
Client User's GuidetoNetSolveHenri Casanova� Jack Dongarra?y Keith Seymour?December 6, 1996AbstractThe NetSolve system, developed at the University of Tennessee, is a client-server application designedto solve computational science problems over a network. Users may access NetSolve computationalservers through C, Fortran, MATLAB, or Java interfaces. This document brie
y presents the basics ofthe system. It then describes in detail how the di�erent clients can contact the NetSolve system to havesome computation performed, thanks to numerous examples. Complete reference manuals are given inthe appendixes.
�Department of Computer Science, University of Tennessee, TN 37996yMathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Contents1 Introduction 42 Overview of the NetSolve System 42.1 Architecture : 42.2 Problem Speci�cation : 42.3 Problems Solvable with NetSolve : 53 Getting Started 63.1 Downloading and Installing the Software : 63.2 Setting the Architecture : 63.3 Setting an Agent Name : 73.4 Compiling the Client : 74 MATLAB Interface 74.1 Introduction : 74.2 What to Do First : 74.3 Calling netsolve() : 94.4 Calling netsolve nb() : 104.5 What Can Go Wrong? : 124.5.1 NetSolve Failures : 124.5.2 User Mistakes : 135 C and Fortran Interfaces 135.1 Introduction : 135.2 Knowing the Calling Sequence : 145.3 Blocking Call : 145.4 Nonblocking Call : 155.5 Error messages : 165.6 Built-in Examples : 166 Java Interface 166.1 Introduction : 166.2 The Initial Screen : 166.3 Solving a Problem : 196.4 Viewing the Results : 207 The User-Supplied Function Feature 217.1 Motivation : 217.2 Solution : 227.3 Determining the Format of the Function to Supply : 227.4 From MATLAB : 227.5 From C or Fortran : 227.6 From Java : 237.7 Conclusion : 238 General Conclusion 23A MATLAB Reference Manual 242

B C Reference Manual 26C Fortran Reference Manual 27D Error Codes for C and Fortran 28E Complete C Example 29F Complete Fortran Example 30

3

1 IntroductionThe e�cient solution of large problems is an ongoing thread of research in scienti�c computing. Variousmechanisms have been developed to perform computations across diverse platforms. The most commonmechanism involves software libraries. Unfortunately, the use of such libraries presents several di�culties.Some software libraries are highly optimized for only certain platforms and do not provide a convenientinterface to other computer systems. Other libraries demand considerable programming e�ort from the user.While several tools have been developed to alleviate these di�culties, such tools themselves are usuallyavailable on only a limited number of computer systems. MATLAB [1] is an example of such a tool.These considerations motivated the establishment of the NetSolve project. The basic philosophy behindNetSolve is to provide a uniform, portable and e�cient way to access computational resources over a network.NetSolve is a client-server application, and a number of di�erent client interfaces have been developed tothe NetSolve software. Users of C, Fortran, MATLAB, or the World Wide Web can easily use the NetSolvesystem thanks to the di�erent client types. The purpose of this document is to describe all those interfacesand the way they interact with the NetSolve servers.The next section gives basic information about the NetSolve system. A complete description of the softwarelayout and communication protocols can be found in [2]. Section 3 provides all the information needed todownload and install NetSolve. Sections 4, 5, and 6 describe in detail all the interfaces. Section 7 describesa recently developed feature of NetSolve, the \user-supplied function" mechanism.2 Overview of the NetSolve System2.1 ArchitectureThe NetSolve system is a set of loosely connected machines. By loosely connected, we mean that thesemachines can be on the same local network or on an international network. Moreover, the NetSolve systemcan be running in a heterogeneous environment, which means that machines with di�erent data formats canbe in the system at the same time.Figure 1 shows the global conceptual picture of the NetSolve system. In this �gure, we can see the threemajor components of the system:� The NetSolve client� The NetSolve agent� The NetSolve computational resourcesSolving a problem with NetSolve is done in three steps. The client sends a request to the agent. The agentchooses the \best" NetSolve resource according to the size and nature of the problem to be solved. Theproblem is then solved on the chosen server, and the result is sent back to the client.This system is fault tolerant, meaning that the client will receive an answer to its problem unless everyresource in the system has failed or is unavailable. The NetSolve agent is the key to the load-balancingstrategy, and details about its design can be found in [2].2.2 Problem Speci�cationTo keep NetSolve as general as possible, we needed a formal way of describing a problem.A problem is de�ned as a 3-tuple: < name; inputs; outputs >, where� name is a character string containing the name of the problem,� inputs is a list of input objects, and 4

NetSolve Client NetSolve Agent

NetSolve System

Request

ChoiceReply

Resource
NetSolve

Figure 1: The NetSolve System� outputs is a list of output objects.An object is itself described as follows: < object; data >, where object can be MATRIX, VECTOR, orSCALAR, and data can be any of the standard Fortran data types.This description has proved to be su�cient to interface NetSolve with numerous software packages. NetSolveis still at an early stage of development and is likely to undergo modi�cations in the future. For the timebeing, the existing interfaces use this formalism. However, we will see that the C and Fortran interfaces areusually designed so that they �t the underlying scienti�c software calling sequence.2.3 Problems Solvable with NetSolveBefore actually using NetSolve with any interface, the user needs to know what problems are solvable. Theeasiest way is to check the NetSolve homepage:http://www.cs.utk.edu/netsolveThe Available Resources page provides access to two CGI scripts. Using those scripts, one can inquire aboutwhich problems are handled by the servers and about which servers are in the system. Those scripts givecomplete details for the C and Fortran interfaces. This information is also available from the Java or theMATLAB interfaces, for which such a level of detail is not required. In the future, we plan to suppress thosescripts and replace them with a Java applet. This Java applet will look very similar to the current NetSolveJava interface and will provide information only about the C and Fortran interfaces.This early version of NetSolve has a naming scheme for problems. We can distinguish the name of a problemand its full name. The full name has a path-like structure. Let us explain this with an example. Theproblem ddot, which computes the inner product of two double-precision vectors, can have a full name like/BLAS/Level1/ddot. This full name has two purposes. First, when we display a list of problems, they5

