
January 16, 1997Constructive Algorithms Based on GraphMinors��Rajeev Govindany, Michael A. Langstony and Siddharthan RamachandramurthizAbstractWe consider the development of practical algorithms based on the the-ory of graph minors. Although an exact decision algorithm using thisapproach would generally require testing to ensure the absence of a pro-hibitively large number of obstructions, approximate algorithms can bedesigned that test for only a few obstructions. E�cient self-reductionstrategies can then be incorporated to approximate a solution to the prob-lem at hand.In this paper, we investigate a prototypical problem, that of �nding athree-track gate matrix layout for VLSI circuits. We design a streamlinedtest for a half dozen of the densest obstructions, thereby approximatingan exact algorithm that would require over one hundred such tests, manyof which appear very di�cult.In this e�ort, we have also built a software package to automate the useof our tools. Experimental results obtained using this package demon-strate that it is extremely fast and suggest that, despite its theoreticallimitations, its results are correct most of the time.� This research has been funded in part by the National Science Foundation under grant NSF-BIR-9318160 and by the O�ce of Naval Research under contract N00014{90{J{1855.� A preliminary version of part of this paper was presented at the International Symposium onVLSI, held in Bombay, India, in January, 1993.y Department of Computer Science, University of Tennessee, Knoxville, TN 37996, USA.z LSI Logic Corporation, Waltham, MA 02154, USA.

1 IntroductionAlthough advances in the �eld of graph minors have yielded powerful non-constructivetools to tackle many problems, algorithms derived using this approach have remainedimpractical. The main feature of these algorithms is their reliance on a large but�nite set of forbidden structures known as \obstructions." In this paper, we studythe practical potential of these novel techniques, using the well-known Gate MatrixLayout problem as an example.To put this study in context, consider the general layout process of VLSI circuitdesign. The input consists of a description of a circuit in terms of its componentsand their interconnections. The goal is to obtain a layout of the circuit within thelimits of the fabrication technology. Various criteria, including chip area, I/O dis-tribution, interconnection length and so forth a�ect the cost and performance of therealized circuit. Naturally, one seeks to optimize a layout, that is, minimize cost whilemaximizing performance.With the advent of computer aided design, automatic design tools have grownin popularity and are now the mainstay of circuit designers. Thus there is greatemphasis on developing better layout algorithms. Alas, virtually all versions of thelayout problem are NP-Hard [Le]. Fortunately, however, we are sometimes able totake advantage of resource limitations. These may take on many forms, such asbounds on wire length, limits on chip size, constraints on signal propagation time,ceilings on pin counts, etc. Accordingly, it is often reasonable to focus attention ona �xed-parameter version of the layout problem that, unlike the general problem, isknown to be solvable in polynomial time.This is the approach we explore here. In the next three sections, we developrequisite background on Gate Matrix Layout, problem transformations and graphminors. Our main contribution is contained in Section 5, where we develop fast tests1

for a handful of obstructions to this layout problem. In the last three sections, weaddress the use of these algorithms, present experimental results and summarize ourwork.2 Gate Matrix LayoutWe start with a statement of the problem and a survey of its history.2.1 Problem StatementThe gate matrix layout style was introduced by Lopez and Law [LL] in 1980 as anelegant way to layout MOS circuits. A generalization of the Weinberger array, gatematrix has been found to be particularly good for static CMOS technology. Regularityof structure and high density of devices are the salient features of this style, which iswell suited for implementing complex gates, functional cells and random logic. A gatematrix consists of intersecting rows and columns to provide transistor placement andinterconnections. The columns are realized in polysilicon and serve both as transistorgates and as interconnections. The rows are implemented with metal and di�usion.The di�usion layer forms a transistor at each intersection with a polysilicon gate andthe metal lines are used for interconnections. Metal and di�usion can also be usedto interconnect di�erent rows. A second metal layer is available solely for the powerand ground connections. Each row in the layout is called a track, and consists of oneor more nets of the circuit.An instance of the Gate Matrix Layout problem (henceforth GML) consists of aset of nets and their respective connections to a set of gates. A gate matrix layoutconsists of any assignment of tracks to the nets subject to the restriction that no twonets incident on a common gate can share the same track. The goal is to minimizethe number of tracks utilized thereby minimizing the area required for a layout.Figure 1 shows a CMOS circuit and two di�erent layouts in gate matrix style for2

