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Abstract

Values are critical for intelligent behavior, since values determine
interests, and interests determine relevance.  Therefore we address
relevance and its role in intelligent behavior in animals and machines.
Animals avoid exhaustive enumeration of possibilities by focusing on
relevant aspects of the environment, which emerge into the (cognitive)
foreground, while suppressing irrelevant aspects, which submerge into
the background.  Nevertheless, the background is not invisible, and
aspects of it can pop into the foreground if background processing deems
them potentially relevant.

This illuminates the differences between representation in natural
intelligence and (traditional) artificial intelligence.  Traditionally artificial
intelligence has started with simple, primitive features, and attempted to
construct from them a representation of the environment.  If too few
features are used, then the processing is imprecise and crude.  However,
if sufficient features are used to permit precise processing in all contexts,
then the system is defeated by the combinatorial explosion of features.
In natural intelligence, in contrast, we begin with a nervous system that
can process in real-time the “concrete space” represented by the interface
between the animal’s nervous system and its environment.  The
separation of foreground from background then serves to increase the
efficiency of this process.  Instead of trying to construct the concrete
world from abstract predicates, the brain projects the very high-
dimensional concrete world into lower dimensional subspaces; this
projection is context-sensitive and rapidly adaptable.  Therefore it is not
vulnerable to the combinatorial explosion.

We consider the connection between these ideas and the concepts of
intentionality, as discussed by Brentano and Husserl, and information,
as quantified by Shannon and Weaver.  In particular, the Shannon-
Weaver measure ignores relevance, which is essential to biological
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information.  Further, Brentano and Husserl characterized intentionality
in terms of the “directedness of consciousness,” which can be explained
as a decrease in the entropy (disorder) in the probability of processing,
which is produced by the separation of foreground from background.

Essential to these ideas are questions of how contexts are switched,
which defines cognitive/behavioral episodes, and how new contexts are
created, which allows the efficiency of foreground/background processing
to be extended to new behaviors and cognitive domains.

Next we consider mathematical characterizations of the
foreground/background distinction, which we treat as a dynamic
separation of the concrete space into (approximately) orthogonal
subspaces, which are processed differently.  Background processing is
characterized by large receptive fields which project into a space of
relatively low dimension to accomplish rough categorization of a novel
stimulus and its approximate location.  Such background processing is
partly innate and partly learned, and we discuss possible correlational
(Hebbian) learning mechanisms.

Foreground processing is characterized by small receptive fields which
project into a space of comparatively high dimension to accomplish
precise categorization and localization of the stimuli relevant to the
context.  We also consider mathematical models of valences and
affordances, which are an aspect of the foreground.  Cells processing
foreground information have no fixed meaning (i.e., their meaning is
contextual), so it is necessary to explain how the processing
accomplished by foreground neurons can be made relative to the context.
Thus we consider the properties of several simple mathematical models
of how the contextual representation controls foreground processing.

We show how simple correlational processes accomplish the contextual
separation of foreground from background on the basis of differential
reinforcement.  That is, these processes account for the contextual
separation of the concrete space into disjoint subspaces corresponding to
the foreground and background.

Since an episode may comprise the activation of several contexts (at
varying levels of activity) we consider models, suggested by quantum
mechanics, of foreground processing in superposition.  That is, the
contextual state may be a weighted superposition of several pure
contexts, with a corresponding superposition of the foreground
representations and the processes operating on them.  This leads us to a
consideration of the nature and origin of contexts.  Although some
contexts are innate, many are learned.  We discuss a mathematical
model of contexts which allows a context to split into several contexts,
agglutinate from several contexts, or to constellate out of relatively
acontextual processing.  Finally, we consider the acontextual processing
which occurs when the current context is no longer relevant, and may
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trigger the switch to another context or the formation of a new context.
We relate this to the situation known as “breakdown” in phenomenology.
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1.  Relevance and Intelligence

Intelligence presupposes values.  This is because a sense of relevance is
one of the central components of intelligence.  As Dreyfus (1979; Dreyfus &
Dreyfus 1986) has shown in his critiques of traditional approaches to artificial
intelligence, experts have a well-tuned sense of relevance that saves them from
having to consider irrelevant aspects of the situation at hand.  For example,
unlike the chess program, which must consider every possible move, if only to
reject it on the basis of heuristics, the chess master sees only the relevant
possibilities.  Instead of wasting time on irrelevant possibilities, as the program
does, the chess master can devote greater cognitive resources to possibilities
that are genuinely important.