are sorted alphabetically on their full name, and the problems are grouped by \directory." Second, byconvention, the �rst element of the full name (e.g., BLAS) is the name of the numerical library the problemcomes from. This convention can be useful, as seen in Section 5.2.3 Getting Started3.1 Downloading and Installing the SoftwareThe client software can be downloaded from the NetSolve homepage athttp://www.cs.utk.edu/netsolve/client distribution.tar.gz.The following UNIX commands will create the Netsolve client directory:% gunzip client_distribution.tar.gz% tar -xvf client_distribution.tarThe di�erent interfaces can now be compiled.3.2 Setting the ArchitectureThe Netsolve client directory includes a script called netsolvegetarch that can be used to return acharacter string describing the architecture of the machine of the user. Suppose, for instance, that onewishes to run the script on an IBM RS/6000:% netsolvegetarchRS6KIn that case, the NETSOLVE ARCH environment variable should be de�ned in the .cshrc �le assetenv NETSOLVE_ARCH RS6Kor, if netsolvegetarch is in the path,setenv NETSOLVE_ARCH `netsolvegetarch`To date, NetSolve has been ported to the following di�erent architectures:� SUN4: Sun 4, 4c, SPARC, etc.� SUN4SOL2: Sun 4 running Solaris 2.x� ALPHA: DEC Alpha/OSF-1� PMAX : DEC Pmax running NetBSd� NEXT : NeXT� SGI5 : Silicon Graphics IRIS running OS >= 5.0� HPPA: HP 9000 PA-Risc� RS6K: IBM RS/6000 6

3.3 Setting an Agent NameAs described in Section 2.1, to solve a problem, a client must contact an agent. The C, Fortran, andMATLAB interfaces require the environment variable NETSOLVE AGENT to be set to contain the name of ahost running a NetSolve agent. If the user knows of some NetSolve system installed somewhere, he willhave to ask the NetSolve administrator for the name of such a host. The NetSolve homepage includes alist of registered agents on the Internet. The constantly running agent at the University of Tennessee iscomet.cs.utk.edu. If the user wishes to set his agent to be this one, he will have to modify his .cshrc asfollows:setenv NETSOLVE_AGENT comet.cs.utk.edu3.4 Compiling the ClientNow that the NETSOLVE ARCH environment variable has been set as described in 3.2, the software can becompiled. First, one should go to the Netsolve client/conf directory and edit the $NETSOLVE ARCH.def�le (for instance RS6K.def). This �le contains a custom section in which the user can modify the compilationparameters. Here is a typical section:# ---- Custom Section ----F77 = f77CC = ccCMEX = cmex# ---- End of Custom Section ----This custom section speci�es which compilers are going to be used. CMEX denotes the MATLAB C-compiler, incase the MATLAB interface is to be built. These parameters can be modi�ed before compilation. However,the �le also contains other information that should not be modi�ed. The NetSolve clients can now becompiled. Typing make in the Netsolve client directory will give instructions to complete the compilation.4 MATLAB Interface4.1 IntroductionBuilding the MATLAB interface as described in 3.4 produces the two following mex-�les :� Netsolve client/bin/$NETSOLVE ARCH/netsolve.mex###� Netsolve client/bin/$NETSOLVE ARCH/netsolve nb.mex###The ### part of the extension depends on the architecture (for instance, the extension is .mex4 for SPARCs).These two �les alone are the MATLAB interface to NetSolve. Modifying the MATLABPATH environmentvariable will make these two �les available from any location in MATLAB. For more information about mex-�les, the user can refer to [3]. Basically, the user will now be able to call two new functions from MATLAB:netsolve() and netsolve nb(). The following sections will explain how to use those two functions.4.2 What to Do FirstLet us now assume that the user has started a MATLAB session and is ready to try NetSolve. In this sectionwe describe those features of this interface that allow the user to get information about the NetSolve systemavailable.As stated brie
y in Section 2.3, it is possible to obtain the list of solvable problems from MATLAB. Let ustry that �rst: 7

>> netsolveNetSolve - List of problems available -/BLAS/Matrices/matmul/ItPack/jsi/LaPack/Matrices/EigenValues/eig/LaPack/Matrices/SingularValues/svd>>Every line contains a full problem name. This list can be really long, and in that case it is wiser to use theCGI scripts in Section 2.3. Let us now assume that the user is wondering about what kind of problem eigis. He can type>> netsolve('eig')This command will provide detailed information about this particular problem. Let us split the outputproduced by this command into di�erent pieces:eig : From LAPACK -Simplified versionComputes the eigenvalues of a double-precision realsquare matrix A. Returns two double-precision realvectors containing respectively the real parts andthe imaginary parts of the eigenvalues.MATLAB Example : [r i] = netsolve('eig',a)This is the same kind of information as that available from the CGI scripts. It gives a short description ofwhat the problem is. Usually it also includes an example for MATLAB, using netsolve().---------- INPUT ----------#0 : Double-precision real matrix.Matrix AThis is the description of the input the user needs to give NetSolve. This particular problem requires onlyone double-precision matrix. Notice that this matrix has to be square (as stated in the description of theproblem). If the user tries to call NetSolve for this problem with a rectangular matrix, he will receive anerror message stating that the dimensions of the input are invalid.----------- OUTPUT -----------#0 : Double-precision real vector.Real parts of the eigenvalues#1 : Double-precision real vector.Imaginary parts of the eigenvaluesThe outputs of the problem are described here. The problem eig will return two vectors, the real andimaginary parts of the eigenvalues of the input matrix, respectively.---Output 0 and 1 can be merged to form a complex object---8