the circuit. The circuit consists of nets N1; N2 and N3, and gates A;B;C;D;E;Fand Z. Net N1 is connected to gates A;B and F ; net N2 is connected to gates C;Dand E; net N3 connects gates C;F and Z.A net consists of one or more transistors connected together either in series orin parallel using metal and di�usion. Since each net is typically connected only to asmall subset of the gates, assigning each net to a distinct track may waste chip area.If several nets can share the same track, the total area of the layout may be reduced.Observe that the number of nets that can share a track depends on the linear orderingof the gates and the assignment of the nets to tracks. Therefore, by permuting thegates we may be able to obtain further savings in the number of tracks. For example,in Figure 1, the gate sequence A�B�C�D�E�F �Z results in a layout requiring3 tracks. On the other hand, the gate sequence A�B � F � Z � C �D � E allowsnets N1 and N2 to share a track and results in a layout requiring only 2 tracks.Given an instance of GML, we wish to know if there is a permutation of thegates that will allow the circuit to be laid out in k or fewer tracks, where k is aninput parameter. In the corresponding �xed-parameter problem, denoted GML(k),the number of tracks k is a �xed constant and not part of the input. The problem isto obtain a layout in no more than k tracks if possible.Surprisingly, the combinatorial problem at the heart of Gate Matrix Layout arisesin many di�erent guises, even in �elds as far removed from circuit layout as naturallanguage processing [KoT].2.2 Previous WorkSince its introduction, the gate matrix layout style has grown in popularity. Owingto their regular structure, it was expected that gate matrix layouts would be easy togenerate using computers. However, since GML was proven to be NP-Hard [KF],the emphasis has been on �nding near-optimal solutions. GML has been studied3

BA

transistorsp -

N

N

N Z
1

2

3

C

D

E

F

A B F

A ZB C D E F

N
3

ground
contact
metal

polysilicon
diffusion

transistor

D ECZ

2
N

N
2

N
1

N
1

3
NFigure 1: A CMOS circuit and its gate matrix layout4

by numerous researchers ([DN, Li, WHW, Wi] for example), employing a varietyof techniques. Most of these algorithms are heuristic, based on greedy strategiesor branch and bound techniques. It has been shown [DKL] that such heuristics canproduce arbitrarily bad results, and that unless P = NP, there can be no polynomial-time algorithm that will always produce a layout that is within a constant additivefactor of the optimal.Dynamic programming has also been proposed for GML [DKL]. Although this isan exact method, it is prohibitively slow. The algorithm presented in [DKL] has timecomplexity O(m22m), where m is the number of gates. Its space requirement alsogrows exponentially with m. Notice that this is still an improvement over an exhaus-tive search algorithm that would explicitly consider all m! column permutations.Unlike the general version of GML, the �xed-parameter version is tractable [FL1].That is, for any �xed k, polynomial-time algorithms to solve GML(k) are known.Before discussing the �xed-parameter version further, we develop some requisite the-oretical background.3 Problem TransformationGiven a circuit consisting of n nets and m gates, we can represent it as a 0-1 incidencematrix M , where M(i; j) = (1 if net i is incident on gate j0 otherwiseThe incidence matrix for the circuit in Figure 1 would be:A B C D E F ZN1 1 1 0 0 0 1 0N2 0 0 1 1 1 0 0N3 1 0 1 0 0 1 1A 0-1 matrix has the consecutive 1's property if there exists a permutation ofits columns such that all the 1's in each row occur consecutively. For example, the5

