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Field computation deals with continuous distributions of activity such asare found in the topographic maps and other functional areas of the brain(Knudsen et al. 1987), but also with external distributions of quantity, suchas force �elds. In �eld computation we are generally concerned with thetopology of the space over which a quantity is distributed; this contrastswith the common approach in neural network modeling, which treats neuralactivity as a vector, that is, as quantity distributed over a space with no sig-ni�cant topology (since the axes are independent and, in e�ect, all equallydistant from each other).After de�ning �elds and surveying their occurrence in the brain, I willgive a brief introduction to the mathematics of �eld computation and thenconsider several problems in motor control from the perspective of �eldcomputation.2 Fields2.1 De�nitionFor the purposes of �eld computation, a �eld is de�ned to be a spatially con-tinuous distribution of quantity. Field computation is then a computationalprocess that operates on an entire �eld in parallel. Often we treat the �eldas varying continuously in time, although this is not necessary.It is sometimes objected that distributions of quantity in the brain arenot in fact continuous, since neurons and even synapses are discrete. How-ever, this objection is irrelevant. For the purposes of �eld computation, itis necessary only that the number of units be su�ciently large that it maybe treated as a continuum, speci�cally, that continuous mathematics can beapplied. There is, of course, no speci�c number at which the ensemble be-comes \big enough" to be treated as a continuum; this is an issue that mustbe resolved by the modeler in the context of the use to which the model willbe put. However, since there are 146 000 neurons per mm2 throughout mostof the cortex (Changeux 1985, p. 51), it is reasonable to say that activity ina region of cortex more than a square millimeter in size can be safely treatedas a �eld.Mathematically, a �eld is treated as a continuous, usually real-valued,function � over some continuum 
, its domain or extent. For example, if 
 isa circular disk representing the retina, then for any point p 2 
, �(p) mightbe the light intensity at p. The �eld's domain has some topology (relationsof connectivity and nearness); for example, the topology of the retina is atwo-dimensional continuum.2.2 Realization in the BrainThere are several levels of neural activity that can be viewed as �eld com-putation. 2



The most obvious �elds, which are measured by multiple electrode record-ing or by noninvasive imaging, such as NMR, are those comprising the spik-ing activity of neurons. Since, as we have seen, there are 146 thousandneurons per square millimeter of cortex, regions of cortex of this size aremore than big enough to be treated as continua (reasonably, a tenth of asquare millimeter is more than large enough). Indeed, Knudsen et al. (1987)observe that computational maps in the brain may be as small as a squaremillimeter, and perhaps smaller.In cortical regions where the information is represented by impulse rate,the �eld is real-valued; thus �(p; t) or �p(t) represents the instantaneous im-pulse rate at location p and time t. Recently Hop�eld (1995) has argued thatinformation may be represented by a combination of impulse frequency andphase (relative to a global \clock" �eld or to other neurons); in some casesat least, the phase represents an analog value and the amplitude representsits importance. In such cases it's natural to treat the �eld as complex-valued, with the complex number's phase angle representing the impulsephase and its magnitude representing the impulse amplitude. Thus we write�p(t) = ap(t)ei�p(t), where ap(t) is the time-varying amplitude and �p(t) thetime-varying phase. Synapto-dendritic transmission of such a �eld, whicha�ects both its amplitude and phase, can be represented as multiplicationby a constant complex number. For example, suppose a �eld  = z� re-sults from transmitting �eld � through synapses zp = wpei�p that introduceamplitude change wp and phase shift �p. Then, p(t) = [wpei�p ] ap(t)ei�p(t) = [wpap(t)]ei[�p(t)+�p]:More compactly,  = (wei�)(aei�) = (wa)ei(�+�). This encoding allows thesoma potential to combine both the analog values and the importance ofsignals arriving at the synapses.At the next level down we can consider the synaptic �elds associatedwith one neuron or a group of neurons. For example, �p(t) represents thetime-varying activity (measured, for example, by presynaptic potential orby neurotransmitter ux across the synapse) of synapse p. Certainly a pyra-midal cell with 200 thousand synapses on its dendritic tree can be said tohave a synaptic �eld, and even neurons with smaller numbers of inputs cantreated as processing �elds. The topology underlying the �eld is determinedby the dendritic tree, so in many cases the synaptic �eld cannot be treatedseparately from the dendritic �eld (discussed next).When we view the neuron at the level of the dendritic �elds, we areconcerned with the time-varying electrical potential �eld over the dendriticmembrane. This varies continuously from point to point on the membraneand is determined by the detailed morphology of the dendritic tree. To a�rst approximation, �eld computation in the dendritic tree can be treatedas a linear system (MacLennan 1993).Finally, there are �elds at larger scales. For example, the phase delaysdiscussed by Hop�eld (1995) may be relative to \the phase of an oscillating3



�eld potential" in an area (Ferster & Spruston 1995). Further, there areglobal brain rhythms (�, � etc.).All the preceding �elds are dynamic, changing on times scales of mil-liseconds or faster. It is often worthwhile to consider �elds that are static orthat change on slower time scales (for example, through learning or adap-tation). Such �elds are represented in the connectivity patterns betweenneurons and in patterns of synaptic e�cacy. For example, suppose that atopographic map A projects to a topographic map B in such a way that theactivity  u(t) of a neuron at location u in B depend on the activities �v(t)of neurons at locations v in A, and that the strength of the dependence isgiven by Kuv. In the simplest case we have a linear dependence, u(t) = Z
Kuv�v(t)dv;which we may write as a �eld equation,  (t) = K�(t). The \kernel" K ofthis operator de�nes a connectivity �eld between A and B.2.3 Reduction of DimensionThe cortex can directly represent \two-and-one-half dimensional" axonal�elds. By \two-and-one-half dimensional" we mean a discrete stack of two-dimensional continua; for example, we might have six continua correspond-ing to six layers in the cortex. (Although synaptic and dendritic �elds areembedded in three-dimensional space, the complex structure of the den-dritic tree gives them a more complex non-Euclidean topology, therefore thenotion of dimension is not directly applicable to them.) Some �elds are nat-urally two dimensional, for example, a light intensity �eld over the retina ora pressure �eld over the skin.There are many cases where the cortex must represent �elds de�nedover more than two dimensions. For example, since cells in VI are selectivefor orientation � as well as retinal position (r; �), the activity �elds arenaturally three-dimensional, �(r; �; �). Furthermore, there is substantialevidence (surveyed, for example, in MacLennan 1991) that they are sensitiveto spatial frequency f as well, so we actually have four-dimensional �elds�(r; �; �; f).In these cases, representation in the cortex requires that the �eld bereduced to two dimensions in a way that does as little violence to the prox-imity relations as possible. The simplest way to do this is to \slice" the�eld, as we might slice a pepperoni, and arrange the pieces in a plane. Moregenerally, the �eld must be cut into \nearly two-dimensional" parts thatcan then be arranged systematically in a plane. This is one reason for thestriate and columnar structure found in many brain areas.Non-Euclidean �elds are found in neuropil (the dense nets comprising thetangled dendritic trees of many neurons) and other places where the patternof connections alters the e�ective distance between points of activity. Such4



