
\Who Cares About Elegance?"The Role of Aesthetics inProgramming Language Design�Bruce J. MacLennanComputer Science DepartmentUniversity of Tennessee, Knoxvillemaclennan@cs.utk.eduJanuary 16, 1997AbstractThe crucial role played by aesthetics in programming language design andthe importance of elegance in programming languages are defended on the basisof analogies with structural engineering, as presented in Billington's The Towerand the Bridge.1 The Value of AnalogiesProgramming language design is a comparatively new activity | it has existed forless than half a century, so it is often worthwhile to look to older design disciplinesto understand better this new activity. Thus, my book Principles of ProgrammingLanguages: Design, Evaluation, and Implementation, grew out of a study of teachingmethods in architecture, primarily, but also of pedagogy in other disciplines, such asaircraft design. Perhaps you have also seen analogies drawn between programminglanguages and cars (Fortran = Model T, C = dune buggy, etc.).These analogies can be very informative, and can serve as \intuition pumps" toenhance our creativity, but they cannot be used uncritically because they are, in theend, just analogies. Ultimately our design decisions must be based on more thananalogies, since analogies can be misleading as well as informative.�This report may be used for any nonpro�t purpose provided that its source is acknowledged. Itwill be adapted for inclusion in the third edition of my Principles of Programming Languages.
1



In this essay I'll address the role of aesthetics in programming language design,but I will base my remarks on a book about structural engineering, The Tower and theBridge, by David P. Billington. Although there are many di�erences between bridgesand programming languages, we will �nd that many ideas and insights transfer ratherdirectly.According to Billington, there are three values common to many technologicalactivities, which we can call \the three E's": E�ciency, Economy and Elegance.These values correspond to three dimensions of technology, which Billington calls thescienti�c, social and symbolic dimensions (the three S's). We will consider each inturn.2 E�ciency Seeks to Minimize Resources UsedIn structural engineering, e�ciency deals with the amount of material used; the ba-sic criterion is safety and the issues are scienti�c (strength of materials, dispositionof forces, etc.). Similarly, in programming language design, e�ciency is a scienti�cquestion dealing with the use of resources. There are many examples where e�ciencyconsiderations inuenced programming language design (some are reviewed in myPrinciples of Programming Languages). In the early days, the resources to be mini-mized were often runtime memory usage and processing time, although compile-timeresource utilization was also relevant. In other cases the resource economized wasprogrammer typing time, and there are well-known cases in which this compromisedsafety (e.g. Fortran's implicit declarations). There are also many well-known casesin which security (i.e. safety) was sacri�ced for the sake of e�ciency by neglectingruntime error checking (e.g. array bounds checking).E�ciency issues often can be quanti�ed in terms of computer memory or time,but we must be careful that we are not comparing apples and oranges. Compile timeis not interchangeable run time, and neither one is the same as programmer time.Similarly, computer memory cannot be traded o� against computer time unless bothare reduced to a common denominator, such as money, but this brings in economicconsiderations, to which we now turn.3 Economy Seeks to Maximize Bene�t versus CostWhereas e�ciency is a scienti�c issue, economy is a social issue. In structural en-gineering, economy seeks to maximize social bene�t compared to its cost. (This isespecially appropriate since structures like bridges are usually built at public expensefor the bene�t of the public.) In programming language design, the \public" thatmust be satis�ed is the programming community that will use the language and theinstitutions for which these programmers work.
2



Economic tradeo�s are hard to make because economic values change and are dif-�cult to predict. For example, the shift from �rst to second generation programminglanguages was largely a result of a decrease in the cost of computer time comparedto programmer time, the shift from the second to the third generation involved theincreasing cost of residual bugs in programs, and the fourth generation reected theincreasing cost of program maintenance compared to program development.Other social factors involved in the success or failure of a programming languageinclude: whether major manufacturers support the language, whether prestigiousuniversities teach it, whether it is approved in some way by inuential organizations(such as the US Department of Defense), whether it has been standardized, whetherit comes to be perceived as a \real" language (used by \real programmers") or as a\toy" language (used by novices or dilettantes), and so forth. As can be seen from thehistorical remarks in my Principles, social factors are frequently more important thanscienti�c factors in determining the success or failure of a programming language.Often economic issues can be quanti�ed in terms of money, but the monetaryvalues of costs and bene�ts are often unstable and unpredictable because they de-pend on changing market forces. Also, many social issues, from dissatisfaction withpoorly designed software to human misery resulting from system failures, are inaccu-rately represented by the single dimension of monetary cost. All kinds of \cost" and\bene�t" must be considered in seeking an economical design.4 Elegance Symbolizes Good Design\Elegance? Who cares about elegance?" snorts the hard-nosed engineer, but Billing-ton shows clearly the critical role of elegance in \hard-nosed" engineering.4.1 For the DesignerIt is well-known that feature interaction poses a serious problem for language designersbecause of the di�culty of analyzing all the possible interactions of features in alanguage (see my Principles for examples). Structural engineers face similar problemsof analytic complexity, but Billington observes that the best designers don't makeextensive use of computer models and calculation.One reason is that mathematical analysis is always incomplete. The engineermust make a decision about which variables are signi�cant and which are not, andan analysis may lead to incorrect conclusions if this decision is not made well. Also,equations are often simpli�ed (e.g., made linear) to make their analysis feasible, andthis is another potential source of error. Because of these limitations, engineersthat depend on mathematical analysis may overdesign a structure to compensatefor unforeseen e�ects left out of the analysis. Thus the price of safety is additionalmaterial and increased cost (i.e. decreased e�ciency and economy).
3



