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Abstract

The NetSolve system, developed at the University of Tennessee, is a client-server application designed
to solve computational science problems over a network. Users may access NetSolve computational
servers through C, Fortran, MATLAB, or Java interfaces. This document briefly presents the basics of
the system. It then describes in detail how the different clients can contact the NetSolve system to have
some computation performed, thanks to numerous examples. Complete reference manuals are given in
the appendixes.
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1 Introduction

The efficient solution of large problems is an ongoing thread of research in scientific computing. Various
mechanisms have been developed to perform computations across diverse platforms. The most common
mechanism involves software libraries. Unfortunately, the use of such libraries presents several difficulties.
Some software libraries are highly optimized for only certain platforms and do not provide a convenient
interface to other computer systems. Other libraries demand considerable programming effort from the user.
While several tools have been developed to alleviate these difficulties, such tools themselves are usually
available on only a limited number of computer systems. MATLAB [1] is an example of such a tool.

These considerations motivated the establishment of the NetSolve project. The basic philosophy behind
NetSolve 1s to provide a uniform, portable and efficient way to access computational resources over a network.
NetSolve is a client-server application, and a number of different client interfaces have been developed to
the NetSolve software. Users of C, Fortran, MATLAB, or the World Wide Web can easily use the NetSolve
system thanks to the different client types. The purpose of this document is to describe all those interfaces
and the way they interact with the NetSolve servers.

The next section gives basic information about the NetSolve system. A complete description of the software
layout and communication protocols can be found in [2]. Section 3 provides all the information needed to
download and install NetSolve. Sections 4, 5, and 6 describe in detail all the interfaces. Section 7 describes
a recently developed feature of NetSolve, the “user-supplied function” mechanism.

2 Overview of the NetSolve System

2.1 Architecture

The NetSolve system is a set of loosely connected machines. By loosely connected, we mean that these
machines can be on the same local network or on an international network. Moreover, the NetSolve system
can be running in a heterogeneous environment, which means that machines with different data formats can
be in the system at the same time.

Figure 1 shows the global conceptual picture of the NetSolve system. In this figure, we can see the three
major components of the system:

e The NetSolve client
e The NetSolve agent

e The NetSolve computational resources

Solving a problem with NetSolve is done in three steps. The client sends a request to the agent. The agent
chooses the “best” NetSolve resource according to the size and nature of the problem to be solved. The
problem is then solved on the chosen server, and the result is sent back to the client.

This system is fault tolerant, meaning that the client will receive an answer to its problem unless every
resource in the system has failed or is unavailable. The NetSolve agent is the key to the load-balancing
strategy, and details about its design can be found in [2].

2.2 Problem Specification

To keep NetSolve as general as possible, we needed a formal way of describing a problem.
A problem is defined as a 3-tuple: < name, inputs, outputs >, where

e name 1s a character string containing the name of the problem,

e inputs is a list of input objects, and
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Figure 1: The NetSolve System

e outputs is a list of output objects.

An object is itself described as follows: < object,data >, where object can be MATRIX, VECTOR, or
SCALAR, and data can be any of the standard Fortran data types.

This description has proved to be sufficient to interface NetSolve with numerous software packages. NetSolve
is still at an early stage of development and is likely to undergo modifications in the future. For the time
being, the existing interfaces use this formalism. However, we will see that the C and Fortran interfaces are
usually designed so that they fit the underlying scientific software calling sequence.

2.3 Problems Solvable with NetSolve

Before actually using NetSolve with any interface, the user needs to know what problems are solvable. The
easiest way 1s to check the NetSolve homepage:

http://www.cs.utk.edu/netsolve

The Available Resources page provides access to two CGI scripts. Using those scripts, one can inquire about
which problems are handled by the servers and about which servers are in the system. Those scripts give
complete details for the C and Fortran interfaces. This information is also available from the Java or the
MATLAB interfaces, for which such a level of detail is not required. In the future, we plan to suppress those
scripts and replace them with a Java applet. This Java applet will look very similar to the current NetSolve
Java interface and will provide information only about the C and Fortran interfaces.

This early version of NetSolve has a naming scheme for problems. We can distinguish the name of a problem
and its full name. The full name has a path-like structure. Let us explain this with an example. The
problem ddot, which computes the inner product of two double-precision vectors, can have a full name like
/BLAS/Levell/ddot. This full name has two purposes. First, when we display a list of problems, they



are sorted alphabetically on their full name, and the problems are grouped by “directory.” Second, by
convention, the first element of the full name (e.g., BLAS) is the name of the numerical library the problem
comes from. This convention can be useful, as seen in Section 5.2.

3 Getting Started

3.1 Downloading and Installing the Software

The client software can be downloaded from the NetSolve homepage at
http://wuw.cs.utk.edu/netsolve/client distribution.tar.gz.

The following UNIX commands will create the Netsolve _client directory:

% gunzip client_distribution.tar.gz
% tar -xvf client_distribution.tar

The different interfaces can now be compiled.

3.2 Setting the Architecture

The Netsolve client directory includes a script called netsolvegetarch that can be used to return a
character string describing the architecture of the machine of the user. Suppose, for instance, that one
wishes to run the script on an IBM RS/6000:

% netsolvegetarch
RS6K

In that case, the NETSOLVE_ARCH environment variable should be defined in the .cshrc file as
setenv NETSOLVE_ARCH RS6K
or, if netsolvegetarch is in the path,
setenv NETSOLVE_ARCH ‘netsolvegetarchf
To date, NetSolve has been ported to the following different architectures:
e SUN4: Sun 4, 4c, SPARC, etc.
e SUN4SOL2: Sun 4 running Solaris 2.x
e ALPHA: DEC Alpha/OSF-1
e PMAX : DEC Pmax running NetBSd
e NEXT : NeXT
e SGIb @ Silicon Graphics IRIS running OS ;= 5.0
e HPPA: HP 9000 PA-Risc
e RS6K: IBM RS/6000