This last part does not appear for every problem and is relevant only for the MATLAB interface. SinceMATLAB provides a mechanism to manipulate complex objects, it is probable that the user would liketo have eig return one single complex vector instead of two separate real vectors. This point is furtherdeveloped in the following section.The MATLAB interface has another feature that is concerned not with the actual problem solving but withproviding information about NetSolve itself. We have just seen how to get information about the problemshandled by the NetSolve servers; it is also possible to obtain the physical locations of these servers. Let usassume that our NETSOLVE AGENT environment variable is set to comet.cs.utk.edu (see 3.3). Let us try thefollowing command:>> netsolve('?')this command produces the following output :comet.cs.utk.edu (128.169.92.78)NetSolve AgentHost : Up Server : Runningmaruti.CS.Berkeley.EDU (128.32.36.83)Handles 10 problemsHost : Up Server : Runningcupid.cs.utk.edu (128.169.94.221)Handles 29 problemsHost : Up Server : RunningWe can see that there are three servers in the NetSolve system that contains the machine comet at theUniversity of Tennessee:1. comet itself, which is stated as being an agent2. cupid at the same location, which is a computational server handling 29 di�erent problems3. maruti at U.C. Berkeley, which is also a computational server and handles 10 di�erent problemsWe can also see the status information about the servers (the processes) and the hosts (the computers).Right now, everything is up and running.In the next section, we will see how to solve a problem.4.3 Calling netsolve()The �rst way to perform an actual numerical computation is to call the function netsolve(). With thisfunction, the user can send a blocking request to NetSolve. By blocking we mean that after typing thecommand in the MATLAB session, the user gets back control only when the computation has been success-fully completed on a server. The other way to perform computation is to send a nonblocking request; thisapproach is described in Section 4.4.Let us go on with the eig example we started to develop in the preceding section. The user now knows thathe has to provide a double-precision square matrix to NetSolve, and he knows that he is going to get tworeal vectors back (or one single complex vector). He �rst creates a 300 � 300 matrix, for instance,>> a = rand(300);The call to NetSolve is now>> [x y] = netsolve('eig',a) 9

All the calls to netsolve() will look the same. The left-hand side must contain the output arguments, in thesame order as listed in the output description (see Section 4.2). The �rst argument to netsolve() is alwaysthe name of the problem. After this �rst argument the input arguments are listed, in the same order as theyare listed in the input description (see Section 4.2). This function does not have a �xed calling sequence,since the number of inputs and outputs depends on the problem the user wishes to solve.Let us see what happens when this command is typed:>> [x y] = netsolve('eig',a)Trying server cupid.cs.utk.eduProblem accepted....sending the dataWaiting for result.....Result receivedx = y =10.1204 0-0.9801 0.8991-0.9801 -0.8991-1.0195 0-0.6416 0.6511...As mentioned earlier, the user can decide to regroup x and y into one single complex vector. Let us makeit clear again that this possibility is a speci�city of eig and is not available in general for any problem. Tomerge x and y, the user has to type>> [x] = netsolve('eig',a)Trying server cupid.cs.utk.eduProblem accepted....sending the dataResult receivedx = 10.1204-0.9801 + 0.8991i-0.9801 - 0.8991i-1.0195-0.6416 + 0.6511i..................4.4 Calling netsolve nb()The obvious drawback of the function netsolve() is while the computation is performed remotely, theuser must simply wait to get back the prompt. To address this drawback, we designed netsolve nb().This second function allows the user to send nonblocking requests to NetSolve. Once the user has callednetsolve nb(), he gets back the control. He can then do some work in parallel and check for the completionof the request later. He can even send multiple requests to NetSolve. Thanks to the load-balancing strategy inNetSolve, all these requests are going to be solved on di�erent machines, achieving some NetSolve-parallelism.Let us now describe this function on the eig example.As in Section 4.3, the user creates a 300 � 300 matrix and calls NetSolve:10

>> a = rand(300);>> [r] = netsolve_nb('send','eig',a)Obviously, the calling sequence to netsolve nb() is quite di�erent from the one to netsolve(). The left-hand side always contains one single argument. Upon completion of this call, it will contain a NetSolverequest handler. The right-hand side is composed of two parts: the action to perform and the right-handside of netsolve(). In this example, the action to perform is send, which means that we send a request toNetSolve. Throughout this section, we will encounter all the possible actions, and they will be summarizedin Appendix A.Let us resume our example and see what NetSolve answers to the �rst call to netsolve nb() :>> [r] = netsolve_nb('send','eig',a)Trying server cupid.cs.utk.eduProblem accepted....sending the datar = 0As expected, netsolve nb() returns a request handler: here it is 0. This request handler will be used inthe subsequent calls to the function. The request is being processed on cupid, and the result will eventuallycome back. The user can obtain this result in one of two ways. The �rst one is to call netsolve nb() withthe probe action :>> [x y] = netsolve_nb('probe',r)The left-hand side of this call is the left-hand side of the call to netsolve(). The right-hand side containsthe action, as is required for netsolve nb(), and the request handler. This call returns immediately, eitherprinting out a message saying that the result has not arrived yet or giving the result in x and y. Here arethe two possible scenarios:>> [x y] = netsolve_nb('probe',r)Not ready yet>> ... Some other work ...>> [x y] = netsolve_nb('probe',r)Result receivedx = y =10.1204 0-0.9801 0.8991-0.9801 -0.8991-1.0195 0-0.6416 0.6511...The other way to obtain the result is to call netsolve nb() with the wait action. The call then blocks untilthe result arrives:>> [x y] = netsolve_nb('wait',r)Waiting for result.....Result receivedx = y =10.1204 0 11