incidence matrix shown previously has the consecutive 1's property, realized withthe column permutation A� B � F � Z � C �D � E. We formalize a well-knownrelationship between an instance of GML and the consecutive 1's property of itsincidence matrix.Lemma 3.1 A circuit has a gate matrix layout in k tracks if and only if there existsa (possibly empty) set of 0's in the corresponding incidence matrix M that, whenchanged to 1's, give a matrix M 0 with the consecutive 1's property such that themaximum column sum in M 0 does not exceed k.Proof()): Suppose the circuit has a k-track layout. Then it is safe to assume that each netis incident on every gate between its left-most and right-most gates in such a layout.By �rst permuting the columns of M in accordance with the order of the gates in thelayout and then, in the permuted matrix by treating every 0 between the leftmostand the rightmost 1's in a row as a 1, we see that M has the consecutive 1's property.Moreover, the maximum column sum of M is k.((): Suppose we can �nd a set of 0's to change into 1's such that M has the consec-utive 1's property, and the maximum column sum ofM is k. Then it is easy to assigntracks to the nets by sorting the nets according to their left end-point and followinga simple greedy rule such that the circuit has a layout in k tracks (see [HS]).If M has the consecutive 1's property, the number of tracks required for a layoutequals the maximum column sum. We can test whether M has the consecutive 1'sproperty and also �nd a column permutation in O(mn) time [BL]. Once we have acolumn permutation, we can complete the track assignment as mentioned before.If M does not have the consecutive 1's property, then GML is NP-Hard. Wemust �nd a column permutation such that when every 0 between the left-most andright-most 1's in each row is changed to a 1, the maximum column sum is minimized.6

In the �xed-parameter problem GML(k), instead of minimizing the maximum columnsum, we try to �nd a column permutation (if any exist) such that the number of 1'sin any column is at most k.We can also model a circuit by means of a graph as follows. The intersection graphcorresponding to an incidence matrix is a graph G = (V;E) where V = fv1; : : : ; vngis a set of n vertices, one for each net, and E is a set of edges such that (vi; vj) 2 Eif and only if nets i and j are incident on the same gate. In other words, the 1's ineach column of a matrix form a clique in its intersection graph. For example, theintersection graph of the circuit in Figure 1 is simply K3, the complete graph on 3vertices.Notice that the mapping from an incidence matrix to an intersection graph ismany-to-one. It is known [FL1] that the incidence matrix can be expanded to aformat with exactly two 1's per column, so that each column in the expanded matrixcorresponds to an edge of the intersection graph. Thus we can reverse the processto construct an incidence matrix for a graph. Although the intersection graph is anabstraction of a circuit, it captures the information essential for us to �nd a layout ifany exist.4 The Pathwidth Metric and Graph MinorsThe pathwidth metric was �rst de�ned in [RS1]. Let G be a connected graph. Asequence X1; : : : ;Xr of subsets of the vertex set of G is a path-decomposition of G ifthe following conditions are satis�ed.i. For every edge e of G, some Xi (1 � i � r) contains both ends of e.ii. For 1 � i � j � k � r, Xi \Xk � Xj .The pathwidth of G is the minimum value of k � 0 such that G has a path-decompositionX1; : : : ;Xr with jXij � k+1 (1 � i � r). The following theorem, which7

relates GML to the pathwidth metric of a graph, is fundamental to our algorithms.Theorem 4.1 [FL3] A circuit has a gate matrix layout in no more than k tracks ifand only if the corresponding intersection graph has pathwidth at most k � 1.A graph H is a minor of a graph G, denoted H �m G, if and only if a graphisomorphic to H can be obtained from a subgraph of G by contracting edges. If H isa minor of G, and H is not isomorphic to G, then we write H <m G. A family F ofgraphs is closed in the minor order if, for every G in F , if H is a minor of G then His also in F .Theorem 4.2 [RS1] For any �xed k, the family of graphs with pathwidth at most kis minor-closed.A graph G is a minimal element of set Q if and only if, for every H <m G, His not in Q. If F is a minor-closed family, then the obstruction set for F , writtenobs(F), is the set of all minimal graphs in the complement of F . Therefore, if F is aminor-closed family, then G 2 F if and only if H 6�m G for every H 2 obs(F).Theorem 4.3 [RS4] If F is a minor-closed family of �nite graphs, then obs(F) is�nite.Theorem 4.4 [RS3] For every �xed graph H, there exists a polynomial-time algo-rithm that, when given an input graph G, decides whether H is a minor of G.Thus there is a polynomial-time algorithm to decide membership for any minor-closed family. The algorithm proceeds as follows. Given a graph G whose membershipin F is to be decided, we check to see if G contains as a minor an obstruction to F . IfG contains no obstruction, then G belongs to F . Otherwise G does not belong to F .Since there are only a �nite number of obstructions, and there exists a polynomial-time algorithm to test for the containment of each, membership in F can be decidedin polynomial time. 8