3.3 Setting an Agent Name

As described in Section 2.1, to solve a problem, a client must contact an agent. The C, Fortran, and
MATLAB interfaces require the environment variable NETSOLVE_AGENT to be set to contain the name of a
host running a NetSolve agent. If the user knows of some NetSolve system installed somewhere, he will
have to ask the NetSolve administrator for the name of such a host. The NetSolve homepage includes a
list of registered agents on the Internet. The constantly running agent at the University of Tennessee is
comet.cs.utk.edu. If the user wishes to set his agent to be this one, he will have to modify his .cshrc as
follows:

setenv NETSOLVE_AGENT comet.cs.utk.edu

3.4 Compiling the Client

Now that the NETSOLVE_ARCH environment variable has been set as described in 3.2, the software can be
compiled. First, one should go to the Netsolve client/conf directory and edit the $NETSOLVE_ARCH.def
file (for instance RS6K.def). This file contains a custom section in which the user can modify the compilation
parameters. Here is a typical section:

# ———— Custom Section —-—-

F77 = £77

CcC = cc

CMEX = cmex

# ———— End of Custom Section —-—-

This custom section specifies which compilers are going to be used. CMEX denotes the MATLAB C-compiler, in
case the MATLAB interface is to be built. These parameters can be modified before compilation. However,
the file also contains other information that should not be modified. The NetSolve clients can now be
compiled. Typing make in the Netsolve_client directory will give instructions to complete the compilation.

4 MATLAB Interface

4.1 Introduction
Building the MATLAB interface as described in 3.4 produces the two following mez-files :

e Netsolve client/bin/$NETSOLVE_ARCH/netsolve.mexi##i#
e Netsolve client/bin/$NETSOLVE_ARCH/netsolve nb.mex##i#

The ### part of the extension depends on the architecture (for instance, the extension is .mex4 for SPARCs).
These two files alone are the MATLAB interface to NetSolve. Modifying the MATLABPATH environment
variable will make these two files available from any location in MATLAB. For more information about mex-
files, the user can refer to [3]. Basically, the user will now be able to call two new functions from MATLAB:
netsolve() and netsolvenb(). The following sections will explain how to use those two functions.

4.2 What to Do First

Let us now assume that the user has started a MATLAB session and is ready to try NetSolve. In this section
we describe those features of this interface that allow the user to get information about the NetSolve system
available.

As stated briefly in Section 2.3, it is possible to obtain the list of solvable problems from MATLAB. Let us
try that first:



>> netsolve

NetSolve — List of problems available -
/BLAS/Matrices/matmul

/ItPack/jsi
/LaPack/Matrices/EigenValues/eig
/LaPack/Matrices/SingularValues/svd

>>

Every line contains a full problem name. This list can be really long, and in that case it is wiser to use the
CGI scripts in Section 2.3. Let us now assume that the user is wondering about what kind of problem eig
1s. He can type

>> netsolve(’eig’)

This command will provide detailed information about this particular problem. Let us split the output
produced by this command into different pieces:

eig : From LAPACK -

Simplified version

Computes the eigenvalues of a double-precision real
square matrix A. Returns two double-precision real
vectors containing respectively the real parts and
the imaginary parts of the eigenvalues.

MATLAB Example : [r i] = netsolve(’eig’,a)

This is the same kind of information as that available from the CGI scripts. It gives a short description of
what the problem is. Usually it also includes an example for MATLAB, using netsolve().

#0 : Double-precision real matrix.
Matrix A

This is the description of the input the user needs to give NetSolve. This particular problem requires only
one double-precision matrix. Notice that this matrix has to be square (as stated in the description of the
problem). If the user tries to call NetSolve for this problem with a rectangular matrix, he will receive an
error message stating that the dimensions of the input are invalid.

#0 : Double-precision real vector.
Real parts of the eigenvalues

#1 : Double-precision real vector.
Imaginary parts of the eigenvalues

The outputs of the problem are described here. The problem eig will return two vectors, the real and
imaginary parts of the eigenvalues of the input matrix, respectively.



This last part does not appear for every problem and is relevant only for the MATLAB interface. Since
MATLAB provides a mechanism to manipulate complex objects, it is probable that the user would like
to have eig return one single complex vector instead of two separate real vectors. This point is further
developed in the following section.

The MATLAB interface has another feature that is concerned not with the actual problem solving but with
providing information about NetSolve itself. We have just seen how to get information about the problems
handled by the NetSolve servers; it 1s also possible to obtain the physical locations of these servers. Let us
assume that our NETSOLVE_AGENT environment variable is set to comet.cs.utk.edu (see 3.3). Let us try the
following command:

>> netsolve(’7’)
this command produces the following output :

comet.cs.utk.edu (128.169.92.78)
NetSolve Agent
Host : Up Server : Running
maruti.CS.Berkeley.EDU (128.32.36.83)
Handles 10 problems
Host : Up Server : Running
cupid.cs.utk.edu (128.169.94.221)
Handles 29 problems
Host : Up Server : Running

We can see that there are three servers in the NetSolve system that contains the machine comet at the
University of Tennessee:

1. comet itself, which is stated as being an agent
2. cupid at the same location, which is a computational server handling 29 different problems
3. maruti at U.C. Berkeley, which is also a computational server and handles 10 different problems

We can also see the status information about the servers (the processes) and the hosts (the computers).
Right now, everything is up and running.
In the next section, we will see how to solve a problem.

4.3 Calling netsolve()

The first way to perform an actual numerical computation is to call the function netsolve(). With this
function, the user can send a blocking request to NetSolve. By blocking we mean that after typing the
command in the MATLAB session, the user gets back control only when the computation has been success-
fully completed on a server. The other way to perform computation is to send a nonblocking request; this
approach is described in Section 4.4.

