 1 00 0 Q2 1CCCA0BBB@ D1 0 0�klT1 �k�1 �kfT20 0 D2 1CCCA0@ W1 00 W2 1AT : (5.3.3)Note that the middle matrix is quite simple in that its entries can be non-zero only on thediagonal and in the k-th row. We will discuss the computation of its SVD later in this



100section. Let S�GT be the SVD of the middle matrix. Plugging it into (5.3.3), we get theSVD of B as B = Q�WT ;with Q = 0BBB@ Q1 0 00 1 00 0 Q2 1CCCAS and W = 0@ W1 00 W2 1AG :To compute the SVDs of B1 and B2, this process can be recursively applied until thesizes of the subproblems are su�ciently small2. These small subproblems are then solvedusing a QR type algorithm (xBDSQR in LAPACK). There can be at most O(log2 n) levels ofrecursion.xBDSDC also has a recursion for computing just the singular values. Let fT1 be the�rst row of W1; let lT2 be the last row of W2; and let fT and lT be the �rst and last rowsof W , respectively. Suppose that Di, fi, li, and �1 are given for i = 1; 2. Then we cancompute �, f , and l by computing the SVD of the middle matrix in (5.3.3) as S�GT , andcomputing fT = (fT1 0)G and lT = (0 lT2 )G :The \factored form" version of bidiagonal divide-and-conquer is based on the sin-gular value recursion. We store S and G for each subproblem in the recursion, and neverexplicitly form any Q and W at any level, except the bottom level where we use a QR typealgorithm.In order to compute the SVD of the middle matrix in (5.3.3), we note that, bypermuting the k-th row and column to the �rst row and column, this matrix can be writtenas M = 0BBBBBB@ z1 z2 � � � znd2 . . . dn 1CCCCCCA ; (5.3.4)where di's are the diagonal elements of D1 and D2; and zi's are entries of the k-th row ofthe middle matrix, with z1 being the (k; k) entry. We permute the matrix M so we can2Strictly speaking, this process is not quite recursive since, unlike B, B1 is not a square matrix. This istrue for the following singular value recursion also. See [51] for the complete recursions.



101write D = diag (d1; d2; : : : ; dn) with3 0 � d1 � d2 � : : :� dn, and z = (z1; z2; : : : ; zn)T . Wefurther assume that dj+1 � dj � �kMk2 and jzj j � �kMk2 ; (5.3.5)where � is a small multiple of " speci�ed in [51]. Any matrix of the form (5.3.4) can bereduced to one that satis�es these conditions by the deation procedure described in [51].The following lemma characterizes the singular values and singular vectors of M .Lemma 5.3.1 (Jessup and Sorensen [62]) Let S�GT be the SVD of M withS = (s1; : : : ; sn) ; � = diag (�1; : : : ; �n) and G = (g1; : : : ; gn) ;where 0 < �1 < : : : < �n: Then the singular values f�igni=1 satisfy the interlacing property0 = d1 < �1 < d2 < : : : < dn < �n < dn + jjzjj2 ;and the secular equation f(�) = 1 + nXk=1 z2kd2k � �2 = 0 :The singular vectors satisfysi =  �1; d2z2d22 � �2i ; : : : ; dnznd2n � �2i !T ,vuut1 + nXk=2 (dkzk)2�d2k � �2i �2 ; (5.3.6)gi =  z1d21 � �2i ; : : : ; znd2n � �2i !T ,vuut nXk=1 z2k�d2k � �2i �2 : (5.3.7)On the other hand, given D and all the singular values, we can construct a matrixwith the same structure as (5.3.4).Lemma 5.3.2 (Gu and Eisenstat [51]) Given a diagonal matrix D = diag (d1; d2; : : : ; dn)and a set of numbers f�̂igni=1 satisfying the interlacing property0 � d1 < �̂1 < d2 < : : : < dn < �̂n ; (5.3.8)there exists a matrix M̂ = 0BBBBBB@ ẑ1 ẑ2 � � � ẑnd2 . . . dn 1CCCCCCA3d1 is introduced to simplify the presentation.



102whose singular values are f�̂igni=1. The vector ẑ = (ẑ1; ẑ2; : : : ; ẑn)T is determined byjẑij =vuuut��̂2n � d2i � i�1Yk=1 ��̂2k � d2i ��d2k � d2i � n�1Yk=i ��̂2k � d2i ��d2k+1 � d2i� ; (5.3.9)where the sign of ẑi can be chosen arbitrarily.We use the root-�nder provided by R.-C. Li [73] to �nd approximate singular valuesf�̂kgnk=1. Following [51], we then compute fẑkgnk=1 by using (5.3.9) and compute the leftand right singular vectors of M using (5.3.6) and (5.3.7), except we replace zk by ẑk usingthe sign of zk. It has been shown [51] that this procedure is numerically stable, providedthat one computes the di�erences di� dj to high relative accuracy, for 1 � i � j � n. Thisassumption is automatically satis�ed on most modern computers except some earlier Craymachines (Cray XMP, YMP, C90 and 2) which do not have a guard digit. We overcomethis di�culty by using the following technique provided by Kahan [67]. Before the singularvalues are computed, we �rst computedi := (di + di)� di for i = 1; : : : ; n :On machines with a guard digit, this does not change di at all (barring overow), but itchops o� the last bit of di on the above mentioned Cray machines. After doing so, thedi�erences di � dj can be computed to high relative accuracy even on these machines. Tothe best of our knowledge, our code should work on any commercially signi�cant modernNorth America computers.Since S and G are generally dense matrices, storing them explicitly will take O(n2)storage for the whole recursion. However, we note that they can be reconstructed fromfẑkgnk=1, f�̂kgnk=1, and fdkgnk=1 whenever they are needed4. Hence in our implementation,we store these data rather than S and G themselves. This increases the cost of xBDSDC byO(n2) overall, but reduces the memory requirement from O(n2) to O(n log2 n), since thereare O(log2 n) levels of recursion.5.4 Computing the Dense SVDIn the current version of LAPACK [2], xGESVD, in Stage 1 of the SVD compu-tation (see Section 1.1), the matrices U and V are generated as products of Householder4The actual implementation is slightly more complicated for e�ciency and stability reasons.



103transformations, and in Stage 2, the matrices Q and W are generated as products of Givensrotations. When the full SVD of A is desired, U and V are explicitly computed and theGivens rotations in Q and W are applied to U and V as soon as they are generated.In contrast, in xGESDD, we �rst compute the matrices Q and W explicitly, byorganizing the computation to use level 3 BLAS as much as possible, and then compute UQand VW by applying the sequence of Householder transformations toQ andW , respectively.This approach is similar to that used for computing the full eigendecomposition of a densesymmetric matrix by using Cuppen's divide-and-conquer algorithm [84].If m � n, it may be more e�cient to �rst perform a QR factorization of A, andthen to compute the SVD of the n� n upper triangular matrix R. SinceA = QR and R = U�V T ;therefore the SVD of A is given by A = (QU)�V T :For the implementation of xGESDD, we select a threshold �. When m � � � n,we �rst perform a QR factorization, and then compute the SVD of the triangular matrix;otherwise, we compute the SVD of A directly. The magnitude of the threshold � is basedon the op count of the QR factorization, bidiagonal reduction (Stage 1) and generation ofleft and right singular vector matrices. To generate left and right singular vectors, there aretwo choices. One is to store the orthogonal matrices U and V by sequence of Householdervectors, and apply the Householder vectors to the singular vectors of bidiagonal matrix: Qand W , this will be computed by calling LAPACK routine xORMBR. The other way is togenerate U and V explicitly by calling LAPACK routine xORGBR, then perform two matrixmultiplications U �Q and V �W by calling BLAS routine xGEMM.The QR factorization is computed by LAPACK routine xGEQRF, the bidiagonalreduction is computed by xGEBRD. Since the op count is di�erent for complex arithmeticfrom real arithmetic, we will consider both real and complex cases. Table 5.1 shows the opcount of several routines for real and complex arithmetic. Table 5.2 shows the op count forthe real dense SVD of dimension m� n using di�erent combinations of routines and table5.3 shows the op count for the complex SVD. In both tables, we exclude the op count forSBDSDC since it is same in all cases.



104Real ArithmeticRoutine Description FlopsSGEBRD bidiagonal reduction 2n2(2m� 23n)SGEQRF QR factorization 2n2(m� n3 )SORMBR applying Householder transformations 2n2(2m� n)SORGBR generate orthogonal matrix from Householder 2n2(m� n3 )transformationsSGEMM matrix-matrix multiply 2mn2Complex ArithmeticCGEBRD bidiagonal reduction 8n2(2m� 23n)CGEQRF QR factorization 8n2(m� n3 )CUNMBR applying Householder transformations 8n2(2m� n)CUNGBR generate unitary matrix from Householder 8n2(m� n3 )transformationsCGEMM matrix-matrix multiply 8mn2Table 5.1: Flop Count of LAPACK RoutinesPaths Combinations of Routines FlopsDirect SVD 1 SGEBRD + 2 SORMBR 8mn2 � 43n3Direct SVD 2 SGEBRD + 2 SORGBR + 2 SGEMM 8mn2 + 43n3(QR + SVD) 1 SGEQRF + SGEBRD + 2 SORMBR + SGEMM 4mn2 + 6n3(QR + SVD) 2 SGEQRF + SGEBRD + 2 SORGBR + 3 SGEMM 4mn2 + 263 n3Table 5.2: Flop Count of Real SVD Excluding SBDSDC for Di�erent PathsPaths Combinations of Routines FlopsDirect SVD 1 CGEBRD + 2 CUNMBR 32mn2 � 163 n3Direct SVD 2 CGEBRD + 2 CUNGBR + 4 SGEMM 28mn2 + 43n3(QR + SVD) 1 CGEQRF + CGEBRD + 2 CUNMBR + CGEMM 16mn2 + 24n3(QR + SVD) 2 CGEQRF + CGEBRD + 2 CUNGBR + CGEMM + 4 SGEMM 16mn2 + 803 n3Table 5.3: Flop Count of Complex SVD Excluding SBDSDC for Di�erent Paths