-0.9801 0.8991-0.9801 -0.8991-1.0195 0-0.6416 0.6511...As for netsolve(), we can merge the real part and the imaginary part into a single complex vector. Thetypical scenario is to call netsolve nb() with the action send, then make repeated calls with the actionprobe until there is nothing more to do than wait for the result. The user then callas netsolve nb() withthe action wait.One last action can be passed to netsolve nb(), as shown here:>> netsolve_nb('status')This command will return a description of all the pending requests. Let us see how it works on this lastcomplete example:>> a = rand(800); b = rand(800);>> [r1] = netsolve_nb('send','eig',a)Trying server cupid.cs.utk.eduProblem accepted....sending the datar1 = 0>> [r2] = netsolve_nb('send','eig',b)Trying server vw.cs.Berkeley.eduProblem accepted....sending the datar2 = 1Now let us see what status does:>> netsolve_nb('status')Pending NetSolve requests :Request #0 - eigAssigned to cupid.cs.utk.edu 12 seconds agoStill RUNNINGPredicted execution time : 2324 secondsRequest #1 - eigAssigned to vw.cs.Berkeley.edu 3 seconds agoStill RUNNINGPredicted execution time : 2606 secondsThe user can check what requests he has sent so far and obtain an estimation about the completion times. Byusing the status action, the user can also �nd out whether a request is still running or has been completed.4.5 What Can Go Wrong?During a computation, two classes of error can occur: NetSolve failures and user mistakes.4.5.1 NetSolve FailuresThe �rst class of error is caused by the NetSolve system itself, that is, the pool of agents and servers. Thenetsolve() and netsolve nb() functions print out explicit and simple error messages, and we are not goingto describe them all in great detail. Let us mention just one:12

>> netsolveNo agent running on demidoff.cs.utk.eduThe environment variable NETSOLVE AGENT contains the name of a host that is not running a NetSolve agent.All the other messages are of the same form and easily understandable.4.5.2 User MistakesThe second class of error comes from the user. If the user does not follow the calling sequences described inSections 4.3 and 4.4, error messages are printed out. For instance, if the user passes a problem name thatdoes not exist, NetSolve will indicate that this problem is unknown at this time. Again, all the messages areexplicit, and we are not going to list them all here.More interesting errors occur when the calling sequences are respected but the user provides wrong data toNetSolve. Here is an example of such a case:>> a = rand(300,400)>> [x] = netsolve('eig',a)Trying server cupid.cs.utk.eduProblem accepted....sending the data** Dimension mismatch **x = []The user tried to compute the eigenvalues of a nonsquare matrix, and NetSolve indicates that the computationis impossible. The same kind of message is printed for any mistake in the input data.5 C and Fortran Interfaces5.1 IntroductionThe C and Fortran interfaces are, in fact, one. The Fortran interface is built on top of the C interface, sinceall the networking underneath NetSolve is done in C. However, we chose to design the Fortran wrappersaround the C interface as subroutines (instead of functions). The C functions all return an integer calledthe NetSolve status code. The Fortran subroutine just takes it as an argument passed by reference. The listof all the possible NetSolve status codes can be found in Appendix D. The reference manuals for C andFortran are in Appendixes B and C.The basic concepts here are the same as the ones we have introduced in Section 4 for the MATLAB interface,especially the ability to call NetSolve in a blocking or nonblocking fashion.After compiling the C/Fortran interface as explained in Section 3.4, the user will �nd two archive �les:� Netsolve client/lib/$NETSOLVE ARCH/libnetsolve.a : the C library� Netsolve client/lib/$NETSOLVE ARCH/libfnetsolve.a : the FORTRAN libraryThe user must link these �les to either one of these libraries to create a C or Fortran program callingNetSolve. The user must also include the following header �le:� Netsolve client/include/netsolve.hBefore describing the interface itself, we discuss the calling sequence to use for the di�erent problems in thenext section. 13

5.2 Knowing the Calling SequenceWhen we described the MATLAB interface in Section 4, the calling sequence of netsolve() was fairlysimple. It consisted of the input objects on the right-hand side and the output object on the left-hand side.On each side, the objects were in the same order as the one they were listed in the problem description.Since this problem description is available from MATLAB, the user could easily determine the proper callingsequence. The situation is not that simple for C or Fortran. Indeed, MATLAB is a high-level computationaltool that provides its users with high-level objects encapsulating several pieces of data. For instance, inMATLAB a matrix is an object that can be referenced with a single identi�er, even though it contains twointegers, and a pointer to an array of double-precision elements. The two integers, of course, are the numberof rows and columns of the matrix, and the pointer points to the element of the matrix (stored columnwisein MATLAB). Hence, when a user passes a matrix identi�er to NetSolve from MATLAB, he does not haveto worry about passing the sizes of the matrix.In C or Fortran, we do not have access to such high-level constructs. Therefore, when we pass to NetSolvea pointer to some data, we also need to specify the size(s) of this data. This requirement, of course, impliesthat the calling sequence has to be more complex than the one in MATLAB. In Section 2.3, we noted thatthe CGI scripts were giving extensive details about the di�erent problems. Those details are, in fact, thedescriptions of the C and Fortran calling sequences.Our present policy with calling sequences from C of Fortran is to preserve the native calling sequences ofthe numerical software. Recall that in Section 2.3, we said that, by convention, the �rst element of the fullname of a problem is the name of the numerical library the problem comes from. Thus, the user alwaysknows what software a routine comes from, by consulting the NetSolve homepage.Thus, two situations are possible. First, the user knows the numerical software and may even have a codealready written in terms of this software. Then, switching to NetSolve is immediate, and we will see examplesin the following sections. The second possibility is that the user does not know the software. Then he canlearn the calling sequences from the NetSolve homepage thanks to the CGI scripts. The NetSolve homepagewill also give access to URLs that may contain information about the di�erent software in use.With this understanding of how calling sequences work, we can proceed with the actual description of theinterface.5.3 Blocking CallAs with MATLAB, there is a blocking call to NetSolve from C or Fortran. Speci�cally, one calls a singlefunction, netsl(). This function returns a NetSolve status code. It takes as arguments the name of aproblem and the list of input data. These inputs are listed according to the calling sequence discussed inSection 5.2 and their number of variables. The C prototype of the function isint netsl(char *problem_name, ... < calling sequence > ...)and the Fortran prototype isSUBROUTINE NETSL(PROBLEM_NAME, NSINFO, ... < calling sequence > ...)where PROBLEM NAME is a string and NSINFO is the status code returned by NetSolve. The number of thearguments in the calling sequence depends on the problem.Let us consider an example that uses the LAPACK [4] routine dgesv(), which solves a linear system ofequations. In Fortran, the direct call to LAPACK looks likecall DGESV(N,1,A,MAX,IPIV,B,MAX,INFO)The equivalent blocking call to NetSolve iscall NETSL('DGESV',NSINFO,N,1,A,MAX,IPIV,B,MAX,INFO) 14