�elds may be de�ned over spaces with unusual (e.g. nonmetric) topologiessince, for example, the distance a signal must travel in going from A to Bmay be di�erent from the distance from B to A.2.4 External Fields Relevant to Motor ActivityNot all the �elds of interest are in the brain. When investigating motoractivity we also have to consider the musculo-skeletal system as well as�elds external to the animal. Further, for sensory-motor coordination wehave to include various sensory �elds (e.g., visual, proprioceptive, auditory,vestibular). Here I'll look briey at three examples (discussed in more detailin section 6).First, premotor circuits in the frog spinal column have associated con-vergent force �elds in the vicinity of the frog's leg; the activation of multiplecircuits creates a linear superposition (sum) of these �elds, and the result-ing convergent force �eld guides the leg to a �xed destination independentlyof its current position (Bizzi & Mussa-Ivaldi 1995). This is a kind of �eldcomputation, except that the purpose is not the computation of abstractquantities, but the generation of concrete physical forces. Nevertheless, themathematics of �eld computation can be used to describe and analyze themotor system.One way to understand (nondiscursive) action planning is in terms ofenvironmental potential �elds, an approach which has been useful in bothrobotics (e.g., Khatib 1986, Rimon & Koditschek 1989) and neuroscience(e.g., Hogan 1984). In moving from one place to another we naturally selecta path that minimizes some notion of work. We avoid obstacles, of course,and generally try to have a minimum path length, but this strategy may bemodi�ed by judgments of the ease of passage, etc. For example, we may goaround a hedge even though the shortest path is through it; the path aroundminimizes work (broadly de�ned). Our knowledge of a region of space canbe represented by a potential �eld in which the height of the potential ata location reects the di�culty in going through that location. As will bedescribed later, �eld operations can be used to �nd (in parallel) an inexpen-sive path through the potential �eld, and to revise the path dynamically ifthe potential �eld is discovered to be inaccurate (e.g. we �nd a large mudpuddle in our path).The potential �eld is not limited to encoding environmental di�culty; itcan also represent internal constraints, such as the range or facility of motionof joints and limbs. Further, the potential �eld can be de�ned over nonspa-tial continua, to allow planning paths through more abstract \spaces."Finally, Sanger (submitted) has explained how neural population codescan be interpreted in terms of conditional probability density �elds (CPDFs)de�ned over possible stimuli. Each neuron has a CPDF that corresponds toits receptive �eld; the CPDF of a population over s short time interval isgiven by the product of the CPDFs of the neurons �ring in that interval.5



3 Field Operations3.1 De�nitionThe primary de�ning feature of �eld computation is that it operates on anentire �eld in parallel. For example, operations that process a retinal imagein parallel, or which generate a spatial or motor map in parallel, are clearexamples of �eld computation. On the other hand, a process that generatesone or a few scalar signals sequentially in time is not considered �eld com-putation (except in a degenerate or trivial sense). The point is not to havea clear and absolutely precise demarcation between �eld computation andnon-�eld computation | it is fundamentally a matter of degree | but todistinguish �eld computation as a style of computation from computationthat is scalar or low-dimensional. The operational criterion is the ability toapply continuous mathematics to the spatial distribution of quantity.In this section we consider �eld operations, which are commonly imple-mented by nonrecurrent or feed-forward connections between brain areas.That is, a pattern of activity �(t) over an area A at time t causes a patternof activity  (t0) = F [�(t)] over an area B at a slightly later time t0. Moregenerally, activity pattern  (t) over region B depends on earlier activitypatterns �1; : : : ; �n over regions A1; : : : ; An: (t) = F [�1(t� �1); : : : ; �n(t� �n)];where �1; : : : ; �n are �xed delays. Field operations may be classi�ed as linear(including multilinear) or nonlinear.3.2 Linear OperationsA process is linear when its response to a superposition of inputs is the super-position of its response to the inputs taken separately, L(�1+�2+� � �+�n) =L�1+L�2 + � � �+L�n. We must remark that there can be no purely linearprocesses in the nervous system, for if there were, it would mean that aresponse to twice the input is always twice the response to the single input,and likewise for any ampli�cation of the input, L(c�) = cL�. This cannothappen, for neurotransmitters become depleted, the �ring rates of neuronsare limited by their refractory period, etc. Therefore, processes in the ner-vous system are at best saturating linear, that is, approximately linear untilnonlinear saturation e�ects begin to dominate. In neuroscience, linearity isalways an approximation, adopted for its mathematical convenience.3.2.1 Domain Coordinate Transformation One of the simplest lin-ear transformations is a domain coordinate transformation, which are usuallyimplemented by the anatomical pattern of projections from one area to an-other. These operations transform the coordinates of the �eld's domain, thusdistorting the shape of the �eld, perhaps for some information processing6



end or for a more e�cient allocation of \neural real estate." (An exam-ple, the \logmap transformation" in the primary visual cortex, is discussedbelow.)In general, if h : A �! B is a mapping from coordinates in region A tocoordinates in region B, then the activity �eld  de�ned over B, which isinduced by activity �eld � over A, is given by  � h = �, that is, for anycoordinates p 2 A,  [h(p)] = �(p). Thus, if we ignore scaling of amplitudes,the activity induced by the projection at h(p) in B is equal to the sourceactivity at p in A. Most such coordinate transformations are \one-to-oneand onto," in which cases we can de�ne the induced activity �eld directly: = � � h�1, or  (q) = �[h�1(q)]for all q 2 B. That is, the activity at q in B is given by the activity ath�1(q) in A. (Note that the �eld transformation from � to  is linear evenif the coordinate transformation h is not.)For example, a coordinate transformation, the logmap transformation(Baron 1987, pp. 181{186), takes place between the retina and its �rstprojection in the primary visual cortex (VI). If retinal coordinates are rep-resented by a complex number z in polar coordinates (giving an angle anddistance from the center of the retina), then the �eld  in VI is related tothe retinal �eld � by  (z) = �(ez);where ez is the complex exponential function. The e�ect of this is  (log r; �) =�(r; �), that is, radial distance is transformed logarithmically.In addition to devoting more \neural real estate" to the center of theretina, this transformation has the e�ect of converting rotations and scalechanges of centered images into simple translations (Schwartz 1977, Baron1987, ch. 8). To see this, note that if �0(z) = �(sz) is a scaled version of �,then the corresponding VI �eld is 0(log z) = �0(z) = �(sz) =  (log sz) =  [(log s) + (log z)];which is  (log z), the image of �, translated by log s. Similarly, if �0(z) =�(ei�z) is a rotation of � through angle �, then the corresponding �eld is 0(log z) = �0(z) = �(ei�z) =  [log(ei�z)] =  [i�+ log z];which is  (log z), the image of �, translated by � (in a perpendicular direc-tion to the other translation).3.2.2 Representation in an Orthogonal Basis Most of the linearoperators of interest to neuroscience can be computed e�ciently by neu-ral networks.1 This is because such operators have an orthonormal set of1Speci�cally, they are Hilbert-Schmidt operators, to which the following remarks apply.7