105If A is real, since the path Direct SVD 2 is always more expensive than DirectSVD 1, and (QR + SVD) 2 is more expensive than (QR + SVD) 1, we only need two pathsfor SGESDD. By comparing the op count, when m � 116 n, Direct SVD 1 is more expensivethan (QR + SVD) 1. Therefore, we pick threshold � = 11=6 and use (QR + SVD) 1 ifm � � � n; otherwise, we use Direct SVD 1.In the case when A is complex, we need three paths. Again, by comparing the opcount, we derive two thresholds, �1 = 53n and �2 = 179 , such that:� When m � �2 � n, we use (QR + SVD) 1.� When �1 � n � m < �2 � n, we use Direct SVD 2.� Otherwise, when m < �1 � n, we use Direct SVD 1.5.5 Solving Linear Least Squares ProblemIn this section, we discuss various linear least squares solvers which are based onSVD using divide-and-conquer, SVD using QR-iteration, and QR factorization.5.5.1 SVD Least Squares Solver Based on Divide-and-ConquerWhen we solve the linear least squares problem (5.2.1) using the SVD, LAPACK'sxGELSS [2] computes the solution xLS using the SVD A = (UQ)�(VW )T as follows [43, 48]:x1 � UT1 b; x2 � QTx1; x3 � ��11 x2; xLS � (VW )x3; (5.5.10)where U1 is the �rst n columns of U . x1 is computed by applying the Householder transfor-mations directly to b, x2 is computed by applying the Givens rotations directly to x1, andxLS is computed by explicitly forming the matrix VW , as is done in the dense SVD case,and then applying VW to x3. We note that computing VW takes O(n3) ops in general.To compute the least squares solution xLS more quickly using the SVD, we usethe \factored form" version of bidiagonal divide-and-conquer. After Stage 1, A is reducedto the upper bidiagonal matrix B, with the orthogonal transformations U and V returnedas products of Householder transformations. We then compute x1 as in (5.5.10). This canbe done in O(mn) ops [43]. To compute x2, we note that Q is represented as a product ofO(log2 n) orthogonal matrices, the i-th of which is block diagonal with the diagonal blocks



106being 1's and left singular vector matrices on the i-th level in the recursion. Since there are2i�1 submatrices on the i-th level with each submatrix having size O(n=2i�1), the cost ofapplying the transposes of these matrices to a vector isO��n=2i�1�2�� 2i�1 = O �n2=2i�1� ;summing all these costs up, the cost for computing x2 = QTx1 isO(log2 n)Xi=1 O �n2=2i�1� = O(n2)ops. Computing x3 takes O(n) ops. To compute xLS from x3, we do not explicitly formVW . Instead, we compute x4 � Wx3 and xLS = V x4 : (5.5.11)By the same argument as above, x4 can be computed in O(n2) ops. Finally, it is again wellknown that computing xLS as V x4 takes O(n2) ops [43]. Overall, computing xLS afterPhase I takes O(mn) ops.The routine for solving the least squares problem using divide-and-conquer is calledxGELSD; this name will be used in section 5.6.5.5.2 SVD Least Squares Solver Based on QR IterationIt turns out that explicit computation of VW can be avoided even with the QRbased SVD algorithms [48, 29], as originally noted in [21]. Instead of computing xLS as(VW )x3, we can again compute xLS as in (5.5.11). x4 can be computed by saving allO(n2) Givens rotations performed in computing the SVD of B, and applying them to x3in reverse order; xLS can then be computed as V x4 as above. Let t be the total number ofsuch Givens rotations. Then the cost of computing xLS after Stage 1 is O(mn + t) ops.Since we usually expect t = O(n2), this cost is again O(mn) ops. One drawback withthis approach, however, is that it requires O(t) storage, and we cannot bound t exactlybeforehand.The routine implementing this idea is called xGELSF (for \factored form") thisname will be used in section 5.6.Recall that xBDSQR computes the singular values to high relative accuracy, whereasxBDSDC can only guarantee the absolute accuracy. Therefore it seems that there is still some



107room left to improve the performance of xGELSF since in general we only need absoluteaccuracy to solve a least squares problem.5.5.3 Least Squares Solvers Based on QR FactorizationThe least squares problem can be also solved using QR factorization. The solversbased on QR factorization usually run much faster than SVD based methods. However,they are not as reliable as those based on SVD, since they are not as accurate when theproblem is rank-de�cient. Of all the methods for solving least squares problem, the fastestas well as the least reliable one is the plain QR which we now describe.Assume the QR factorization of A is given byA = Q24 R0 35 = (Q1 Q2)24 R0 35 ; m � n;where R is an n�n upper triangular matrix, Q is an m�m orthogonal matrix, Q1 consistsof the �rst n columns of Q and Q2 the remaining m� n columns.If A has full column rank, sincekb� Axk2 = kQT b�QTAxk2 = k24 c1 �Rxc2 35 k2;where c1 = QT1 b and c2 = QT2 b, xLS is then computed by solving the upper triangularsystem Rx = c1:This algorithm is implemented in LAPACK. The name of the routine is xGELS.When A is not of full rank, or the rank of A is in doubt, we can perform a QRfactorization with column pivoting, which was introduced by Businger and Golub [17, 44].It is more reliable than plain QR, but it is slower.The QR Factorization with column pivoting is given byA = Q24 R0 35PT ; m � n;where Q and R are as before and P is a permutation matrix, such thatjr11j � jr22j � � � � � jrnnj



108and for each k, jrkkj � kRk:j;jk2 for j = k + 1; : : : ; n:In exact arithmetic, if rank(A) = k, then the submatrix R22 in rows and columns k + 1to n would be 0. However, in oating point arithmetic, we can only expect that we candetermine an index k, such that the leading principal matrix in the �rst k rows and columnsis well conditioned, and R22 is negligible:R = 24 R11 R120 R22 35 ' 24 R11 R120 0 35 :Then k is the e�ective rank of A. The solution to the least squares problem is then givenby xLS = P 24 R�111 c10 35 ;where c1 contains the �rst k elements of c = QT b. The QR factorization with column pivot-ing does not enable us to compute a minimum norm solution to a rank-de�cient linear leastsquares problem, unless R12 = 0. However, by applying further orthogonal transformationsfrom the right to the upper trapezoidal matrix (R11 R12), R12 can be eliminated:(R11 R12)Z = (T11 0):This gives the complete orthogonal factorizationAP = Q24 T11 00 0 35ZT :Thus, the minimum norm solution can be computed asxLS = PZ 24 T�111 c10 35 :This algorithm is implemented in LAPACK's routine xGELSX [3].QR with column pivoting works well in practice for general matrices, but it can failin pathological cases [65]. To overcome this, several more sophisticated \Rank-RevealingQR" algorithms have been developed [18, 93, 50, 46, 19, 79, 59].LAPACK's routine xGELSX is based on xGEQPF, which implements QR with columnpivoting using Level 2 BLAS [37]. Recently, Bischof et al [39] developed a variant algorithm



109of the QR factorization with pivoting which allows the use of Level 3 BLAS [36], thusincreasing cache data locality while enabling the use of the most e�cient BLAS kernelsbut it takes much longer in the worst case although this rarely happens. The routine forcomputing the least squares problem based on this new algorithm is called xGELSY.Bischof and Quintana-Orti also implemented two rank-revealing QR least squaressolvers [13]. One is related to Chandrasekaran and Ispen's algorithm [19], which is calledxGELSA. The other is related to Pan and Tang's algorithm [79], which is called xGELSB.The implementations xGELSY, xGELSA, xGELSB are available through Bischof5.5.6 Numerical Experiments on the RS6000/590We ran our numerical experiments on an IBM RS6000/590 with a 66.5 Mhz clockand 256KB cache. We compiled using xlf with the -O3 optimization option. The optimizedBLAS were those in IBM's Engineering and Scienti�c Subroutine Library (ESSL)[1]. Allexperiments were run in double precision, i.e. 64-bit, IEEE oating point arithmetic. Welet " = 2�53 denote the machine precision.Table 5.4 lists the names of the subroutines we test and what they do. The readermay want to refer to this table to interpret the following performance tables.5.6.1 Performance of the BLAS and basic LAPACK decompositions onthe RS6000Table 5.5 reports on the speed in Megaops of the BLAS, DGEMV (matrix{vectormultiplication) and DGEMM (matrix-matrix multiplication). It also reports the speeds of LUdecomposition (DGETRF), QR decomposition (DGEQRF) and bidiagonal reduction (DGEBRD). Itdoes this both for Fortran BLAS and ESSL BLAS. All matrices are dimensioned (LDA,N),where LDA = 1601. The block size NB in the blocked algorithms for DGETRF, DGEQRFand DGEBRD was 32. It is interesting to see that the performance of DGEMV is a stronglynonmonotonic function of matrix dimension. This is because the cache size for RS6000/590is 256KB, when the matrix size is small, the matrix �ts in cache; otherwise, cache misseswill occur.5email: bischof@mcs.anl.gov



110Table 5.4: Names and descriptions of routines testedName Description StatusFundamental RoutinesxGEMV Matrix-vector multiply Level 2 BLASxGEMM Matrix-matrix multiply Level 3 BLASxGETRF LU decomposition in LAPACKxGEQRF QR decomposition in LAPACKxGEBRD Reduction to bidiagonal form in LAPACKBidiagonal SVDxBDSQR Compute complete SVD of a bidiagonal matrix using QR in LAPACKiterationxBDSDC Compute complete SVD of a bidiagonal matrix using new routinedivide-and-conquer Dense SVDxGESVD Compute complete SVD of a dense matrix using QR iteration in LAPACKxGESVF Compute complete SVD of a dense matrix using QR iteration, in ESSLversion of DGESVD optimized for RS6000xGESDD Compute complete SVD of a dense matrix using new routinedivide-and-conquerLinear Least Squares SolversxGELS Solve the LS problem using QR decomposition in LAPACKxGELSX Solve the LS problem using QR decomposition with column in LAPACKpivotingxGELSY Solve the LS problem using QR decomposition with column new routinepivoting implemented by BLAS 3 (Bischof et al [39])xGELSA Solve the LS problem using Rank-Revealing QR based on new routinethe method related to Chandrasekaran and Ipsen'salgorithm (Bischof et al [13, 19])xGELSB Solve the LS problem using Rank-Revealing QR based on new routinethe method related to Pan and Tang's algorithm(Bischof et al [13, 79])xGELLS Solve the LS problem using QR decomposition with column in ESSLpivoting, version of DGELSX optimized for RS6000xGELSS Solve the LS problem using the SVD based on QR-iteration in LAPACKxGESVS Solve the LS problem using the SVD based on QR-iteration, in ESSLversion of DGELSS optimized for RS6000xGELSF Solve the LS problem using the SVD based on QR-iteration new routinebut where the left singular vectors are left factoredxGELSD Solve the LS problem using the SVD based on new routinedivide-and-conquer