Let us go on with the eig example we started to develop in the preceding section. The user now knows that
he has to provide a double-precision square matrix to NetSolve, and he knows that he is going to get two
real vectors back (or one single complex vector). He first creates a 300 x 300 matrix, for instance,

>> a = rand(300);
The call to NetSolve 1s now

>> [x y] = netsolve(’eig’,a)



All the calls to netsolve() will look the same. The left-hand side must contain the output arguments, in the
same order as listed in the output description (see Section 4.2). The first argument to netsolve() is always
the name of the problem. After this first argument the input arguments are listed, in the same order as they
are listed in the input description (see Section 4.2). This function does not have a fixed calling sequence,
since the number of inputs and outputs depends on the problem the user wishes to solve.

Let us see what happens when this command is typed:

>> [x y] = netsolve(’eig’,a)

Trying server cupid.cs.utk.edu
Problem accepted....sending the data
Waiting for result.....

Result received

x = y =
10.1204 0
-0.9801 0.8991
-0.9801 -0.8991
-1.0195 0
-0.6416 0.6511

As mentioned earlier, the user can decide to regroup # and y into one single complex vector. Let us make
it clear again that this possibility is a specificity of eig and is not available in general for any problem. To
merge z and y, the user has to type

>> [x] = netsolve(’eig’,a)

Trying server cupid.cs.utk.edu
Problem accepted....sending the data
Result received

10.1204
-0.9801 + 0.89911
-0.9801 - 0.8991i
-1.0195
-0.6416 + 0.65111

4.4 Calling netsolvenb()

The obvious drawback of the function netsolve() is while the computation is performed remotely, the
user must simply wait to get back the prompt. To address this drawback, we designed netsolve nb().
This second function allows the user to send nonblocking requests to NetSolve. Once the user has called
netsolvenb(), he gets back the control. He can then do some work in parallel and check for the completion
of the request later. He can even send multiple requests to NetSolve. Thanks to the load-balancing strategy in
NetSolve, all these requests are going to be solved on different machines; achieving some NetSolve-parallelism.
Let us now describe this function on the eig example.

As in Section 4.3, the user creates a 300 x 300 matrix and calls NetSolve:
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>> a = rand(300);
>> [r] = netsolve_nb(’send’,’eig’,a)

Obviously, the calling sequence to netsolvenb() is quite different from the one to netsolve(). The left-
hand side always contains one single argument. Upon completion of this call, it will contain a NetSolve
request handler. The right-hand side is composed of two parts: the action to perform and the right-hand
side of netsolve(). In this example, the action to perform is send, which means that we send a request to
NetSolve. Throughout this section, we will encounter all the possible actions, and they will be summarized
in Appendix A.

Let us resume our example and see what NetSolve answers to the first call to netsolvenb() :

>> [r] = netsolve_nb(’send’,’eig’,a)
Trying server cupid.cs.utk.edu
Problem accepted....sending the data

r =
0

As expected, netsolve nb() returns a request handler: here it is 0. This request handler will be used in
the subsequent calls to the function. The request is being processed on cupid, and the result will eventually
come back. The user can obtain this result in one of two ways. The first one is to call netsolve nb() with
the probe action :

>> [x y] = netsolve_nb(’probe’,r)

The left-hand side of this call is the left-hand side of the call to netsolve(). The right-hand side contains
the action, as is required for netsolve nb(), and the request handler. This call returns immediately, either
printing out a message saying that the result has not arrived yet or giving the result in x and y. Here are
the two possible scenarios:

>> [x y] = netsolve_nb(’probe’,r)
Not ready yet

>> ... Some other work ...

>> [x y] = netsolve_nb(’probe’,r)
Result received

x = y =
10.1204 0
-0.9801 0.8991
-0.9801 -0.8991
-1.0195 0
-0.6416 0.6511

The other way to obtain the result is to call netsolve nb() with the wait action. The call then blocks until
the result arrives:

>> [x y] = netsolve_nb(’wait’,r)
Waiting for result.....
Result received

X = y:
10.1204 0

11



-0.9801 0.8991

-0.9801 -0.8991
-1.0195 0
-0.6416 0.6511

As for netsolve(), we can merge the real part and the imaginary part into a single complex vector. The
typical scenario 1s to call netsolve nb() with the action send, then make repeated calls with the action
probe until there is nothing more to do than wait for the result. The user then callas netsolve nb() with
the action wait.

One last action can be passed to netsolvenb(), as shown here:

>> netsolve_nb(’status’)

This command will return a description of all the pending requests. Let us see how it works on this last
complete example:

>> a = rand(800); b = rand(800);
>> [r1] = netsolve_nb(’send’,’eig’,a)
Trying server cupid.cs.utk.edu
Problem accepted....sending the data
rl =

0
>> [r2] = netsolve_nb(’send’,’eig’,b)
Trying server vw.cs.Berkeley.edu
Problem accepted....sending the data
r2 =

1

Now let us see what status does:

>> netsolve_nb(’status’)
Pending NetSolve requests
Request #0 - eig
Assigned to cupid.cs.utk.edu 12 seconds ago
Still RUNNING
Predicted execution time : 2324 seconds
Request #1 - eig
Assigned to vw.cs.Berkeley.edu 3 seconds ago
Still RUNNING
Predicted execution time : 2606 seconds

The user can check what requests he has sent so far and obtain an estimation about the completion times. By
using the status action, the user can also find out whether a request is still running or has been completed.

4.5 What Can Go Wrong?

During a computation, two classes of error can occur: NetSolve failures and user mistakes.

4.5.1 NetSolve Failures

The first class of error is caused by the NetSolve system itself, that is, the pool of agents and servers. The
netsolve() and netsolve nb() functions print out explicit and simple error messages, and we are not going
to describe them all in great detail. Let us mention just one:

12



>> netsolve
No agent running on demidoff.cs.utk.edu

The environment variable NETSOLVE_AGENT contains the name of a host that is not running a NetSolve agent.
All the other messages are of the same form and easily understandable.