The call in C isnsinfo = netsl('dgesv',n,1,a,max,ipiv,b,max,&info)Notice that the name of the problem is case insensitive. In Fortran, every identi�er represents a pointer,but in C we actually had the choice to use pointers or not. We chose to use integer (int) for the sizes of thematrices/vectors, but pointers for everything else.>From the user's point of view, the call to NetSolve is exactly equivalent to a call to LAPACK. One detail,however, needs to be mentioned. Most numerical software is written in Fortran and requires users to provideworkspace arrays as well as data, since there is no possibility for dynamic memory allocation. Becauses weconserved the exact calling sequence of the numerical softwares, we require the user to pass those arrays.But, since the computation is performed remotely, this workspace is useless on the client side. It will, in fact,be dynamically created on the server side. Therefore, when the numerical software would require workspace,the NetSolve user may provide an empty workspace!describes netslnb(), the nonblocking version.5.4 Nonblocking CallWe developed this nonblocking call for the same reason we developed one for MATLAB (see Section 4.4): toallow the user to have some NetSolve-parallelism. The nonblocking version of netsl() is called netslnb().The user calls it in exactly the same way netsl() is called. The only di�erence between the two functionslies in the NetSolve status code they return. If the call to netslnb() is successful, a request handler isreturned in the NetSolve status code, as in the MATLAB interface. Let us give an example in Fortran:call NETSLNB('DGESV',REQUEST,N,1,A,MAX,IPIV,B,MAX,INFO)and in C :request = netslnb('dgesv',n,1,a,max,ipiv,b,max,&info)This is exactly the same call as the one in the preceding section.The next step is to check the status of the request. As in the MATLAB interface, the user can chose toprobe or to wait for the request. Probing is done by calling netslpb(). If the call is successful, the functionreturns immediately with either an NetSolve status code telling that the result is not available yet or withthe result in the user space. Here is an example in Fortran:call NETSLPB(REQUEST,NSINFO)and in C :nsinfo = netslpb(request);Waiting is done by using netslwt(). This function blocks until the request is completed. Here is the Fortrancall: call NETSLWT(REQUEST,NSINFO)and the C call :nsinfo = netslwt(request);If the call is successful, the function returns with the results in the user space.15

5.5 Error messagesThere is an aditional function in the C and Fortran interface that prints out explicit error messages given aNetSolve error code. The C call is :netslerr(nsinfo);and in Fortrancall NETSLERR(NSINFO)5.6 Built-in ExamplesC and Fortran examples are included in the NetSolve Client Distribution in the directory Netsolve client/examples.To build them, the user simply types make examples in the top directory. The examples use di�erent prob-lems that have been given servers at the University of Tennessee. They should help the user to understandhow the system works. We also have a full example in C and Fortran in Appendixes E and F.6 Java Interface6.1 IntroductionThis section describes the Java interface to NetSolve, a user-friendly graphical tool for accessing resources inthe NetSolve system. Since the Java interface should be runnable frommanyWWWbrowsers, it also providesusers the opportunity to solve problems without downloading or compiling any source code. However, thecurrent Web browser versions impose very strong restriction to the capabilities of applets. At this time, itappears to be impossible to open sockets to a remote hosts, making the NetSolve interface unusable. Futureversions of these Web Browsers will undoubtedly alleviate these problems.To start the stand-alone application:java NetSolveClient blah.cs.utk.eduwhere blah.cs.utk.edu is the name of a machine running a NetSolve agent. The machine name is optional,but if it is not speci�ed, the client tries to contact comet.cs.utk.edu by default.6.2 The Initial ScreenLet us now assume that the user has started the Java interface, either as an applet (via the Web) or as astand-alone application. Figure 2 shows the initial screen, which consists of several components:� Agent Selection Box� Problem List� Problem Description Box� Input List� Input Description Box� Output List� Output Description Box 16

To contact an agent, the user can enter the hostname in the Agent Selection Box and then click on the\Contact/Update" button. In some cases, the user may have already contacted an agent, but just wants toupdate the list of problems. If so, clicking on the \Contact/Update" button without changing the text inthe Agent Selection Box will reload the problem list. Once the list of available problems has been loaded itis then displayed in the Problem List, located in the upper left region of the interface.