111Table 5.5: Speed of BLAS and LAPACK Routines on RS6000 (NB = 32, LDA = 1601)Speed in megaops using ESSL BLASDimensionRoutine Description 50 100 200 400 800 1600DGEMV matrix-vector multiply 128.4 205.1 114.6 116.5 117.4 120.3DGEMM matrix-matrix multiply 210.3 229.2 224.0 228.6 229.1 233.5DGETRF LU decomposition 42.4 119.1 151.8 163.8 152.2 171.8DGEQRF QR decomposition 60.2 96.7 139.3 171.3 189.5 197.7DGEBRD Bidiagonal reduction 33.8 135.1 102.0 113.2 125.4 138.0Speed in megaops using Fortran BLASDimensionRoutine Description 50 100 200 400 800 1600DGEMV matrix-vector multiply 68.7 81.2 62.9 65.1 67.0 68.3DGEMM matrix-matrix multiply 70.9 80.0 64.9 65.3 67.4 68.6DGETRF LU decomposition 41.7 56.7 68.9 71.0 70.2 65.5DGEQRF QR decomposition 50.5 69.0 78.2 77.9 80.0 76.0DGEBRD Bidiagonal reduction 48.8 65.9 58.7 63.6 64.4 61.45.6.2 Performance of the Bidiagonal SVD on the RS6000We report on the speed of the bidiagonal SVD (computing all singular valuesand left and right singular vectors). We used four types of test matrices, all generated byLAPACK test matrix generator DLATMS:Type 1. These bidiagonal matrices were randomly generated with singular values dis-tributed arithmetically from " up to 1.Type 2. These bidiagonal matrices were randomly generated with singular values dis-tributed geometrically from " up to 1.Type 3. These bidiagonal matrices have 1 singular value at 1 and the other n�1 clusteredat ".Type 4. These bidiagonal matrices were generated by taking a dense matrix with indepen-dent random entries uniformly distributed in (�1; 1), and reducing it to bidiagonalform.Table 5.6 shows the speedup of DBDSDC, the bidiagonal SVD based on divide-and-conquer, with respect to DBDSQR, the bidiagonal SVD based on QR-iteration (all singular



112Table 5.6: Speedup of DBDSDC over DBDSQR on RS6000Speedup using ESSL BLASDimensionTest Matrix 20 50 100 200 400 800 1600type 1 0.93 1.29 2.11 3.16 5.16 30.91 47.78type 2 0.91 0.83 1.78 3.60 5.92 37.38 67.14type 3 1.06 6.67 22.00 48.00 58.57 365.56 938.83type 4 1.11 1.29 1.89 3.43 5.59 33.00 50.51Speedup using Fortran BLASDimensionTest Matrix 20 50 100 200 400 800 1600type 1 1.00 1.31 1.31 2.03 2.82 15.45 20.33type 2 0.76 0.90 1.17 2.70 4.30 26.61 42.06type 3 1.00 24.69 38.00 83.83 67.69 361.54 927.03type 4 1.00 1.00 1.25 2.26 2.97 16.50 21.86values and left and right singular vectors are computed). As can be seen, the speedup is largeand a growing function of matrix dimension. For n = 1600, the speedup is 50 for matricesof type 4 and over 900 for matrices of type 3, when using ESSL BLAS. Also, the speedup isbetter when using the optimized BLAS rather than Fortran BLAS, because DBDSDC spendsmuch of its time in DGEMM, whereas DBDSQR cannot even use Level 2 BLAS. In general,DBDSDC can only compute the singular values to high absolute accuracy; in contrast, DBDSQRcan compute the singular values to high relative accuracy [33].Figure 5.1 shows the performance of DBDSQR and DBDSDC in MFLOPS for type 2and 4 matrices using ESSL BLAS, where DBDSQR is plotted by blue line and DBDSDC byred line. We can see that the MFLOPS of DBDSDC is a growing function of matrix sizewhereas the MFLOPS of DBDSQR peaks around n = 400 then drops very quickly. Whenn = 1600, for matrices of type 4, DBDSDC achieves 117 MFLOPS whereas DBDSQR runs onlyat 14 MFLOPS.5.6.3 Performance of the Dense SVD on the RS6000We report on the speed of the dense SVD (computing all singular values and leftand right singular vectors). We used the same four test matrix types as before, but now allare dense. We compared DGESDD and DGESVD with ESSL's SVD routine DGESVF; see tables5.7 and 5.8. We also compared the performance of DGESDD and DGESVD using Fortran BLAS,
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DBDSQRFigure 5.1: Performance of DBDSQR and DBDSDC in MFLOPSsee table 5.9. For all four types of matrices, DGESDD achieved a good speedup over DGESVF.For n = 1600, the speedup of DGESDD over DGESVF ranges from 6.3 to 14.5. For matricesof types 1,2,4, the speed of DGESVD is comparable to DGESVF. However, DGESVF achieved agood speedup over DGESVD for matrices of type 3. This is because DGESVD computes thesingular values of the bidiagonal matrix to high relative accuracy whereas DGESVF does not.Table 5.10 shows what fraction of time the dense SVD spends on doing the bidi-agonal SVD. The most signi�cant result is that the bidiagonal fraction takes 91% to 96%Table 5.7: Speedup of DGESDD over DGESVF on RS6000Speedup using ESSL BLASDimensionTest Matrix 20 50 100 200 400 800 1600type 1 1.11 1.25 1.63 2.31 3.06 11.62 14.47type 2 0.82 0.67 0.85 1.54 2.05 5.34 6.32type 3 0.30 0.64 0.89 1.64 2.13 5.78 7.03type 4 0.82 1.00 1.41 2.28 3.13 11.36 14.20



114Table 5.8: Speedup of DGESVF over DGESVD on RS6000Speedup using ESSL BLASDimensionTest Matrix 20 50 100 200 400 800 1600type 1 0.90 0.88 1.00 0.84 0.80 0.90 0.93type 2 1.17 1.46 1.36 0.99 0.85 1.13 1.20type 3 3.23 3.70 3.63 2.22 1.67 2.62 3.11type 4 1.15 1.05 1.00 0.83 0.80 0.94 0.95Table 5.9: Speedup of DGESDD over DGESVD on RS6000Speedup using Fortran BLASDimensionTest Matrix 20 50 100 200 400 800 1600type 1 1.08 0.93 1.08 1.36 1.55 5.26 5.99type 2 0.88 0.86 0.90 1.20 1.29 3.58 4.00type 3 1.03 2.56 2.31 2.38 2.26 7.67 9.54type 4 0.88 0.92 1.04 1.28 1.47 5.29 6.03of the total time for DGESVD to at most 27% for DGESDD, for large matrices. For matrices oftype 3, DBDSDC only costs 2% of the total time in contrast to 96% by DBDSQR, which meansbidiagonal SVD is never the bottleneck in the dense SVD.Thus, any signi�cant further improvements in the speed of the dense SVD for largematrices must come from speeding up the non-bidiagonal part of the computation. Oneway to do this is to abandon computing the singular vectors explicitly, leaving them in thefactored form provided by the algorithm. We exploit this possibility in the next section.Table 5.11 shows how well the performance of DGESVD, DGESVF and DGESDD as wellas DGEBRD, DORGBR and DORMBR compares to the speed of DGEMM (ESSL), the measure weused is run-time(dense SVD)/run-time(DGEMM of same matrix size). We can see thatwhen n = 1600, the run-time of computing a dense SVD is reduced from over 90 matrixmultiplications to under 7 matrix multiplications. This is a big improvement.Figure 5.2 shows the performance of DGESVD and DGESDD in MFLOPS for type 2and 4 matrices, where DGESVD is plotted by blue line and DGESDD by red line. Again, wecan see that for matrices of type 4, when n = 1600, DGESDD achieves nearly 150 MFLOPS



115Table 5.10: Fraction of time Dense SVD spends in Bidiagonal SVD (ESSL BLAS on RS6000)Fraction of DGESDD spent in DBDSDCDimensionTest Matrix 20 50 100 200 400 800 1600type 1 0.72 0.58 0.56 0.46 0.39 0.32 0.27type 2 0.50 0.50 0.35 0.25 0.19 0.14 0.10type 3 0.64 0.26 0.11 0.06 0.05 0.04 0.02type 4 0.58 0.52 0.53 0.44 0.35 0.30 0.25Fraction of DGESVD spent in DBDSQRDimensionTest Matrix 20 50 100 200 400 800 1600type 1 0.67 0.68 0.73 0.75 0.82 0.95 0.96type 2 0.48 0.43 0.53 0.58 0.64 0.89 0.91type 3 0.70 0.72 0.76 0.75 0.75 0.95 0.96type 4 0.68 0.63 0.71 0.80 0.79 0.94 0.94whereas DGESVD runs at only 20 MFLOPS.5.6.4 Performance of Solvers for the Linear Least Squares Problem onthe RS6000We consider solving least squares problems with single right hand sides. We usethe same four test matrices as before. The algorithms we consider are� DGELS { QR decomposition (currently in LAPACK)� DGELSX { QR decomposition with column pivoting (currently in LAPACK)� DGELSY { QR decomposition with column pivoting but implemented using BLAS 3[39]� DGELSA { Rank-Revealing QR based on method related to Chandrasekaran and Ipsen'salgorithm [13, 19]� DGELSB { Rank-Revealing QR based on method related to Pan and Tang's algorithmnumber 3 [13, 79]� DGELSS { SVD based on QR iteration (currently in LAPACK)