4.5.2 User Mistakes

The second class of error comes from the user. If the user does not follow the calling sequences described in
Sections 4.3 and 4.4, error messages are printed out. For instance, if the user passes a problem name that
does not exist, NetSolve will indicate that this problem is unknown at this time. Again, all the messages are
explicit, and we are not going to list them all here.

More interesting errors occur when the calling sequences are respected but the user provides wrong data to
NetSolve. Here is an example of such a case:

>> a = rand(300,400)
>> [x] = netsolve(’eig’,a)
Trying server cupid.cs.utk.edu

Problem accepted....sending the data
** Dimension mismatch **
x =

]

The user tried to compute the eigenvalues of a nonsquare matrix, and NetSolve indicates that the computation
i1s impossible. The same kind of message is printed for any mistake in the input data.

5 C and Fortran Interfaces

5.1 Introduction

The C and Fortran interfaces are, in fact, one. The Fortran interface is built on top of the C interface, since
all the networking underneath NetSolve is done in C. However, we chose to design the Fortran wrappers
around the C interface as subroutines (instead of functions). The C functions all return an integer called
the NetSolve status code. The Fortran subroutine just takes it as an argument passed by reference. The list
of all the possible NetSolve status codes can be found in Appendix D. The reference manuals for C and
Fortran are in Appendixes B and C.

The basic concepts here are the same as the ones we have introduced in Section 4 for the MATLAB interface,
especially the ability to call NetSolve in a blocking or nonblocking fashion.

After compiling the C/Fortran interface as explained in Section 3.4, the user will find two archive files:

e Netsolve client/1ib/$NETSOLVE_ARCH/libnetsolve.a: the C library
e Netsolve client/1ib/$NETSOLVE ARCH/libfnetsolve.a: the FORTRAN library

The user must link these files to either one of these libraries to create a C or Fortran program calling
NetSolve. The user must also include the following header file:

e Netsolve client/include/netsolve.h

Before describing the interface itself, we discuss the calling sequence to use for the different problems in the
next section.
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5.2 Knowing the Calling Sequence

When we described the MATLAB interface in Section 4, the calling sequence of netsolve() was fairly
simple. It consisted of the input objects on the right-hand side and the output object on the left-hand side.
On each side, the objects were in the same order as the one they were listed in the problem description.
Since this problem description is available from MATLAB, the user could easily determine the proper calling
sequence. The situation i1s not that simple for C or Fortran. Indeed, MATLAB is a high-level computational
tool that provides its users with high-level objects encapsulating several pieces of data. For instance, in
MATLAB a matrix is an object that can be referenced with a single identifier, even though it contains two
integers, and a pointer to an array of double-precision elements. The two integers, of course, are the number
of rows and columns of the matrix, and the pointer points to the element of the matrix (stored columnwise
in MATLAB). Hence, when a user passes a matrix identifier to NetSolve from MATLAB, he does not have
to worry about passing the sizes of the matrix.

In C or Fortran, we do not have access to such high-level constructs. Therefore, when we pass to NetSolve
a pointer to some data, we also need to specify the size(s) of this data. This requirement, of course, implies
that the calling sequence has to be more complex than the one in MATLAB. In Section 2.3, we noted that
the CGI scripts were giving extensive details about the different problems. Those details are, in fact, the
descriptions of the C and Fortran calling sequences.

Our present policy with calling sequences from C of Fortran is to preserve the native calling sequences of
the numerical software. Recall that in Section 2.3, we said that, by convention, the first element of the full
name of a problem is the name of the numerical library the problem comes from. Thus, the user always
knows what software a routine comes from, by consulting the NetSolve homepage.

Thus, two situations are possible. First, the user knows the numerical software and may even have a code
already written in terms of this software. Then, switching to NetSolve is immediate, and we will see examples
in the following sections. The second possibility is that the user does not know the software. Then he can
learn the calling sequences from the NetSolve homepage thanks to the CGI scripts. The NetSolve homepage
will also give access to URLs that may contain information about the different software in use.

With this understanding of how calling sequences work, we can proceed with the actual description of the
interface.

5.3 Blocking Call

As with MATLAB; there is a blocking call to NetSolve from C or Fortran. Specifically, one calls a single
function, nets1(). This function returns a NetSolve status code. It takes as arguments the name of a
problem and the list of input data. These inputs are listed according to the calling sequence discussed in
Section 5.2 and their number of variables. The C prototype of the function is

int netsl(char *problem_name, ... < calling sequence > ...)
and the Fortran prototype is
SUBROUTINE NETSL(PROBLEM_NAME, NSINFO, ... < calling sequence > ...)

where PROBLEM NAME is a string and NSINFO is the status code returned by NetSolve. The number of the
arguments in the calling sequence depends on the problem.

Let us consider an example that uses the LAPACK [4] routine dgesv(), which solves a linear system of
equations. In Fortran, the direct call to LAPACK looks like

call DGESV(N,1,A,MAX,IPIV,B,MAX,INFO)
The equivalent blocking call to NetSolve is
call NETSL(’DGESV’,NSINFO,
N,1,A,MAX,IPIV,B,MAX, INFO)

14



The call in C is
nsinfo = netsl(’dgesv’,n,1,a,max,ipiv,b,max,&info)

Notice that the name of the problem is case insensitive. In Fortran, every identifier represents a pointer,
but in C we actually had the choice to use pointers or not. We chose to use integer (int) for the sizes of the
matrices/vectors, but pointers for everything else.