eigenfunctions "1; "2; : : : with associated eigenvalues �1; �2; : : :. Thereforethe operator can be written as a summation:L� =Xk �k("k � �)"k;a procedure we call factoring a linear operator through a discrete space.This is an in�nite sum, but there are only a �nite number of eigenvaluesgreater than any �xed bound, so that the operator can be approximatedby �nite sums. The computation  = L� is accomplished in two steps. Inthe �rst, inner products are formed between the input �eld and each of theeigenfunctions "k yielding a �nite-dimensional vector c, given by ck = "k ��.Each of these inner products could, in principal, be computed by a singleneuron. This step e�ectively represents the input in a �nite-dimensionalvector space, that is, in a space with no signi�cant topology (i.e., the axesare independent, none are nearer to each other than to the others). Inthe second step, the computed coe�cients are used to amplitude-modulatethe generation of �xed �elds (speci�cally, the eigenfunctions), which aresuperposed to yield the output �eld:  = Pk ck�k"k . This computation,likewise, can be computed by a single layer of neurons.Even if the eigenfunctions of the operator are not known, in practicalcases the operator can still be factored through a discrete space, since itcan be computed via a �nite-dimensional representation in terms of any or-thonormal basis for the input space. First compute the coe�cients by innerproducts with the basis functions, ck = �k �� (accomplished by neurons withreceptive �elds �k). A �nite-dimensional matrix product, d = Mc is com-puted by a single-layer neural network with �xed interconnection weights:Mjk = �j � L�k:Again, topological relations between the vector and matrix elements are notsigni�cant, so there are few constraints on their neural arrangement. Theoutput is a superposition of basis functions weighted by the computed dj , =Pj dj�j (accomplished by neurons with output weight patterns �j).Computing the linear operator by means of the low-dimensional spacespanned by the basis functions avoids the biologically unrealistic dense (all-to-all) connections implicit in the direct computation of the operator:  x =R
 Lxy�ydy. (The preceding results are easily extended to the case wherethe input and output spaces have di�erent basis �elds.)3.3 Multilinear OperationsMultilinear operations are functions of two or more arguments that are lin-ear in each of their arguments separately. The most common multilinearoperations are bilinear, that is, linear in each of two arguments. Again,no biological process can be purely multilinear, since its linearity must belimited by saturation and other consequences of the biology.8



3.3.1 Convolution and correlation Two closely-related bilinear oper-ations that are especially important for information processing are convolu-tion and correlation. In the simplest case, correlation can be described as acomparison of two �elds at all possible relative positions. More speci�cally,if � is the correlation of two one-dimensional �elds � and  , � = � ?  ,then �(r) reects how well � and  match (in an inner-product sense) whenrelatively displaced by r.2 Mathematically,�(r) = Z
 �(s � r) (s)ds: (1)Higher dimensional correlations are the same, except that r is a relativedisplacement vector rather than a scalar.Convolution, � = � 
  , is essentially the same as correlation, exceptthat the �eld � is reected before the comparison takes place:�(r) = Z
 �(r � s) (s)ds: (2)Convolution is useful because: (1) its algebraic properties are more like mul-tiplication, and thus more familiar, than correlation; and (2) many physicalprocesses (e.g. linear systems, such as dendritic nets) perform convolutions.3.3.2 Pattern Manipulation One reason correlation and convolutionare of interest is that they can be used for pattern recognition and genera-tion. For example, the correlation �? will have peaks wherever the pattern� occurs in �eld  (or vice versa); occurrences of patterns less similar to �(in an inner-product sense) will cause lesser peaks. Thus correlation � ?  returns an activity pattern representing the spatial distribution in  of �eldsresembling �.This operation is approximately reversible. Suppose that  is a radial�eld, such as a Gaussian, with a single narrow, sharp maximum. Convolving with a pattern  has the e�ect of blurring  by  (i.e. smoothing  by awindow of shape ): ( 
  )(s) = Z
 (s� u) (u)du:Further, if  is �rst displaced by r, then the e�ect of the convolution is toblur  and displace it by r:(Tr)
  = Tr( 
  ):[The Tr operation translates (displaces) a �eld by r: Tr�(s) = �(s � r).]Finally, since convolution is bilinear, if � is a �eld containing a number of2Correlation can be de�ned relative to other kinds of transformation besides displace-ment, and to other measures of similarity besides the inner product; see MacLennan (1994)for details. 9



sharp peaks at various displacements rk, then � 
  will produce a �eldcontaining blurred copies of  at corresponding displacements:�
  =  Xk Trk!
  =Xk (Trk)
  =Xk Trk( 
  ):(The convolution of a superposition is a superposition of the convolutions.)Such an operation could be used for constructing a representation of theenvironment for motion planning. For example, if  is the shape of anobstacle retrieved from memory, and  is a map of the location of obstaclesof this kind in the environment, then � 
  represents the approximateboundaries of such obstacles in the environment.3.3.3 Convolution Connections Since convolution and correlation arebilinear operators, that is, linear in each of their arguments, if one of thearguments is relatively �xed (as it would be, for example, when a sensorysignal is correlated with a learned pattern), the operator is linear in its otherargument: � ? = L for �xed �. Patterns of neural connectivity are oftenequivalent to a convolution or correlation with a �xed �eld. For example,the dependence of the activity at Bu on the activity at Av might fall o� assome simple function (e.g. Gaussian) of the distance between u and v, or assome more complex (e.g. nonsymmetrical) function of the relation betweenu and v. In the former case we have a radial connectivity �eld �(kv � uk),in the latter a connectivity kernel �(v � u). In either case, the contributionof region A to the activity at Bu can be written R
 �v�u�v(t)dv. Therefore,the �eld  (t) contributed to B by A is de�ned u(t) = Z
 �v�u�v(t)dv;which is � 
 �(t), the convolution of the (unvarying) connectivity kernel �with the activity �eld �(t).Viewing such connectivity patterns as convolutions may illuminate theirfunction. For example, by the \convolution theorem" of Fourier analysis, theconvolution  = � 
 �(t) is equivalent to the multiplication 	(t) = K�(t),where 	(t) and �(t) are the Fourier transforms (over the space domain) ofthe activity �elds and K is the Fourier transform of the connectivity kernel.Thus �(t) represents the spatial frequency spectrum, at time t, of activity inregion A, and K represents a (comparatively unvarying) spatial frequency\window" applied to this activity by its connectivity to B. For example, if� is a Gaussian, then K is also Gaussian, and the e�ect of the connectionsis spatial low-pass �ltering of the activity in A.Many linear operators on �elds can be approximated by convolutionsimplemented by neural connectivity. We will illustrate this with one usefuloperator, the derivative. Suppose we have a one dimensional �eld � andwe want to compute its derivative  = �0. It happens that the derivative10



can be written as a convolution with the derivative of the Dirac delta func-tion3 (MacLennan 1990): �0 = �0 
 �. Like the Dirac delta, its derivativeis not physically realizable, but we can compute an approximation that isadequate for neural computation. To see this, suppose that we low-pass �l-ter � before computing its derivative; this is reasonable, since the frequencycontent of � is limited by neural resolution. In particular, suppose we �lter� by convolving it with a Gaussian ; thus we will compute the approximatederivative  ̂ = �0 
 ( 
 �). But convolution is associative, so this is equiv-alent to  ̂ = (�0 
 )
 �. The parenthesized expression is the derivative ofthe Gaussian function, so we see that an approximate derivative of a �eldcan be computed by convolving it with the derivative of a Gaussian (whichis easily implemented through neural connectivity):�0 �  0
 �:The derivative is approximate because of the �lter applied to �, the transferfunction of which is the Fourier transform of , which is itself Gaussian.It should be noted that such an analysis can be applied when regions Aand B are coextensive, and so no real \projection" is involved. For example,A and B might represent two populations of neurons in the same region, sothat the connectivity �eld � or L reects how cells of type B depend onneighboring cells of type A. Indeed, A and B might be the same cells, if weare describing how their recurrent activity depends on their own precedingactivity and that of their neighbors. Thus we might have a linear di�erential�eld equation of the form _�(t) = �
 �(t) or, more generally, _�(t) = L�(t).(See Section 4 for examples.)3.3.4 Convolution over Transformed Coordinates In the de�ni-tions of correlation and convolution, Eqs. 1 and 2, the expressions s� r andr � s show us that these operations are sensitive to distance and directionin the domains of the �elds, that is, they depend on the coordinates overwhich the �elds are de�ned. For example, if  results from � by a coor-dinate transformation,  = � � h�1, then the results of convolving  witha Gaussian  will not be the same as the results of convolving � with .The convolution 
� averages over regions that are circular in �'s domain,whereas  
  averages over circular regions in  's domain. For example,because of the logmap transformation between the retina and VI, a Gaus-sian convolution in VI will not have the e�ect of a Gaussian convolution inretinal coordinates or vice versa. This sensitivity of convolutions and corre-lations to the coordinate system can be a problem that needs to be solvedor a computational resource that can be exploited.Suppose we have two domains 
 and 
0 such that �elds over 
0 are trans-formations of �elds over 
; let h : 
 �! 
0 be the coordinate transformation3The Dirac delta is a \generalized function" that has the value zero everywhere exceptat the origin, where it has the value in�nity. 11



