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1 IntroductionThis paper is a follow on paper to LAPACK WN 101 [2] which proposed an inter-face to some of the LAPACK [1] linear equation routines. Following commentsto that paper we have added some additional functionality to the interface. Inthis paper we also consider the symmetric eigenproblem. We welcome commentson the proposal given here. Our emphasis at this stage is on the design of animproved user-interface to the package, taking advantage of the considerablesimpli�cations which Fortran 90 allows (see [3]).The Fortran 90 interface can be implemented initially by writing Fortran 90jackets to call the existing Fortran 77 code, and can persist unchanged even ifthe underlying Fortran 77 LAPACK code is rewritten to take advantage of thenew features of Fortran 90.Although we would like to maintain a comparable level of performance tothe Fortran 77 LAPACK code, due to the immaturity of many of the currentFortran 90 compilers, we cannot usually at present achieve this same level ofperformance. We reiterate that our goal is to provide a true Fortran 90 inter-face to LAPACK. We are aware of certain modi�cations to the interface whichcould enhance performance, but these modi�cations complicate the interface byrequiring Fortran 77-ish constructs. If performance is the main focus behindthe user's application, we recommend that the user call the Fortran 77 interfacedirectly.For convenience we use the name \LAPACK 77" to denote the existingFortran 77 package, and \LAPACK 90" to denote the new Fortran 90 interfacewhich we are proposing.2 LAPACK 77 and Fortran 90 Compilers2.1 Linking LAPACK 77 to Fortran 90 programsLAPACK 77 can be called from Fortran 90 programs in its present form |with some quali�cations. The quali�cations arise only because LAPACK 77 isnot written entirely in standard Fortran 77; the exceptions are the use of theCOMPLEX*16 data type and related intrinsic functions, as listed in Section 6.1of [1]; these facilities are provided as extensions to the standard language bymany Fortran 77 and Fortran 90 compilers. Equivalent facilities are providedin standard Fortran 90, using the parameterized form of the COMPLEX data type(see below).To link LAPACK 77 to a Fortran 90 program (which must of course becompiled by a Fortran 90 compiler), one of the following approaches will benecessary, depending on the compilers available.1. Link the Fortran 90 program to an existing LAPACK 77 library, compiledby a Fortran 77 compiler. This approach can only work if the compilers5



have been designed to allow cross-linking.2. If such cross-linking is not possible, recompile and archive the LAPACK 77library with the Fortran 90 compiler, provided that the compiler acceptsCOMPLEX*16 and related intrinsics as extensions.3. If these extensions are not accepted and the user requires this data type,the LAPACK 77 code must be rewritten in standard Fortran 90 (see be-low).Some conversions needed to use the double precision complex data typein standard Fortran 90 code from LAPACK 77 are:COMPLEX*16 ) COMPLEX(KIND=Kind(0.0D0)DCONJG(z) for COMPLEX*16 z ) CONJG(z)DBLE(z) for COMPLEX*16 z ) REAL(z)DIMAG(z) for COMPLEX*16 z ) AIMAG(z)DCMPLX(x,y) for DOUBLE PRECISION x, y ) CMPLX(x,y,KIND=Kind(0.0D0))One further obstacle may remain: it is possible that if LAPACK 77 hasbeen recompiled with a Fortran 90 compiler, it may not link correctly to anoptimized assembly-language BLAS library that has been designed to interfacewith Fortran 77. Until this is recti�ed by the vendor of the BLAS library,Fortran 77 code for the BLAS must be used.2.2 Interface blocks for LAPACK 77Fortran 90 allows one immediate extra bene�t to be provided to Fortran 90 usersof LAPACK 77, without making any further changes to the existing code: thatis a module of explicit interfaces for the routines. If this module is accessed bya USE statement in any program unit which makes calls to LAPACK routines,then those calls can be checked by the compiler for errors in the numbers ortypes of arguments.The module can be constructed by extracting the necessary speci�cationstatements from the Fortran 77 code with a little modi�cation, as illustrated bythe following example containing an interface for the single routine SSYEV:
6



MODULE LA_SF77MODINTERFACESUBROUTINE SSYEV( JOBZ, UPLO, N, A, LDA, W, &WORK, LWORK, INFO )USE LA_PRECISION, ONLY: WP => SPCHARACTER(LEN=1), INTENT(IN) :: JOBZ, UPLOINTEGER, INTENT(IN) :: LDA, LWORK, NINTEGER, INTENT(OUT) :: INFOREAL(WP), INTENT(INOUT) :: A(LDA,*)REAL(WP), INTENT(OUT) :: W(*), WORK(*)END SUBROUTINE SSYEV� � � � � � � � �END INTERFACE � � � � � � � � �END MODULE LA_SF77MODA module containing interfaces for all of the routines in LAPACK 77 will berequired; here we provide one module per precision, for example LA SF77MOD,LA DF77MOD, LA CF77MOD, and LA ZF77MOD, and one module for auxil-iary routines, LA AUXMOD.3 Proposed Design of the LAPACK 90 interfaceIn the design of a Fortran 90 interface to LAPACK, we propose to take advantageof the features of the language listed below.1. Assumed-shape arrays: All array arguments to LAPACK 90 routineswill be assumed-shape arrays. Arguments to specify problem dimensionsor array dimensions will not be required.This implies that the actual arguments supplied to LAPACK routinesmust have the exact shape required by the problem. The most convenientways to achieve this are:� using allocatable arrays, for example:REAL, ALLOCATABLE :: A(:,:), B(:). . .ALLOCATE( A(N,N), B(N) ). . .CALL LA_GESV( A, B )� passing array sections, for example:7



REAL :: A(NMAX,NMAX), B(NMAX). . .CALL LA_GESV( A(:N,:N), B(:N) )Zero dimensions (empty arrays) will be allowed.There are some grounds for concern about the e�ect of Fortran 77 assumed-size arrays on performance because compilers cannot assume that theirstorage is contiguous. The e�ect on performance will of course depend onthe compiler, and may diminish in time as compilers become more e�ectivein optimizing compiled code. See section 7.2. Automatic allocation of work arrays: Workspace arguments and ar-guments to specify their dimensions will not be needed. In simple cases,automatic arrays of the required size can be declared internally. In othercases, allocatable arrays may need to be declared and explicitly allocated.Explicit allocation is needed in particular when the amount of workspacerequired depends on the block-size to be used (which is not passed as anargument).3. Optional arguments: In LAPACK 77, character arguments are fre-quently used to specify some choice of options. In Fortran 90, a choiceof options can sometimes be speci�ed naturally by the presence or ab-sence of optional arguments: for example, options to compute the left orright eigenvectors can be speci�ed by the presence of arguments VL or VR,and the character arguments JOBVL and JOBVR which are required in theLAPACK 77 routine DGEEV, are not needed in LAPACK 90.In other routines, a character argument to specify options may still berequired, but can itself be made optional if there is a natural defaultvalue: for example, in DGESVX the argument TRANS can be made optional,with default value 'N'.Optional arguments can also help to combine two or more routines intoone: for example, the functionality provided by the routine DGECON canbe made accessible by adding an optional argument RCOND to DGETRF.4. Generic Interfaces: The systematic occurrence in LAPACK of analo-gous routines for real or complex data, and for single or double precisionlends itself well to the de�nition of generic interfaces, allowing four di�er-ent routines to be accessed through the same generic name.Generic interfaces can also be used to cover routines whose argumentsdi�er in rank, and thus provide a slight increase in exibility over LA-PACK 77. For example, in LAPACK 77, routines for solving a systemof linear equations (such as DGESV), allow for multiple right hand sides,and so the arrays which hold the right hand sides and solutions are always8



of rank 2. In LAPACK 90, we can provide alternative versions of the rou-tines (covered by a single generic interface) in which the arrays holdingthe right hand sides and solutions may either be of rank 1 (for a singleright hand side) or be of rank 2 (for several right hand sides).5. Naming: For the generic routine names, we propose:� the initial letter (S, C, D or Z) is simply omitted.� the letters LA are pre�xed to all names to identify them as names ofLAPACK routines.In other respects the naming scheme remains the same as described inSection 2.1.3 of [1]: for example, LA GESV.It would also be possible to de�ne longer, more meaningful names (whichcould co-exist with the shorter names), but we have not attempted thishere.We have not proposed the use of any derived types in this Fortran 90interface. They could be considered | for example, to hold the details ofan LU factorization and equilibration factors. However, since LAPACKroutines are so frequently used as building blocks in larger algorithms orapplications, we feel that there are advantages in keeping the interfacesimple, and avoiding possible loss of e�ciency.6. Error-handling:In LAPACK 77, all documented routines have a diagnostic output argu-ment INFO. Three types of exit from a routine are allowed:successful termination: the routine returns to the calling program withINFO set to 0.illegal value of one or more arguments, or error in store allocation:the routine sets INFO < 0 and calls the auxiliary routine XERBLA; thestandard version of XERBLA issues an error message identifying the�rst invalid argument, and stops execution.failure in the course of computation: the routine sets INFO > 0 andreturns to the calling program without issuing any error message.Only some LAPACK 77 routines need to allow this type of error-exit; it is then the responsibility of a user to test INFO on return tothe calling program.For LAPACK 90 we propose that the argument INFO becomes optional:if it is not present and an error occurs, then the routine always issues anerror message and stops execution, even when INFO > 0 (in which casethe error message reports the value of INFO). If a user wishes to continue9