. From the user’s point of view, the call to NetSolve is exactly equivalent to a call to LAPACK. One detail,
however, needs to be mentioned. Most numerical software is written in Fortran and requires users to provide
workspace arrays as well as data, since there is no possibility for dynamic memory allocation. Becauses we
conserved the exact calling sequence of the numerical softwares, we require the user to pass those arrays.
But, since the computation i1s performed remotely, this workspace is useless on the client side. It will, in fact,
be dynamically created on the server side. Therefore, when the numerical software would require workspace,
the NetSolve user may provide an empty workspace!

describes netslnb(), the nonblocking version.

5.4 Nonblocking Call

We developed this nonblocking call for the same reason we developed one for MATLAB (see Section 4.4): to
allow the user to have some NetSolve-parallelism. The nonblocking version of nets1() is called netslnb().
The user calls it in exactly the same way nets1() is called. The only difference between the two functions
lies in the NetSolve status code they return. If the call to netslnb() is successful, a request handler is
returned in the NetSolve status code, as in the MATLAB interface. Let us give an example in Fortran:

call NETSLNB(’DGESV’,REQUEST,
N,1,A,MAX,IPIV,B,MAX, INFO)

and in C :
request = netslnb(’dgesv’,n,1,a,max,ipiv,b,max,&info)

This is exactly the same call as the one in the preceding section.

The next step is to check the status of the request. As in the MATLAB interface, the user can chose to
probe or to wait for the request. Probing is done by calling netslpb(). If the call is successful, the function
returns immediately with either an NetSolve status code telling that the result is not available yet or with
the result in the user space. Here is an example in Fortran:

call NETSLPB(REQUEST,NSINFO)
and in C :
nsinfo = netslpb(request);

Waiting is done by using netslwt (). This function blocks until the request is completed. Here is the Fortran
call:

call NETSLWT(REQUEST,NSINFO)
and the C call :
nsinfo = netslwt(request);

If the call is successful, the function returns with the results in the user space.
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5.5 Error messages

There is an aditional function in the C and Fortran interface that prints out explicit error messages given a
NetSolve error code. The C call is :

netslerr(nsinfo);
and in Fortran

call NETSLERR(NSINFO)

5.6 Built-in Examples

C and Fortran examples are included in the NetSolve Client Distribution in the directory Netsolve client/examples.
To build them, the user simply types make examples in the top directory. The examples use different prob-

lems that have been given servers at the University of Tennessee. They should help the user to understand

how the system works. We also have a full example in C and Fortran in Appendixes E and F.

6 Java Interface

6.1 Introduction

This section describes the Java interface to NetSolve, a user-friendly graphical tool for accessing resources in
the NetSolve system. Since the Java interface should be runnable from many WWW browsers, it also provides
users the opportunity to solve problems without downloading or compiling any source code. However, the
current Web browser versions impose very strong restriction to the capabilities of applets. At this time, it
appears to be impossible to open sockets to a remote hosts, making the NetSolve interface unusable. Future
versions of these Web Browsers will undoubtedly alleviate these problems.

To start the stand-alone application:

java NetSolveClient blah.cs.utk.edu

where blah.cs.utk.edu i1s the name of a machine running a NetSolve agent. The machine name is optional,
but if it 1s not specified, the client tries to contact comet.cs.utk.edu by default.

6.2 The Initial Screen

Let us now assume that the user has started the Java interface, either as an applet (via the Web) or as a
stand-alone application. Figure 2 shows the initial screen, which consists of several components:

o Agent Selection Box

e Problem List

e Problem Description Box
e Input List

e Input Description Box

e Output List

e Output Description Box
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To contact an agent, the user can enter the hostname in the Agent Selection Box and then click on the
“Contact/Update” button. In some cases, the user may have already contacted an agent, but just wants to
update the list of problems. If so, clicking on the “Contact/Update” button without changing the text in
the Agent Selection Box will reload the problem list. Once the list of available problems has been loaded it
is then displayed in the Problem List, located in the upper left region of the interface.
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Figure 2: The Initial Screen
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To find out more about any problem listed, the user may click on that problem and view pertinent information
displayed in the Problem Description Boz, the Input List, and the Qutput List. The Problem Description
Boz, located in the lower left region of the interface, contains a short description of the selected problem.
The Input List contains a list of the input objects required to solve the selected problem. Similarly, the
Qutput List contains a list of the output objects that are returned by the server. When the user clicks on
any item in the Input List, the interface updates the Input Description Box with text describing the selected
input object. Likewise, clicking on any item in the Qutput List updates the Qutput Description Box with
text describing the selected output object.

6.3 Solving a Problem

To solve an instance of some problem, the user must first select a problem from the Problem List and then
click on the “Solve” button. A new window will appear allowing the user to input data for each input
object required by the problem. Figure 3 shows the Data Input Window, which consists of the following
components:

e Input List
e Input Description Box
e Filename (or URL) Selection Box

e Data Input Box

The Input List contains a list of the input objects for which the user must supply data. The Input Description
Boz contains text describing the selected input object (this text is the same as the text displayed in the
Input Description Box of the initial screen).

For each input object, the user may choose to enter the data manually into the Data Input Box or to specify
the name of a file containing the data in the Filename Selection Box. Next to the Filename Selection Box
is a “Browse” button which allows choosing the file using a graphical file browser. Those users accessing
the NetSolveClient via a Web browser will have a URL Selection Box (instead of a File Selection Box) in
which they may type in the URL for their data file. This allows NetSolve to access the user’s local data
files over the network. Just above the Data Input Box is a “Sample Data” button which fills the box with
some numbers appropriate to the type of the input object (for example, if the input object is a vector of
integers, clicking on the “Sample Data” button will generate a vector of integers). Note that even though
the interface allows having text in both selection boxes simultaneously, only one box may be “active” at any
time and anything in the “inactive” box will be ignored.