However, a well-developed sense of relevance is not peculiar to
specialized activities, such as playing chess; rather it is characteristic of expert
(i.e., skillful) behavior throughout the animal kingdom.  The cat stalking a bird
is guided by relevance no less than the chess expert stalking an opponent’s
king.  Relevance then is a common denominator of intelligence, since it guides
effective allocation of cognitive resources.

Nevertheless, until recently (e.g. Sperber & Wilson 1986), relevance has
been the abandoned child of informatics.  Indeed the measure of information
enshrined in Shannon’s information theory (Shannon 1948; Shannon & Weaver
1949) ignores relevance.  As Hamming (1980, 103) has remarked, according to
Shannon’s measure, the book with the most information is a book of random
numbers (since it is completely unpredictable and therefore has no
redundancy).  This paradox arises from the divergence between our ordinary
understanding of information and Shannon’s formalization of it:  ordinarily, for
something to be informative, it must inform us of something relevant (actually
or potentially).

One cannot understand relevance without understanding context, for
aspects of the environment that are relevant in one behavioral context are not
in another.  Therefore, a significant component of intelligence is being able to
determine the appropriate context and to switch between contexts quickly.
When an aggressive dog appears nearby, the intelligent cat will switch contexts,
abandon its pursuit of the bird, and flee the potential predator.  When a fire
alarm sounds, the intelligent chess player abandons the game and evacuates
with everyone else.  Different aspects of the environment, such as “Exit” signs,
will become salient, while previously relevant chess configurations are ignored.

The phenomenologist philosophers, such as Husserl and Heidegger, have
done much to improve our understanding of relevance and context (see, e.g.,
Dreyfus 1982, 17-21; Dreyfus 1991, 118-20).  For example, by stressing that
we are “always already in a situation” (Dreyfus 1979, 53) they remind us that
perception and cognition mediated by a context-dependent sense of relevance is
the norm rather than an exception.  Indeed, comparatively context-free
cognition occurs only in “breakdown” situations (Dreyfus 1991, 70ff), when we
cannot readily determine a context appropriate to the situation.



-5-

The role of relevance and context can be understood in terms of the
information-theoretic concept of entropy.  If we think of a probability
distribution px over the myriad concrete components x of the situation, or
equivalently, if px represents the relative allocation of cognitive resources to x,
then the entropy of this distribution, H{p}, defined,

H{p}  =  −Σx  px  log px,

measures the “structure of relevance.”  The entropy is maximized (representing
maximum disorder and minimum structure) when the distribution is uniform,
that is, when all x get equal attention (as in context-free “breakdown”).  The
entropy is lower (representing greater structure) to the extent that attention is
focused on some x to the exclusion of others.  A lower entropy distribution
gives a more definite content to consciousness, by directing it toward some
aspects of the world at the expense of others (MacLennan 1988, 172-3).  For
the phenomenologists, such “directedness” is an essential characteristic of
consciousness and intentionality (Brentano 1925; Husserl 1931, §84).

Based on the foregoing discussion we can understand the critical role
played by values in intelligent behavior.  The term “value” has many senses,
even in philosophy (Frankena 1967).  I will use value to refer to anything that
an organism values (positively or negatively), that is, anything that it tends to
seek or avoid.  Thus, common positive values include food and sex, negative
ones include pain and injury.  Values define potential interests, which become
actual interests in an appropriate context.  Thus food is normally a potential
interest until the animal becomes hungry, whereupon it becomes an actual
interest.  Context-sensitive processes in the animal’s nervous system then
direct its attention to aspects of the environment relevant to its current
interests.  Jung (1978, 32-3) has stressed the central role of value:

The function of value — feeling — is an integral part of our
conscious orientation and ought not to be missing in a
psychological judgement of any scope, otherwise the model we are
trying to build of the real process will be incomplete.  Every psychic
process has a value quality attached to it, namely its feeling-tone.
This indicates the degree to which the subject is affected by the
process or how much it means to him (in so far as the process
reaches consciousness at all).  It is through the “affect” that the
whole subject becomes involved and so comes to feel the whole
weight of reality.