Although Theorems 4.3 and 4.4 are powerful, they cannot be used directly by thealgorithm designer. For one thing, Theorem 4.3 is non-constructive in the followingsense: it proves that the number of obstructions is �nite without actually showingwhat these obstructions are, or even how they can be found. It is known that anyproof of Theorem 4.3 must be inherently non-constructive [FRS]; moreover, there canbe no general scheme to compute the obstructions to a given family [FL3]. Further-more, even if all obstructions were somehow known, the general algorithm for minortesting possesses enormous constants of proportionality. If the family F excludes aplanar graph, then the graphs in F have bounded treewidth [RS2], and the minorcontainment test can be done in O(n) time [Bod]. Alas, this algorithm also hasextremely large constants.Getting back to GML, it is known that for every k, there is a tree obstruction tothe family of graphs with pathwidth k [FL1]. Thus it follows that GML(k) can, inprinciple, be solved in O(n) time, although the algorithm is not practical.5 Three-track Gate Matrix LayoutGML(1) is trivially solved. GML(2) can be solved in O(nm) time using [BL]. The�rst genuinely di�cult case is GML(3).5.1 The Six Smallest ObstructionsIt is known that there are exactly 110 obstructions to GML(3) [KL]. The number ofvertices in these obstructions ranges from 4 to 22. Consider the six smallest obstruc-tions, which we call A, B, C, D, E and F (see Figure 2). Graph A is K4. Graph Bis known as the Haj�os graph. We are able to use the structure and relative densityof these six obstructions to design fast minor containment tests for them. If we candevelop fast minor containment tests for all 110 obstructions, then we would also havea fast decision algorithm for GML(3). However, the larger obstructions are sparser.9

A B C

D E FFigure 2: The six smallest obstructions to GML(3)It appears to be very di�cult to design tests for them.Our algorithms for GML(3) are based on testing for the six obstructions alone. Wehave implemented these algorithms. Experimental results suggest that it is reasonableto expect that a circuit that cannot be laid out in three tracks will contain one ofthese six.5.2 Testing for the ObstructionsLet G be a connected graph and let H be another graph. A model of H in G is a setfGi : i 2 V (H)g of mutually disjoint, non-empty, connected subgraphs of G, togetherwith a set ffj : j 2 E(H)g of edges of G, such that 8j 2 E(H) with endpoints i1 andi2, fj has one endpoint in V (Gi1) and one endpoint in V (Gi2).Observe that if there exists a model of H in G, then by contracting each Gi to asingle vertex, we obtain a graph isomorphic to H. Moreover, every minor of G canbe obtained this way. 10

Detecting Obstruction AGiven an intersection graph G corresponding to a circuit whose gate matrix layoutis sought, we �rst check to see whether A is a minor of G. The following well knownlemma is crucial to our algorithm.Lemma 5.1 If G is a graph of order at least 4 and K4 6�m G, then there exist a pairof non-adjacent vertices each with at most two neighbors in G.In order to detect graph A, we use the following three graph-modifying rules.Given a vertex v, N(v) denotes the set of neighbors of v.The rules used for detecting obstruction A:A1: if (jN(v)j = 1) then delete vertex v;Assumption: Let fu;wg � N(v);A2: if (jN(v)j = 2 and (u;w) 62 E) thenbeginadd edge (u;w) to E;delete edge (u; v), edge (v;w) and vertex v;end;A3: if (jN(v)j = 2 and (u;w) 2 E) thendelete edge (u; v), edge (v;w) and vertex v;We note that Rules A2 and A3 are very similar; we are not suggesting that theyshould necessarily be coded separately. Stating them this way, however, makes iteasier to argue about their correctness later.We repeatedly modify G using rules A1, A2 and A3, until we are left with agraph to which none of the rules apply. This algorithm is based on Du�n's [Du]characterization of series-parallel graphs as those that exclude graph A. A proof ofcorrectness of these rules is contained in an appendix. If the resulting graph is empty,then we know that K4 6�m G. Otherwise, the resulting graph has minimum degree atleast three and according to Lemma 5.1, K4 �m G.11