17

Figure 2: The Initial Screen18

To �nd out more about any problem listed, the user may click on that problem and view pertinent informationdisplayed in the Problem Description Box, the Input List, and the Output List. The Problem DescriptionBox, located in the lower left region of the interface, contains a short description of the selected problem.The Input List contains a list of the input objects required to solve the selected problem. Similarly, theOutput List contains a list of the output objects that are returned by the server. When the user clicks onany item in the Input List, the interface updates the Input Description Box with text describing the selectedinput object. Likewise, clicking on any item in the Output List updates the Output Description Box withtext describing the selected output object.6.3 Solving a ProblemTo solve an instance of some problem, the user must �rst select a problem from the Problem List and thenclick on the \Solve" button. A new window will appear allowing the user to input data for each inputobject required by the problem. Figure 3 shows the Data Input Window, which consists of the followingcomponents:� Input List� Input Description Box� Filename (or URL) Selection Box� Data Input BoxThe Input List contains a list of the input objects for which the user must supply data. The Input DescriptionBox contains text describing the selected input object (this text is the same as the text displayed in theInput Description Box of the initial screen).For each input object, the user may choose to enter the data manually into the Data Input Box or to specifythe name of a �le containing the data in the Filename Selection Box. Next to the Filename Selection Boxis a \Browse" button which allows choosing the �le using a graphical �le browser. Those users accessingthe NetSolveClient via a Web browser will have a URL Selection Box (instead of a File Selection Box) inwhich they may type in the URL for their data �le. This allows NetSolve to access the user's local data�les over the network. Just above the Data Input Box is a \Sample Data" button which �lls the box withsome numbers appropriate to the type of the input object (for example, if the input object is a vector ofintegers, clicking on the \Sample Data" button will generate a vector of integers). Note that even thoughthe interface allows having text in both selection boxes simultaneously, only one box may be \active" at anytime and anything in the \inactive" box will be ignored.The title bar of the Data Input Window contains some noteworthy information: the name of the problem,and a Request Number. The problem name listed on the title bar is the same name from the initial screen,minus the path. For example, if the full name as shown on the initial screen is /Blah/blah/prob, then thename on the title bar is prob. The Request Number is a number which uniquely identi�es each Data InputWindow so that the user may easily relate the Output Windows (see Section 6.4) to the Input Windows fromwhich they originated.Once all inputs have been fully speci�ed, click on the \Compute" button, located in the lower left regionof the Data Input Window. If there are any errors in the data and/or �les, an informational window willappear describing the nature of the errors and for which input object(s) the errors apply. All errors must becorrected before the data may be sent. Here are some of the most common errors:� Invalid numeric format. The input does not match the expected input type (for example, the inputtype is \integer" and the user enters \1.2").� Empty input. The user did not specify any data for some input object.19

Figure 3: The Input Screen� Input not speci�ed. This is similar to the previous error except that here, the user did not activateone of the two input sources (�le input or data input) whereas in the previous error, one of the twoinput boxes was chosen, but no data was entered.� Nonexistent �le. The �lename given does not exist. Using the graphical �le browser may help determinethe correct path and �le name.� Rows of matrix not even. This means that one or more rows in the matrix do not have the samenumber of elements.If the data and/or �les speci�ed are acceptable, the values are sent to a computational server which performsthe computations and returns the output objects.6.4 Viewing the ResultsOnce the computational server sends back the results, a new window appears allowing the user to browsethe results. Figure 4 shows the Output Window, which consists of the following components:� Output List� Output Description Box� Data BoxThe Output Window is arranged like the Data Input Window, with a list of objects on the left, a data boxon the right, and a description box on the bottom. When the user clicks on any item in the Output List, the20

Figure 4: The Output ScreenOutput Description Box is updated with text describing that object and the Data Box is updated with theresults of the computation. Above the Data Box is a \Save" button which allows users of the stand-aloneapplication to save the text in the Data Box to a �le. Note that the data saved is that for the selected outputobject only, not all output objects.Like the Data Input Window, the title bar of the Output Window also contains the problem name anda Request Number. However, the Request Number is slightly di�erent in this window. It consists of twonumbers separated by a \." (period). The �rst number is the Request Number from the Data Input Windowfrom which this output originated. The second number uniquely identi�es this window so that it can bedistinguished from other Output Windows. Here's an example of how the numbers are assigned: the userchooses a problem, \ddot" perhaps, on the initial screen and clicks \Solve". The Data Input Windowcorresponding to that problem will have Request Number \1". Then the user chooses a di�erent problem,\matmul" perhaps, and clicks \Solve". The Request Number corresponding to that problem will be \2". Thenumber is incremented each time a new input window is opened. The user enters data into the \matmul"window and clicks \Compute" three times to solve three instances of that problem. Soon three outputwindows will appear with Request Numbers \2.1", \2.2", and \2.3" corresponding to the �rst, second, andthird instance of the problem, respectively.7 The User-Supplied Function Feature7.1 MotivationIn the preceding sections, we described all the client interfaces to NetSolve. In these descriptions we assumedthat the only input the user had to supply to NetSolve was numerical data, that is, matrices, vectors, or21

scalars. This assumption is valid for a lot of numerical software. However, for some software that we wouldlike to include in NetSolve via NetSolve servers, we need an additional feature. Indeed, numerous scienti�cpackages require the user to provide numerical data as well as a function. Typically, nonlinear softwarerequires the user to pass a pointer to a subroutine that computes the nonlinear function. This is a problemin NetSolve because the computation is performed remotely and the user cannot provide NetSolve with apointer to one of his linked-in subroutines. The only solution is to send code over the network to the server.This approach raises a lot of issues, including security.7.2 SolutionLet us describe here the solution we have adopted. This is really a �rst attempt, and there is de�nitelyroom for improvement. However, we believe that it provides reasonable capabilities for now, consideringthat NetSolve is still at an early stage of development. As we noted, we need to ship code over to thecomputational server. Since NetSolve works in heterogeneous environment, it is not possible to migratecompiled code. Thus, we require that the user have his subroutine or function in a separate �le, writteneither in C or Fortran. We send this �le to the computational server. The server compiles it and is thenable to use this user-supplied function.The security implementation is quite simple. When compiling the user's function, we use the nm UNIXcommand to disallow any system call. The approach is very restrictive for the user, but typically thesubroutine that has to be passed needs only to perform computations. If course, there are a lot of hackerways to go around this problem, and our system currently does not pretend to be a real security manager.We are investigating Java to deal with this user-supplied function issue.7.3 Determining the Format of the Function to SupplyWe now understand that the user has to write a Fortran subroutine or a C function to call a problem thatrequires a user-supplied function. For now, the prototype of this subroutine/function can be found in thedescription of the problem, available from MATLAB or the CGI scripts of the NetSolve homepage (see 2.3).Following the usual philosophy of NetSolve, the prototype of the user-supplied function is exactly the sameas if the user were using the numerical software directly. Some software require the user to provide more thanone function. When that is the case, the description of the problem mentions it and give all the prototypesfor all the functions to supply.7.4 From MATLABFrom MATLAB, when the user consults the list of available problems, he can determine whether any givenproblem requires a user-supplied function. If the problem does indeed require such a function, this functionhas to be written in a �le. This �le can be called upf.f or upf.c, depending on the language used to writeit. This �le has to be in the current working directory. The problem is then called as described in Section4. If something is wrong with the user-supplied function, netsolve() and netsolve nb() print out specialerror messages.7.5 From C or FortranThe situation from C or Fortran is almost the same as from MATLAB. The user-supplied function has to bein upf.f or upf.c, in the working directory. However, we introduce here a new function, called netsldir(),that sets the default directory in which to look for the function �le. A typical call to netsldir() in C isnetsldir("/homes/me/my_functions");and in Fortran is 22