In the following sections I will consider processes that might subserve
contextual processing by identifying the appropriate context and using it to
control the extraction and processing of relevant information.
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2.  Function of Contextual Processing

2.1.  Function

In this paper I will often take a robotics perspective on the problems of
relevance, context and values.  That is, I will be asking the question:  How
ought contextual processing to operate in an intelligent autonomous robot?  In
this way, we will come to the biological functions of values and context from
first principles, which will illuminate their role in natural animal intelligence.
(See Kilmer, McCulloch & Blum 1969, especially §9,  for an earlier parallel
treatment of natural and artificial contextual processing systems.)

It appears to me that the principal role of contextual processing is the
efficient allocation of neural resources (cognitive processing power).  The
nervous system is metabolically expensive, and so each neuron must earn its
keep.  Contextual processing is more efficient by devoting greater resources to
relevant aspects of the world than to irrelevant aspects; allocation is biased
toward relevant aspects.  In this way, for fixed total resources, relevant aspects
may be processed more extensively than would be possible with an unbiased
allocation.

The disadvantage of contextual processing is a consequence of this same
bias, for the implicit judgment of relevance is historical, deriving from the
history of the individual and its species.  Thus there is a danger that the
organism or robot will be ill-equipped to handle the future, that it will be
insensitive to previously irrelevant aspects that are now relevant, that it will be
confined within the contextual boundaries of the past.

Therefore, if a robot or animal is to be adaptive in the face of a future
that differs from the past, it cannot ignore irrelevant aspects of its
environment; they must be processed, albeit with a lesser allocation of
resources.  Further, it must  be capable of detecting situations that do not fit
into known contexts, and be able to construct new contexts capturing the
“structure of relevance” in such situations.

Since contextual processing focuses cognition on restricted aspects of the
situation, to the partial neglect of other aspects, I will refer to the
disadvantages of contextual processing as the problem of becoming “single-
minded.”

2.2.  Means

We can identify a number of means by which contextual processing
accomplishes its function.  First, depending on the context, certain aspects of
the situation are projected into the foreground, where more resources are
devoted to them, while the remainder (or the whole situation) is projected into
the background, where it is processed with a lower resource investment and in
a relatively unbiased (context-free) way.  That is, currently irrelevant aspects
are in the background, but not “invisible.”  Further, the variable content of the
foreground implies that the fixed neural resources devoted to foreground
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processing must be capable of performing different functions depending on the
context.

Contextual processing, by directing attention toward some aspects,
directs it away from others; therefore, management of the context becomes a
critical task.  First, it is important to recognize when a new context should be
activated, either on the basis of foreground processing or, even more
importantly, on the basis of background processing.  This is, in effect, a
categorization problem:  classifying the current situation as a cognitive context.
(This view is especially consistent with Ruth Garrett Millikan’s characterization,
in her Presidential Address to the American Philosophical Association, of
categorization as a process of reindentification; see also Millikan 1984, ch. 16.)

Next, since several contexts may be demanding attention, it is important
to have a representation of the urgency or importance of these competing
demands, so that resources may be allocated most effectively.  For example,
hunger (for an animal) and low battery power (for a robot) are gradually
changing conditions that we expect to make progressively more insistent
demands; they can be set aside for a time, but eventually must be handled.  (In
psychological terms, this is the dynamical aspect of contextual processing.)
Finally, for flexibility of behavior, it is important that both the “context triggers”
and their dynamical strength be adaptable through learning.