The title bar of the Data Input Window contains some noteworthy information: the name of the problem,
and a Request Number. The problem name listed on the title bar is the same name from the initial screen,
minus the path. For example, if the full name as shown on the initial screen is /Blah/blah/prob, then the
name on the title bar is prob. The Request Number is a number which uniquely identifies each Data Input
Window so that the user may easily relate the Output Windows (see Section 6.4) to the Input Windows from
which they originated.

Once all inputs have been fully specified, click on the “Compute” button, located in the lower left region
of the Data Input Window. If there are any errors in the data and/or files, an informational window will
appear describing the nature of the errors and for which input object(s) the errors apply. All errors must be
corrected before the data may be sent. Here are some of the most common errors:

e Invalid numeric format. The input does not match the expected input type (for example, the input
type is “integer” and the user enters “1.2”).

e Empty input. The user did not specify any data for some input object.
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Figure 3: The Input Screen

e Input not specified. This is similar to the previous error except that here, the user did not activate
one of the two input sources (file input or data input) whereas in the previous error, one of the two
input boxes was chosen, but no data was entered.

o Nonexistent file. The filename given does not exist. Using the graphical file browser may help determine
the correct path and file name.

e Rows of matrix not even. This means that one or more rows in the matrix do not have the same
number of elements.

If the data and/or files specified are acceptable, the values are sent to a computational server which performs
the computations and returns the output objects.

6.4 Viewing the Results

Once the computational server sends back the results, a new window appears allowing the user to browse
the results. Figure 4 shows the Qutput Window, which consists of the following components:

e Output List
e Output Description Box

e Data Box

The Qutput Window is arranged like the Data Input Window, with a list of objects on the left, a data box
on the right, and a description box on the bottom. When the user clicks on any item in the Quiput List, the
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QOutput Description Box is updated with text describing that object and the Data Box is updated with the
results of the computation. Above the Data Box is a “Save” button which allows users of the stand-alone
application to save the text in the Data Box to a file. Note that the data saved is that for the selected output
object only, not all output objects.

Like the Data Input Window, the title bar of the Qutput Window also contains the problem name and
a Request Number. However, the Request Number is slightly different in this window. It consists of two
numbers separated by a “.” (period). The first number is the Request Number from the Data Input Window
from which this output originated. The second number uniquely identifies this window so that it can be
distinguished from other OQutput Windows. Here’s an example of how the numbers are assigned: the user
chooses a problem, “ddot” perhaps, on the initial screen and clicks “Solve”. The Data Input Window
corresponding to that problem will have Request Number “1”7. Then the user chooses a different problem,
“matmul” perhaps, and clicks “Solve”. The Request Number corresponding to that problem will be “2”7. The
number is incremented each time a new input window is opened. The user enters data into the “matmul”
window and clicks “Compute” three times to solve three instances of that problem. Soon three output
windows will appear with Request Numbers “2.17, “2.2”  and “2.3” corresponding to the first, second, and
third instance of the problem, respectively.

7 The User-Supplied Function Feature

7.1 Motivation

In the preceding sections, we described all the client interfaces to NetSolve. In these descriptions we assumed
that the only input the user had to supply to NetSolve was numerical data, that is, matrices, vectors, or
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scalars. This assumption is valid for a lot of numerical software. However, for some software that we would
like to include in NetSolve via NetSolve servers, we need an additional feature. Indeed, numerous scientific
packages require the user to provide numerical data as well as a function. Typically, nonlinear software
requires the user to pass a pointer to a subroutine that computes the nonlinear function. This is a problem
in NetSolve because the computation is performed remotely and the user cannot provide NetSolve with a
pointer to one of his linked-in subroutines. The only solution is to send code over the network to the server.
This approach raises a lot of issues, including security.

7.2 Solution

Let us describe here the solution we have adopted. This is really a first attempt, and there is definitely
room for improvement. However, we believe that it provides reasonable capabilities for now, considering
that NetSolve is still at an early stage of development. As we noted, we need to ship code over to the
computational server. Since NetSolve works in heterogeneous environment, it is not possible to migrate
compiled code. Thus, we require that the user have his subroutine or function in a separate file, written
either in C or Fortran. We send this file to the computational server. The server compiles it and is then
able to use this user-supplied function.

The security implementation is quite simple. When compiling the user’s function, we use the nm UNIX
command to disallow any system call. The approach is very restrictive for the user, but typically the
subroutine that has to be passed needs only to perform computations. If course, there are a lot of hacker
ways to go around this problem, and our system currently does not pretend to be a real security manager.
We are investigating Java to deal with this user-supplied function issue.

7.3 Determining the Format of the Function to Supply

We now understand that the user has to write a Fortran subroutine or a C function to call a problem that
requires a user-supplied function. For now, the prototype of this subroutine/function can be found in the
description of the problem, available from MATLAB or the CGI scripts of the NetSolve homepage (see 2.3).
Following the usual philosophy of NetSolve, the prototype of the user-supplied function is exactly the same
as if the user were using the numerical software directly. Some software require the user to provide more than
one function. When that is the case, the description of the problem mentions it and give all the prototypes
for all the functions to supply.

7.4 From MATLAB

From MATLAB, when the user consults the list of available problems, he can determine whether any given
problem requires a user-supplied function. If the problem does indeed require such a function, this function
has to be written in a file. This file can be called upf .f or upf.c, depending on the language used to write
it. This file has to be in the current working directory. The problem is then called as described in Section
4. If something is wrong with the user-supplied function, netsolve() and netsolvenb() print out special
error messages.

7.5 From C or Fortran

The situation from C or Fortran is almost the same as from MATLAB. The user-supplied function has to be
in upf.f or upf.c, in the working directory. However, we introduce here a new function, called netsldir(),
that sets the default directory in which to look for the function file. A typical call to netsldir() in C is

netsldir("/homes/me/my_functions");

and in Fortran 1s
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NETSLDIR(’ /homes/me/my_functions’)

Here, netsl() and netsldir() return special NetSolve status codes concerning the user-supplied function.