In the sequel, we assume that we have already checked and found that K4 6�m G.This will allow us to take advantage of Lemma 5.1 and help simplify our algorithmsfor obstructions B;C;D;E and F .Detecting Obstruction BOur minor containment test for obstruction B is based on the following lemma.Lemma 5.2 Obstruction B �m G if and only if there exist three disjoint, connectedsubgraphs G1; G2 and G3 in G such that, contracting each Gi to a single vertex viresults in a multigraph in which there are six vertex-disjoint paths, two between eachpair vi, vj.Proof()): Let v1; v2 and v3 be the three vertices of degree four in B. Label the otherthree vertices v4; v5 and v6, so that v4 is adjacent to v1 and v2, v5 is adjacent to v2and v3, and v6 is adjacent to v1 and v3. If B �m G, then there is a model of B inG consisting of non-empty connected subgraphs Gvi ;8i; 1 � i � 6. Thus the lemmamay be satis�ed by letting G1 = Gv1 [Gv4 , G2 = Gv2 [Gv5 , and G3 = Gv3 [Gv6 .((): If such G1; G2 and G3 exist then, since G is a simple graph, there is a model ofB in G.We refer to the three vertices v1; v2 and v3 of this lemma as the corners of B.In order to test whether B is a minor of a simple graph G, our algorithm uses aninternal representation with weights on the edges (if the vertices of an edge-weightedgraph are viewed as the contraction of mutually disjoint, connected subgraphs of asimple graph, then the weights denote the number of edges between these subgraphs).Initially, each edge of G is assigned weight 1. Since we only need two vertex-disjointpaths between any pair of corners, the weight of an edge is either 1 or 2.We use the following three rules, de�ned for edge-weighted graphs, in order todetect B. 12

The rules used for detecting obstruction B:B1: if (jN(v)j = 1) then delete vertex v;Assumption: Let fu;wg � N(v) and weight(u; v) � weight(v;w);B2: if (jN(v)j = 2 and weight(u; v) = 1 and (u;w) 62 E) thenbeginintroduce edge (u;w);weight(u;w) weight(v;w);delete edge (u; v), edge (v;w) and vertex v;end;B3: if (jN(v)j = 2 and weight(u; v) = 1 and (u;w) 2 E) thenbeginweight(u;w) 2;delete edge (u; v), edge (v;w) and vertex v;end;We repeatedly modify G using rules B1, B2 and B3 until no further modi�cationis possible. If a vertex v has exactly two neighbors and both edges incident on v haveweight greater than one, then we do not modify it. A proof of correctness of theserules can be found in an appendix.5.3 Detecting Four Obstructions in One PassTesting for obstructions C;D;E and F is more complicated. We take advantage ofthe structural similarities among these four obstructions and devise a single algorithmthat will detect the presence of any of them.A T-link between two vertices u and v in a graph is a path of length two betweenu and v such that the intermediate vertex w on the path has a neighbor x distinctfrom u and v. All four vertices u; v; w and x, as well as the three edges (u;w); (v;w)and (w; x) are considered to be part of the T-link. A link between two vertices u andv in a graph is either a path of length at least three between u and v, or a T-linkbetween u and v.Observe that each of the obstructions C;D;E and F has maximum degree three.Therefore, we can use the following lemma that relates the minor and topological13