Indeed, adaptiveness requires some means of assessing the success of
contextual processing, which is provided by various kinds of reinforcement.
Often this is the elimination of the conditions (e.g. hunger) that activated the
context.  However, just as the triggering conditions can be learned, so can the
reinforcing conditions, which is important to the successful pursuit of long-
term activities, for which direct (somatic) rewards may be delayed.  Further,
reinforcement must be contextual, otherwise it is difficult to relate it to its
preconditions.  This is easiest when the reinforcement occurs in the same
episode (interval of constant context) that led to it, but often the reinforcement
is delayed.  In these cases the reinforcement must include information
sufficient to cause reactivation of the context to which it applies.  (Of course, I
am not claiming these processes should be expected to work perfectly in either
animal or machine; I am trying to lay down conditions that should be satisfied
to have a higher probability of success.)  One of primary functions of
reinforcement is in determining relevance; aspects that have appeared in an
episode leading to reinforcement will be relevated (raised in relevance, from
Latin relevare, to lift up; Pribram 1991, 230).  Beyond this, reinforcement is
used to tune foreground processing to increase the probability of achievement
of positive reinforcement, or avoidance of negative reinforcement.

Finally, we must “expect the unexpected”; that is, there must be some
means of handling situations that do not fit into a recognized context.  This
could be known context arising in a new way (i.e., without its known trigger
conditions), or it could be an entirely new context.  Without knowing the
context, which tells us how to bias processing, the situation must be processed
in a relatively unbiased way, which is less efficient, since it doesn’t allow
resources to be diverted from irrelevant aspects.  Since this acontextual
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processing mode is relatively inefficient, it is important to activate an
appropriate context as quickly as possible.  Therefore, most of the cognitive
effort will be devoted to either categorizing the novel situation as a known
context, or in constructing a new context (a new contextual category) to
accommodate it.
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Figure 1

3.  General Framework

Having outlined the general functions of contextual processing and the
means to accomplish them, we can turn to a more specific model (Fig, 1).

3.1.  Concretum

We begin with an abstraction, the concretum, which is defined as the
space of all inputs to contextual processing, including all sensory and somatic
inputs as well as feedback from other brain areas.  More precisely, if we define
contextual processing to include all the processes that are not context-free,
then the concretum comprises all the neural processes on which contextual
processing depends.  In particular, it includes protocritical signals such as
comfort/discomfort (Pribram 1991, 200-14).  However, for the present
discussion, it is not important to decide exactly what the concretum includes;
it suffices to observe that it is of very high dimension.

I will use W to stand for the concretum, since it is, so far as the organism
is concerned, the concrete world.  Mathematically W is a set comprising all the
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possible states ψ of the concretum.  The state ψ(t) at a given time represents the
instantaneous activity of the neural tissue corresponding to the concretum; we
will generally think of this “instant” as having some finite duration, in accord

with the Gabor Uncertainty Principle.  That is, ψ(t) is extended in time as well
as space.

3.2.  Primacy of the Concrete

It is necessary to say a few words about the “primacy of the concrete,” a
lesson we learn from phenomenology.  Traditionally AI has tried to construct a
representation of the world by a combination of context-free features.  If too few
features are used, the representation is crude and incomplete, but the use of
an increasing number of features eventually leads to a combinatorial explosion
of possibilities.  The traditional AI program is ultimately defeated by the Scylla
and Charybdis of either processing all the possibilities (context-free processing)
or risking missing the unexpected (single-mindedness).

Biological intelligence does not have this shortcoming, and it is important
to consider why.  Biological intelligence begins with the concrete world with
whatever resolution and dimensions it is represented by its nervous system.
For example, the human brain has millions of sensory inputs, which suggests
the dimension of our concrete world.  For biological intelligence, we begin with
the assumption that the organism can process its concretum in real time (for
otherwise the species would not survive).  Contextual processing improves the
efficiency of this process by a context-dependent projection of some aspects of
the concretum into a subspace where they can be processed with greater
precision.  Thus, instead of the context-free features of traditional AI, the
nervous system improves its performance by means of context-sensitive
aspects.