(an isomorphism). For example, 
 and 
0 might be two brain regions (suchas the retina and VI), or one or the other might be an external region (suchas physical space around the body). Let � and � be two �elds over 
 andsuppose we want to compute the convolution  = � 
 �; for example wemight want to do a Gaussian convolution in retinal space. However, supposethat the convolution is to be computed by means of �elds de�ned over thetransformed domain 
0. We are given the transformed � = � � h�1 andwant to compute 	 so that 	 �h =  = �
�. We can get this by changingthe integration variable of the convolution (assumed to be scalar to keep theexample simple):	(u) = (� 
 �)[h�1(u)];= Z
 �[h�1(u)� x]�(x)dx;= Z
0 �[h�1(u)� h�1(v)]�[h�1(v)] dvh0[h�1(v)];= Z
0 �[h�1(u)� h�1(v)]h0[h�1(v)] �(v)dv:If we de�ne the connectivity �eldAuv = �[h�1(u)� h�1(v)]h0[h�1(v)] ;then the convolution integral becomes	u = Z
0 Auv�vdv;which is the integral operator, 	 = A�. This is a linear operator, but not aconvolution, which means that it is still implemented by a simple pattern ofconnectivity, but that it is not a single pattern duplicated throughout theregion. (If, as is often the case, the transformation h is a homeomorphism,then it will preserve the topology of 
, which means that a local convolution� in 
 will translate into local connections A in 
0.)We remark without proof that if the domains are of more than onedimension, then the connectivity kernel is de�nedAuv = �[h�1(u)� h�1(v)] J [h�1(v)];where J [h�1(v)] is the Jacobian of h�1 evaluated at v.Now, conversely, suppose we do a convolution 	 = � 
 � in the trans-formed coordinates; what is its e�ect in the original coordinates? By asimilar derivation we �nd that  = C� where the kernel is de�nedCxy = �[h(x)� h(y)] J [h(y)]:In e�ect, the convolution kernel � is projected backward through the trans-formation h. For example, if, like the logmap transformation, h expands12



the space in the center of the visual �eld and compresses it at the periph-ery, then the back-transformation of � will result in a C that de�nes smallreceptive �elds near the center of the visual �eld, and large ones near itsperiphery.4 Field DynamicsThe �eld operations considered above are examples of nonrecurrent oper-ations, typically implemented by feed-forward connections between neuralareas. In this section we will consider recurrent operations, which are typ-ically implemented by feed-back or reciprocal connections. Thus there aredynamical relations between several areas that govern the variation in timeof one or more �elds; these processes are especially important in motor con-trol, since time-varying motor �elds in the central and peripheral nervoussystems must be generated to control physical movement.Field dynamics are most conveniently expressed by di�erential �eld equa-tions, in which the time-derivative _ (t) of a state �eld  is given as a functionof the current state �eld  (t) and some, possibly time-varying, input �eld�(t): _ (t) = F [ (t); �(t)]:More generally, we may have a system of state �elds  k, k = 1; : : : ; m, eachevolving under the inuence of each other and one or more input �elds �k,k = 1; : : : ; n. Thus,_ k(t) = Fk [ 1(t); : : : ;  m(t);�1(t); : : : ; �n(t)]:(For purposes of mathematical modeling, equations involving second- andhigher-order time derivatives can be placed in this form by adding state�elds to explicitly represent derivatives, in which case we must carefully dis-tinguish �elds represented in neural tissue from those introduced for math-ematical convenience.) As before, we may distinguish between the cases inwhich the dependence is (approximately) linear or not.4.1 Linear DynamicsIn the (approximately) linear case F can be separated into two linear op-erators L and M operating on the state and input, respectively; the timederivative of the state is a superposition of the results of these operations:_ = L +M�:Next we'll consider several important examples of linear �eld processes.A di�usion process is de�ned by a linear di�erential �eld equation:_ = k2r2 ; 13



where the Laplacian is de�ned:r2 =Xk @2 @x2k ;and the summation is over all the dimensions xk of the extent of  .Many useful computations can be performed by di�usion processes; forexample chemical di�usion processes have been used for �nding minimum-length paths through a maze (Steinbeck et al. 1995). Also, di�usion equa-tions have been used to implement Boltzmann machines and simulatedannealing algorithms, which have been used to model optimization andconstraint-satisfaction problems, such as segmentation and smoothing inearly vision, and correspondence problems in stereo vision and motion esti-mation (Miller et al. 1991, Ting & Iltis 1994).In the brain, di�usion processes, implemented by the spreading activa-tion of neurons, could be used for planning paths through the environment.For example, a di�usion process is approximated by a network in which eachneuron receives activation from its neighbors, without which its activity de-cays. Thus the change in activity of neuron x is given by_ x = k2 � x + 1nXi  xi! ;where  xi are the activities of its n neighbors xi. More clearly, writing h xiifor the average activity of its neighbors,_ x = k2(h xii �  x):The averaging process can be accomplished by convolution with a radialfunction, such as a Gaussian:_ = k2( 
  �  ):Constraints on the path (impassable regions) are represented by neuronswhose activity is inhibited; relatively impassable regions can be representedby neurons that are only partly inhibited.4.2 Nonlinear DynamicsIn the nonlinear case, the variation in the state �eld  is a nonlinear functionF of the state and the input �eld �:_ (t) = F [ (t); �(t)]:Many computational processes, especially optimization processes, can bedescribed by gradient descent; this is most commonly seen in low-dimensionalvector spaces, but applies as well to �eld computation, as will now be ex-plained. Often the suitability of a �eld  for some purpose can be measured14



by a scalar function U( ) (for reasons that will become apparent, we willtake lower numbers to represent greater suitability). For example,  mightrepresent an interpretation of sensory data and U( ) might represent theinternal incoherence of that interpretation (so that the lowest U( ) gives themost coherent  ). More relevantly,  might represent a motor plan of somekind, and U( ) the di�culty, in some sense, of that plan. Then minimizingU( ) gives an optimal plan. By analogy with physical processes, U( ) iscalled a potential function.One way to �nd a state  that minimizes U is by a gradient-descentprocess, that is, a process that causes  to follow the gradient rU( ) of thepotential. The gradient is de�ned:(rU)x = @U@ x(where, for notational convenience, we treat the �eld  as a high-dimensionalvector). The gradient rU( ) is a �eld (over the same domain as  ) givingthe \direction" of change that most rapidly increases U , that is, the rela-tive changes to areas of  that will most rapidly increase U . Conversely,the negative gradient �rU gives the direction of change that most rapidlydecreases U . (This is because r is linear and so r(�U) = �rU .)In a gradient-descent process the change of state is proportional to thenegative gradient of the state's potential:_ = �rrU( ):(The constant r determines the rate at which the process takes place.) Theresulting \velocity" �eld _ is called a potential ow.It is easy to show that a gradient-descent process cannot increase thepotential, and indeed it must decrease it unless it is at a (possibly local)minimum (or other saddle point). In this way gradient-descent can be usedfor optimization (although, in general, we cannot guarantee that a globalminimum will be found).A common, special case occurs when the potential is a quadratic func-tion: U( ) =  Q + � �  + �;where by  Q we mean the quadratic form: Q = Z
 Z
  xQxy ydydx:The coupling �eld Q, which is of higher type than  (i.e., Q is a �eld over
�
), is required to be symmetric (Qxy = Qyx). In this case the gradienthas a very simple (�rst degree) form:rU( ) = 2Q + �;15