116Table 5.11: Ratios of run-time(dense SVD) to run-time(DGEMM(ESSL)) on RS6000Time(DGESVD) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 60.65 37.18 29.80 22.40 21.43 80.09 89.77type 2 37.34 24.57 17.19 13.02 12.50 39.15 44.17type 3 65.19 46.69 33.23 22.40 19.64 77.85 102.88type 4 63.28 39.96 27.50 21.00 21.42 78.74 88.63Time(DGESVF) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 67.31 42.07 29.79 26.60 26.79 88.37 96.89type 2 31.89 16.83 12.60 13.16 14.64 34.68 36.76type 3 20.18 12.62 9.17 10.08 11.79 29.75 33.06type 4 55.00 37.86 27.50 25.20 26.79 83.89 93.47Time(DGESDD) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 60.55 33.65 18.33 11.48 8.75 7.61 6.70type 2 38.85 22.23 14.90 8.54 7.14 6.49 5.81type 3 67.31 19.60 10.31 6.16 5.54 5.15 4.70type 4 67.31 37.86 19.48 11.06 8.57 7.38 6.58Time(DGEBRD) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600all types 10.40 4.78 3.25 2.94 2.64 2.45 2.25Time(DORGBR) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600all types 3.73 2.01 1.49 1.06 0.90 0.86 0.84Time(DORMBR) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600all types 4.67 2.69 1.83 1.37 1.22 1.270 1.18
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Figure 5.2: Performance of DGESVD and DGESDD in MFLOPS� DGELSF { SVD based on QR iteration but maintaining the left singular vectors of thebidiagonal matrix as a list of O(N2) Givens rotations� DGELSD { SVD based on divide-and-conquer, factored form� DGELLS { QR decomposition with pivoting (currently in ESSL)� DGESVS { SVD based on QR iteration (currently in ESSL)We present square problems only, since M -by-N problems with M � N are generallyreduced to an N -by-N problem by an initial QR decomposition, and this dominates alllater computations. All the computations are done in single precision.In addition to measuring the speedup of DGELSD and DGELSF over DGELSS, wemeasure times relative to DGELS, the fastest, and least reliable, of all the methods. Thisquanti�es the tradeo� between speed and reliability inherent in this problem. Results shownin tables are for ESSL BLAS only.Table 5.12 shows that both new least squares solvers, DGELSF and DGELSD, aresigni�cantly faster than the older DGELSS. For matrices of size n = 1600, DGELSF andDGELSD achieves the speedup ranges from 15 | 40.



118Table 5.12: Speedups of New SVD-based Least Squares Solvers (using ESSL BLAS onRS6000) Speedup of DGELSD over DGELSSDimensionTest Matrix 20 50 100 200 400 800 1600type 1 1.15 1.00 1.21 1.69 2.58 19.41 29.00type 2 1.06 0.87 1.00 1.67 2.29 12.31 15.91type 3 1.02 3.50 4.50 3.85 4.56 29.09 40.74type 4 0.89 0.75 1.00 1.61 2.63 18.82 28.00Speedup of DGELSF over DGELSSDimensionTest Matrix 20 50 100 200 400 800 1600type 1 1.26 1.30 1.70 2.20 3.20 22.00 30.21type 2 1.14 1.33 1.29 1.86 2.40 12.31 15.91type 3 1.22 1.30 1.64 2.08 3.04 21.33 34.02type 4 1.09 1.00 1.60 2.13 3.16 21.33 29.17Table 5.13 shows that a fully reliable SVD-based solution to the linear least squareproblem now costs no more than 3.46 times as much as the fastest solver (DGELS), whereas itused to cost at least 48 times more for n = 1600. This is a big improvement. In particular,for matrices of type 1 and 3, it takes more than 100 times as much as DGELS, we believethis is due to DBDSQR runs at a very low MFLOPS rate when matrices are large.Table 5.15 shows how well the performance of the various least squares solverscompares to the speed of DGEMM(ESSL). The measures we used is run-time(least squaressolver)/run-time(DGEMM of the same matrix size). We can see that for the matrices withdimension as large as n = 1600, DGELSF and DGELSD takes less than 3 matrix multiplicationsto solve a least squares problem fully reliably, whereas the older solver DGELSS has to takeat least 40 matrix multiplications.5.6.5 Accuracy Assessment on the RS6000We use two measures of accuracy of the computed SVD A = X�Y T : the resid-ual maxi kAyi � �ixik=("�1) and the orthogonality of the singular vectors max(kY Y T �Ik="; kXXT � Ik="), where " is machine precision. Ideally these two measure should beO(1) for any dimension, but we would not be unhappy to get numbers growing with N ,perhaps as O(N), although we cannot prove so tight a bound. In fact, the QR based SVD



119Table 5.13: Timings of Least Squares Solvers relative to DGELS (using ESSL BLAS onRS6000) Time(DGELSX) / Time(DGELS)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 2.29 2.00 1.75 1.50 2.14 2.16 2.11type 2 2.56 1.72 2.00 1.55 2.10 2.31 2.28type 3 1.59 1.26 1.50 1.78 2.11 2.11 2.08type 4 2.54 1.74 1.20 1.60 1.96 2.08 2.00Time(DGELSY) / Time(DGELS)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 2.29 2.33 1.50 1.50 1.63 1.53 1.40type 2 2.56 2.00 2.00 1.36 1.75 1.59 1.48type 3 1.71 1.42 1.50 1.56 1.56 1.45 1.39type 4 2.54 1.93 1.20 1.50 1.59 1.47 1.31Time(DGELSA) / Time(DGELS)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 2.99 2.79 2.00 1.50 1.21 1.21 1.14type 2 3.41 2.40 2.00 1.27 1.49 1.44 1.45type 3 1.95 1.34 1.25 1.11 1.12 1.05 1.07type 4 3.56 2.33 1.40 1.30 1.16 1.16 1.10Time(DGELSB) / Time(DGELS)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 2.99 2.33 1.75 1.30 1.20 1.16 1.14type 2 2.68 2.00 1.50 1.27 1.33 1.41 1.41type 3 2.32 2.00 1.75 1.78 1.47 1.24 1.18type 4 3.22 2.33 1.00 1.30 1.20 1.16 1.10Time(DGELLS) / Time(DGELS)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 1.84 1.93 1.25 1.50 1.96 2.08 2.07type 2 1.06 1.12 1.25 1.09 1.93 2.00 2.00type 3 1.22 1.26 1.50 1.89 2.28 2.53 2.07type 4 1.44 1.30 1.00 1.40 1.96 2.08 2.00



120
Table 5.14: Continued: Timings of Least Squares Solvers relative to DGELS on RS6000Time(DGELSF) / Time(DGELS)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 5.75 6.28 5.00 5.00 4.46 3.95 3.43type 2 3.54 3.00 3.50 3.17 3.51 3.33 3.03type 3 5.61 5.40 5.50 5.33 4.21 3.95 3.46type 4 7.80 6.98 4.00 4.70 4.46 3.95 3.31Time(DGELSD) / Time(DGELS)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 6.32 8.14 7.00 6.50 5.54 4.47 3.57type 2 3.78 4.60 4.50 3.55 3.68 3.33 3.03type 3 6.71 2.00 2.00 2.89 2.81 2.89 2.89type 4 9.49 9.30 6.40 6.20 5.35 4.47 3.45Time(DGELSS) / Time(DGELS)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 7.24 8.14 8.50 11.00 14.29 86.84 103.57type 2 4.02 4.00 4.50 5.91 8.42 41.03 48.28type 3 6.83 7.00 9.00 11.11 12.81 84.21 117.86type 4 8.47 6.98 6.40 10.00 14.11 84.21 96.55Time(DGESVS) / Time(DGELS)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 6.32 6.98 8.00 11.00 14.29 15.00 15.00type 2 3.17 3.40 4.00 5.00 7.89 8.72 8.62type 3 2.20 2.00 2.50 4.56 6.49 7.37 7.50type 4 7.80 8.14 6.80 10.00 13.57 14.47 14.14



121Table 5.15: Ratios of run-time(least squares solver) to run-time(DGEMM(ESSL)) on RS6000Time(DGELS) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 9.78 3.62 2.29 1.40 1.00 0.85 0.80type 2 8.28 4.21 2.29 1.54 1.02 0.87 0.83type 3 8.28 4.21 2.29 1.26 1.02 0.85 0.80type 4 5.95 3.62 2.86 1.40 1.00 0.85 0.83Time(DGELSX) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 20.02 7.24 4.01 2.10 2.14 1.83 1.68type 2 21.19 7.24 4.58 2.38 2.14 2.01 1.88type 3 13.12 5.30 3.44 2.24 2.14 1.79 1.65type 4 15.14 6.31 3.44 2.24 1.96 1.77 1.65Time(DGELSY) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 20.18 8.41 3.44 2.10 1.63 1.30 1.11type 2 21.19 8.41 4.58 2.10 1.79 1.39 1.23type 3 14.13 5.97 3.44 1.96 1.59 1.23 1.11type 4 15.14 6.98 3.44 2.10 1.59 1.25 1.08Time(DGELSA) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 26.24 10.10 4.58 2.10 1.21 1.03 0.91type 2 28.26 10.10 4.58 1.96 1.52 1.25 1.20type 3 16.15 5.64 2.86 1.40 1.14 0.89 0.85type 4 21.19 8.41 4.01 1.82 1.16 0.98 0.91Time(DGELSB) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 26.24 8.41 4.01 1.82 1.20 0.98 0.91type 2 22.20 8.41 3.44 1.96 1.36 1.23 1.17type 3 19.17 8.41 4.01 2.24 1.50 1.05 0.94type 4 19.17 8.41 2.86 1.82 1.20 0.98 0.91