execution after a failure in computation, then INFO must be supplied andtested on return.This behaviour simpli�es calls to LAPACK 90 routines when there is noneed to test INFO on return, and makes it less likely that users will forgetto test INFO when necessary.If an invalid argument is detected, we propose that routines issue an errormessage and stop, as in LAPACK 77. Note however that in Fortran 90there can be di�erent reasons for an argument being invalid:illegal value : as in LAPACK 77.invalid shape (of an assumed-shape array): for example, a 2-dimensionalarray is not square when it is required to be.inconsistent shapes (of two or more assumed-shape arrays): for exam-ple, arrays holding the right hand sides and solutions of a system oflinear equations must have the same shape.No more core allocation needed for the LAPACK 77.The speci�cation could be extended so that the error-message could dis-tinguish between these cases. For more detail see in appendix section D.2.4 Prototype LAPACK 90 InterfacesWe have implemented Fortran 90 jacket procedures to the subset of LAPACK 77routines concerned with the solution of systems of linear equationsAX = B for ageneral matrix A | that is, the driver routines xGESV and xGESVX, and the com-putational routines xGETRF, xGETRS, xGETRI, xGECON, xGERFS and xGEEQU. Wealso consider here the symmetric and Hermitian eigenproblem routines xSYTRD,xSYGV, xSYGST, xORGTR, xSYEV, xSYEVD, xSYEVX and the factor routine xPOTRFwhich is strongly connected with the xSYGST subroutines.Here we present calling sequences for each of the proposed routines, the�rst without using any of the optional arguments, the second using all thearguments. For ease of comparison between LAPACK 77 and LAPACK 90,we have retained the same names for the corresponding arguments, although ofcourse Fortran 90 o�ers the possibility of longer names (for example, IPIV couldbecome PIVOT INDICES). In this prototype implementation, we have assumedthat the code of LAPACK 77 is not modi�ed.Detailed documentation of the proposed interfaces can be found in Appen-dices A, B and C.4.1 Solution of Systems of Linear Equations for a GeneralMatrix ALA GESV (simple driver): 10



CALL LA_GESV( A, B )CALL LA_GESV( A, B, IPIV, INFO )Comments:� The array B may have rank 1 (one right hand side) or rank 2 (severalright hand sides).LA GESVX (expert driver):CALL LA_GESVX( A, B, X )CALL LA_GESVX( A, B, X, AF, IPIV, FACT, TRANS, EQUED, R, C, &FERR, BERR, RCOND, RPVGRW, INFO )Comments:� The arrays B and X may have rank 1 (in which case FERR and BERR arescalars) or rank 2 (in which case FERR and BERR are rank-1 arrays).� RPVGRW returns the reciprocal pivot growth factor (returned in WORK(1)in LAPACK 77).� the presence or absence of EQUED is used to specify whether or notequilibration is to be performed, instead of the option FACT = 'E'.LA GETRF (LU factorization):CALL LA_GETRF( A, IPIV )CALL LA_GETRF( A, IPIV, RCOND, NORM, INFO )Comments:� instead of a separate routine LA GECON, we propose that optional ar-guments RCOND and NORM are added to LA GETRF to provide the samefunctionality in a more convenient manner. The argument ANORMof xGECON is not needed, because LA GETRF can always compute thenorm of A if required.LA GETRS (solution of equations using LU factorization):CALL LA_GETRS( A, IPIV, B )CALL LA_GETRS( A, IPIV, B, TRANS, INFO )11



Comments:� The array B may have rank 1 or 2.LA GETRI (matrix inversion using LU factorization):CALL LA_GETRI( A, IPIV )CALL LA_GETRI( A, IPIV, INFO )LA GERFS (re�ne solution of equations and optionally compute error bounds):CALL LA_GERFS( A, AF, IPIV, B, X )CALL LA_GERFS( A, AF, IPIV, B, X, TRANS, FERR, BERR, INFO )Comments:� The arrays B and X may have rank 1 (in which case FERR and BERR arescalars) or rank 2 (in which case FERR and BERR are rank-1 arrays).LA GEEQU (equilibration):CALL LA_GEEQU( A, R, C )CALL LA_GEEQU( A, R, C, ROWCND, COLCND, AMAX, INFO )4.2 Symmetric and Hermitian Eigenproblem RoutinesLA SYEV / LA HEEV (all eigenvalues and optionally eigenvectors):CALL LA_SYEV / LA_HEEV( A, W )CALL LA_SYEV / LA_HEEV( A, W, JOBZ, UPLO, INFO )LA SYEVD / LA HEEVD (all eigenvalues and optionally eigenvectors using a di-vide and conquer algorithm):CALL LA_SYEVD / LA_HEEVD( A, W )CALL LA_SYEVD / LA_HEEVD( A, W, JOBZ, UPLO, INFO )LA SYEVX / LA HEEVX (selected eigenvalues and optionally eigenvectors):12



CALL LA_SYEVX / LA_HEEVD( A, W )CALL LA_SYEVX / LA_HEEVD( A, W, JOBZ, UPLO, VL, VU, IL, IU, &M, IFAIL, ABSTOL, INFO )LA SYGV / LA HEGV (all eigenvalues and optionally eigenvectors of the formAx = �Bx, ABx = �x, or BAx = �xCALL LA_SYGV / LA_HEGV( A, B, W )CALL LA_SYGV / LA_HEGV( A, B, W, ITYPE, JOBZ, UPLO, INFO )LA SYGST / LA HEGST (reduction to standard form):CALL LA_SYGST / LA_HEGST( A, B )CALL LA_SYGST / LA_HEGST( A, B, ITYPE, UPLO, INFO )LA SYTRD / LA HETRD (reduction to tridiagonal form):CALL LA_SYTRD / LA_HETRD( A, TAU )CALL LA_SYTRD / LA_HETRD( A, TAU, UPLO, INFO )LA ORGTR / LA UNGTR (generates an orthogonal matrix):CALL LA_ORGTR / LA_UNGTR( A, TAU )CALL LA_ORGTR / LA_UNGTR( A, TAU, UPLO, INFO )LA POTRF (generates an orthogonal matrix):CALL LA_POTRF( A )CALL LA_POTRF( A, UPLO, RCOND, NORM, INFO )5 DocumentationIn appendices A, B and C, we give a �rst attempt at draft documentationfor these routines. The style is somewhat similar to that of the LAPACKUsers' Guide, but with various obvious new conventions introduced to handlethe generic nature of the interfaces. 13



6 Test SoftwareAdditional test software is being developed to test the new interfaces. Atpresent, the test software is a modi�ed version of the LAPACK 77 Test Suite.7 Performance Issues and TimingsThe present FORTRAN 90 compilers do not assume that array storage is con-tiguous. The e�ect on performance will of course depend on their compiler.The contents of arrays are copied to the temporary storage when calling FOR-TRAN 77 subroutines (functions) from the FORTRAN 90 procedures. Thisdata copy results in a degradation in performance. As previously mentioned,we are aware of performance enhancements to the interface which could be madeavailable through alternative interfaces to the routines. However, these enhance-ments violate our goal to present a true Fortran 90 interface to the LAPACKlibrary by complicating the design of the interface through the use of Fortran 77constructs. Our Fortran 90 interface is provided as a simpli�ed user interface tothe LAPACK library. If performance is the main focus of the user's application,he should call the Fortran 77 interface directly.We have performed timings to measure the extra overhead of the Fortran 90interface. We timed LA GETRF on a single processor of an IBM SP-2 (in doubleprecision) and a single processor of a Cray YMP C90A (in single precision). Alltimings are given in megaops.IBM 1. Speed of LAPACK 90 calling LAPACK 77 and BLAS from the ESSLlibrary.2. Speed of LAPACK 77, using BLAS from the ESSL library.Array size 600 700 800 900 1000 1100 1200 1300 1400 1500LAPACK90 187 180 182 170 172 172 176 177 181 182LAPACK77 191 181 182 171 172 173 176 179 180 182Cray 1. Speed of LAPACK 90 calling LAPACK 77 as provided by CRAY inLIBSCI.2. Speed of LAPACK 77 as provided by CRAY in LIBSCI.Array size 600 700 800 900 1000 1100 1200 1300 1400 1500LAPACK90 723 828 646 841 822 855 789 857 846 868LAPACK77 778 834 649 845 825 860 794 864 848 873The above tables show the LAPACK 90 results are a little slower (1 or 2%)than the LAPACK 77 results. 14
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A Solving Systems of Linear Equations AX = Bwith a General Matrix A, DocumentationA.1 LA GESVA.1.1 PurposeLA GESV computes the solution to either a real or complex system of lin-ear equations AX = B, where A is a square matrix and B and X are eitherrectangular matrices or vectors.The LU decomposition with partial pivoting and row interchanges is usedto factor A as A = PLU , where P is a permutation matrix, L is unit lowertriangular, and U is upper triangular. The factored form of A is then used tosolve the system of equations AX = B.A.1.2 Speci�cationSUBROUTINE LA GESV( A, B, IPIV, INFO )type(wp), INTENT(INOUT) :: A(:,:), rhsINTEGER, INTENT(OUT), OPTIONAL :: IPIV(:)INTEGER, INTENT(OUT), OPTIONAL :: INFOwheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)rhs ::= B(:,:) j B(:)A.1.3 ArgumentsA { (input/output) REAL or COMPLEX array, shape (:; :), size(A; 1) =size(A; 2).� On entry, the matrix A.� On exit, the factors L and U from the factorization A = PLU ; theunit diagonal elements of L are not stored.B { (input/output)REAL orCOMPLEX array, shape (:; :) or (:), and size(B; 1)or size(B) = size(A; 1).� On entry, the right hand side vector(s) of matrix B for the system ofequations AX = B.� On exit, if there is no error, the matrix of solution vector(s) X .IPIV { Optional (output) INTEGER array, shape (:), size(IPIV ) = size(A; 1).16