where, as usual, Q is the integral operator (Q )x = R
Qxy ydy. In manycases � = 0 and gradient descent is a linear process:_ = �rQ :Notice that �Qxy represents the coupling between regions x and y ofthe state �eld and therefore how the potential varies with coherence betweenactivity in these parts of the �eld. If Qxy > 0 then the potential will be lowerto the extent  x and  y covary (are positive at the same time or negativeat the same time) since then � xQxy y � 0; if Qxy < 0, the potential willbe lower to the extent they contravary. Thus �(Q )x gives the change to x that maximally decreases the potential according to the covariances andcontravariances requested by Q.5 LearningRepresentations of motion patterns can be quickly learned and adaptedby a variety of �eld computational methods; many involve the extractionof frequency-domain information from example motions (by application ofinner-product or �ltering techniques). Invariances in sensorimotor coordi-nation can emerge similarly from simple correlational adaptive algorithms.Since an adequate treatment of �eld-computational approaches to learningis beyond the scope of this paper, I will give just two examples of the �eld-computational approach.45.1 Correlational LearningMany familiar neural network learning algorithms, including correlational(Hebbian) and back-propagation learning, are easily transferred to the �eldcomputation framework. For example, Hebbian learning rules can be de-scribed in terms of an outer product of �elds, � ^  :(� ^  )xy = �x�y :(Notice that if � is a �eld over 
 and  is a �eld over 
0, then � ^  isa �eld over 
�
0.) For example, simple correlational strengthening of aninterconnection kernel K resulting from pre- and post-synaptic activity �elds� and  is given by _K = r �^  , where r is the rate. Such a process mightoccur through long-term potentiation (LTP).Recent studies (surveyed in Singer 1995) indicate that moderately weakpositive correlations cause synaptic e�cacy to be weakened through long-term depression (LTD), while very weak connections have no e�ect on e�-cacy. For (biologically realistic) non-negative activity �elds, the change in4See Section 6 for a discussion of some representations and MacLennan (1994) forexample adaptive algorithms. 16



the interconnection matrix is given by _K = r�(� ^  ), where the upsilonfunction is de�ned:�(x) = tanh �(x� �)� tanh �(x� �) + 12 :When x > �, �(x) > 0 and LTP results, but as x drops below �, �(x)becomes negative, achieving its minimum at x = �; further decreases of xcause �(x) to approach 0. (The slopes in the LTP and LTD regions aredetermined by � and �.)5.2 Gradient DescentIn general, if F (p1; : : : ; pn;�1; : : : ; �n) = Fp(�1; : : : ; �n) is some �eld compu-tational process governed by parameters p1; : : : ; pn (such as synaptic weights),and if M [�1; : : : ; �n;Fp(�1; : : : ; �n)] is some performance measure for F onthe input �elds �1; : : : ; �n, then for �xed �1; : : : ; �n we may de�ne a po-tential �eld �p = M [�1; : : : ; �n;Fp(�1; : : : ; �n)] over the parameter space.If smaller values of M represent better performance, and if M is boundedbelow (i.e., there is a best performance), then we can do gradient descenton the parameter space, _p = �rr�.The same analysis can be applied when F is parameterized by one ormore �elds (typically, interconnection �elds). In this case, gradient descentoccurs by gradual modi�cation of the parameter �elds. For example, inthe case of one parameter �eld, � = M [�1; : : : ; �n;F (�1; : : : ; �n)], thedescent is given by _ = �rr�. Of course, more sophisticated hill-descendingalgorithms can also be implemented by �eld computation.6 Examples of Motor Field Computation6.1 External Force Fields and Motor Basis FieldsBizzi & Mussa-Ivaldi (1995) survey experiments showing that regions in thespinal chord of the frog de�ne associated force �elds in the vicinity of theleg; that it, microstimulation of that spinal region causes the leg to exert aconsistent force, which depends on the position of the leg, thus de�ning aforce �eld over its range of motion. They further show that microstimulationof multiple spinal regions create a force �eld that is the linear superposition(sum) of the individual force �elds, and that this superposition determinesthe location to which the leg moves. Speci�cally, a time-varying force �eldF(t) results from a linear superposition of time-varying basis �elds �k(t),each generated by a premotor circuit in the frog's spinal chord:F(t) =Xk ck�k(t):As few as four convergent force �elds �k are su�cient to generate a widevariety of resultant �elds. 17



6.2 Population Coding of DirectionGeorgopoulos (1995) surveys research on population coding in motor cortexof the direction of armmotion. The population codes are naturally treated as�elds, and the transformations of directions are simple �eld computations.We consider a region 
 in motor cortex in which activity is observed inanticipation of reaching motions. Each cell u 2 
 has a preferred directionDu in three-dimensional space. Cell activity �u falls o� with the cosine ofthe angle �u between the reaching direction r and the preferred directionDu. Since (for normalized vectors) the cosine is equal to the inner productof the vectors, r �Du = cos �u, we can express the activity:�u = a+ br �Du; (3)for some constants a and b.5 Thus the motor cortex represents a vector�eld D of the preferred directions, and the population coding of an intendedmotion r is a scalar activity �eld r �D given by the inner product of themotion with the preferred-direction �eld.There is another way of looking at the population coding � of a motion r,which is sometimes more illuminating. Since all the neurons have the samereceptive �eld pro�le, we may rewrite Eq. 3 in terms of a radial function %of the di�erence between the preferred and intended direction vectors:�u = %(Du � r);where %(v) = a + b� bkvk2=2:This is because the Euclidean distance is related to the inner product in asimple way:a+ b� bkDu � rk2=2 = a+ b� b(kDuk2 + krk2 � 2Du � r)=2= a+ bDu � r= a+ b cos �u(provided krk = 1 = kDuk).Now let  be the direction �eld, de�ned over three-dimensional space,that corresponds to �. That is, the value of � at neural location u equals thevalue of  at spatial location Du, or �u =  Du , which we may abbreviate� =  �D. For simplicity we suppose D is one-to-one, so we can de�ne  by  = � �D�1. Notice that D e�ects a change of coordinates from neuralcoordinates to three-dimensional space. The direction �eld  can also beexpressed as the result of convolving the receptive �eld % with an idealizeddirection �eld �r, a Dirac delta, which has an in�nite spike at r but is zeroelsewhere:  = %
 �r:5For a typical case shown in Georgopoulos (1995, Fig. 32.1) and normalized vectors, itappears a � 30 impulses/sec. and b � 20 impulses/sec.18