At root, we are really dealing with the gap between the continuous and
the discrete.  We can divide a continuum into smaller continua, some of which
may be magnified; that is what biological intelligence accomplishes through
context-sensitive projection of aspects of the concretum.  On the other hand, a
continuum cannot be constructed from any finite number of discrete elements;
that is the impossibility that traditional AI tried to accomplish.  As Zeno
observed 2500 years ago in his Dichotomy, “There is no motion, because what
moves must arrive at the middle of its course before it reaches the end” (Aris.
Phys. 239b11).  We apparently cannot get from A to B in any finite number of
discrete steps, each of which goes half the remaining way.  So also, no
increasing number of more finely divided abstract context-free features will
capture the concreteness of the world.  Yet in everyday life we go from A to B all
the time; continuous motion gets us from A to B and through all the points in
between.  A posteriori we can divide the motion into parts, but the continuous
motion is primary, and its division into discrete parts secondary and
approximate.
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3.3.  Context and the Foreground & Background Projections

First we postulate a space Χ of possible context representations χ; I will
consider later (section 5) what they may “look like.”  We postulate two

additional spaces Φ and Γ representing possible states of the foreground and

background, and corresponding context-dependent projections f: Χ × W → Φ, g:

Χ × W → Γ (i.e., figure and ground).  Thus, φ = f(χ, ψ) is the foreground

representation in context χ of the concrete state ψ, and γ = g(χ, ψ) is the
corresponding background.1  Note that f and g are “projections” in a general
sense:  so g represents the state of the concretum in a manner that is unbiased
with respect to context, but optimized for the detection of potential context
changes.  Conversely, f projects the concrete state in a manner that is
specialized to the context at that time; that is, it is tuned to information
relevant to that context.  This implies that neurons in the foreground projection
may be used differently in different contexts, which is supported by evidence of
place cells in rat hippocampus (O’Keefe 1986, 82-4; Pribram 1991, 233-4).

3.4.  Control of Foreground Processing

Since the primary goal of contextual processing is to allocate neural
resources to different processing tasks in different contexts, we define the
foreground process to be a function of context as well as of the foreground

representation, F: Χ × Φ → ΩF.  The output space of foreground processing ΩF
will be left unspecified for the time being, but it must include all the outputs of

attentive cognition, including those controlling motor behavior.  Similarly, G: Χ

× Γ → ΩG is the background process with its output in ΩG.  Notice that the

foreground and background processes F[χ, f(χ, ψ)] and G[χ, g(χ, ψ)] might be
computed directly without explicit representation in the brain of the projections

φ = f(χ, ψ) and γ = g(χ, ψ), although it is conceptually simpler to consider them as
two-step processes.

3.5.  Context Activation

As noted previously, the primary function of background processing is
the switching of contexts, thus avoiding “single mindedness.”  However,
attentive foreground processing can also detect conditions for the activation of

contexts.  Therefore we define an “arbitration function” A: ΩF × ΩG → Χ which
takes the results of foreground and background processing and determines the
current context.  This arbitration is based on the strength with which contexts
are activated, which is one of the affective components of the outputs of both
foreground and background contextual categorization processes.  In our model,

the context representations are normalized ||χ|| = 1, so that the magnitude of the

1I think it is likely that the background projection is independent of the context, but the
current formulation is more general and permits, for example, subtraction of the foreground
information from the background.
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output aχ of the contextual categorization process reflects the strength of its

activation, ||aχ|| = |a|.

3.6.  Reinforcement & Adaptation

Finally, there are adaptive processes that, on the basis of reinforcement,
adjust the foreground and (perhaps) background projections and foreground
and background processing.  This is because (1) the foreground aspects are
relevated on the basis of their role in achieving positive reinforcement or in
avoiding negative reinforcement, (2) foreground processing must be adapted to
accomplish its purpose more effectively, and (3) background processing needs
to adapt to identify context switches more efficiently and reliably.  This requires
determining both the context to be activated and the strength of its activation.

Since they are adaptive, the foreground and background projections and
processes are all repositories of “memory.”  This memory mediates the
activation of contexts, in particular, the strength of their activation and so their
potential for commanding the animal’s behavior; it also mediates
reinforcement, much of which is learned, though it be based on a protocritical
core.  For example, increasing hunger corresponds to increasing activation of a
food-seeking context which causes restaurants, refrigerators, etc. to become
more salient.  Nevertheless, less tangible learned reinforcements, both current
and future expected, may raise the activation of the doing-mathematics
context, sufficient to keep us working on the derivation rather than heading for
the refrigerator.