� If IPIV is present, it contains indices that de�ne the permutationmatrix P ; row i of the matrix was interchanged with row IPIV (i).INFO { Optional (output) INTEGER.� If INFO is present= 0 : successful exit< 0 : if INFO = �i, the i-th argument had an illegal value� 0 : if INFO = i, U(i; i) is exactly zero. The factorization has beencompleted, but the factor U is exactly singular, so the solutioncould not be computed.� If INFO is not present and an error occurs, then the program isterminated with an error message.A.2 LA GESVXA.2.1 PurposeLA GESVX computes the solution to a real or complex system of linear equa-tions AX = B, where A is a square matrix and B and X are either rectangularmatrices or vectors.LA GESVX is an expert driver routine, which can also optionally performthe following functions:� solve ATX = B or AHX = B,� estimate the condition number of A� return the pivot growth factor� re�ne the solution and compute forward and backward error bounds� equilibrate the system if A is poorly scaled.A.2.2 Speci�cationSUBROUTINE LA GESVX (A, B, X, AF, IPIV, FACT, TRANS, EQUED, &R, C, FERR, BERR, RCOND, RPVGRW, INFO)type(wp), INTENT(INOUT) :: A(:,:), rhstype(wp), INTENT(OUT) :: soltype(wp), INTENT(INOUT), OPTIONAL :: AF(:,:)INTEGER, INTENT(INOUT), OPTIONAL :: IPIV(:)CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: FACT, TRANSCHARACTER(LEN=1), INTENT(INOUT), OPTIONAL :: EQUEDREAL(wp), INTENT(INOUT), OPTIONAL :: R(:), C(:)REAL(wp), INTENT(OUT), OPTIONAL :: err, RCOND, RPVGRW17



INTEGER, INTENT(OUT), OPTIONAL :: INFOwheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)rhs ::= B(:,:) j B(:)sol ::= X(:,:) j X(:)err ::= FERR(:), BERR(:) j FERR, BERRA.2.3 DescriptionThe following steps are performed:1. If FACT is not present or FACT = 0N 0, and EQUED is present, realscaling factors are computed to equilibrate the system:TRANS = 'N' : diag(R) A diag(C) (diag(C))�1 X = diag(R) BTRANS = 'T' : (diag(R) A diag(C))T (diag(R))�1 X = diag(C) BTRANS = 'C' : (diag(R) A diag(C))H (diag(R))�1 X = diag(C) BWhether or not the system will be equilibrated depends on the scal-ing of the matrix A, but if equilibration is used, A is overwritten bydiag(R) A diag(C) and B by diag(R) B (if TRANS = 0N 0) or diag(C) B(if TRANS = 0T 0 or 0C 0).2. If FACT = 0N 0, the LU decomposition is used to factor the matrix A(after equilibration if EQUED is present) as A = PLU , where P is apermutation matrix, L is a unit lower triangular matrix, and U is uppertriangular.3. The factored form of A is used to estimate the condition number of thematrix A. If the reciprocal of the condition number is less than machineprecision, steps 4 { 6 are skipped.4. The system of equations is solved for X using the factored form of A.5. Iterative re�nement is applied to improve the computed solution matrixand calculate error bounds and backward error estimates for it.6. If equilibration was used, the matrix X is premultiplied by diag(C) (ifTRANS = 0N 0) or diag(R) (if TRANS = 0T 0 or 0C 0) so that it solves theoriginal system before equilibration.
18



A.2.4 ArgumentsA { (input/output) REAL or COMPLEX array, shape (:; :), size(A; 1) =size(A; 2).If FACT is not present or FACT = 0N 0,� On entry, the matrix A.� On exit, if EQUED is present, the matrix A may have beenoverwritten by the equilibrated matrix (see EQUED).If FACT is present and FACT = 0F 0,� On entry, the matrix A, possibly equilibrated in a previous callto LA GESVX (see EQUED).� On exit, A is unchanged.B { (input/output)REAL orCOMPLEX array, shape (:; :) or (:), and size(B; 1)or size(B) = size(A; 1).� On entry, the right hand side vector(s) of matrix B for the system ofequations AX = B.� On exit, if EQUED is present, B may have been scaled in accor-dance with the equilibration of A (see EQUED); otherwise, B isunchanged.X { (output) REAL or COMPLEX array, shape (:; :) or (:), size(X; 1) orsize(X) = size(A; 1).If INFO = 0, the solution matrix (vector) X to the original system ofequations. Note that X always returns the solution to the original systemof equations; if equilibration has been performed (EQUED is present andEQUED 6= 0N 0), this does not correspond to the scaled A and B.AF { Optional (input/output)REAL orCOMPLEX array, shape (:; :), size(AF; 1) =size(AF; 2) = size(A; 1).If FACT is not present or FACT = 0N 0, then AF is an output argumentand returns the factors L and U from the factorization A = PLU ofthe original matrix A, possibly equilibrated if EQUED is present.If FACT is present and FACT = 0F 0, then AF is an input argument(and must be present); on entry, it must contain the factors L andU of A (possibly equilibrated if EQUED is present), returned by aprevious call to LA GESVX.IPIV { Optional (input/output) INTEGER array, shape (:), size(IPIV ) =size(A; 1). 19



If FACT is not present or FACT = 0N 0, then IPIV is an output argu-ment and returns the pivot indices from the factorization A = PLUof the original matrix A, possibly equilibrated if EQUED is present.If FACT is present and FACT = 0F 0, then IPIV is an input argu-ment (and must be present); on entry, it must contain the pivotindices from the factorization of A (possibly equilibrated if EQUEDis present), returned by a previous call to LA GESVX.TRANS { Optional (input) CHARACTER*1.� If TRANS is present, it speci�es the form of the system of equations:= 0N 0 : AX = B (No transpose)= 0T 0 : ATX = B (Transpose)= 0C 0 : AHX = B (Conjugate transpose)� otherwise TRANS = 0N 0 is assumed.FACT { Optional (input) CHARACTER*1.Speci�es whether or not the factored form of the matrix A is supplied onentry.� If FACT is present then:= 0N 0 : the matrix A will be equilibrated if EQUED is present,then copied to AF and factored.= 0F 0 : on entry, AF and IPIV must contain the factored form ofA (possibly equilibrated if EQUED is present).� otherwise FACT = 0N 0 is assumed.EQUED { Optional (input/output) CHARACTER*1.If FACT is not present or FACT = 0N 0, then EQUED is an outputargument. If it is present, then the matrix is equilibrated, and onexit EQUED speci�es the scaling of A which has actually been per-formed:= 0N 0 : No equilibration.= 0R0 : Row equilibration, i.e., A has been premultiplied by diag(R);also B has been premultiplied by diag(R) if TRANS = 0N 0.= 0C 0 : Column equilibration, i.e., A has been postmultiplied bydiag(C); also B has been premultiplied by diag(C) if TRANS= 0T 0 or 0C 0.= 0B0 : Both row and column equilibration: combines the e�ects ofEQUED = 0R0 and EQUED = 0C 0.20