orders. A graph H is topologically contained in a graph G (denoted H �t G) if andonly a graph isomorphic to H can be obtained by removing subdivisions and deletingvertices and edges from G (a subdivision is a vertex of degree two; we remove asubdivision by deleting the vertex and its incident edges, and adding an edge betweenits neighbors).Lemma 5.3 [FL2] If H is a graph whose maximum degree does not exceed three,then H �m G if and only if H �t G.Our test for minor containment of C;D;E and F is based on the next lemma. Theproof relies on the fact that in each of these obstructions, there exist only two verticeswith exactly three neighbors such that each neighbor in turn has degree at least two.These two vertices will be called the corners of C;D;E or F . Note that there existthree mutually vertex-disjoint links between the corners of each obstruction.Lemma 5.4 A graph G contains one of the obstructions C;D;E or F as a minor ifand only if G contains two distinct vertices x and y and connected subgraphs G1; G2and G3 such thati. V (Gi) \ V (Gj) = fx; yg for every 1 � i < j � 3, andii. each Gi can be contracted to a link between x and y.Proof ()): Suppose G contains such an obstruction as a minor. Then accordingto Lemma 5.3, G also contains the obstruction in the topological order. If H �t G,then by subdividing zero or more edges of H we can obtain a graph H 0 � G. Hence,there exists a one-to-one mapping of the vertices of H into the vertices of G such thatthe edges of H map to vertex-disjoint paths in G. Let x and y be the corners of theobstruction. The subgraph consisting of the images of all the vertices and edges ofeach link between the corners is a connected subgraph of G. Since the images of the14

edges are vertex-disjoint paths, the three subgraphs corresponding to the three linksintersect only at the corners.((): Suppose there exist connected subgraphs G1; G2 and G3 in G that satisfy con-ditions (i) and (ii) of the lemma. Then, depending on the type of link to which eachsubgraph can be contracted, G contains at least one of the obstructions C;D;E andF . For the purpose of testing whether any of the obstructions C;D;E and F is aminor of a simple graph G, our algorithm uses an internal representation with weightson the vertices as well as the edges of G. Recall that to test for obstruction B, weonly used edge weights. Here, we also assign weights to the vertices in order to �ndT-links. The vertex and edge weights are initialized as follows.The weight of a vertex is either 0 or 1. Initially, every vertex with three or moreneighbors is assigned weight 1. All other vertices are assigned weight 0. The vertexweights are not changed during the algorithm.The weight of an edge is an integer between 1 and 4. All edge weights are initializedto 1. A weight of 2 denotes a path of length two between the end-points. A weight of3 means that we have found one link. A weight of 4 means that we have found twovertex-disjoint links between the end-points. The edge weights never decrease as thealgorithm progresses.We repeatedly use the following �ve rules, de�ned for graphs with both vertex andedge weights, in order to detect obstructions C;D;E and F . A proof of correctnessof these rules is contained in an appendix.
15

The rules used for detecting obstructions C;D;E and F :C1: if (jN(v)j = 1) then delete vertex v;Assumption: Let fu;wg � N(v) and weight(u; v) � weight(v;w);C2: if (jN(v)j = 2 and weight(v;w) � 3 and (u;w) 62 E) thenbeginadd edge(u;w);weight(u;w) minimumf3, weight(u; v)+weight(v;w)+weight(v)g;delete edge (u; v), edge (v;w) and vertex v;end;C3: if (jN(v)j = 2 and weight(v;w) � 3 and weight(u;w) < 3) thenbeginweight(u;w) minimumf3, weight(u; v)+weight(v;w)+weight(v)g;delete edge (u; v), edge (v;w) and vertex v;end;C4: if (jN(v)j = 2 and weight(v;w) � 3 and weight(u;w) = 3 andweight(u; v)+weight(v;w)+weight(v)� 3) thenbeginweight(u;w) 4;delete edge (u; v), edge (v;w) and vertex v;end;C5: if (jN(v)j = 2 and weight(u; v)+weight(v;w)+weight(v)< 3 andweight(u;w) � 3) then delete edge (u; v), edge (v;w) and vertex v;5.4 A Linear Time Test for ObstructionsThe algorithm that we use to test for minor containment of the graphs A;B;C;D;Eand F is called MINOR-FREE. There are three distinct phases to this algorithm.The �rst phase is used to detect obstruction A, the second phase is used to detectB, and the third stage is used to detect the presence of any of C;D;E and F . Thealgorithm terminates as soon as an obstruction is detected. In each phase, MINOR-FREE initializes the vertex and edge weights of the graph and also the set of graphmodi�cation rules R appropriately and invokes the procedure REDUCE-GRAPH.Algorithm REDUCE-GRAPH is the general scheme used to modify the inputgraph according to a set of speci�ed rules. First a queue of all vertices that have only16