In effect, the input to the reinforcement process corresponds to the
evaluative dimension (pleasant/unpleasant, etc., thus what it tends to seek or
avoid), whereas the input to arbitrator corresponds to the intentional
dimension (important/unimportant, thus what grabs the animal’s attention).
In terms adapted from Miller, Galanter & Pribram (1960, 62), we can say that
memory — in the broad sense, both individual and species (cf. Jung 1978, 27-
9) — is used to evaluate the current image, which in turn activates a context by
which current value may be improved.  Motive results from a combination of
value (implicit in the evaluation) and intention (implicit in the context).

4.  Contextual Processing

There are several ways that context can control foreground processing,
thereby allowing neural resources to be used differently in different contexts.  I
will describe two, both based on bilinear (product forming) synapses.

4.1.  Inner-product Model

Consider a single neuron in foreground processing and the inner product

its dendritic net forms with the foreground representation φ (including here the
results computed by other foreground processing neurons) before it is passed
through any nonlinear activation function.  For contextual processing, we
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would like the possibility of a different inner product 〈φ, pk〉 = φTpk in each

context χk.  (Recall that fields such as φ and χk. are taken to be temporally as

well as spatially extended, therefore the characteristic pattern pk represents the

spatiotemporal pattern to which the neuron is tuned by the context.  Further,

apparent matrix expressions such as φTpk  involve spatiotemporal inner

products.)  This context-dependent process is accomplished by the bilinear

foreground computation F(χ, φ) = φTMχ where M = Σj pj χj
T (a linear

superposition of spatiotemporal outer products).  The inner product will be
exact if contextual representations are orthonormal; it will be inexact to the
extent they are not.  Reinforcement can lead to this kind of contextual
processing through simple correlational learning, for example,

∆Μ  ∝  ± φχT.

(The sign of the change is + or − depending on whether the reinforcement is
positive or negative.)

4.2.  Correlation Model

Pribram (1991, 233-8) reviews O’Keefe’s (1986, 82-4) observation that
hippocampal function resembles holographic reconstruction with the theta-
rhythm serving as a reference beam.  Therefore I will briefly consider how the
context can control foreground processing through a holographic (i.e.
convolutional or correlational) mechanism.

To begin, we define the correlation χ∗ψ of two spatiotemporally extended

fields, χ and ψ.  The j-th spatial component of the correlation at time t is given
by a superposition of temporal correlations:

(χ ∗ ψ)j(t)  =  Σk 
(χk-j ∗ ψk)(t).

These correlations can be computed by linear dendritic nets that have impulse

responses hk(t) = ψk(−t).  Expanding the temporal correlations by integration

over the temporal extension T, we get:

(χ ∗ ψ)j(t)  =  Σk  ∫
T 

χk-j(s−t)  ψk(s) ds.

Again, we would like, in the ideal case, the linear input to a foreground

neuron to be 〈φ, pj〉 in context χj.  If the “hologram” η = Σk χk ∗ pk  is a

superposition of correlations between contexts and patterns, and if ρ = χj ∗ φ is

the correlation of context χj with input φ, then we can show that
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〈η, ρ〉  =  〈αj  ⊗ pj, φ〉  +  Σj≠k 
〈κ jk⊗ pk, φ〉,

where ⊗ stands for convolution, αj  = χj ∗ χj  is the autocorrelation of context χ j ,

and κ jk =  χj ∗ χk is the cross-correlation of contexts χj  and χk .  The effect of
the first convolution is to “blur” the characteristic pattern pj by the

autocorrelation field αj.  In the ideal case, αj  = δ (a Dirac delta function), κ jk =

0, and we have exact selection of the foreground computation, 〈η, ρ〉  =  〈φ, pj〉.
The inner product can be computed in two different ways:

〈η, ρ〉  =  〈η, χ ∗ φ〉  =  〈χ ∗ η, φ〉.

In the first case, 〈η, χ ∗ φ〉, the context and input are allowed to interfere

spatiotemporally, and an inner product is formed with the “hologram” η.  In the

second case, 〈χ ∗ η, φ〉, the context is allowed to interfere spatiotemporally with
the “hologram,” and an inner product is formed between the result and the
input.  The “hologram” results from positive or negative reinforcement of the
interference pattern (correlation) between the current context and the
reinforced input,

∆η  ∝  ± χ∗φ.