If FACT is present and FACT = 0F 0, then EQUED is an input ar-gument; if it is present, it speci�es the equilibration of A which wasperformed in a previous call to LA GESVX with FACT not presentor FACT = 0N 0.R { Optional (input/output) REAL array, shape (:), size(R) = size(A; 1).R must be present if EQUED is present and EQUED = 0R0 or 0B0; R isnot referenced if EQUED = 0N 0 or 0C 0.If FACT is not present or FACT = 0N 0, then R is an output argu-ment. If EQUED = 0R0 or 0B0, R returns the row scale factors forequilibrating A.If FACT is present and FACT = 0F 0, then R is an input argument.If EQUED = 0R0 or 0B0, R must contain the row scale factors forequilibrating A, returned by a previous call to LA GESVX; eachelement of R must be positive.C { Optional (input/output) REAL array, shape (:), size(C) = size(A; 1).C must be present if EQUED is present and EQUED = 0C 0 or 0B0; C isnot referenced if EQUED = 0N 0 or 0R0.If FACT is not present or FACT = 0N 0, then C is an output argument.If EQUED = 0C 0 or 0B0, C returns the column scale factors forequilibrating A.If FACT is present and FACT = 0F 0, then C is an input argument. IfEQUED = 0C 0 or 0B0, C must contain the column scale factors forequilibrating A, returned by a previous call to LA GESVX; eachelement of C must be positive.FERR { Optional (output) REAL array of shape (:) or REAL scalar.If it is an array, size(FERR) = size(X; 2). The estimated forward errorbound for each solution vector X(j) (the j-th column of the solution ma-trix X). If XTRUE is the true solution corresponding to X(j), FERR(j)is an estimated upper bound for the magnitude of the largest element in(X(j) � XTRUE) divided by the magnitude of the largest element inX(j). The estimate is as reliable as the estimate for RCOND, and isalmost always a slight overestimate of the true error.BERR { Optional (output) REAL array of shape (:) or REAL scalar.If it is an array, size(BERR) = size(X; 2). The componentwise relativebackward error of each solution vector X(j) (i.e., the smallest relativechange in any element of A or B that makes X(j) an exact solution).RCOND { Optional (output) REAL.The estimate of the reciprocal condition number of the matrix A afterequilibration (if done). If RCOND is less than the machine precision (in21



particular, if RCOND = 0), the matrix is singular to working precision.This condition is indicated by a return code of INFO > 0, and the solutionand error bounds are not computed.RPVGRW { Optional (output) REAL.The reciprocal pivot growth factor kAk1=kUk1. If RPV GRW is muchless than 1, then the stability of the LU factorization of the (equilibrated)matrix A could be poor. This also means that the solution X , conditionestimator RCOND, and forward error bound FERR could be unreliable.If factorization fails with 0 < INFO � size(A; 1), then RPV GRW con-tains the reciprocal pivot growth factor for the leading INFO columns ofA.INFO { Optional (output) INTEGER.� If INFO is present= 0 : successful exit< 0 : if INFO = �i, the i-th argument had an illegal value> 0 : if INFO = i, and i is� N : U(i; i) is exactly zero. The factorization has been com-pleted, but the factor U is exactly singular, so the solutionand error bounds could not be computed.= N + 1 : RCOND is less than machine precision. The fac-torization has been completed, but the matrix is singular toworking precision, and the solution and error bounds havenot been computed.� If INFO is not present and an error occurs, then the program isterminated with an error message.A.3 LA GETRFA.3.1 PurposeLA GETRF computes an LU factorization of a general rectangular matrix Ausing partial pivoting with row interchanges.The factorization has the form A = PLU where P is a permutation matrix,L is lower triangular with unit diagonal elements (lower trapezoidal if m > n),and U is upper triangular (upper trapezoidal if m < n), where m = size(A; 1)and n = size(A; 2).When A is square (m = n), LA GETRF optionally estimates the reciprocalof the condition number of the matrix A, in either the 1-norm or the 1-norm.An estimate is obtained for kA�1k, and the reciprocal of the condition numberis computed as RCOND = 1=(kAk kA�1k).22



A.3.2 Speci�cationSUBROUTINE LA GETRF( A, IPIV, RCOND, NORM, INFO )type(wp), INTENT(INOUT) :: A(:,:)INTEGER, INTENT(OUT) :: IPIV( : )CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: NORMREAL(wp), INTENT(OUT), OPTIONAL :: RCONDINTEGER, INTENT(OUT), OPTIONAL :: INFOwheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)A.3.3 ArgumentsA { (input/output) REAL or COMPLEX array, shape (:; :).� On entry, the matrix A.� On exit, the factors L and U from the factorization A = PLU ; theunit diagonal elements of L are not stored.IPIV { (output) INTEGER array, shape (:), size(IPIV ) = min(size(A; 1); size(A; 2)).Indices that de�ne the permutation matrix P ; row i of the matrix was in-terchanged with row IPIV (i).RCOND { Optional (output) REAL.The reciprocal of the condition number of the matrix A for the case m = n,computed as RCOND = 1=(kAk kA�1k). RCOND should be present ifNORM is present. If m 6= n then RCOND is returned as zero.NORM { Optional (input) CHARACTER*1.Speci�es whether the 1-norm condition number or the 1-norm conditionnumber is required:� = '1', 'O' or 'o': 1-norm;� = 'I ', 'i': 1-norm.If NORM is not present, the 1-norm is used.INFO { Optional (output) INTEGER.� If INFO is present= 0 : successful exit< 0 : if INFO = �i, the i-th argument had an illegal value23



> 0 : if INFO = i, U(i; i)] is exactly zero. The factorization hasbeen completed, but the factor U is exactly singular, so the so-lution could not be computed.� If INFO is not present and an error occurs, then the program isterminated with an error message.A.4 LA GETRSA.4.1 PurposeLA GETRS solves a system of linear equationsAX = B, ATX = B orAHX =B with a general square matrix A, using the LU factorization computed byLA GETRF.A.4.2 Speci�cationSUBROUTINE LA GETRS (A, IPIV, B, TRANS, INFO)type(wp), INTENT(IN) :: A(:,:)INTEGER, INTENT(IN) :: IPIV(:)type(wp), INTENT(INOUT) :: rhsCHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSINTEGER, INTENT(OUT), OPTIONAL :: INFOwheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)rhs ::= B(:,:) j B(:)A.4.3 ArgumentsA { (input) REAL or COMPLEX array, shape (:; :), size(A; 1) = size(A; 2).The factors L and U from the factorization A = PLU as computed byLA GETRF.IPIV { (input) INTEGER array, shape (:), size(IPIV ) = size(A; 1).The pivot indices from LA GETRF; for 1 � i � size(A; 1), row i of thematrix was interchanged with row IPIV (i).B { (input/output)REAL orCOMPLEX array, shape (:; :) or (:), and size(B; 1)or size(B) = size(A; 1).� On entry, the right hand side vector(s) of matrix B for the system ofequations AX = B.� On exit, if there is no error, the matrix of solution vector(s) X .24



TRANS { Optional (input) CHARACTER*1.� If TRANS is present, it speci�es the form of the system of equations:= 0N 0 : AX = B (No transpose)= 0T 0 : ATX = B (Transpose)= 0C 0 : AHX = B (Conjugate transpose)� otherwise TRANS = 0N 0 is assumed.INFO { Optional (output) INTEGER.� If INFO is present= 0 : successful exit< 0 : if INFO = �i, the i-th argument had an illegal value� If INFO is not present and an error occurs, then the program isterminated with an error message.A.5 LA GETRIA.5.1 PurposeLA GETRI computes the inverse of a matrix using the LU factorization com-puted by LA GETRF.A.5.2 Speci�cationSUBROUTINE LA GETRI (A, IPIV, INFO)type(wp), INTENT(INOUT) :: A(:,:)INTEGER, INTENT(IN) :: IPIV(:)INTEGER, INTENT(OUT), OPTIONAL :: INFOwheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)A.5.3 ArgumentsA { (input/output) REAL or COMPLEX array, shape (:; :), size(A; 1) =size(A; 2).� On entry contains the factors L and U from the factorization A =PLU as computed by LA GETRF.� On exit, if INFO = 0, the inverse of the original matrix A.25



IPIV { (input) INTEGER array, shape (:), size(IPIV ) = size(A; 1).The pivot indices from LA GETRF; for 1 � i � size(A; 1), row i of thematrix was interchanged with row IPIV (i).INFO { Optional (output) INTEGER.� If INFO is present= 0 : successful exit< 0 : if INFO = �i, the i-th argument had an illegal value> 0 : if INFO = i, U(i,i) is exactly zero; the matrix is singular andits inverse could not be computed.� If INFO is not present and an error occurs, then the program isterminated with an error message.A.6 LA GERFSA.6.1 PurposeLA GERFS improves the computed solution X of a system of linear equationsAX = B or ATX = B and provides error bounds and backward error estimatesfor the solution. LA GERFS uses the LU factors computed by LA GETRF.A.6.2 Speci�cationSUBROUTINE LA GERFS (A, AF, IPIV, B, X, &TRANS, FERR, BERR, INFO)type(wp), INTENT(IN) :: A(:,:), AF(:,:), rhsINTEGER, INTENT(IN) :: IPIV(:)type(wp), INTENT(INOUT) :: solCHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSREAL(wp), INTENT(OUT), OPTIONAL :: errINTEGER, INTENT(OUT), OPTIONAL :: INFOwheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)rhs ::= B(:,:) j B(:)sol ::= X(:,:) j X(:)err ::= FERR(:), BERR(:) j FERR, BERRA.6.3 ArgumentsA { (input) REAL or COMPLEX array, shape (:; :), size(A; 1) = size(A; 2).The original matrix A. 26