122Table 5.16: Continued: Ratios of run-time(least squares solver) to run-time(DGEMM(ESSL))on RS6000 Time(DGELLS) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 16.15 6.98 2.86 2.10 1.96 1.77 1.65type 2 8.78 4.71 2.86 1.68 1.96 1.75 1.65type 3 10.09 5.30 3.44 2.38 2.32 2.15 1.65type 4 8.58 4.71 2.86 1.96 1.96 1.77 1.65Time(DGELSS) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 63.58 29.45 19.48 15.40 14.29 73.83 82.64type 2 33.30 16.83 10.31 9.10 8.57 35.79 39.90type 3 56.51 29.45 20.63 14.00 13.04 71.59 94.04type 4 50.46 25.24 18.33 14.00 14.11 71.59 79.80Time(DGELSF) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 50.46 22.72 11.46 7.00 4.46 3.36 2.73type 2 29.27 12.62 8.02 4.90 3.57 2.90 2.51type 3 46.42 22.72 12.60 6.72 4.29 3.36 2.76type 4 46.42 25.24 11.46 6.58 4.46 3.36 2.73Time(DGELSD) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 55.50 29.45 16.04 9.10 5.54 3.80 2.85type 2 31.28 19.35 10.31 5.46 3.75 2.91 2.51type 3 55.50 8.41 4.58 3.64 2.86 2.46 2.31type 4 56.51 33.65 18.33 8.68 5.36 3.80 2.85Time(DGESVS) / Time(DGEMM)DimensionTest Matrix 20 50 100 200 400 800 1600type 1 55.50 25.24 18.33 15.40 14.29 12.75 11.97type 2 26.24 14.30 9.17 7.70 8.04 7.61 7.12type 3 18.17 8.41 5.73 5.74 6.61 6.26 5.98type 4 46.42 29.45 19.48 14.00 13.57 12.30 11.68



123routines exhibit measures as large as N=5 for N = 400, whereas the measures for divide-and-conquer routines never exceeds 10. Therefore, the divide-and-conquer based SVD isnot only faster but more accurate than the QR based approach.The above results are for dense matrices. It turns out one can prove tighterrelative error bounds for singular values and singular vectors for the QR-based bidiagonalSVD [33, 24]. We currently cannot guarantee this high relative accuracy with divide-and-conquer, just the absolute accuracy described in the last paragraph.By comparing the residuals and orthogonality, in most cases, we observed that thecomputational routines in ESSL like DGESVS are not as accurate as those in LAPACK orthe new ones. For example, for dense SVD, DGESDD and DGESVD are almost one decimaldigit more accurate than ESSL's DGESVF.



124Chapter 6Generalized Singular ValueDecomposition6.1 IntroductionSince it was introduced by Van Loan [95], generalized singular value decompo-sition(GSVD) has been found to be a very useful tool in numerical linear algebra. Itsapplications in many generalized problems are in the same spirit as the SVD in correspond-ing standard problems [9], such as in �nding the intersection of the null spaces of twomatrices [43], in the generalized eigenvalue problem arising from signal processing [90], incomputing the Kronecker form of matrix pencil A��B [64], in the constrained least squaresproblem [43], in the least squares problem with Tikhonov regularization [53], and so on.In this chapter, we �rst discuss two improvements we made on the LAPACK'sxGGSVD which implemented a variation of Paige's algorithm [77] by Bai and Demmel [10].One is in the stopping criteria, the other is in \postprocessing". We then discuss an imple-mentation of Van Loan's algorithm [96] which is based on the divide-and-conquer SVD andthe QR decomposition. We show that our implementation achieves good speedups over theSGGSVD.



1256.2 Review of GSVDThe generalized(or quotient) singular value decomposition of an m � nmatrix A and a p� n matrix B is given by the pair of factorizations [78, 2]A = U�1[0 R]QT and B = V �2[0 R]QT ; (6.2.1)where U 2 Rm�m, V 2 Rp�p and Q 2 Rn�n are orthogonal matrices. R is an r � rnonsingular upper triangular matrix, where r � n is the rank of 24 AB 35. �1 is an m � rdiagonal matrix, �2 is a p� r diagonal matrix, the diagonal elements of both matrices arenonnegative, and satisfy �T1�1 +�T2 �2 = I:Let �T1 �1 = 26666664 �21 �22 . . . �2r 37777775 and �T2�2 = 26666664 �21 �22 . . . �2r 37777775 ;where 0 � �i; �i � 1. The ratios �1�1 ; �2�2 ; : : : ; �r�rare called the generalized singular values of the matrix pair A;B. If �i = 0, then thegeneralized singular value �i=�i is in�nite.More precisely, if m� r � 0, then�1 = 0BBB@ k lk I 0l 0 Cm�k�l 0 0 1CCCA and �2 = 0@ k ll 0 Sp�l 0 0 1A: (6.2.2)Here l is the rank of B, k = r�l, C and S are both diagonal matrices satisfying C2+S2 = I ,and S is nonsingular. We may also identify�1 = � � � = �k = 1; �k+i = ciiand �1 = � � � = �k = 0; �k+i = sii



126for i = 1; : : : ; l. Thus the �rst k generalized singular values�1�1 ; �2�2 ; : : : ; �k�kare in�nite, and the remaining l generalized singular values are �nite.When m� r < 0,�1 = 0@ k m�k k+l�mk I 0 0m�k 0 C 0 1A; �2 = 0BBB@ k m�k k+l�mm�k 0 S 0k+l�m 0 0 Ip�l 0 0 0 1CCCA (6.2.3)Again, l is the rank of B, k = r� l, C and S are diagonal matrices satisfying C2 + S2 = I ,S is nonsingular, and�1 = � � � = �k = 1; �k+i = cii; �m+1 = � � �= �r = 0;�1 = � � � = �k = 0; �k+i = sii; �m+1 = � � � = �r = 1:for i = 1; : : : ; m� k. Thus, the �rst k generalized singular values�1�1 ; �2�2 ; : : : ; �k�kare in�nite, and remaining l generalized singular values are �nite.In particular, if B is the identity matrix, the GSVD gives the SVD of A. Thereare several other important special cases of GSVD [2].� If B is square and nonsingular, then r = n and the GSVD of A and B is equivalentto the SVD of AB�1, where the singular values of AB�1 are equal to the generalizedsingular values of the pair A;B:AB�1 = (U�1RQT )(V�2RQT )�1 = U(�1��12 )V T :� If the columns of 24 AB 35 are orthonormal, then r = n, R = I and the GSVD of A andB is equivalent to the CS decomposition [23, 92, 43] of 24 AB 35:24 AB 35 = 24 U 00 V 3524 �1�2 35QT :



127� The generalized eigenvalues and eigenvectors of ATA � �BTB can be expressed interms of GSVD. Let X = Q24 I 00 R�1 35 ;Then XTATAX = 24 0 00 �T1�1 35 and XTBTBX = 24 0 00 �T2�2 35 :Therefore, the columns of X are the generalized eigenvectors of ATA � �BTB, andthe eigenvalues are the squares of the generalized singular values.6.3 SGGSVD and the Stopping CriterionLAPACK's SGGSVD [2, 10] computes the generalized singular value decompositionof a pair of matrices A and B using a variation of Paige's algorithm [77]. It uses a 2 by 2triangular GSVD algorithm [10] to provide high accuracy.Assume A is m-by-n and B is p-by-n. The computation proceeds in the followingtwo steps:i. PreprocessingA subroutine SGGSVP is used to reduce the matrices A and B to triangular form:UT1 AQ1 = 0BBB@ n�k�l k lk 0 A12 A13l 0 0 A23m�k�l 0 0 0 1CCCA ; V T1 BQ1 = 0@ n�k�l k ll 0 0 B13p�l 0 0 0 1Awhere A12 and B13 are nonsingular and upper triangular, and A23 is upper triangular.If m� k � l < 0, then the bottom zero block of UT1 AQ1 does not appear, and A23 isupper trapezoidal. U1, V1 and Q1 are orthogonal matrices. l is the rank of B, andk + l is the rank of 24 AB 35.ii. Compute GSVD of triangular matricesThe generalized GSVD of two l�l upper triangular matrices A23 and B13 is computedusing STGSJA, which uses a Jacobi-like method [10, 77]:A23 = U2CRQT2 and B13 = V2SRQT2 :



128Here, U2, V2 and Q2 are orthogonal matrices, C and S are both real nonnegativediagonal matrices satisfying C2+S2 = I , S is nonsingular, and R is upper triangularand nonsingular.The reduction to triangular form, performed by SGGSVP, uses QR decompositionwith column pivoting for numerical rank determination [11].In fact, what STGSJA does is to use Jacobi rotations such that the rows of UT2 A23Q2are parallel to the corresponding rows of V T2 B13Q2. To compute how parallel two vectorsx and y are, we de�ne a measure par(x; y) to be the smallest singular value of the n � 2matrix (x; y). In STGSJA, par(x; y) is computed by a small subroutine SLAPLL, which doesa QR decomposition of (x; y) using SLARFG, and then computes the smaller singular valueof the resulting 2� 2 upper triangular matrix using SLAS2.The stopping criterion in STGSJA is:par(Ai; Bi) � n �min(tolA; tolB): (6.3.4)where Ai and Bi are i-th row of A and B, i.e. if (6.3.4) is satis�ed, then we consider Ai toparallel to Bi. tolA and tolB are de�ned astolA = max(m;n) �max(kAk; �) � "tolB = max(p; n) �max(kBk; �) � "where � is the underow threshold and " is the machine precision.From now on, we will consider square matrices A and B only, i.e. m = n = p.Thus the stopping criterion becomes:par(Ai; Bi) � " � n2 �min(kAk; kBk): (6.3.5)It is not hard to see that n2 on the right hand of (6.3.5) might be too large for astopping criterion when n is large. For example, if the entries of A and B are uniformlyrandomly distributed in [�1; 1], and if n = 500, then in IEEE single precision, i.e. " �1:1921� 10�7, the right hand side of (6.3.5) is approximately 8, which makes the stoppingcriterion meaningless.We tested SGGSVD with the following three types of matrix pairs A and B:Type 1 The elements of A and B are uniformly randomly distributed on [�1; 1].