4.3.  The Foreground Projection

Pribram (1991, Apps. C − F) defines a context as a complete orthonormal
system (CONS) defined by the eigenvectors of the dendritic microprocesses
defined by the neural wave equation; they are the stable states that constitute
an episode.  In effect, the context, as CONS, defines the projection of the state
onto a set of axes represented by the eigenvectors.  Our model includes
Pribram’s as a special case by abstracting away from the details of the neural
wave equation (and by taking what amounts to time-windowed or wavelet view).

In our model the foreground projection, φ = f(χ, ψ), is controlled in the
same ways as foreground processing.  If we take projection to be linear process,

then φ i = ψT Mi χ for the inner-product encoding, and φ i =  〈ηi, χ ∗ ψ〉  =  〈χ ∗ ηi, ψ〉
for the correlation encoding.  Based on these equations we can define the
impulse response or characteristic pattern of the dendritic net of a foreground

neuron, hi = Mi χ or hi = χ ∗ η i , respectively.  Thus, keyed by the context, each

foreground neuron φi  receives some linear combination of spatiotemporal

“microfeatures” (wavelets) from the concretum.  If the neuron is unused in that
context (i.e. is not a part of a foreground aspect in that context) then its
characteristic pattern is the zero field; that is, hi  = 0.

Adaptation also takes place in the same ways as in foreground

processing, ∆Mi  ∝  ± ψχT or ∆ηi  ∝  ± χ∗ψ.  In this case positive or negative
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reinforcement is strengthening a particular projection into foreground
dimension i, up to some maximum.  This strength, which corresponds to the
relevance of a contextual aspect, can be measured by the norm of the

characteristic pattern, ||hi||.  The entropy of a context can be defined in terms of

the norm of the total of the characteristic patterns of all foreground neurons, h*

= ||Σi hi||.  Thus, h* = ||(Σi M i)χ|| or h* = ||χ ∗ (Σi ηi)||, respectively.  The entropy of

context χ is

Hχ = −(Σk h*
k log h*

k) / (Σk h*
k)

It seems likely to me that relevation is primarily a one-way process; that
is, once reinforcement has made an aspect relevant in some context, there is
little if anything that can make it irrelevant.  That is, delevation (from Latin
delevare, to smooth out) does not take place (or takes place extremely slowly).
(From a robotics standpoint, this is what we would want, because relevant
aspects need not occur in a every instance of a context.)  Delevation is different
from an animal learning to ignore an unreinforced foreground aspect (which is
still relevant, in spite of being unreinforced).  Relevation is adaptation of the
foreground projection f; learning to ignore an unreinforced (yet relevant)
stimulus occurs through adaptation of the foreground process F.2

5.  Representation of Contexts

The preceding discussion shows that contextual representations work
best if (in the inner-product case) they are orthonormal, or if (in the
correlational case) they are strongly autocorrelated (i.e. they are aperiodic) and
weakly cross-correlated.  In this section I will consider in more detail the
implications of orthonormality and its lack.

5.1.  Approximate Discreteness

To a first approximation, contexts form a discrete set.  For example, it
has been estimated that a vertebrate animal has a couple dozen “behavior
modes” (contexts), which are discrete and mutually incompatible (Kilmer & al.
1969).  Typical behavior modes include eating, drinking, hunting, exploring,
fighting, fleeing, mating, nest building, grooming, sleeping, and so forth.  There
are several reasons, however, for considering this discreteness to be only
approximate.

First, we must say what it means, in mathematical terms, for a set to be
discrete.  A set is discrete (or has the discrete topology) if there are only two
possible distances between the elements of the set:  they have a distance of 0 if
they are the same element, and they have a distance of 1 if they are not the
same.  That is,

2Delevation probably takes place during the creation of a context from the unbiased
“breakdown” context, since unreinforced aspects must be suppressed and left to background
processing.
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d(x, x) = 0,  and  d(x, y) = 1 if x ≠ y.