7.6 From Java

Entering a user-supplied function via the Java interface is very much similar to entering any other kind
of data. If the problem requires a user-supplied function, there will be an entry in the Input List called
“User Provided Function” for which data must be specified, just like any other input object. The user may
choose to enter the user-supplied function manually into the Data Input Box or from a file specified in the
Filename Selection Boz. If the user enters the function manually, the language must also be specified by
choosing either C or FORTRAN from an “option menu” that appears just above the Data Input Boz. If the

user-supplied function comes from a file, the file must end with either “.c” or “.f” (with names ending in
“.c” interpreted as C functions and names ending in “.f” interpreted as FORTRAN functions).

7.7 Conclusion

This new feature of NetSolve is still under investigation. We are aware that security is an important issue
here. For now, NetSolve is still a research project developed to allow experimentations with this relatively
new type of software. In the future, more attention will be given to the used-supplied mechanism in order
to make it as safe as possible. As mentioned earlier, we may use Java in order to set up a viable security
manager. Using Java currently appears to be the best solution for security, but it has obvious drawbacks.
First, the user would have to write his function in Java: the typical NetSolve user is a scientist who does
not have the time or inclination to learn new languages, especially object-oriented ones. Second, with the
current implementations of Java, efficiency would also be a problem.

8 General Conclusion

NetSolve is a new project, and as such is bound to undergo a lot of changes in a very close future. However,
we believe that all the general ideas presented in this document about problem specification, as well as the
details of each interface will not be highly modified. The changes in NetSolve should be in fact be focused
on its way of operating internally and should not have any impact on the interfaces. Of course, some new
features are going to be added along the way, and they will surely be described in a next version of this
User’s Guide.

One of our goal in designing the different clients to NetSolve was to keep them as straightforward as possible.
This can be seen best with the MATLAB and Java interfaces. The C and FORTRAN interfaces are more
complicated because those languages, unlike MATLAB, do not provide a high level of abstraction. However,
we emphasized that those two interfaces allow users of numerical software to switch very easily to the NetSolve
counterpart of those softwares. The efficiency of the computation is outside the scope of this document and
is discussed in great detail in [2].
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A MATLAB Reference Manual

We describe here all the possible calls to NetSolve from MATLAB. In these descriptions we assume correct-
ness. In case of errors, all these calls print out very simple and explicit messages.

>> netsolve

Prints out on the screen the list of all the problems that are available in the NetSolve system.

>> netsolve(’ <problem name>’)

Prints out all the information available from MATLAB about a specific problem.

>> netsolve(’?’)

Prints out the list of all the agents and servers in the NetSolve system, that is, the NetSolve system contain-
ing the host whose name is in the environment variable NETSOLVE_AGENT.

>> [ ... 1 = netsolve(’<problem name>’, ...)

Sends a blocking request to NetSolve. The left-hand side contains the output arguments. The right-hand
side contains the problem name and the input arguments. The arguments are listed according to the problem
description. Upon completion of this call, the output arguments contain the result of the computation.

>> [r] = netsolvenb(’send’,’<problem name>’, ...)

Sends a non-blocking request to NetSolve. The right-hand side contains the keyword send, the problem
name, and the list of input arguments. These arguments are listed according to the problem description.
The left-hand side will contain a request handler upon completion of the call.

>> [ ... ] = netsolvenb(’wait’,r)

Waits for a request’s completion. The right-hand side contains the keyword wait and the request handler.
The left-hand side contains the output arguments. These arguments are listed according to the problem
description. The right-hand side contains the keyword wait and the request handler. Upon completion of
this call, the output arguments contain the result of the computation.

>> [ ... ] = netsolvenb(’probe’,r)

Probes for a request’s completion. The right-hand side contains the keyword probe and the request handler.
The left-hand side contains the output arguments. These arguments are listed according to the problem
description. The right-hand side contains the keyword probe and the request handler. Upon completion of
this call, the output arguments contain the result of the computation.
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>> netsolvenb(’status’)

Prints out the list of all the pending requests. This list contains estimated time of completion, the compu-
tational servers handling the requests and the current status. The status can be COMPLETED or RUNNING.
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B C Reference Manual

We describe here all the possible calls to NetSolve from C. All these calls return a NetSolve code status. The
list of the possible code status is given in Appendix D.

status = netsl("<problem name>", ...)

Sends a blocking request to NetSolve. nets1() takes as argument the name of the problem and the list of
arguments in the calling sequence. See Section 5.2 for a discussion about this calling sequence. It returns
the NetSolve status code (integer status). If the call is successful, the result of the computation is stored
in the output arguments. The output arguments are specified in the calling sequence.

status = netslnb("<problem name>", ...)

Sends a nonbloking request to NetSolve. netslnb() takes as argument the name of the problem, and the
list of arguments in the calling sequence. See Section 5.2 for a discussion about this calling sequence. It
returns the NetSolve status code (integer status). If the call is successful, status contains the request

handler.

status = netslwt(<request handler>)

Waits for a request’s completion. netslwt () takes as argument a request handler (an integer). If the call
is successful, the result of the computation is stored in the output arguments. The output arguments are
specified in the calling sequence during the call to netslnb().

status = netslpb(<request handler>)

Probes for a request’s completion. netslpb() takes as argument a request handler (an integer). If the call
is successful, the result of the computation is stored in the output arguments. The output arguments are
specified in the calling sequence during the call to netslnb().

netsldir("<problem name>")

Sets the default directory where are located the user-supplied functions.

netslerr("<error code>")

Displays an explicit error message given a NetSolve error code.
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C Fortran Reference Manual

We describe here all the possible calls to NetSolve from Fortran. All these calls return a NetSolve code
status. The list of the possible code status is given in Appendix D.

CALL NETSL(’<problem name>’ ,NSINFO, ...)