Algorithm MINOR-FREEInput : A connected simple graph G.Output: YES, if none of A;B;C;D;E and F is a minor of G;NO, if at least one of A;B;C;D;E and F is a minor of G.begin procedure1. Read the input graph G.2. R fA1,A2,A3g;if (REDUCE-GRAPH(G;R) = NO) then output NO and stop;3. Initialize the weight of each edge to 1;Initialize the weight of each vertex to 0;4. R fB1,B2,B3g;if (REDUCE-GRAPH(G;R) = NO) then output NO and stop;5. Initialize the vertex weights as follows:if (jN(v)j � 2) then weight(v) 0;else weight(v) 1;6. R fC1,C2,C3,C4,C5g;if (REDUCE-GRAPH(G;R) = NO) then output NO;else output YES;end procedure.one or two neighbors is created. Then each vertex in the queue is visited sequentially.During a visit, the algorithm checks if any of the rules from the set R can be appliedto that vertex. If a rule is applicable to the vertex, then edges are modi�ed and thevertex is deleted. If this deletion causes any vertex to have exactly two neighborsthen that vertex is added to the queue. The order of the graph decreases with eachapplication of a rule. If none of the rules can be applied then the graph is eitherempty or contains an obstruction. The output of REDUCE-GRAPH is YES if thegraph is empty, and NO otherwise. Therefore, Algorithm MINOR-FREE will alwaysterminate with the correct result.Lemma 5.5 Algorithm MINOR-FREE has a running time of O(n).Proof All operations performed by algorithm MINOR-FREE take constant timeexcept for the three calls to algorithm REDUCE-GRAPH. The basic operations per-formed by algorithm REDUCE-GRAPH are: searching for vertices of degree three or17

Algorithm REDUCE-GRAPHInput : A connected graph G and a set R of rules.Output: YES, if G can be reduced to the empty graph using R;NO, otherwise.begin procedure1. Create a graph H isomorphic to G.2. Create a queue of vertices in H with only one or two neighbors.3. while (the queue is not empty) dobeginremove a vertex v from the queue;if (a rule in R applies to v) thenbeginL list of neighbors of v with exactly three neighbors;modify H according to the rule;if (a vertex in L has degree two) then enqueue it;end;if (no rule in R applies to v) then mark v as visited;end;4. if (H is empty) then output YES;else output NO;end procedure.less, deleting such vertices and the edges incident on them, checking for the existenceof speci�c edges, and adding edges. Each of these operations can be performed inconstant time using an uninitialized adjacency matrix representation for the graph.Since K4 6�m G) e � 2n� 3 [Bol], each operation is used O(n) times, guaranteeingthat REDUCE-GRAPH, and hence MINOR-FREE, runs in linear time.6 Layout AlgorithmsTesting for the presence of obstructions is su�cient only to tell us whether or not alayout is possible. How can we �nd a layout when we know that it exists? We addressthis question here. 18