It is easy to show that a set of orthonormal vectors forms a discrete set under
the inner-product metric (the metric defined by the L2 norm):

d(u, v)  =  || u − v || /  √2

=  √[(u − v)2 / 2]

=  √[ ||u||2 + ||v||2 − 〈u, v〉 ]

=  √[ 1 − 〈u, v〉 ]

=  0 if u = v,  or  = 1 if u ≠ v.

Therefore, the set of contexts will be discrete to the extent that the context

representations χ are orthonormal.  This is biologically unrealistic, so in
practice we expect the contexts to form “clusters” or “constellations” with some
overlap between them.

5.2.  Innate and Learned Contexts

Although some vertebrates may have a fixed set of 25 or so behavioral
modes, this is certainly not the case for human beings; we acquire many new
contexts, such as playing chess, doing mathematics, and delivering papers at
conferences.  Like innate contexts, learned contexts define a space of relevant
aspects of the world.  We have already considered how, given an orthonormal
representation for a context, the corresponding foreground projection and
process can be learned, but we have not addressed the creation of a contextual
representation.

5.3.  Creation of Contexts

Representations for (approximately discrete) contexts can be created by a

variety of orthogonalization processes.  The existing context representations χ1,

…, χn span a space, and a representation for a new context χn+1 can be chosen

from the orthogonal complement of that space.  Recalling that contextual
categorization is a problem of reidentifying a relevance structure, we can see
that the creation of a contextual representation requires correlating the “trigger
conditions” that will activate the context (as determined by background
processing or prior foreground processing) with elements of the concretum that
have emerged as potentially relevant.  Since the trigger conditions are a priori
relevant, they form a kernel around which a relevance structure can develop.
Furthermore, new contexts often develop out of “breakdown” situations in
which processing is acontextual, that is, attentive but unbiased.
Reinforcement in this mode allows a tentative separation of the relevant from
the irrelevant.

Suppose therefore that in acontextual processing, the activity of certain

foreground neurons φr1, …, φrm has been reinforced, while others φq1, …, φqn
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have not.  We want to create a contextual representation χ that relevates r1, …,

rn but delevates q1, …, qn.  That is, we want ψΤ Mri χ = 1 and ψΤ Mqj χ = 0.  This

can be accomplished by picking a (normalized) χ that is in the subspace

spanned by Mri
Τψ but orthogonal to the subspace spanned by the Mqj

Τψ.

Further relevation can then take place by adjusting the Mi on the basis of

reinforced foreground processing in context χ.

5.4.  Superposition of Contexts

Introspection suggests that at any given time we can be operating in a
limited number of compatible contexts.  For example, we can do a
mathematical derivation or plan a lecture while we are driving; we can look for
a restaurant or a mailbox at the same time.  The model of contextual
processing that we have presented is easily extended to accommodate “parallel
processing” in multiple contexts.  Much as a quantum-mechanical system can
be in a linear superposition of pure states, so an organism can be in a
superposition of contexts.  If we let ak represent the strength of activation of

context k, then the effective context is a linear superposition χ = Σk ak χk.

Since the foreground projection, as we have defined it, is linear, the
foregrounds will also exist in superposition.  Of course, they could interfere
with each other, but the lack of such interference is part of what makes
contexts compatible and therefore amenable to parallel processing in
superposition.  For example, much of the visual processing involved in the
looking-for-restaurant context is compatible with that in the looking-for-
mailbox context.

Similarly, since the dendritic processes are linear, a superposition of
contexts will create a corresponding superposition of dendritic states in
foreground processing.  Again, to the extent that the processes do not interfere,
they can proceed in parallel.  This will depend on the extent to which they have
compatible, or at least relatively orthogonal, foreground projections.

It seems likely that the interference must limit the extent of parallel
processing in superposition.  Given a certain level of primary activation by
“trigger conditions,” competitive or other nonlinear processes may ensure that
one context is strongly activated, and at most a couple others are at most
weakly activated.  In that way, the “noise” contributed by less important
contexts would be kept at a manageable level.  Furthermore, overt behavior
would, for the most part, be under the control of a single context, thus giving
the illusion of “mutually incompatible modes of vertebrate behavior” (Kilmer &
al. 1969, 279).
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