Sends a blocking request to NetSolve. NETSL() takes as argument the name of the problem, an integer, and
the list of arguments in the calling sequence. See Section 5.2 for a discussion about this calling sequence.
When the call returns, the integer NSINFO contains the NetSolve status code. If the call is successful, the
result of the computation is stored in the output arguments. The output arguments are specified in the
calling sequence.

CALL NETSLNB(’<problem name>’ ,NSINFQO, ...)

Sends a nonbloking request to NetSolve. NETSLNB () takes as argument the name of the problem, an integer,
and the list of arguments in the calling sequence. See Section 5.2 for a discussion about this calling sequence.
It returns the NetSolve status code (integer status). If the call is successful, status contains the request

handler.

CALL NETSLWT(<request handler> ,NSINFQ)

Waits for a request’s completion. NETSLWT() takes as argument a request handler and an integer. When
the call returns, NSINFO contains the NetSolve status code. If the call is successful, the result of the compu-
tation 1s stored in the output arguments. The output arguments are specified in the calling sequence during
the call to NETSLNB().

CALL NETSLPB(<request handler> ,NSINFQ)

Probes for a request’s completion. NETSLPB() takes as argument a request handler and an integer. When
the call returns, NSINFO contains the NetSolve status code. If the call is successful, the result of the compu-
tation 1s stored in the output arguments. The output arguments are specified in the calling sequence during
the call to NETSLNB().

CALL NETSLDIR(’<problem name>’)

Sets the default directory where the user-supplied functions are located.

CALL NETSLERR("<error code>")

Displays an explicit error message given a NetSolve error code.
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D Error Codes for C and Fortran

ERROR CODE VALUE | MEANING

NetSolveSuccess 1 Successful call to a routine

NetSolveNotReady 0 Request not yet completed

NetSolveFailure -1 Failure of the NetSolve system

NetSolveBadCode -2 Badly formatted problem name
NetSolveUnknownProblem -3 Unknown problem in the system

NetSolveBadInput -4 Wrong number/type of input

NetSolveBadOutput -5 Wrong number /type of output

NetSolveAgentFailure -6 Failure of the NetSolve Agent

NetSolveNoServers -7 No computational resource available
NetSolveBadDimension -8 Incorrect dimensions of nonscalar input data
NetSolveNoSolution -9 No solution for this problem given the input data
NetSolveRequestFull -10 No more requests possible
NetSolveInvalidRequestnumber -11 Unknown request handler

NetSolveSetArch -12 Environment variable NETSOLVE_ARCH should be set
NetSolveSetAgent -13 Environment variable NETSOLVE_AGENT should be set
NetSolveNoAgent -14 No agent running on $NETSOLVE_AGENT
NetSolveBadValues -15 Incorrect numerical values of the input
NetSolveFileNotFound -16 No file containing a user-supplied function
NetSolveFileReadError -17 Impossible to read file containing the user-supplied function
NetSolveUPFFailed -18 Compilation error of the user-provided function
NetSolveUPFUnsafe -19 Unsafe user-provided function
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E Complete C Example

#include "netsolve.h"
#tdefine SIZE 100

main ()
{
double a[SIZE*SIZE];
double x1[SIZE],y1[SIZE],x2[SIZE],y2[SIZE];
int info,status;
int i,init = 1325;

for (i=0;i<SIZE+SIZE;i++) {

init = 2315*init % 65536;

ali] = (double) ((double)init - 32768.0) / 16384.0;
¥

/* NetSolve blocking */

info = netsl("Eig",a,SIZE,SIZE,x1,y1);
if (info <0)
{
fprintf (stderr,"netsl() : %d\n",info);
exit (0);
¥

/* NetSolve Non-blocking */
info = netslnb("Eig",a,SIZE,SIZE,x2,y2);

if (info < 0)

{
fprintf (stderr,"netslnb : %d\n",info);
fprintf (stderr,"** NetSolve Abort **\n'");
exit (0);

¥

status = netslwt (info);

if (status <0)

{
fprintf (stderr,"netslut () : %d\n",status);
fprintf (stderr,"** NetSolve Abort **\n'");
exit (0);

¥

¥
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F Complete Fortran Example

#include "netsolve.h"
ok ok sk ok ok ok sk ok ok ok sk Kok Kok KKK K kK kK ok ok sk ko skok sk ok ok ok ok ok

* *
* TEST of the FORTRAN INTERFACE to NETSOLVEx*
* *

stk ok sk ok ok ok sk ok sk ko sk sk ok sk ok ok ke ok sk ke ok ke ok ok skok skok sk skok sk ok sk ok sk ok sk ok sk ok
PROGRAM TEST

PARAMETER (SIZE = 2000)
INTEGER N

DOUBLE PRECISION A(SIZE,SIZE)
DOUBLE PRECISION X1(SIZE)
DOUBLE PRECISION Y1(SIZE)
DOUBLE PRECISION X2(SIZE)
DOUBLE PRECISION Y2(SIZE)
INTEGER REQUEST

INTEGER INFO

INTEGER INIT,I,J

INIT = 1325
DO 10 I = 1,N
DO 11 J = 1,N
INIT = MOD(2315%INIT,65536)
A(J,I) = (DBLE(INIT) - 32768.D0)/16384.D0
11 CONTINUE
10 CONTINUE

CALL NETSL(’Eig’,INFO_NS,
$ A,MAX,MAX,X1,Y1)

IF(INFO.LT.0) THEN
WRITE (*,*) INFO
STOP

ENDIF

CALL NETSLNB(’Eig’ ,REQUEST,
$ A,MAX,MAX,X2,Y2)

IF(REQUEST.LT.0) THEN
WRITE (*,%) REQUEST
STOP

ENDIF

CALL NETSLWT (REQUEST, INFO_NS)
IF(INFO.LT.0) THEN

WRITE (*,*) INFO

STOP

ENDIF

STOP
END
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