NETSLDIR('/homes/me/my_functions')Here, netsl() and netsldir() return special NetSolve status codes concerning the user-supplied function.7.6 From JavaEntering a user-supplied function via the Java interface is very much similar to entering any other kindof data. If the problem requires a user-supplied function, there will be an entry in the Input List called\User Provided Function" for which data must be speci�ed, just like any other input object. The user maychoose to enter the user-supplied function manually into the Data Input Box or from a �le speci�ed in theFilename Selection Box. If the user enters the function manually, the language must also be speci�ed bychoosing either C or FORTRAN from an \option menu" that appears just above the Data Input Box. If theuser-supplied function comes from a �le, the �le must end with either \.c" or \.f" (with names ending in\.c" interpreted as C functions and names ending in \.f" interpreted as FORTRAN functions).7.7 ConclusionThis new feature of NetSolve is still under investigation. We are aware that security is an important issuehere. For now, NetSolve is still a research project developed to allow experimentations with this relativelynew type of software. In the future, more attention will be given to the used-supplied mechanism in orderto make it as safe as possible. As mentioned earlier, we may use Java in order to set up a viable securitymanager. Using Java currently appears to be the best solution for security, but it has obvious drawbacks.First, the user would have to write his function in Java: the typical NetSolve user is a scientist who doesnot have the time or inclination to learn new languages, especially object-oriented ones. Second, with thecurrent implementations of Java, e�ciency would also be a problem.8 General ConclusionNetSolve is a new project, and as such is bound to undergo a lot of changes in a very close future. However,we believe that all the general ideas presented in this document about problem speci�cation, as well as thedetails of each interface will not be highly modi�ed. The changes in NetSolve should be in fact be focusedon its way of operating internally and should not have any impact on the interfaces. Of course, some newfeatures are going to be added along the way, and they will surely be described in a next version of thisUser's Guide.One of our goal in designing the di�erent clients to NetSolve was to keep them as straightforward as possible.This can be seen best with the MATLAB and Java interfaces. The C and FORTRAN interfaces are morecomplicated because those languages, unlike MATLAB, do not provide a high level of abstraction. However,we emphasized that those two interfaces allow users of numerical software to switch very easily to the NetSolvecounterpart of those softwares. The e�ciency of the computation is outside the scope of this document andis discussed in great detail in [2].
23

A MATLAB Reference ManualWe describe here all the possible calls to NetSolve from MATLAB. In these descriptions we assume correct-ness. In case of errors, all these calls print out very simple and explicit messages.>> netsolvePrints out on the screen the list of all the problems that are available in the NetSolve system.>> netsolve('<problem name>')Prints out all the information available from MATLAB about a speci�c problem.>> netsolve('?')Prints out the list of all the agents and servers in the NetSolve system, that is, the NetSolve system contain-ing the host whose name is in the environment variable NETSOLVE AGENT.>> [...] = netsolve('<problem name>', ...)Sends a blocking request to NetSolve. The left-hand side contains the output arguments. The right-handside contains the problem name and the input arguments. The arguments are listed according to the problemdescription. Upon completion of this call, the output arguments contain the result of the computation.>> [r] = netsolve nb('send','<problem name>', ...)Sends a non-blocking request to NetSolve. The right-hand side contains the keyword send, the problemname, and the list of input arguments. These arguments are listed according to the problem description.The left-hand side will contain a request handler upon completion of the call.>> [...] = netsolve nb('wait',r)Waits for a request's completion. The right-hand side contains the keyword wait and the request handler.The left-hand side contains the output arguments. These arguments are listed according to the problemdescription. The right-hand side contains the keyword wait and the request handler. Upon completion ofthis call, the output arguments contain the result of the computation.>> [...] = netsolve nb('probe',r)Probes for a request's completion. The right-hand side contains the keyword probe and the request handler.The left-hand side contains the output arguments. These arguments are listed according to the problemdescription. The right-hand side contains the keyword probe and the request handler. Upon completion ofthis call, the output arguments contain the result of the computation.24

>> netsolve nb('status')Prints out the list of all the pending requests. This list contains estimated time of completion, the compu-tational servers handling the requests and the current status. The status can be COMPLETED or RUNNING.

25

B C Reference ManualWe describe here all the possible calls to NetSolve from C. All these calls return a NetSolve code status. Thelist of the possible code status is given in Appendix D.status = netsl("<problem name>", ...)Sends a blocking request to NetSolve. netsl() takes as argument the name of the problem and the list ofarguments in the calling sequence. See Section 5.2 for a discussion about this calling sequence. It returnsthe NetSolve status code (integer status). If the call is successful, the result of the computation is storedin the output arguments. The output arguments are speci�ed in the calling sequence.status = netslnb("<problem name>", ...)Sends a nonbloking request to NetSolve. netslnb() takes as argument the name of the problem, and thelist of arguments in the calling sequence. See Section 5.2 for a discussion about this calling sequence. Itreturns the NetSolve status code (integer status). If the call is successful, status contains the requesthandler.status = netslwt(<request handler>)Waits for a request's completion. netslwt() takes as argument a request handler (an integer). If the callis successful, the result of the computation is stored in the output arguments. The output arguments arespeci�ed in the calling sequence during the call to netslnb().status = netslpb(<request handler>)Probes for a request's completion. netslpb() takes as argument a request handler (an integer). If the callis successful, the result of the computation is stored in the output arguments. The output arguments arespeci�ed in the calling sequence during the call to netslnb().netsldir("<problem name>")Sets the default directory where are located the user-supplied functions.netslerr("<error code>")Displays an explicit error message given a NetSolve error code.26