AF { (input)REAL orCOMPLEX array, shape (:; :), size(AF; 1) = size(AF; 2) =size(A; 1).The factors L and U from the factorization A = PLU as computed byLA GETRF.IPIV { (input) INTEGER array, shape (:), size(IPIV ) = size(A; 1).The pivot indices from LA GETRF; for 1 � i � size(A; 1), row i of thematrix was interchanged with row IPIV (i).B { (input) REAL or COMPLEX array, shape (:; :) or (:), size(B; 1) orsize(B) = size(A; 1).The right hand side vector(s) of matrix B for the system of equationsAX = B.X { (input/output) REAL or COMPLEX array, shape (:; :) or (:), size(X; 1)or size(X) = size(A; 1).� On entry, the solution matrix X , as computed by LA GETRS.� On exit, the improved solution matrix X .TRANS { Optional (input) CHARACTER*1.� If TRANS is present, it speci�es the form of the system of equations:= 0N 0 : AX = B (No transpose)= 0T 0 : ATX = B (Transpose)= 0C 0 : AHX = B (Conjugate transpose)� otherwise TRANS = 0N 0 is assumed.FERR { Optional (output) REAL array of shape (:) or REAL scalar.If it is an array, size(FERR) = size(X; 2). The estimated forward errorbound for each solution vector X(j) (the j-th column of the solution ma-trix X). If XTRUE is the true solution corresponding to X(j), FERR(j)is an estimated upper bound for the magnitude of the largest element in(X(j) � XTRUE) divided by the magnitude of the largest element inX(j). The estimate is as reliable as the estimate for RCOND, and isalmost always a slight overestimate of the true error.BERR { Optional (output) REAL array of shape (:) or REAL scalar.If it is an array, size(BERR) = size(X; 2). The componentwise relativebackward error of each solution vector X(j) (i.e., the smallest relativechange in any element of A or B that makes X(j) an exact solution).INFO { Optional (output) INTEGER.� If INFO is present 27



= 0 : successful exit< 0 : if INFO = �i, the i-th argument had an illegal value� If INFO is not present and an error occurs, then the program isterminated with an error message.A.6.4 Internal ParametersITMAX { is the maximum number of steps of iterative re�nement. It is setto 5 in the LAPACK 77 subroutines (see [1]).A.7 LA GEEQUA.7.1 PurposeLA GEEQU computes row and column scalings intended to equilibrate a rect-angle matrix A and reduce its condition number. R returns the row scale factorsand C the column scale factors, chosen to try to make the largest entry in eachrow and column of the matrix B with elements Bij = RiAijCj have absolutevalue 1.Ri and Cj are restricted to be between SMLNUM = smallest safe num-ber and BIGNUM = largest safe number. Use of these scaling factors is notguaranteed to reduce the condition number of A but works well in practice.A.7.2 Speci�cationSUBROUTINE LA GEEQU ( A, R, C, ROWCND, COLCND, &AMAX, INFO )type(wp), INTENT(IN) :: A(:,:)REAL(wp), INTENT(OUT) :: R(:), C(:)REAL(wp), INTENT(OUT), OPTIONAL :: ROWCND, &COLCND, AMAXINTEGER, INTENT(OUT), OPTIONAL :: INFOwheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)A.7.3 ArgumentsA { (input) REAL or COMPLEX array, shape (:; :).The matrix A, whose equilibration factors are to be computed.
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R { (output) REAL array, shape (:), size(R) = size(A; 1).If INFO = 0 or INFO > size(A; 1), R contains the row scale factors forA.C { (output) REAL array, shape (:), size(C) = size(A; 2).If INFO = 0, C contains the column scale factors for A.ROWCND { Optional (output) REAL.If INFO = 0 or INFO > size(A; 1), ROWCND contains the ratio ofthe smallest R(i) to the largest R(i). If ROWCND � 0:1 and AMAX isneither too large nor too small, it is not worth scaling by R.COLCND { Optional (output) REAL.If INFO = 0, COLCND contains the ratio of the smallest C(i) to thelargest C(i). If COLCND � 0:1, it is not worth scaling by C.AMAX { Optional (output) REAL.Absolute value of largest matrix element. If AMAX is very close to over-ow or very close to underow, the matrix should be scaled.INFO { Optional (output) INTEGER.� If INFO is present= 0 : successful exit< 0 : if INFO = �i, the i-th argument had an illegal value> 0 : if INFO = i, and i is� m : the i-th row of A is exactly zero> m : the (i�m)-th column of A is exactly zerowhere m = size(A; 1).� If INFO is not present and an error occurs, then the program isterminated with an error message.
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B Symmetric and Hermitian Eigenvalue and Eigen-vector Procedures, DocumentationB.1 LA SYEV / LA HEEVB.1.1 PurposeLA SYEV / LA HEEV computes all eigenvalues and, optionally, eigenvec-tors of a real symmetric or complex Hermitian matrix A.B.1.2 Speci�cationSUBROUTINE LA SYEV / LA HEEV( A, W, JOBZ, UPLO, INFO )CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: JOBZ, UPLOINTEGER, INTENT(OUT), OPTIONAL :: INFOtype(wp), INTENT(INOUT) :: A(:,:)type(wp), INTENT(OUT) :: W(:)wheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)B.1.3 Defaults� If JOBZ is not present then JOBZ = 'N' is assumed.� If UPLO is not present then UPLO = 'U' is assumed.B.1.4 ArgumentsA { (input/output) REAL or COMPLEX array, shape (:,:)� On entry, the symmetric (Hermitian) matrix A.{ If UPLO = 'U', the upper triangular part of A contains the uppertriangular part of the matrix A.{ If UPLO = 'L', the lower triangular part of A contains{ the lower triangular part of the matrix A.� On exit:{ If JOBZ = 'V', then if INFO = 0, A contains the orthonormaleigenvectors of the matrix A.{ If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') orthe upper triangle (if UPLO='U') of A, including the diagonal,is destroyed.W { (output) REAL array, shape (:), size(W) = size(A,1) � 0.30



� If INFO = 0, the eigenvalues in ascending order.JOBZ { Optional, (input) CHARACTER*1� If JOBZ is present then:{ = 'N': Compute eigenvalues only;{ = 'V': Compute eigenvalues and eigenvectors.� otherwise JOBZ = 'N' is assumed.UPLO { Optional, (input) CHARACTER*1� If UPLO is present then:{ = 'U': Upper triangle of A is stored;{ = 'L': Lower triangle of A is stored.� otherwise UPLO = 'U' is assumed.INFO { Optional, (output) INTEGER� If INFO is present:{ = 0: successful exit{ < 0: if INFO = �i, the i-th argument had an illegal value{ > 0: if INFO = i, the algorithm failed to converge; i form didnot converge to zero.� If INFO is not present and an error occurs, then the program isterminated with an error message.B.2 LA SYEVD / LA HEEVDB.2.1 PurposeLA SYEVD / LA HEEVD computes all eigenvalues and, optionally, eigen-vectors of a real symmetric or complex Hermitian matrix A. If eigenvectors aredesired, it uses a divide and conquer algorithm.The divide and conquer algorithm makes very mild assumptions about oat-ing point arithmetic. It will work on machines with a guard digit in add/subtract,or on those binary machines without guard digits which subtract like the CrayX-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadec-imal or decimal machines without guard digits, but we know of none.
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B.2.2 Speci�cationSUBROUTINE LA SYEVD / LA HEEVD( A, W, JOBZ, UPLO, INFO )CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: JOBZ, UPLOINTEGER, INTENT(OUT), OPTIONAL :: INFOtype(wp), INTENT(INOUT) :: A(:,:)type(wp), INTENT(OUT) :: W(:)wheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)B.2.3 Defaults� If JOBZ is not present then JOBZ = 'N' is assumed.� If UPLO is not present then UPLO = 'U' is assumed.B.2.4 ArgumentsA { (input/output) REAL or COMPLEX array, shape (:,:).� On entry, the symmetric (Hermitian) matrix A.{ If UPLO = 'U', the upper triangular part of A contains the uppertriangular part of the matrix A.{ If UPLO = 'L', the lower triangular part of A contains{ the lower triangular part of the matrix A.� On exit:{ If JOBZ = 'V', then if INFO = 0, A contains the orthonormaleigenvectors of the matrix A.{ If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') orthe upper triangle (if UPLO='U') of A, including the diagonal,is destroyed.W { (output) REAL array, shape (:), size(W) = size(A,1) � 0.� If INFO = 0, the eigenvalues in ascending order.JOBZ { Optional, (input) CHARACTER*1� If JOBZ is present then:{ = 'N': Compute eigenvalues only;{ = 'V': Compute eigenvalues and eigenvectors.� otherwise JOBZ = 'N' is assumed.32