129Type 2 A = U � D � X and B = V � E � X , where U and V are orthogonal matricesgenerated from random matrices1,X is a randommatrix whose elements are uniformlydistributed on [�1; 1],D and E are diagonal matrices, for some i,Dii=Eii is quite large,for some other i, Dii=Eii is quite small, and for the other i, Dii=Eii is O(1).Type 3 Almost as the same as Type 2 except that X is produced randomly with geomet-rically distributed singular values.Given the GSVD of A and B:UT �A �Q = �1 �R and V T �B �Q = �2 �R;we de�ne the residualsresA = kUT �A �Q� �1 �Rk" � kAk � pn ; resB = kUT �B �Q� �2 �Rk" � kBk � pn ; (6.3.6)and orthU = kUT � U � Ik" � pn ; orthV = kV T � V � Ik" � pn ; orthQ = kQT �Q� Ik" � pn : (6.3.7)Table 6.1 shows the residuals of the GSVD computed by sggsvd. We can see thatas n increases, the residuals of A and B become very large, which shows that the stoppingcriterion may not be appropriate when matrix size is fairly large.After observing the original stopping criterion is not appropriate when n is fairlylarge, we change the stopping criterion to:par(Ai; Bi) � min(tolA; tolB) = " � n �min(kAk; kBk): (6.3.8)We did the computation again, table 6.2 shows the results.From Table 6.2, we can notice that residuals are much smaller with the modi�edstopping criterion, however, it takes more CPU time. For example, for matrix pairs of Type1, it runs almost twice as slowly as the original code. It is not surprising since to satisfy themore rigorous stopping criterion, it takes more Jacobi sweeps to converge. For matrices ofType 1, it takes twice as many Jacobi sweeps to converge.For three di�erent types of matrix pairs and for both original and the modi�edstopping criteria, �gure 6.1 plots max(resA; resB) versus n, �gure 6.2 plots max(orthU ,orthV ,orthQ) versus n and �gure 6.3 compares the timing.
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Types dimension 50 100 200 300 400 500Time(secs) 3.7E-1 2.3E0 1.8E1 9.4E1 3.0E2 6.2E2resA 5.6E1 3.8E2 1.7E2 1.3E4 1.0E4 9.3E3Type 1 resB 7.6E1 8.1E1 2.7E2 1.1E4 1.2E4 9.6E3orthU 4.7E1 7.4E1 1.3E2 1.0E2 1.1E2 1.4E2orthV 4.8E1 7.3E1 1.2E2 1.0E2 1.2E2 1.5E2orthQ 4.7E1 6.8E1 1.1E2 1.2E2 1.5E2 1.7E2Time(secs) 2.8E-1 1.6E0 1.2E1 6.1E1 1.6E2 1.9E2resA 4.4E1 2.2E3 3.9E3 5.6E3 4.2E4 8.2E4Type 2 resB 4.9E1 6.9E1 9.7E1 1.2E2 2.4E2 6.5E1orthU 4.3E1 6.4E1 1.1E2 1.3E2 9.7E1 7.4E1orthV 3.6E1 5.9E1 1.0E2 1.3E2 9.4E1 6.7E1orthQ 4.2E1 6.2E1 1.0E2 1.3E2 1.3E2 1.3E2Time(secs) 1.7E-1 8.6E-1 4.2E0 9.2E0 2.1E1 4.8E1resA 4.0E1 6.9E1 4.4E2 2.0E4 1.7E4 1.4E4Type 3 resB 3.7E1 8.0E1 2.5E2 1.0E4 4.7E3 3.3E3orthU 3.6E1 5.2E1 7.1E1 6.3E1 7.1E1 8.0E1orthV 3.4E1 4.8E1 7.0E1 5.5E1 6.1E1 6.8E1orthQ 3.5E1 4.9E1 7.1E1 7.5E1 9.0E1 1.0E2Table 6.1: Speed and Accuracy of SGGSVD on RS6000 with ESSL BLAS (LDA = 501) withOriginal Stopping Criterion
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Types dimension 50 100 200 300 400 500Time(secs) 5.0E-1 3.0E0 2.4E1 1.9E2 6.0E2 1.2E3resA 7.5E1 9.7E1 1.5E2 1.8E2 2.0E2 2.2E2Type 1 resB 7.8E1 1.0E2 1.5E2 1.8E2 2.0E2 2.3E2orthU 6.5E1 1.0E2 1.7E2 2.3E2 2.7E2 3.3E2orthV 6.5E1 1.0E2 1.7E2 2.3E2 2.7E2 3.5E2orthQ 5.9E1 8.8E1 1.4E2 1.8E2 2.2E2 2.5E2Time(secs) 2.8E-1 2.1E0 1.5E1 1.0E2 3.2E2 8.8E2resA 4.4E1 7.5E1 1.1E2 1.5E2 1.5E2 2.0E2Type 2 resB 4.9E1 9.0E1 1.3E2 1.9E2 2.7E2 2.4E2orthU 4.3E1 9.0E1 1.5E2 2.4E2 2.3E2 3.8E2orthV 3.6E1 8.4E1 1.4E2 2.3E2 2.0E2 3.4E2orthQ 4.2E1 7.6E1 1.2E2 1.7E2 1.8E2 2.4E2Time(secs) 1.6E-1 1.1E0 5.4E0 1.6E1 3.8E1 8.2E1resA 4.0E1 7.5E1 1.2E2 2.2E2 2.6E2 3.3E2Type 3 resB 3.7E1 8.3E1 2.5E2 3.5E2 3.8E2 4.5E2orthU 3.6E1 7.0E1 9.7E1 1.2E2 1.4E2 1.5E2orthV 3.4E1 6.6E1 9.6E1 1.2E2 1.3E2 1.5E2orthQ 3.5E1 5.9E1 8.5E1 1.0E2 1.2E2 1.4E2Table 6.2: Speed and Accuracy of SGGSVD on RS6000 with ESSL BLAS (LDA = 501) withModi�ed Stopping Criterion
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Figure 6.1: max(resA; resB) versus n
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Figure 6.3: Timing of SGGSVD for di�erent types of matrices and stopping criteriaFrom our numerical experiments, we found that with the new stopping criterion,resA and resB are mainly produced by orthogonal transformations (include Jacobi rota-tions), not by the stopping criterion. To illustrate this, we need to introduce some notations.Since the preprocessing is done by QR decomposition, which is a very stable pro-cess, we only consider how large the error can be in STGSJA, the major computation sub-routine. Let A and B be the input matrices to STGSJA, i.e. A and B are upper triangularmatrices, and let Â and B̂ be the transformed matrices satisfying the stopping criterionafter several Jacobi sweeps, and U , V , Q be the orthogonal matrices accumulated by Jacobirotations. i.e. UT �A �Q = Â and V T �B �Q = B̂:In STGSJA, Â and B̂ are considered to be \parallel", i.e. their corresponding rows areparallel, and after the postprocessing, Â = C �R and B̂ = S �R where C and S are diagonalmatrices in (6.2.2) and (6.2.3). In principle, as long as the perturbations to make thecorresponding rows exactly parallel are smaller than the error produced by Jacobi rotations,1First, we generate a random matrix G whose elements are uniformly distributed on [�1; 1], then we doa QR Decomposition of G, i.e. G = Q � R. We then let U = Q.
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sweeps_oldFigure 6.7: Number of the Jacobi Sweeps versus nFrom �gure 6.4, we can see that with the new stopping criterion, max(rAparallel,rBparallel) is well below max(rAjacobi; rBjacobi), indicating that the orthogonal transformationis the major contributor to the residual. In contrast, with the old stopping criterion,max(rAparallel; rBparallel) is much larger than max(rAjacobi; rBjacobi). Figure 6.5 plots max(rAjacobi;rBjacobi) in a normal scale, which indicates that max(rAjacobi; rBjacobi) is of O(n), therefore, theerror produced from Jacobi rotations is O(" � n �max(kAk; kBk)).Another issue about the stopping criterion (for both the old one and the new one)is min(kAk; kBk) on the right hand side. If kBk is signi�cantly smaller than kAk, then thestopping criterion may never be met. The reason is that we cannot guarantee the relativeaccuracy of the smallest singular value of (Ai; Bi). An alternative approach is to use[9, 10]par( AikAik ; BikBik) � �where Ai and Bi are the i-th rows of A and B and � is some tolerance. However, thisstopping criterion may be too strict in some cases, which results in taking unnecessarilymore Jacobi sweeps to converge and making the code to run much longer (see Section 6.5).So we propose to scale the matrix pairs A and B such that O(kAk) � O(kBk) at the �rst



137step of preprocessing, it will only take time of O(n2) whereas one Jacobi sweep takes timeof O(n3).6.4 PostprocessingAfter modifying the stopping criterion to the new one, STGSJA still can get veryinaccurate results even after we scale the matrix in some cases. The problem is with thepostprocessing. In the original code, the postprocessing is done as follows:Algorithm 6.4.1 Postprocessing of STGSJAInput: two n � n upper triangular matrices A and B whose corresponding rowsare considered to be parallel.Output: The diagonal matrices �1 and �2, and upper triangular matrix R suchthat A = �1 �R and B = �2 �R and �1 = diag (�i) and �2 = diag (�i) where�i=�i are generalized singular values.1: do i = 1; n2: a1 = Aii3: b1 = Bii4: if (a1 6= 0) then5:  = b1=a1/* change sign if necessary */6: if ( < 0) then/* change the sign of i-th row of B */7: B(i; :) = �B(i; :)/* change the sign of i-th column of V which is the orthogonalmatrix in GSVD, see (6.2.1) */8: V (i; :) = �V (i; :)9: end if10: Compute �i and �i such that  = �i=�i and �2i + �2i = 1./* produce upper triangular matrix R */11: if (�i � �i)12: R(i; :) = A(i; :)=�i13: else