This is because convolving % with �r e�ectively translates the center of % tor; equivalently, the convolution blurs the idealized direction �eld �r by thereceptive �eld pro�le %.6.3 Continuous Transformation of Direction FieldsThere is considerable evidence that humans and monkeys are able to con-tinuously transform images for various purposes. Aside from introspection,such evidence comes from the behavioral experiments pioneered by Shep-ard (e.g. Shepard & Cooper 1982) and, more recently, from direct neuronalmeasurement of motor cortex (surveyed in Georgopoulos 1995).Droulez & Berthoz (1991b) give an algorithm for the continuous trans-formation of direction �elds, speci�cally, for the updating, when the eyemoves, of the remembered location, relative to the retina, of an ocular sac-cade.6 Suppose the �eld � is a population code in retinal coordinates forthe destination of the saccade. If in time �t the eye moves by a vector �rin retinal coordinates, then the �eld encoding the destination of the saccademust be updated according to the equation�(r+ �r; t+�t) = �(r; t):Eye motion is assumed to be encoded by a two-dimensional rate-encodedvelocity vector v, which gives the eye velocity in retinal coordinates. It iseasy to show that �(t+�t) = �(t) + �t v � r�(t): (4)(The gradient r� points in the direction of the peak, provided there is onlyone peak; if there are multiple targets, it points to the nearest target.) Thisequation, which gives a discrete update after a time �t, can be convertedinto a equation for the continuous updating of � by taking the limit as�t �! 0: _� = v � r�:This can be understood as follows: Since v represents the motion of the eyerelative to the retinal �eld, �v represents the direction in which the �eldpeak should move. In front the peak (that is, in its direction of requiredmovement), the gradient, which points toward the peak, points in the op-posite direction to �v. Therefore �v � r� at that point will be negative,which means that _� = v � r� > 0, and the �eld intensity in the front ofthe peak increases. Conversely, behind the peak the gradient points in thesame direction as the required movement, so �v � r� > 0, which means_� = v � r� < 0, and the �eld intensity on the back of the peak decreases.Therefore, the peak moves in the required direction.6This process may take place in the superior colliculus, frontal eye �eld or posteriorparietal cortex (Droulez & Berthoz 1991b). 19



Equation 4 must be recast for neural computation, since the vector �eldr� has to be represented by two neural populations (for the two dimensionsof retinal coordinates). Thus we writev � r� = vx@�@x + vy@�@y :Since the neural population is discrete and the neurons have receptive�elds with some diameter, the neural representation imposes a low-pass�lter on the direction �eld. Writing xy for a two-dimensional Gaussian, the�ltered �eld can be written xy 
 � and substituted into Eq. 4:�(t+ �t) = xy 
 �+ �t v � r(xy 
 �)= xy 
 �+ �t �vx@(xy 
 �)@x + @(xy 
 �)@y �As we've seen, the derivatives of the �ltered �eld can be written as convo-lutions with derivatives of Gaussians, so @(xy 
 �)=@x =  0x 
 �, where  0xis a derivative of a Gaussian along the x-axis and constant along the y-axis.Thus, �(t+ �t) = xy 
 �+ �t(vx 0x 
 �+ vy 0y 
 �):Signi�cantly, when Droulez & Berthoz (1991b) started with a one-dimensionalnetwork of the form �
 �+�t v� 
 �and trained it, by a modi�ed Hebbian rule, to compute the updated popu-lation code, they found that after training � was approximately Gaussian,and � was an approximate derivative of a Gaussian.Droulez & Berthoz (1991a) suggest biologically plausible neural circuitsthat can update the direction �eld �, which can be expressed in �eld com-putational terms as follows. A �eld of interneurons S (sum) forms the sumof the activities of nearby neurons, S = xy 
 �, while interneuron �eldsGx and Gy estimate the partial derivatives by a means of excitatory andinhibitory synapses, Gx =  0x
�, Gy =  0y
�. Next, a �eld of interneuronsP (product) computes the inner product of the velocity vector and the �eldgradient by means of conjunctive synapses: P = vxGx + vyGy. The neu-rons in the direction �eld compute the sum of the S and P interneurons,which then becomes the new value of the direction �eld, � = S + P . ThusDroulez & Berthoz's (1991a) proposed neuronal architecture corresponds tothe following �eld equations, all implemented through local connections:S = xy 
 �;Gx =  0x 
 �;Gy =  0y 
 �;P = vxGx + vyGy;� = S + P 20



6.4 Fields Associated with Posterior Parietal CortexAndersen (1995) surveys research indicating that the transformation fromretina-centered coordinates to head- or body-centered coordinates can beunderstood in terms of �elds associated with neurons in area 7a of the pos-terior parietal cortex. When the eye position is �xed, these neurons exhibitan ordinary receptive �eld (de�ned over retinal coordinates) in their responseto a stimulus. On the other hand, when the position of the stimulus on theretina is �xed, then these neurons exhibit a response that varies linearlywith eye position; this is described by a linear gain �eld, de�ned over eyeposition, and has a characteristic direction. Speci�cally, a linear gain �eld� is described by a direction vector d, which is its gradient, d = r�; thus,�p = d � p at all positions p. Under normal conditions the response of theneuron is a product of the receptive �eld and the linear gain �eld, and soits response is de�ned over the four dimensions of retinal and eye position.The result is a neuron tuned to particular locations in head-centered space,but only for certain ranges of eye position. Therefore, single neurons cannotencode locations in head-centered space, but a �eld of neurons can combinetheir responses into a population code for head-centered locations. The re-sulting �eld has a well-de�ned minimum in head-centered space, which canrepresent the destination of a motion (such as a saccade) and, by means ofits gradient, a path to that destination.Andersen (1995) also surveys studies of ocular motion planning in thelateral intraparietal area of the posterior parietal cortex (see also Goodman& Andersen 1989). Microstimulation of neurons create eye movements thatcan be described as vector �elds (giving the direction and amount of motion)over head-centered coordinates. Three kinds of �elds V are typically found:(1) constant vector �elds (Vp = v for all locations p), (2) vector �elds ofconstant direction but decreasing amplitude (Vp = (vTpv)+, that is, thepositive part of vTpv), and (3) weakly convergent vector �elds, which rarelyreverse direction. On the other hand, in simulation studies, microstimulationof two or more neurons created strongly convergent motion �elds by vectorsummation of the individual �elds of the neurons. The gradient of such s�eld de�nes the paths, in head-centered space, to the location de�ned bythe minimum.6.5 Probability Density FunctionsSanger (submitted) argues for the interpretation of neural activity in termsof external (sensory or motor) conditional probability density functions(CPDFs) corresponding to their generalized receptive �elds. Thus, a neuroni has an associated CPDF �i de�ned over some bounded range 
 of exter-nal phenomena. In particular, the �ring of neuron i represents phenomenonx 2 
 with conditional probability �i(x). Clearly, such a CPDF is a �eld,and so we can say that each neuron has an associated conditional proba-bility �eld. The conditional probability �eld associated with a population21



of neurons can then be de�ned in terms of �eld operations on the �elds ofthe constituent neurons. For example, Sanger shows that over small timeintervals (such that spiking is relatively unlikely), the �eld of the populationis a product of the �elds of the neurons that spike in that interval:�pop = Yi2spike�i;whereQ represents a pointwise product of the �elds, �pop(x) = Qi2spike �i(x).Further, Sanger shows that for any smooth mapping y = f(x), there is acorresponding piecewise linear mapping on the probability �elds Py and Px,which is given by an integral operator, Py = KPx.7 Representation of Motion7.1 IntroductionThere are several ways that motion can be represented in �elds and gener-ated through �eld computation. Each has advantages and disadvantages interms of e�ciency of representation, exibility and other factors.7.2 Direct (Spatial) RepresentationOne of the simplest ways to represent a trajectory �(t) is by direct spatialencoding of the time dimension; then the trajectory can be read sequentiallyfrom the �xed �eld. (This process is like playing an audio tape.) Moreprecisely, suppose �u(t) is a time-varying �eld de�ned over an extent 
(that is, u 2 
), and we want to generate it over the relative time intervalt 2 [0; T ]. Let h : [0; T ] �! 
0 be a mapping from the time interval toanother domain of spatial extension; then the trajectory �s(t) is encoded bya �xed �eld  uv over 
�
0 de�ned by: [u; h(t)] = �u(t):The �eld  uv is \read out" by sweeping v from h(0) to h(T ).Since the area of the �eld  is proportional to the duration of the signal�, such a representation is feasible only for signals that are comparativelysmooth with respect to their duration. (Speci�cally, by the Nyquist theorem,there must be as least two representational units v per unit time for thehighest frequency component of �.)7.3 Frequency-domain RepresentationFrequency encoding generates a signal  from its (discrete or continuous)Fourier transform 	, which is represented spatially. Suppose we have a22