UPLO { Optional, (input) CHARACTER*1� If UPLO is present then:{ = 'U': Upper triangle of A is stored;{ = 'L': Lower triangle of A is stored.� otherwise UPLO = 'U' is assumed.INFO { Optional, (output) INTEGER� If INFO is present:{ = 0: successful exit{ < 0: if INFO = �i, the i-th argument had an illegal value{ > 0: if INFO = i, the algorithm failed to converge; iform did not converge to zero.� If INFO is not present and an error occurs, then the program isterminated with an error message.B.3 LA SYEVX / LA HEEVXB.3.1 PurposeLA SYEVX / LA HEEVX computes selected eigenvalues and, optionally,eigenvectors of a real symmetric or complex Hermitian matrix A. Eigenvaluesand eigenvectors can be selected by specifying either a range of values or a rangeof indices for the desired eigenvalues.B.3.2 Speci�cationSUBROUTINE LA SYEVX / LA HEEVX ( A, W, JOBZ, UPLO, VL, VU, &IL, IU, M, IFAIL, ABSTOL, INFO )CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: JOBZ, UPLOINTEGER, INTENT(IN), OPTIONAL :: IL, IUINTEGER, INTENT(OUT), OPTIONAL :: INFO, MREAL(wp), INTENT(IN), OPTIONAL :: ABSTOL, VL, VUINTEGER, INTENT(OUT), OPTIONAL :: IFAIL(:)type(wp), INTENT(INOUT) :: A(:,:)REAL(wp), INTENT(OUT) :: W(:)wheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)
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B.3.3 Defaults� If JOBZ and IFAIL are not present then JOBZ = 'N' is assumed.� If JOBZ is not present and IFAIL is present then JOBZ = 'V' is assumed.� If UPLO is not present then UPLO = 'U' is assumed.� If IL or IU are not present and VL or VU are not present then all eigen-values are computed ( M = size(A,1) ).� If IL is present and IU is not present then IU = size(A,1) is assumed. IfIL is not present and IU is present then IL = 1 is assumed.� If VL is present and VU is not present then VU = +in�nity is assumed.If VL is not present and VU is present then VL = -in�nity is assumed.� If ABSTOL is not present then ABSTOL = 2*SLAMCH('S') is assumed.In this case the eigenvalues are computed most accurately.B.4 Argument dependency� If either IL or IU are present then neither VL or VU are present.� If either VL or VU are present then neither IL or IU are present.� If JOBZ = 'N' then IFAIL must not be present.B.4.1 ArgumentsA { (input/output) REAL or COMPLEX array, shape (:,:), size(A,1) =size(A,2) � 0.� On entry, the symmetric (Hermitian) matrix A.{ If UPLO = 'U', the upper triangular part of A contains the uppertriangular part of the matrix A.{ If UPLO = 'L', the lower triangular part of A contains the lowertriangular part of the matrix A.� On exit:{ If JOBZ = 'V', then if INFO = 0, A contains the orthonor-mal eigenvectors of the matrix A corresponding to the selectedeigenvalues, with the i-th column of A holding the eigenvectorassociated with W(i). If an eigenvector fails to converge, thenthat column of A contains the latest approximation to the eigen-vector, and the index of the eigenvector is returned in IFAIL.34



{ If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') orthe upper triangle (if UPLO='U') of A, including the diagonal,is destroyed.W { (output) REAL array, shape (:), size(W) = size(A,1) � 0.� On normal exit, the �rst M elements contain the selected eigenvaluesin ascending order.JOBZ { Optional, (input) CHARACTER*1� If JOBZ is present then:{ =0 N 0: Compute eigenvalues only;{ =0 V 0: Compute eigenvalues and eigenvectors.� otherwise JOBZ = 'N' is assumed.UPLO { Optional, (input) CHARACTER*1� If UPLO is present then:{ =0 U 0: Upper triangle of A is stored;{ =0 L0: Lower triangle of A is stored.� otherwise UPLO =0 U 0 is assumed.VL { Optional, (input) REAL.VU { Optional, (input) REAL.� If VL and VU are present ( V L < V U ) then the lower and upperbounds of the interval to be searched for eigenvalues. All eigenvaluesin the half-open interval (VL,VU] will be found.IL { Optional, (input) INTEGER.IU { Optional, (input) INTEGER.� If IL and IU are present ( 1 � IL � IU � size(A; 1) ) then theindices (in ascending order) of the smallest and largest eigenvaluesto be returned. The ILth through IU th eigenvalues will be found.M { Optional, (output) INTEGER.� The total number of eigenvalues found ( 0 �M � size(A; 1) ).� If IL and IU are present then M = IU � IL+ 1.IFAIL { Optional, (output) INTEGER array, shape (:),size(IFAIL) = size(A; 1) � 0. 35



� If IFAIL is present then JOBZ =0 V 0 is assumed and eigenvectorsare computed.{ If INFO = 0, the �rst M elements of IFAIL are zero.{ If INFO > 0, then IFAIL contains the indices of the eigenvectorsthat failed to converge.ABSTOL { Optional, (input) REAL.� The absolute error tolerance for the eigenvalues. An approximateeigenvalue is accepted as converged when it is determined to lie in aninterval [a,b] of width less than or equal toABSTOL+EPS �max(jaj; jbj),where EPS is the machine precision. If ABSTOL is less than orequal to zero, then EPS � jT jr will be used in its place, where jT jis the 1-norm of the tridiagonal matrix obtained by reducing A totridiagonal form.� Eigenvalues will be computed most accurately when ABSTOL is setto twice the underow threshold 2�SLAMCH(0S0), not zero. If thisroutine returns with INFO > 0, indicating that some eigenvectorsdid not converge, try setting ABSTOL to 2� SLAMCH(0S0).� See "Computing Small Singular Values of Bidiagonal Matrices withGuaranteed High Relative Accuracy," by Demmel and Kahan, LA-PACK Working Note #3.� If ABSTOL is not present then ABSTOL = 2 � SLAMCH(0S0) isassumed.INFO { Optional, (output) INTEGER� If INFO is present:{ = 0: successful exit{ < 0: if INFO = �i, the i-th argument had an illegal value{ > 0: if INFO = i, then i eigenvectors failed to converge. Theirindices are stored in array IFAIL.� If INFO is not present and an error occurs, then the program isterminated with an error message.
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B.5 LA SYGST / LA HEGSTB.5.1 PurposeLA SYGST / LA HEGST reduces a real symmetric-de�nite or complexHermitian-de�nite generalized eigenproblem to standard form.� If ITY PE = 1, the problem is Ax = �Bx, and A is overwritten by(UH)�1AU�1 or L�1A(LH)�1� If ITY PE = 2 or 3, the problem is ABx = �x or BAx = �x, and A isoverwritten by UAUH or LHAL.� B must have been previously factorized as UHU or LLH by LA POTRF.B.5.2 Speci�cationSUBROUTINE LA SYGST / LA HEGST( A, B, ITYPE, UPLO, INFO )CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLOINTEGER, INTENT(IN), OPTIONAL :: ITYPEINTEGER, INTENT(OUT), OPTIONAL :: INFOtype(wp), INTENT(IN) :: B(:,:)type(wp), INTENT(INOUT) :: A(:,:)wheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)B.5.3 Defaults� If ITYPE is not present then ITY PE = 1 is assumed.� If UPLO is not present then UPLO = 'U' is assumed.B.5.4 ArgumentsA { (input/output) REAL or COMPLEX array, shape (:,:),size(A; 1) = size(A; 2) � 0.� On entry, the symmetric (Hermitian) matrix A.{ If UPLO =0 U 0, the upper triangular part of A contains theupper triangular part of the matrix A, and the strictly lowertriangular part of A is not referenced.{ If UPLO =0 L0, the lower triangular part of A contains the lowertriangular part of the matrix A, and the strictly upper triangularpart of A is not referenced.37



� On exit, if INFO = 0, the transformed matrix, stored in the sameformat as A.B { (input) REAL or COMPLEX array, shape (:,:), size(B; 1) = size(A; 1).� The triangular factor from the Cholesky factorization of B, as re-turned by LA POTRF.ITYPE { Optional, (input) INTEGER� If ITYPE is present then:{ = 1: compute (UH)�1AU�1 or L�1A(LH)�1;{ = 2 or 3: compute UAUH or LHAL.� otherwise ITY PE = 1 is assumed.UPLO { Optional, (input) CHARACTER*1� If UPLO is present then:{ =0 U 0: Upper triangle of A is stored and B is factored as UHU ;{ =0 L0: Lower triangle of A is stored and B is factored as LLH .� otherwise UPLO =0 U 0 is assumed.INFO { Optional, (output) INTEGER� If INFO is present:{ = 0: successful exit{ < 0: if INFO = �i, the i-th argument had an illegal value� If INFO is not present and an error occurs, then the program isterminated with an error message.B.6 LA SYGV / LA HEGVB.6.1 PurposeLA SYGV / LA HEGV computes all the eigenvalues, and optionally, theeigenvectors of a real generalized symmetric-de�nite or complex Hermitian-de�nite eigenproblem, of the form Ax = �Bx, ABx = �x, or BAx = �x.Here A and B are assumed to be symmetric (Hermitian) and B is also positivede�nite.
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B.6.2 Speci�cationSUBROUTINE LA SYGV / LA HEGV( A, B, W, ITYPE, JOBZ, UPLO, &INFO )CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: JOBZ, UPLOINTEGER, INTENT(IN), OPTIONAL :: ITYPEINTEGER, INTENT(OUT), OPTIONAL :: INFOtype(wp), INTENT(INOUT) :: A(:,:), B(:,:)REAL(wp), INTENT(OUT) :: W(:)wheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)B.6.3 Defaults� If ITYPE is not present then ITY PE = 1 is assumed.� If JOBZ is not present then JOBZ =0 N 0 is assumed.� If UPLO is not present then UPLO =0 U 0 is assumed.B.6.4 ArgumentsA { (input/output) REAL or COMPLEX array, shape (:,:),size(A; 1) = size(A; 2) � 0.� On entry, the symmetric (Hermitian) matrix A.{ If UPLO =0 U 0, the upper triangular part of A contains theupper triangular part of the matrix A.{ If UPLO =0 L0, the lower triangular part of A contains the lowertriangular part of the matrix A.� On exit:{ If JOBZ =0 V 0, then if INFO = 0, A contains the matrix Z ofeigenvectors. The eigenvectors are normalized as follows:� if ITY PE = 1 or 2, ZHBZ = I ;� if ITY PE = 3, ZHB�1Z = I .{ If JOBZ =0 N 0, then on exit the upper triangle (if UPLO =0U 0) or the lower triangle (if UPLO =0 L0) of A, including thediagonal, is destroyed.B { (input) REAL or COMPLEX array, shape (:,:), size(B; 1) = size(A; 1).� On entry, the symmetric (Hermitian) matrix B.39