13814: R(i; :) = B(i; :)=�i15: end if16: else /* a1 = Aii = 0 */17: �i = 018: �i = 119: R(i; :) = B(i; :)20: end if21: end doWhat the postprocessing does is loop over the rows of A and B, and for the i-throws Ai and Bi, mistakenly compares only the diagonal elements Aii and Bii instead ofthe corresponding rows. If Aii 6= 0, it computes �i and �i such that �i=�i = Bii=Aii,�2i + �2i = 1, and �i; �i � 0 (�i=�i is the generalized singular value). To make �i; �i � 0when Bii=Aii < 0, the code changes the sign of Bi, and at the same time, changes the signof a column of V correspondingly to keep consistency, where V is the orthogonal matrix inGSVD (see (6.2.1)). The i-th row of R, Ri, is computed as Ai=�i if �i � �i or computedas Bi=�i otherwise.Clearly, if Aii and Bii are signi�cantly smaller than the other entries of the samerows, then �i and �i could be very inaccurate, thus produces the big errors in Ri. Also,the sign of Bii=Aii is not accurate enough to tell the sign di�erence of the correspondingrows. We constructed an example such that STGSJA fails due to the inappropriate postpro-cessing(see �gure 6.8).We propose two changes to �x the postprocessing problem:� How to compute �i and �i.Instead of using the diagonal entries, we use the norms, i.e. we compute �i and �isuch that �i=�i = kAik=kBik, �2i + �2i = 1, and �i � 0, �i � 0.� How to decide to change the sign of Bi.Instead of using the ratio of diagonal entries Bii=Aii to decide whether we shouldchange the sign, we use the inner product of Ai and Bi, denoted by < Ai; Bi >: wedon not change the sign unless < Ai; Bi > is less than 0.
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140mulated from Jacobi rotations and satisfying:UT �A �Q = Â and V T �B �Q = B̂;where the i-th rows of Â and B̂, Âi and B̂i, are considered to be parallel becausepar(Âi; B̂i) � " � n �min(kAk; kBk)for i = 1; 2; : : : ; n. So after postprocessing, we can write Â = �1 � R and B̂ = �2 � R,where R is an upper triangular matrix, �1 and �2 are nonnegative diagonal matrices and�21 +�22 = I .As we already observed in Section 6.3, rAjacobi and rBjacobi are O("�n�min(kAk; kBk)),independent of the stopping criterion. So what we are really concerned about is whether theresiduals rAparallel and rBparalel would be small if the new stopping criterion (6.3.8) is satis�ed.From the construction of the Algorithm 6.4.1 and by the properties of norms [43],we know thatrAparallel � g(n)maxi kAi � �i=�i �Bik" � kAk = g(n) maxi with Ri is constructed from Bi kAi � �i=�i �Bik" � kAk ;(6.5.9)where �i=�i � 1, andrBparallel � g(n)maxi kBi � �i=�i �Aik" � kBk = g(n) maxi with Ri is constructed from Ai kBi � �i=�i �Aik" � kBk ;(6.5.10)where �i=�i > 1. Here g(n) is a low order polynomial in n.We can only consider rAparallel, since rBparallel is similar. Let ~rAparallel = " � rAparallel,therefore ~rAparallel = maxi with Ri is constructed from Bi kAi � �i=�i �BikkAk (6.5.11)From the previous analysis, if ~rAparallel is of O(" �n), we know we have the backward stability,and the backward error is O(" � n � kAk).For di�erent i's, there are four cases to be considered:� kAik; kBik are both very tiny compared with kAk, i.e. kAik; kBik = O(" � n � kAk).This is an easy case sincekAi � �i=�i �BikkAk � kAik+ �i=�i � kBikkAk � kAik+ kBikkAk = O(" � n)



141� kAik = O(" � n � kAk), kBik is not tiny compared to kAk.By our new postprocessing, we know that �i=�i = kAik=kBik, hence,kAi � �i=�i �BikkAk � kAik+ �i=�ikBikkAk = kAik+ kAik=kBik � kBikkAk = 2kAikkAk = O("�n)� kBik is tiny whereas kAik is not.This is impossible since we know that kAik=kBik = �i=�i � 1.� Neither Ai nor Bi is tiny compared to kAk.Let the QR decomposition of (Ai; Bi) be(Ai; Bi) = Q �R = Q � 24 r11 r120 r22 35 ; (6.5.12)let �min be the smallest eigenvalue of RTR, and �min be the smallest singular valueof R. Thus, �2min = �min = a+ b�p(a+ b)2 � 4(ab� c2)2 ; (6.5.13)where a = r211, b = r212 + r222 and c = r11r12. Let � = " � n � kAk, so from the stoppingcriterion, we know that�min = par(Ai; Bi) � " � n �min(kAk; kBk) � �: (6.5.14)From (6.5.13) and (6.5.14), we have�min = a+ b�p(a+ b)2 � 4(ab� c2)2 � �2:Therefore, a+ b�q(a+ b)2 � 4(ab� c2) � 2�2Equivalently, a+ b� 2�2 � q(a+ b)2 � 4(ab� c2)Take squares on both sides,(a+ b)2 � 4�2(a+ b) + 4�4 � (a+ b)2 � 4(ab� c2)Hence ab� c2 � (a+ b)�2 + �4: (6.5.15)



142To simplify the computation, from now on, we will use 2-norm. By the invariance ofk � k2 under orthogonal transformation, we havea = r211 = kAik22; b = r212 + r222 = kBik22: (6.5.16)Let ~rAiparallel = kAi � �i=�i �Bik2kAk2 ;since Q is an orthogonal matrix, therefore,~rAiparallel = kQf24 r110 35� �i�i 24 r12r22 35gk2kAk2= k24 r110 35� �i�i 24 r12r22 35 k2kAk2 :To show ~rAiparallel is tiny, we needLemma 6.5.1 In the QR Decomposition (6.5.12) of (Ai; Bi), if r11 = kAik, with thenew postprocessing, we can conclude r12 � 0. Otherwise, if r11 = �kAik, then r12 � 0.Proof. We only prove the lemma for the case when r11 = kAik, the other case can beproved similarly. Let x = Ai and y = Bi. Assume the Householder orthogonal matrixis Q = I � 2u � uT :where the Householder vector is u = x� kxk2e1kx� kxk2e1k2 ;where e1 = (1; 0; : : : ; 0)T . Therefore we can write Q asQ = I � 2kx� kxk2e1k22aaT ;where a = x� kxk2e1. We know that (Qx)T = (kxk2; 0; : : : ; 0)T by the construction.Now we need to compute (Qy)1 which equals to r12.Qy = y � 2aTykx� kxk2e1k22a = y � 2(xTy � kxk2y1)kx� kxk2e1k22 a:



143Therefore, r12 = (Qy)1 = y1 � 2(xTy � kxk2y1)kx� kxk2e1k22 (x1 � kxk2)= y1 � 2(xTy � kxk2y1)kxk22 � x1kxk2 = y1 � 2(xTy � kxk2y1)kxk2(kxk2 � x1)= y1 � kxk2y1 � xT ykxk2 = xT ykxk2 :Our postprocessing guarantees that xTy � 0, therefore, r12 � 0.From now on, without loss of generality, we will assume r11 = kAik2, hence r12 � 0.In order for ~rAiparallel to be tiny, the following quantityk24 r110 35� �i�i 24 r12r22 35 k22 = (r11 � �i�i r12)2 + (�i�i r22)2;has to be tiny. From (6.5.16) and c = r11r12, (6.5.15) can be simpli�ed tor211r222 � �2(r211 + r212 + r222) + �4:Or, kAik22r222 � �2(kAik22 + kBik22) + �4: (6.5.17)Therefore, (�i�i r22)2 = kAik22r222kBik22 � �2(kAik22kBik22 + 1) + �4kBik22 � 3�2;where we use the facts that kAik2=kBik2 = �i=�i � 1 and kBik2 � � = " � n � kAk2,since otherwise if kBik2 < " � n � kAk2, it is the case we previously discussed. By(6.5.17) r222 � �2(1 + kBik22kAik22 ) + �4kAik22 :Therefore, r212 = kBik22 � r222 � kBik22 � �2(1 + kBik22kAik22 )� �4kAik22 :Thus, r211 � �2i�2i r212 = kAik22 � kAik22kBik22r212 � �2(kAik22kBik22 + 1) + �4kBik22 � 3�2:Again, we use the facts that kAik2=kBik2 = �i=�i � 1 and kBik2 � � = " � n � kAk2.



144Hence,(r11� �i�i r12)2 = (r211� �2i�2i r212)2(r11+ �i�i r12)2 � (3�2)2(r11+ �i�i r12)2 � 9�4r211 = 9�2 �2kAik22 � 9�2:Here, we use the fact that kAik2 � � = " � n � kAk2.Therefore,k24 r110 35� �i�i 24 r12r22 35 k22 = (r11 � �i�i r12)2 + (�i�i r22)2 � 3�2 + 9�2 = 12�2;and ~rAiparallel = k24 r110 35� �i�i 24 r12r22 35 k2kAk2 � p12�kAk2 = 2p3" � n = O(" � n):From the analysis for the above cases and equations (6.5.9) and (6.5.10), we infer thefollowing theorem:Theorem 6.5.1 In STGSJA, with the input matrices A and B are scaled such that O(kAk) �O(kBk), with the new stopping criterion and the new postprocessing, we havemax(rAparallel; rBparallel) = f(n):where f(n) is a low order polynomial in n.Remark 6.5.1 As we mentioned in Section 6.3, theoretically, a much more rigorous stop-ping criterion is proposed, par( AikAik ; BikBik) � �;where � is some tolerance. However, from the �rst case we discussed above, when kAikand kBik are very tiny compared to kAk and kBk, we don not require the above rigorousstopping criterion to be satis�ed to get backward stability. So if we only want the backwardstability (what we normally can expect in general), the above rigorous stopping criterion isnot practical.Using classical error bounds for the error in a product of Givens rotations, it canbe shown that max(rAjacobi; rBjacobi) � ~f(n);