C Fortran Reference ManualWe describe here all the possible calls to NetSolve from Fortran. All these calls return a NetSolve codestatus. The list of the possible code status is given in Appendix D.CALL NETSL('<problem name>',NSINFO, ...)Sends a blocking request to NetSolve. NETSL() takes as argument the name of the problem, an integer, andthe list of arguments in the calling sequence. See Section 5.2 for a discussion about this calling sequence.When the call returns, the integer NSINFO contains the NetSolve status code. If the call is successful, theresult of the computation is stored in the output arguments. The output arguments are speci�ed in thecalling sequence.CALL NETSLNB('<problem name>',NSINFO, ...)Sends a nonbloking request to NetSolve. NETSLNB() takes as argument the name of the problem, an integer,and the list of arguments in the calling sequence. See Section 5.2 for a discussion about this calling sequence.It returns the NetSolve status code (integer status). If the call is successful, status contains the requesthandler.CALL NETSLWT(<request handler>,NSINFO)Waits for a request's completion. NETSLWT() takes as argument a request handler and an integer. Whenthe call returns, NSINFO contains the NetSolve status code. If the call is successful, the result of the compu-tation is stored in the output arguments. The output arguments are speci�ed in the calling sequence duringthe call to NETSLNB().CALL NETSLPB(<request handler>,NSINFO)Probes for a request's completion. NETSLPB() takes as argument a request handler and an integer. Whenthe call returns, NSINFO contains the NetSolve status code. If the call is successful, the result of the compu-tation is stored in the output arguments. The output arguments are speci�ed in the calling sequence duringthe call to NETSLNB().CALL NETSLDIR('<problem name>')Sets the default directory where the user-supplied functions are located.CALL NETSLERR("<error code>")Displays an explicit error message given a NetSolve error code.27

D Error Codes for C and FortranERROR CODE VALUE MEANINGNetSolveSuccess 1 Successful call to a routineNetSolveNotReady 0 Request not yet completedNetSolveFailure -1 Failure of the NetSolve systemNetSolveBadCode -2 Badly formatted problem nameNetSolveUnknownProblem -3 Unknown problem in the systemNetSolveBadInput -4 Wrong number/type of inputNetSolveBadOutput -5 Wrong number/type of outputNetSolveAgentFailure -6 Failure of the NetSolve AgentNetSolveNoServers -7 No computational resource availableNetSolveBadDimension -8 Incorrect dimensions of nonscalar input dataNetSolveNoSolution -9 No solution for this problem given the input dataNetSolveRequestFull -10 No more requests possibleNetSolveInvalidRequestnumber -11 Unknown request handlerNetSolveSetArch -12 Environment variable NETSOLVE ARCH should be setNetSolveSetAgent -13 Environment variable NETSOLVE AGENT should be setNetSolveNoAgent -14 No agent running on $NETSOLVE AGENTNetSolveBadValues -15 Incorrect numerical values of the inputNetSolveFileNotFound -16 No �le containing a user-supplied functionNetSolveFileReadError -17 Impossible to read �le containing the user-supplied functionNetSolveUPFFailed -18 Compilation error of the user-provided functionNetSolveUPFUnsafe -19 Unsafe user-provided function
28

E Complete C Example#include "netsolve.h"#define SIZE 100main(){ double a[SIZE*SIZE];double x1[SIZE],y1[SIZE],x2[SIZE],y2[SIZE];int info,status;int i,init = 1325;for (i=0;i<SIZE*SIZE;i++) {init = 2315*init % 65536;a[i] = (double)((double)init - 32768.0) / 16384.0;}/* NetSolve blocking */info = netsl("Eig",a,SIZE,SIZE,x1,y1);if (info <0){ fprintf(stderr,"netsl() : %d\n",info);exit(0);}/* NetSolve Non-blocking */info = netslnb("Eig",a,SIZE,SIZE,x2,y2);if (info < 0){ fprintf(stderr,"netslnb : %d\n",info);fprintf(stderr,"** NetSolve Abort **\n");exit(0);}status = netslwt(info);if (status <0){ fprintf(stderr,"netslwt() : %d\n",status);fprintf(stderr,"** NetSolve Abort **\n");exit(0);}}
29

F Complete Fortran Example#include "netsolve.h"*** ** TEST of the FORTRAN INTERFACE to NETSOLVE** ***PROGRAM TESTPARAMETER (SIZE = 2000)INTEGER NDOUBLE PRECISION A(SIZE,SIZE)DOUBLE PRECISION X1(SIZE)DOUBLE PRECISION Y1(SIZE)DOUBLE PRECISION X2(SIZE)DOUBLE PRECISION Y2(SIZE)INTEGER REQUESTINTEGER INFOINTEGER INIT,I,JINIT = 1325DO 10 I = 1,NDO 11 J = 1,NINIT = MOD(2315*INIT,65536)A(J,I) = (DBLE(INIT) - 32768.D0)/16384.D011 CONTINUE10 CONTINUECALL NETSL('Eig',INFO_NS,$ A,MAX,MAX,X1,Y1)IF(INFO.LT.0) THENWRITE(*,*) INFOSTOPENDIFCALL NETSLNB('Eig',REQUEST,$ A,MAX,MAX,X2,Y2)IF(REQUEST.LT.0) THENWRITE(*,*) REQUESTSTOPENDIFCALL NETSLWT(REQUEST,INFO_NS)IF(INFO.LT.0) THENWRITE(*,*) INFOSTOPENDIFSTOPEND 30

References[1] Inc The Math Works. MATLAB Reference Guide. 1992.[2] H. Casanova and J. Dongarra. Netsolve: A network server for solving computational science problems. InSupercomputing '96, Pittsburgh. To appear in proceedings, 1996.[3] Inc The Math Works. MATLAB External Interface Guide. 1992.[4] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKen-ney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide. SIAM Philadelphia, Pennsylvania, 2 edition, 1995.

31