{ If UPLO =0 U 0, the upper triangular part of B contains theupper triangular part of the matrix B.{ If UPLO =0 L0, the lower triangular part of B contains the lowertriangular part of the matrix B.� On exit, if INFO � size(A; 1), the part of B containing the matrixis overwritten by the triangular factor U or L from the Choleskyfactorization B = UHU or B = LLH .W { (output) REAL array, shape (:), size(W ) = size(A; 1).� If INFO = 0, the eigenvalues in ascending order.ITYPE { Optional, (input) INTEGER.Speci�es the problem type to be solved.� If ITYPE is present then:{ = 1: Ax = �Bx{ = 2: ABx = �x{ = 3: BAx = �x� otherwise ITY PE = 1 is assumed.JOBZ { Optional, (input) CHARACTER*1� If JOBZ is present then:{ = 'N': Compute eigenvalues only;{ = 'V': Compute eigenvalues and eigenvectors.� otherwise JOBZ =0 N 0 is assumed.UPLO { Optional, (input) CHARACTER*1� If UPLO is present then:{ = 'U': Upper triangle of A is stored and B is factored as UHU ;{ = 'L': Lower triangle of A is stored and B is factored as LLH .� otherwise UPLO =0 U 0 is assumed.INFO { Optional, (output) INTEGER� If INFO is present:{ = 0: successful exit{ < 0: if INFO = �i, the i-th argument had an illegal value{ > 0: LA POTRF or LA SYEV / LA HEEV returned an errorcode: 40



� � size(A; 1): if INFO = i, LA SYEV / LA HEEV failed toconverge; i o�-diagonal elements of an intermediate tridiag-onal form did not converge to zero;� > size(A; 1): if INFO = size(A; 1) + i � 2size(A; 1), thenthe leading minor of order i of B is not positive de�nite. Thefactorization of B could not be completed and no eigenvaluesor eigenvectors were computed.� If INFO is not present and an error occurs, then the program isterminated with an error message.B.7 LA SYTRD / LA HETRDB.7.1 PurposeLA SYTRD / LA HETRD reduces a real symmetric or complex Hermitianmatrix A to real symmetric tridiagonal form T by an orthogonal or unitarysimilarity transformation: QHAQ = T .B.7.2 Speci�cationSUBROUTINE LA SYTRD / LA HETRD( A, TAU, UPLO, INFO )CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLOINTEGER, INTENT(OUT), OPTIONAL :: INFOtype(wp), INTENT(INOUT) :: A(:,:)type(wp), INTENT(OUT) :: TAU(:)wheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)B.7.3 Defaults� If UPLO is not present then UPLO = 'U' is assumed.B.7.4 ArgumentsA { (input/output) REAL or COMPLEX array, shape (:,:),size(A; 1) = size(A; 2) � 0.� On entry, the symmetric (Hermitian) matrix A.{ If UPLO = 'U', the upper triangular part of A contains the uppertriangular part of the matrix A.{ If UPLO = 'L', the lower triangular part of A contains the lowertriangular part of the matrix A.41



� On exit:{ If UPLO = 'U', the diagonal and �rst superdiagonal of A areoverwritten by the corresponding elements of the tridiagonal ma-trix T , and the elements above the �rst superdiagonal, with thearray TAU , represent the unitary matrix Q as a product of ele-mentary reectors.{ If UPLO = 'L', the diagonal and �rst subdiagonal of A are over-written by the corresponding elements of the tridiagonal matrixT , and the elements below the �rst subdiagonal, with the arrayTAU , represent the unitary matrix Q as a product of elementaryreectors.� See Further Details.TAU { (output)REAL orCOMPLEX array, shape (:), size(TAU) = size(A; 1)�1. � The scalar factors of the elementary reectors.� See Further Details.UPLO { Optional, (input) CHARACTER*1� If UPLO is present then:{ = 'U': Upper triangle of A is stored{ = 'L': Lower triangle of A is stored� otherwise UPLO = 'U' is assumed.INFO { Optional, (output) INTEGER� If INFO is present:{ = 0: successful exit{ < 0: if INFO = �i, the i-th argument had an illegal value� If INFO is not present and an error occurs, then the program isterminated with an error message.B.7.5 Further Details� If UPLO = 'U', the matrix Q is represented as a product of elementaryreectors Q = Hn�1 � � �H2H1. Each Hi has the form Hi = I � �vv0,where � is a complex scalar, and v is a complex vector with vi+1:n = 0and vi = 1; v1:i�1 is stored on exit in A(1 : i� 1; i+ 1), and � in TAU(i).� If UPLO = 'L', the matrix Q is represented as a product of elementaryreectors Q = H1H2 � � �Hn�1. Each Hi has the form Hi = I��vv0, where� is a complex scalar, and v is a complex vector with v1:i = 0 and vi+1 = 1;vi+2:n is stored on exit in A(i + 2 : n; i), and � in TAU(i).42



The contents of A on exit are illustrated by the following examples withn = 5: if UPLO = 'U': if UPLO = 'L':( d e v2 v3 v4 ) ( d )( d e v3 v4 ) ( e d )( d e v4 ) ( v1 e d )( d e ) ( v1 v2 e d )( d ) ( v1 v2 v3 e d )where d and e denote diagonal and o�-diagonal elements of T , and vi denotesan element of the vector de�ning Hi.B.8 LA ORGTR / LA UNGTRB.8.1 PurposeLA ORGTR / LA UNGTR generates a real orthogonal / complex unitarymatrix Q which is de�ned as the product of elementary reectors, as returnedby LA SYTRD / LA HETRD:� if UPLO = 'U', Q = Hn�1 � � �H2H1,� if UPLO = 'L', Q = H1H2 � � �Hn�1.B.8.2 Speci�cationSUBROUTINE LA ORGTR / LA UNGTR( A, TAU, UPLO, INFO )CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLOINTEGER, INTENT(OUT), OPTIONAL :: INFOtype(wp), INTENT(IN) :: TAU(:)type(wp), INTENT(INOUT) :: A(:,:)wheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)B.8.3 Defaults� If UPLO is not present then UPLO = 'U' is assumed.
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B.8.4 ArgumentsA { (input/output) REAL or COMPLEX array, shape (:,:),size(A; 1) = size(A; 2) � 0.� On entry, the vectors which de�ne the elementary reectors, as re-turned by LA SYTRD or LA HETRD.� On exit the orthogonal or unitary matrix Q.TAU { (input)REAL orCOMPLEX array, shape (:), size(TAU) = size(A; 1)�1. � TAU(i) must contain the scalar factor of the elementary reector Hi,as returned by LA SYTRD or LA HETRD.UPLO { Optional, (input) CHARACTER*1� If UPLO is present then:{ = 'U': Upper triangle of A is stored{ = 'L': Lower triangle of A is stored� otherwise UPLO = 'U' is assumed.INFO { Optional, (output) INTEGER� If INFO is present:{ = 0: successful exit{ < 0: if INFO = �i, the i-th argument had an illegal value� If INFO is not present and an error occurs, then the program isterminated with an error message.
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C Cholesky Factorization of a Real Symmetricor Complex Hermitian Positive De�nite Ma-trix A, DocumentationC.1 LA POTRFC.1.1 PurposeLA POTRF computes the Cholesky factorization of a real symmetric or com-plex Hermitian positive de�nite matrix A.The factorization has the form� A = UHU , if UPLO = 'U', or� A = LLH , if UPLO = 'L',where U is an upper triangular matrix and L is lower triangular.This is the block version of the algorithm, calling Level 3 BLAS.LA POTRF optionally estimates the reciprocal of the condition number (inthe 1-norm) of a real symmetric or complex Hermitian positive de�nite matrixA. An estimate is obtained for kA�1k, and the reciprocal of the conditionnumber is computed as RCOND = 1=kAkkA�1k.C.1.2 Speci�cationSUBROUTINE LA POTRF( A, UPLO, RCOND, NORM, INFO )CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: NORM, UPLOINTEGER, INTENT(OUT), OPTIONAL :: INFOREAL(wp), INTENT(OUT), OPTIONAL :: RCONDtype(wp), INTENT(INOUT) :: A(:,:)wheretype ::= REAL j COMPLEXwp ::= KIND(1.0) j KIND(1.0D0)C.1.3 Defaults� If UPLO is not present then UPLO = 'U' is assumed.C.1.4 ArgumentsA { (input/output) REAL or COMPLEX array, shape (:,:),size(A; 1) = size(A; 2) � 0.� On entry, the symmetric (Hermitian) matrix A.45