145where f(n) is a low degree polynomial in n, so the residual satis�esmax(kUT �A �Q� C �Rk" � kAk ; kV T �B �Q� S �Rk" � kBk )� max(rAjacobi; rBjacobi) + max(rAparallel; rBparallel) � h(n);where h(n) = f(n) + g(n) is a low degree polynomial in n. Therefore, we end the sectionwith the following theorem:Theorem 6.5.2 For STGSJA, with the input matrices A and B are scaled such that O(kAk) �O(kBk), with the new stopping criterion and the new postprocessing, STGSJA is backwardstable.6.6 Van Loan's Algorithm Implemented by Divide-and-Con-quer SVDVan Loan's algorithm [96] is based on the observation that if a well-conditionedmatrix has nearly orthogonal columns, then it can be safely diagonalized by the QR factor-ization [9]. The observation can be described in the following theorem:Theorem 6.6.1 (Van Loan [96]) Assume that the m � k matrix Y = (y1; y2; : : : ; yk)satis�es Y TY = D2 + Ewhere D = diag (ky1k; ky2k; : : : ; kykk), and letY = QRbe the QR factorization of Y , where Q 2 Rm�k is an orthogonal matrix, and R 2 Rk�k isupper triangular. Let Yi be the �rst i columns of Y . Then for all i and j (j > i), we havejRij j � minfkyjk; kEk�min(Yi)g:Given the matrix pair A and B which both have n columns, the �rst step of thealgorithm is a preprocessing step to compute the QR decomposition of G = 24 AB 35:G = 24 AB 35 = QR = 24 Q1Q2 35R:



146Then we compute the CSD of Q1 and Q2 [23, 92, 96]:24 Q1Q2 35 = 24 U1 00 U2 3524 �1�2 35V T ;where �1 and �2 are the nonnegative diagonal matrices satisfying �T1�1 +�T2 �2 = I , andU1, U2, V are orthogonal matrices. Therefore,A = U1�1V TR; B = U2�2V TR:If we want this decomposition to be of the form in (6.2.1), we can do a postprocessing step.We compute W = V TR, and then compute the RQ factorization of W :W = ~R ~Q:In the second step, we search for a well-conditioned submatrix among Q1 and Q2to do the diagonalization by the QR decomposition as in Theorem 6.6.1, and use the SVDto diagonalize the remaining ill-conditioned submatrix[9]. In more detail, we �rst computethe SVD of Q2: Q2 = U2SV T2where U2 and V2 are orthogonal matrices, and S is diagonal whose elements are increasing0 � s1 � s2 � � � � � sk � � < sk+1 � � � � � sn;and where � is certain tolerance which can be speci�ed by user.Then we do a QR factorization of the product Q1V2:Q1V2 = U1R1:In exact arithmetic, since(Q1V2)T (Q1V2) = I � (Q2V2)T (Q2V2) = I � STS;by Theorem 6.6.1, R1 would be a diagonal matrix. However, because of roundo�, we mayonly have R1 = 24 diag (c1; c2; : : : ; ck) 00 R2 35 ;where R2 is n� k by n� k and RT1R1 + STS = I:



147By Theorem 6.6.1, the �rst k columns of R1 correspond to \large" singular values of Q1.Now compute the SVD of submatrix R2,R2 = ~U1diag (ck+1; : : : ; cn) ~V T1 ;and the QR factorization of n�k by n�k matrixW1 = D ~V1, where D = diag (sk+1; : : : ; sn),W1 = ~U2R3:We then have R3 = diag (sk+1; : : : ; sn);since sk+1; : : : ; sn are \large". Combining all the previous steps, we haveQ1 = U1 24 I 00 ~U1 35�1(V2 24 I 00 ~V1 35)T ;Q2 = U2 24 I 00 ~U2 35�2(V2 24 I 00 ~V1 35)T ;where �1 = diag (c1; : : : ; cn) and �2 = diag (s1; : : : ; sn). This is the desired CSD of Q1 andQ2.Remark 6.6.1 The tolerance � is chosen as the dividing threshold between the large andsmall singular values. When � = 1=p2, it minimizes a backward error bound [9]. One maywish to adjust this tolerance under certain circumstances since the overall amount of workdepends on the size of the index k. Large k will result in smaller subproblems, and reducethe total amount of work, but may increase the backward error. In our implementation, weuse � = 1=p2.6.7 Performance of Van Loan's AlgorithmWe implemented Van Loan's algorithm using our new divide-and-conquer SVDimplementation SBDSDC(see chapter 5). We call our routine SGGSDC. We use the same threetypes of test matrices as in section 6.3. We ran all the tests in single precision using SGGSVDwith the modi�ed stopping criterion and the postprocessing as described in sections 6.3and 6.4. As we mentioned there, with the new stopping criterion, SGGSVD is likely to runtwice as slowly as the original SGGSVD because it takes almost twice as many Jacobi sweeps



148Table 6.3: Speedup of SGGSDC over SGGSVD on RS6000Speedup using ESSL BLASDimensionTest Matrix 50 100 200 300 400 500type 1 5.10 8.38 13.16 34.55 50.00 54.55type 2 4.83 8.80 10.67 23.81 34.41 52.35type 3 2.43 3.93 3.63 3.78 3.98 4.89to converge. The new postprocessing does not a�ect the performance since it takes O(n2)time. We ran the tests on an IBM RS6000/590 using ESSL BLAS for n � n matrix pairswith n = 50; 100; 200; 300; 400; 500.Table 6.3 shows the speedup of SGGSDC over SGGSVD. Figure 6.9 shows the runtime of SGGSDC and SGGSVD, �gure 6.10 shows the residuals of GSVD max(resA; resB) and�gure 6.11 shows the residual of orthogonality max(orthU; orthV; orthQ)(see (6.3.6) and(6.3.7) for de�nitions of the residuals). In all the �gures, we plot the data of SGGSVD byblue line, SGGSDC by red line; the data of matrices of Type 1 are plotted by solid line, dataof Type 2 are plotted by dashdot line and data of Type 3 are plotted by dashed line.We can see that SGGSDC achieves a solid speedup over SGGSVD. When n = 500,the speedup is over 50 for random matrix pairs (see table 6.3). Also, SGGSDC computes theGSVD more accurately, see �gures 6.10 and �gure 6.11.Our implementation of Van Loan's algorithm needs O((m+p)n) workspace whereasSGGSVD only needs max(3n;m; p) + n [2]. Therefore, we recommend to use Van Loan'salgorithm with divide-and-conquer SVD to compute the GSVD of A and B if we haveenough workspace; otherwise, we use SGGSVD. How to reduce the workspace needed by VanLoan's algorithm needs further investigation.When we use Van Loan's algorithm to compute the GSVD of A and B, the prescal-ing of A and B such that O(kAk) � O(kBk) before calling SGGSDC is necessary since other-wise if kBk � kAk, then when we do a QR factorization of 24 AB 35, most information of Bwill be lost.Let � > 0 and � > 0 be two scalars such that k�Ak = k�Bk and the GSVD of �A
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Figure 6.9: Timing of SGGSVD and SGGSDC for di�erent types of matrices
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Figure 6.10: max(resA; resB) versus n
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Figure 6.11: max(resA; resB) versus nand �B is given by �A = U�1[0 R]QT ;�B = V �2[0 R]QT :Therefore, A = U( 1��1)[0 R]QT ;B = V ( 1��2)[0 R]QT :Let D = ( 1�2�T1�1 + 1�2�T2�) 12 ;and �̂1 = 1��1D�1; �̂2 = 1��2D�1:Since �̂T1 �̂1 + �̂T2 �̂2 = D�1( 1�2�T1�1 + 1�2�T2�2)D�1 = D�1D2D�1 = I;



151the GSVD of A and B is then given byA = U �̂1[0 DR]QT ;B = V �̂2[0 DR]QT :



152Chapter 7ConclusionsIn this thesis we have discussed a variety of algorithms for computing the eigende-composition of a symmetric matrix, the singular value decomposition of a general matrix,and the generalized singular value decomposition for a pair of matrices. The main workconcerns on the correctness, the stability and the e�ciency of these algorithms.In chapter 2, we discuss the correctness of the bisection algorithm for �ndingthe eigenvalues of symmetric matrices. We focus on the function Count(x) which returnsthe number of eigenvalues less than x. We present examples to illustrate the incorrectimplementations, and explain why they fail. We rigorously prove the correctness of severalimplementations, such as LAPACK's DSTEBZ.In chapters 3 and 4, we discuss the parallel pre�x algorithm which accelerates thebisection algorithm by reducing the complexity of Count(x) from O(n) to O(log2 n). Wepresent numerical experiments to show the instability of the parallel pre�x algorithm. Wediscuss its backward and forward error analysis, and discuss possible ways to improve itsstability such as iterative re�nement. Two problems remain open. The �rst is to �nd a tightbound on the forward error of the computed results by parallel pre�x can be for a generalsymmetric tridiagonal matrix. The second is to �nd a cheap criterion to decide when theresults computed by parallel pre�x are too inaccurate to use.In chapter 5, we discuss an implementation of a divide-and-conquer algorithm forcomputing the singular value decomposition. We have achieved good speedups over theprevious LAPACK implementation using QR-iteration. We also compare the linear leastsquares solver based on our implementation of SVD with other solvers including plain QR,QR with pivoting, rank-revealing QR, etc. We show that the solver based on divide-and-



153conquer SVD (xGELSD) and the solver based on QR-iteration with \factored form" (xGELSF)make great improvements over the previous implementation in LAPACK. In fact, xGELSFruns a little faster than xGELSD in several cases, but it requires O(n2) storage in contrastto O(n log2 n) for xGELSD. Therefore in the future LAPACK release, the SVD-based linearleast squares solver should be based on xGELSF and xGELSD, with a switch such that whenthere is enough storage, use xGELSF; otherwise, we use xGELSD.In chapter 6, we discuss two algorithms for computing the generalized singularvalue decomposition. We �rst discuss two improvements on LAPACK's implementationin order to maintain backward stability, and then we discuss a faster algorithm whichwe implemented using the divide-and-conquer SVD. Our implementation, xGGSDC, achievesgood speedups over LAPACK's xGGSVD. However, it requires O(n2) storage whereas xGGSVDonly needs O(n). Therefore, the GSVD routine in the future LAPACK release should bebased on xGGSVD and xGGSDC: when there is enough storage, use xGGSDC; otherwise, we usexGGSVD.
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