Similarly in programming language design, the limitations of the analytic approachoften force us to make a choice between an under-engineered design, in which we runthe risk of unanticipated interactions, and an over-engineered design, in which wehave con�dence, but which is ine�cient or uneconomical.Many people have seen the famous �lm of the collapse in 1940 of the four-month-old Tacoma Narrows bridge; it vibrated itself to pieces in a storm because aerody-namical stability had not been considered in its design. Billington explains that thisaccident, along with a number of less dramatic bridge failures, was a consequenceof an increasing use of theoretical analyses that began in the 1920s. However, thevery problem that destroyed the Tacoma Narrows bridge had been anticipated andavoided a century before by bridge designers who were guided by aesthetic principles.According to Billington, the best structural engineers do not rely on mathematicalanalysis (although they do not abandon it altogether). Rather, their design activityis guided by a sense of elegance. This is because solutions to structural engineeringproblems are usually greatly underdetermined, that is, there are many possible solu-tions to a particular problem, such as bridging a particular river. Therefore, expertdesigners restrict their attention to designs in which the interaction of the forces iseasy to see. The design looks unbalanced if the forces are unbalanced, and the designlooks stable if it is stable.The general principle is that designs that look good will also be good, and thereforethe design process can be guided by aesthetics without extensive (but incomplete)mathematical analysis. Billington expresses this idea by inverting the old architec-tural maxim and asserting that, in structural design, function follows form. Headds (p. 21), \When the form is well chosen, its analysis becomes astoundingly sim-ple." In other words, the choice of form is open and free, so we should pick formswhere elegant design expresses good design (i.e. e�cient and economical design). Ifwe do so, then we can let aesthetics guide design.The same applies to programming language design. By restricting our attention todesigns in which the interaction of features is manifest | in which good interactionslook good, and bad interactions look bad | we can let our aesthetic sense guideour design and we can be much more con�dent that we have a good design, withouthaving to check all the possible interactions.4.2 For the UserIn this case, what's good for the designer also is good for the user. Nobody is com-fortable crossing a bridge that looks like it will collapse at any moment, and nobodyis comfortable using a programming language in which features may \explode" ifcombined in the wrong way. The manifest balance of forces in a well-designed bridgegives us con�dence when we cross it. So also, the manifestly good design of our pro-gramming language should reinforce our con�dence when we program in it, becausewe have (well-justi�ed) con�dence in the consequences of our actions.
4



We accomplish little by covering an unbalanced structure in a beautiful facade.When the bridge is unable to sustain the load for which it was designed, and collapses,it won't much matter that it was beautiful on the outside. So also in programminglanguages. If the elegance is only super�cial, that is, if it is not the manifestation of adeep coherence in the design, then programmers will quickly see through the illusionand loose their (unwarranted) con�dence.In summary, good designers choose to work in a region of the design space wheregood designs look good. As a consequence, these designers can rely on their aestheticsense, as can the users of the structures (bridges or programming languages) theydesign. We may miss out on some good designs this way, but they are of limitedvalue unless both the designer and the user can be con�dent that they are gooddesigns. We may summarize the preceding discussion in a maxim analogous to thosein my Principles of Programming Languages:The Elegance PrincipleCon�ne your attention to designs that look good because they are good.5 The Programming Language as Work Environ-mentThere are other reasons that elegance is relevant to a well-engineered programminglanguage. The programming language is something the professional programmer willlive with | even live in. It should feel comfortable and safe, like a well-designedhome or o�ce; in this way it can contribute to the quality of the activities that takeplace within it. Would you work better in an oriental garden or a sweatshop?A programming language should be a joy to use. This will encourage its useand decrease the programmer's fatigue and frustration. The programming languageshould not be a hindrance, but should serve more as a collaborator, encouragingprogrammers to do their jobs better. As some automobiles are \driving machines"and work as a natural extension of the driver, so a programming language shouldbe a \programming machine" by encouraging the programmer to acquire the smoothcompetence and seemingly e�ortless skill of a virtuoso. The programming languageshould invite the programmer to design elegant, e�cient and economical programs.Through its aesthetic dimension a programming language symbolizes many val-ues. For example, in the variety of its features it may symbolize proigate excess,sparing economy or asceticism; the kind of its features may represent intellectual so-phistication, down-to-earth practicality or ignorant crudeness. Thus a programminglanguage can promote a set of values. By embodying certain values, it encourages usto think about them; by neglecting or negating other values, it allows them to recedeinto the background and out of our attention. Out of sight, out of mind.
5



6 Acquiring a Sense of EleganceAesthetics is notoriously di�cult to teach, so you may wonder how you are supposedto acquire that re�ned sense of elegance necessary to good design. Billington observesthat this sense is acquired through extensive experience in design, which, especially inEurope, is encouraged by a competitive process for choosing bridge designers. Becauseof it, structural engineers design many more bridges than they build, and they learnfrom each competition they loose by comparing their own designs with those of thewinner and other losers. The public also critiques the competing designs, and in thisway becomes more educated; their sense of elegance develops along with that of thedesigners.So also, to improve as a programming language designer you should design manylanguages | design obsessively | and criticize, revise and discard your designs. Youshould also evaluate and criticize other people's designs and try to improve them. Inthis way you will acquire the body of experience you will need when the \real thing"comes along.7 References1. Billington, David P., The Tower and the Bridge: The New Art of StructuralEngineering, Princeton: Princeton University Press, 1983. Chapters 1 and 6are the most relevant.2. MacLennan, Bruce J., Principles of Programming Languages: Design, Evalua-tion, and Implementation, second edition, New York: Holt, Rinehart & Winston(now Oxford University Press), 1987.

6