signal  u(t) of duration T (or periodic with period T ); write it as a discreteFourier series:  u(t) = nXk=0�ku cos�2�ktT � �ku� : (5)(The number of coe�cients n is determined by the Nyquist frequency: twicethe highest frequency in  .)The signal then is determined by the amplitude �elds �1; : : : ; �n and thephase �elds �1; : : : ; �n (together they constitute the discrete Fourier trans-form 	). The signal is generated by using them to control the amplitudeand phase of a \bank" of sinusoidal signal generators, in accord with Eq. 5.(Of course, it's not essential that the signal generators be sinusoidal, sincethe Fourier expansion can be done in terms of any orthonormal basis.)The approach is easily extended to the continuous Fourier transform;write  u(t) = 12� Z !max�!max 	u!e�i!td!:Now de�ne a one-dimensional �eld of signal generators, "!(t) = e�i!t=2�,implemented, perhaps, by pairs of neurons in quadrature phase; then thesignal is constructed by u(t) = Z !max�!max 	u!"!(t)d! = 	u"(t);which we may abbreviate  = 	".The Fourier representation is especially appropriate when frequency-domain transformations need to be applied to the signal, or when the signalis periodic (since only one cycle needs to be encoded). If the Fourier rep-resentation is translated by �! along the frequency axis, then the overallduration of one cycle changes T �! T=(1 + �!=!) (so an increase of fre-quency leads to a decrease of duration and vice versa). Conversely, theduration of the signal cannot be changed without changing its frequencycontent (since the fundamental frequency is the reciprocal of the duration).7.4 Gabor RepresentationWe have seen that a �eld can represent a trajectory in either the time domainor the frequency domain. Since each has its advantages and disadvantages,often a combined representation is more suitable. In such a representationwe have a time-varying spectrum.The foundation for such a representation was laid �fty years ago by Den-nis Gabor, who also received the Nobel Prize for his invention of holography.Gabor (1946) observed that we perceive sound in terms of amplitude andpitch simultaneously, that is, auditory perception is not entirely in the timedomain or the frequency domain. He showed that any signal of �nite dura-tion and bandwidth could be decomposed into a �nite number of elementary23



information units, which he called logons. Each such unit controls the am-plitude and phase of a Gabor elementary function, which is an elementarysignal localized in time and frequency. The relevance of this to motor controlis that any motor control signal has a calculable Gabor-information content,7which determines a �nite number of coe�cients necessary and su�cient togenerate that signal.More precisely, at time t the measurement of a frequency component fin a signal will require that the signal be sampled for some �nite duration�t. Further, the uncertainty �f in the measured frequency will be lessthe longer the signal is sampled. Indeed, Gabor proves �t�f � 1=4� (theso-called Gabor Uncertainty Principle).8 (An intuitive presentation of theproof can be found in MacLennan 1991.) Therefore �t�f = 1=4� de�nesthe maximum possible de�nition of a (�nite duration, �nite bandwidth)signal. A signal of duration T and bandwidth F can be divided into a �nitenumber of elementary \information cells" of duration �t and bandwidth �f ,each localized at a di�erent time and frequency. Each cell has an associatedcomplex coe�cient, which gives the phase and amplitude of the signal inthe corresponding cell. Let M = T=�t and N = F=�f ; then there areMN elementary information cells; in Gabor's terms, the signal representsMN logons of information, namely, theMN coe�cients associated with thecells.9 This is the most information that can be represented by the signal,and these MN complex coe�cients are su�cient to regenerate the signal(which is its relevance for motor control).Let the cells be labeled (j; k) for j = 0; : : : ;M � 1 and k = 0 : : : ; N �1. Then cell (j; k) is centered at time j �t and frequency k �f . Eachcell corresponds to a Gabor elementary function localized to that time andfrequency, one form of which is a Gaussian-modulated sinusoid:Gjk(t; �) = exp "��(t � j�t)2�2 # cos[2�k�f(t � j�t � �)];where � = 2p� �t = �f = 2p� (the standard deviation of the Gaussianis �t). A signal  (t) is then a superposition of these elementary functionswith amplitudes �jk and phase delays �jk: (t) = M�1Xj=0 N�1Xk=0 �jkGjk(t; �jk):The coe�cients �jk and �jk are determined uniquely by the signal  .7Gabor's notion of information is not the same as Shannon's; they are complemen-tary rather than mutually exclusive. See MacLennan (1991) and citations therein for adiscussion.8The precise constant, 1=4� in this case, depends on the quanti�cation of the uncer-tainty of measurement (MacLennan 1991).9For technical reasons (see MacLennan 1991), these MN complex coe�cients compriseonly 2MN �M , as opposed to 2MN , independent real coe�cients.24



The Gabor representation shows us how a signal can be generated fromthe control coe�cients �jk and �jk : during the jth time interval of length�t we use the coe�cients to control a bank of Gaussian-modulated sinusoidgenerators (at frequencies k �f); �jk controls the amplitude of generator kand �jk controls its phase.10Although the clocking out at discrete time intervals of the coe�cientsis not impossible, it may seem a little unnatural. This can be avoided byreplacing the discrete matrices (�jk) and (�jk) by continuous �elds. In thisapproach the Gabor elementary function generators operate on a continuumof frequencies in the signal's bandwidth:G��(t; �) = exp "��(t� �)2�2 # cos[2��(t� � � �)];The output signal is then generated by an integration: (t) = Z T0 Z F0 ���G��(t; ���)d�d�:In fact, the output can be generated by a temporal convolution of the control�elds and a bank of Gabor signal generators, but the details will not bepresented here. It might be objected that the control �elds � and � wouldoccupy more neural space than either a direct or Fourier representation, butthe control �elds are relatively low resolution and may be represented morecompactly. The inequality �t �f � 1=4� gives the tradeo� in requiredresolution between the time and frequency axes of the control �elds.Unlike the Fourier representation, the Gabor representation allows fre-quency content and rate to be controlled independently. Thus the amplitudeand phase �elds (�; �) can be \clocked out" at a di�erent rate from thatat which they were stored, or even at a varying rate, without a�ecting themoment to moment frequency content of the signal. Conversely, shiftingthe representing �elds (�; �) along the frequency axis shifts the frequencycontent of the signal, but does not a�ect its duration or the time-evolutionof its spectrum. That is, the rate or time-evolution of the signal can becontrolled independently of the frequency band in which it is expressed.7.5 Wavelet & Multiresolution RepresentationsThe Gabor representation uses the same temporal resolution �t in eachfrequency band fk. However, a �t that is a good resolution at a low fre-quency may not be a good resolution at a high frequency. Therefore, in amultiresolution representation higher frequency bands may have a smaller(�ner) �t than lower frequency bands. Of course, the Gabor relationship10There is an additional complication in that the Gaussian envelopes extend outsidethe nominal �t (= standard deviation) widths of the elementary function. This could besolved by two or three banks of generators activated in rotation; however a better solutionlies in the Gabor transform, discussed below. 25