{ If UPLO = 'U', the upper triangular part of A contains the uppertriangular part of the matrix A, and the strictly lower triangularpart of A is not referenced.{ If UPLO = 'L', the lower triangular part of A contains the lowertriangular part of the matrix A, and the strictly upper triangularpart of A is not referenced.� On exit, if INFO = 0, the factor U or L from the Cholesky factor-ization A = UHU or A = LLH .UPLO { Optional, (input) CHARACTER*1� If UPLO is present then:{ = 'U': Upper triangle of A is stored;{ = 'L': Lower triangle of A is stored.� otherwise UPLO = 'U' is assumed.RCOND { Optional (output) REAL� The reciprocal of the condition number of the matrix A computed asRCOND = 1=kAkkA�1k.NORM { Optional (input) CHARACTER*1Speci�es whether the 1-norm condition number or the in�nity-norm con-dition number is required:� If NORM is present then:{ = '1', 'O' or 'o': 1-norm;{ = 'I' or 'i': in�nity-norm.� otherwise NORM = '1' is used.INFO { Optional, (output) INTEGER� If INFO is present:{ = 0: successful exit{ < 0: if INFO = �i, the i-th argument had an illegal value{ > 0: if INFO = i, the leading minor of order i is not positivede�nite, and the factorization could not be completed.� If INFO is not present and an error occurs, then the program isterminated with an error message.
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D Code for One Version of LA SYEVWe illustrate here the sort of code that is needed to implement one of theFortran 90 jacket procedures. The procedure shown is the real single precisionversion of LA SYEV.D.1 Precision-dependenciesTo handle di�erent precisions, we use a module LA PRECISION to de�ne namedconstants SP and DP for the kind values of single and double precision, respec-tively.MODULE LA_PRECISIONINTEGER, PARAMETER :: SP=KIND(1.0), DP=KIND(1.0D0)END MODULE LA_PRECISIONWithin the LAPACK 90 code, all real and complex constructs are expressedin terms of a symbolic kind value WP, which is de�ned by reference to the moduleLA PRECISION | in single precision:USE LA_PRECISION :: WP => SPand in double precision:USE LA_PRECISION :: WP => DPThese are the only precision-dependent changes in the code, apart fromchanges to the procedure-names.D.2 Error-handlingTo handle errors, as described in Section 4, we use a simple procedure ERINFO,which is assumed to be accessed from a module LA AUXMOD:SUBROUTINE ERINFO(LINFO, SRNAME, INFO, ISTAT)! .. Scalar Arguments ..CHARACTER( LEN = * ), INTENT(IN) :: SRNAMEINTEGER , INTENT(IN) :: LINFOINTEGER , INTENT(OUT), OPTIONAL :: INFOINTEGER , INTENT(IN), OPTIONAL :: ISTAT!! .. Executable Statements ..! IF( ( LINFO < 0 .AND. LINFO > -200 ) .OR. &( LINFO > 0 .AND. .NOT.PRESENT(INFO) ) )THENWRITE (*,*) 'Program terminated in LAPACK_90 subroutine ',SRNAME47



WRITE (*,*) 'Error indicator, INFO = ',LINFOIF( PRESENT(ISTAT) )THENIF( ISTAT /= 0 ) THENIF( LINFO == -100 )THENWRITE (*,*) 'The statement ALLOCATE causes STATUS = ', ISTATELSEWRITE (*,*) 'LINFO = ', LINFO, ' not expected'END IFEND IFEND IFSTOPELSE IF( LINFO <= -200 ) THENWRITE(*,*) '++++++++++++++++++++++++++++++++++++++++++++++++++'WRITE(*,*) '*** WARNING, INFO = ', LINFO, ' WARNING ***'IF( LINFO == -200 THENWRITE(*,*) 'Could not allocate sufficient workspace for the optimum'WRITE(*,*) 'blocksize, hence the routine may not have performed as'WRITE(*,*) 'efficiently as possible'ELSEWRITE(*.*) 'Unexpected warning'END IFWRITE(*,*) '++++++++++++++++++++++++++++++++++++++++++++++++++'END IFIF( PRESENT(INFO) ) INFO = LINFOEND SUBROUTINE ERINFOA more elaborate error-handling mechanism could of course be devised.D.3 Accessing LAPACK 77 routinesWe assume that interface-blocks for all the LAPACK 77 routines are accessiblefrom modules LA SF77MOD, LA DF77MOD, LA CF77MOD, and LA ZF77MOD. Note thatwe do not use generic interfaces for the LAPACK 77 routines, since that wouldimpose some restrictions on the way in which LAPACK 77 routines could becalled.However, we rename the routine in the USE statement, so that the precision-dependent name-change is localized in the USE statement.D.4 The codeMODULE LA_SSYEVCONTAINS!SUBROUTINE SSYEV_F90( A, W, JOBZ, UPLO, INFO )48



! .. Use Statements ..USE LA_PRECISION, ONLY: WP => SPUSE LA_AUXMOD, ONLY: ERINFO, LSAMEUSE LA_AUF77MOD, ONLY: ILAENV_F77 => ILAENVUSE LA_SF77MOD, ONLY: SYEV_F77 => SSYEV! .. Implicit Statement ..IMPLICIT NONE! .. Character Arguments ..CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: JOBZ, UPLO! .. Scalar Arguments ..INTEGER, INTENT(OUT), OPTIONAL :: INFO! .. Array Arguments ..REAL(WP), INTENT(INOUT) :: A(:,:)REAL(WP), INTENT(OUT) :: W(:)! .. Local Parameters ..CHARACTER(LEN=7), PARAMETER :: SRNAME = 'LA_SYEV'CHARACTER(LEN=6), PARAMETER :: BSNAME = 'SSYTRD'! .. Local Scalars ..CHARACTER(LEN=1) :: LJOBZ, LUPLOINTEGER :: N, LINFO, LD, ISTAT, ISTAT1, LWORK, NB! .. Local Arrays ..REAL(WP), POINTER :: WORK(:)! .. Intrinsic Functions ..INTRINSIC MAX, PRESENT! .. Executable Statements ..N = SIZE( A, 1 ); LINFO = 0; ISTAT = 0; LD = MAX(1,N)IF( PRESENT(JOBZ) ) THENLJOBZ = JOBZELSELJOBZ = 'N'END IFIF( PRESENT(UPLO) ) THENLUPLO = UPLOELSELUPLO = 'U'END IF! .. Test the argumentsIF( SIZE( A, 2 ) /= N .OR. N < 0 )THENLINFO = -1ELSE IF( SIZE( W ) /= N )THENLINFO = -2ELSE IF( .NOT.LSAME(LJOBZ,'N') .AND. .NOT.LSAME(LJOBZ,'V') )THENLINFO = -3ELSE IF( .NOT.LSAME(LUPLO,'U') .AND. .NOT.LSAME(LUPLO,'L') )THEN49



LINFO = -4ELSE IF( N > 0 )THEN! .. Determine the workspaceNB = ILAENV_F77( 1, BSNAME, LUPLO, N, -1, -1, -1 )IF( NB <= 1 .OR. NB >= N )THENNB = 1END IFLWORK = (2+NB)*NALLOCATE(WORK(LWORK), STAT=ISTAT)IF( ISTAT /= 0 )THENLWORK = 3*N-1ALLOCATE(WORK(LWORK), STAT=ISTAT)IF( ISTAT /= 0 ) THENLINFO = - 100ELSELINFO = - 200ENDIFENDIF! IF( LINFO == 0 .OR. LINFO <= -200 )THEN! .. Call LAPACK77 routineCALL SYEV_F77( LJOBZ, LUPLO, N, A, LD, W, WORK, LWORK, LINFO )ENDIFDEALLOCATE(WORK, STAT=ISTAT1)ENDIFCALL ERINFO(LINFO,SRNAME,INFO,ISTAT)END SUBROUTINE SSYEV_F90!END MODULE LA_SSYEVD.5 Accessing LAPACK 90 proceduresWe assume that interface-blocks (module-procedures) for all the LAPACK 90routines are accessible from module LA SCDZF90MOD.
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