�t �f � 1=4� still holds, so the frequency resolution �f must increase(i.e. become coarser) at higher frequencies. This is often acceptable, how-ever, since the ratio of �f to the frequency remains constant (so this is alsocalled a \constant Q" representation, since Q = �f = f).In the most common arrangement, the central frequencies of the fre-quency bands increase by powers of 2, fk = 2kf0. Therefore, the widths ofthe frequency bands also increase by powers of 2, �fk = 2k�f0, but the timeresolutions decrease (become �ner) by powers of 2, �tk = 2�k�t0. In thiscase the elementary functions are generated by contracting and translatinga single mother wavelet:Wjk(t) = W00[2k(t� j �t0)];for j = 0; : : : ; 2kT=�t0 and k = 1; : : : ; N . The Gabor elementary function,or a slight variant of it called the Morlet wavelet, can be used as a motherwavelet. The signal then is represented by a linear superposition of wavelets: (t) = NXk=0 2kT = �t0Xj=0 cjkWjk(t):The generation of the signal is controlled by the triangular array of coe�-cients cjk . Like the continuous Gabor transform, there is also a continuouswavelet transform that represents the coe�cients in a continuous �eld. Alsolike the Gabor transform, the wavelet transform allows independent controlof frequency content and time-evolution. However, because of the essen-tially exponential measurement of frequency (2k in the wavelet vs. k in theGabor), translation along the frequency axis causes dilation or compressionof the signal's spectrum. A shift of �f changes the instantaneous spectrumfrom 	(f) to 	(f=2�f ). Much more could be said about the informationprocessing a�ordances of these representations, but it is beyond the scopeof this paper.7.6 Constraint satisfaction7.6.1 Representation as potential �eld Many problems in motorcontrol involve the satisfaction of constraints; in some cases the satisfactionis inherent in the mechanics of the motor system (and satisfaction takesplace through execution of the motion), but in others, such as path plan-ning, the optimum is determined before motion begins and may need to berevised as exigencies arise during its execution.As already discussed (Sections 2.4 and 4.2), constraints on motion arerepresented conveniently by a potential �eld over a spatial map. The po-tential �eld representation is quite general. For example, in addition to therepresentation of hard constraints, increased potential can represent the rel-ative di�culty of motion through a region of space. In this way, a pathcan be chosen that minimizes \work" (as de�ned by the potential function).26



Further, the potential can be de�ned over abstract spaces; for example, plan-ning a path through a \lexical space" could be a part of sentence generation.We will consider several ways in which an optimal path can be found by �eldcomputation.7.6.2 Least Action Principles There are many physical \least actionprinciples," in which local behavior (of a particle in a �eld, for example)causes the minimization of some global measure of \action" (e.g., time,distance, energy dissipation, entropy generation).11 These processes areoften governed by �elds, and therefore some optimization and constraint-satisfaction processes in the brain may be implemented through correspond-ing �eld computations.12 One example will be discussed briey.In the same way that electromagnetic radiation (such as light) \sni�sout" in parallel a minimum-time path through space (Fermat's Principle),so also neural impulse trains can �nd a minimum-time path through a neuralnetwork. If transmission delays encode the di�culty of passage through aregion of some (concrete or abstract) space, then the pulse train will followthe path of least di�culty, and it will automatically shift in parallel to anew optimum if regions change in di�culty; it is not necessary to reinitiatethe path planning process from the beginning.This works because, near an optimum path, the cost does not vary, to a�rst approximation, with small perturbations of the path, thus the impulsespassing near to the optimal path tend to stay in phase. On the other hand,farther away from the optimum the cost does vary, to a �rst approximation,with small perturbations, so impulses on nearby paths tend to di�er in phase.As a result the signals along nonoptimal paths tend to cancel each other out,so only the signals along near-optimal paths have signi�cant amplitude.13When di�culties change, the signals near the new optimum tend to reinforceeach other, while those that are no longer near an optimum begin to canceleach other out.Suppose the constant c represents the encoding of di�culty in terms oftime delay (in units of di�culty per millisecond, for example), so a timedi�erence of �t represents a di�culty di�erence of c�t. If the impulseshave period T , then we can see that for �t� T , signals will tend to cancel,whereas for �t � T they will tend to reinforce. Thus, impulses of periodT will be sensitive to di�erences in di�culty much greater than cT andinsensitive to those much less than cT ; they will �nd paths within cT of theoptimum. The sensitivity of search process can be adjusted by varying the11For a clear, insightful introduction to least action principles, it is di�cult to do betterthan Feynman et al. (1963{5, ch. II.19).12For example, least action principles are fundamental to Pribram's (1991) holonomicbrain theory (see especially Apps. A, B).13For this cancelation to occur, the impulses must be shaped so that their averageamplitude is zero. Also, the neurons must sample su�ciently many paths coming intotheir region to ensure that cancelation is possible; in e�ect, the neural net must representthe search space at su�ciently high resolution. 27



impulse frequency (higher frequency for a tighter optimum). Speci�cally,if the paths converging on a neuron represent a range of di�culties of atleast cT , then the neuron will be inactive, showing that it's not near theoptimal path. The neuron becomes more active, reecting its nearness tothe optimum, as the range of input di�culties decreases below cT .Further, the amplitude of the impulses can be used to encode the con�-dence in the di�culty estimate: regions of the space for which this con�denceis low will transmit signals more weakly than high-con�dence regions. Inthis way, di�culty estimates are weighted by their con�dence. Speci�cally,the e�ect on the signal of passing through a region of space is represented bymultiplying by a complex number keid=c, where d is the di�culty estimateand k is the con�dence of that estimate. Such a complex multiplicationcould be accomplished by synaptodendritic transmission, which introducesboth an amplitude shift k (reecting con�dence) and a time delay d=c (repre-senting di�culty). Such amplitude/phase modulations would be relatively�xed, subject to slow adaptive mechanisms. However, the same can beaccomplished more dynamically (allowing, for instance, an environmentalpotential �eld to be loaded into a brain region) by using an external biasto control the phase shift dynamically (Hop�eld 1995) and a signal to aconjunctive synapse to control the amplitude dynamically.7.6.3 Multiresolution satisfaction of constraints Constraints canalso be satis�ed by gradient descent on a potential surface representingtheir lack of satisfaction (Sects. 4.2 and 5.2). However, a problem withrelaxation techniques is that they may get trapped in local minima. Oneway to avoid this is to do the relaxation on a multiresolution representationof the potential function. At low resolution, local minima will tend to beaveraged away, so relaxation on a low-resolution representation will tend tomove toward the global minimum. By gradually increasing the resolution,the system can be allowed to settle into a more accurate representation ofthe global minimum. This can be accomplished, for example, by graduallyactivating the higher frequency bands of a Gabor or wavelet representationof the potential surface.8 Concluding RemarksWe have seen that �eld computation deals with information processing interms of �elds, which may be described as continuous distributions of data.Many neural phenomena are conveniently described as �elds, including neu-ron activity from large (brain area) to small (dendritic) scales, and it is oftenuseful to describe motor control and sensorimotor coordination in terms ofexternal �elds such as force �elds and sensory images. We have surveyedthe basic concepts of �eld computation, including both feed-forward �eldoperations and �eld dynamics resulting from recurrent connections. Adap-tive and learning mechanisms were discussed briey. The application of28
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