6.1 A Self-Reduction TechniqueThe term self-reduction is used to denote a process that solves the search version ofa problem by making repeated calls to an algorithm for the decision version of thatproblem. Our implementation of the self-reduction algorithm from [BFL] uses theprocedure FILL-IN, which follows. In attempting to change the at most nm 0's to1's, FILL-IN makes O(nm) calls to the decision algorithm. When no more changesare possible, a satisfactory column permutation, if one exists, can be found in O(nm)time [BL].We now list the entire layout procedure, which we call GATE-MATRIX-LAYOUT.If our decision algorithm is correct, so is our layout algorithm. But of course ourdecision algorithm is faulty. We shall explore this issue in the next section.6.2 Imperfect Self-ReductionsOur fast decision algorithm, MINOR-FREE, tests for only six of the 110 obstructionsto GML(3). If the input graph contains an obstruction other than these six, it will notbe detected, giving us a \false positive." Alternately, even if the original graph has athree-track layout, we may introduce an obstruction during self-reduction, giving us a\false negative." Observe that false positives are inevitable. However, the occurrenceof false negatives depends on the self-reduction scheme used and should be minimized.One way to avoid false negatives entirely is to use a form of self-reduction in whichwe change a 0 to a 1 only if it does not amount to introducing a new edge in thegraph. We call this algorithm SR1. SR1 never calls the decision algorithm MINOR-FREE and is a rather degenerate form of self-reduction. That is, SR1 only checkswhether any incidence matrix of the graph has the consecutive 1's property. SR1takes O(nm) time. The most straightforward approach, which we call SR2, employsMINOR-FREE as its decision algorithm. SR2 takes O(n2m) time. A more expensiveapproach is to test whether the incidence matrix has the consecutive 1's property19

Algorithm FILL-INInput : An n�m Boolean matrix M andthe corresponding intersection graph G.Output: M after its entries have been �lled infor k-track gate matrix layout.begin procedurefor j = 1 to m dobegincolsum number of 1's in column j of Mi 1;while ((colsum � k) and (i � n)) dobeginif (M(i; j) = 0) thenbeginM(i; j) 1;Add edges to G if necessary and remember them;Call the decision algorithm on G;if a layout is possible then colsum colsum+ 1;elsebeginM(i; j) 0;Delete the edges that were added in G;end;end;i i+ 1;end;end;end procedure.after each change. This algorithm, SR3, takes O(n2m+ nm2) time.How well do these imperfect self-reductions perform in practice? We explore thisquestion in the next section.7 Experimental ResultsIn order to study the behavior of these techniques, we implemented algorithmMINOR-FREE and the three self-reduction schemes SR1, SR2 and SR3. We also20

Algorithm GATE-MATRIX-LAYOUTInput : The netlist of a circuit consisting of n nets and m gates.Output: A k-track gate matrix layout for the circuit, orNO, if a k-track layout could not be found.begin procedure1. Read the netlist of the circuit.2. Obtain the Boolean matrixM representing the circuit.Transform the matrix M to the intersection graph G.3. Call the decision algorithm on G.if a layout is not possible thenoutput NO and stop;4. Call Algorithm FILL-IN on M and G.5. Test whether M has the consecutive 1's property.if M does not have the consecutive 1's property thenoutput NO and stop;else �nd a good column permutation of M ;6. Sort the n nets into m buckets according to their left end-point.Assign a track to each net using a greedy strategy [HS].7. Output the layout.end procedure.implemented the algorithm of [FG] to determine whether a 0-1 matrix has the con-secutive 1's property (although this algorithm takes O(n2m) time in contrast to theO(nm) time of [BL], we chose it for ease of implementation). These programs werewritten in the C language and were tested on a Sun SPARC-20 workstation. We com-pare our results with those produced by the exact dynamic programming formulationof [DKL].7.1 Randomly Generated InputsWe tested our algorithm on large numbers of randomly generated inputs. For each�xed value of n and probability p, we generated a hundred random graphs of order nwith uniform edge probability p and treated each graph as if it were the intersectiongraph of a circuit with n nets. The incidence matrix corresponding to such a randomgraph was obtained by creating a row (net) for each vertex in the graph, a column21

(gate) for each edge, and putting two 1's in each column in the positions correspondingto the end-points of the edge and 0's everywhere else.7.2 Tabular DataTables 1 and 2 show some representative results from our experiments. In each table,the graphs tested are grouped by edge-probability, whose value is shown in the �rstcolumn. The second column shows the number of vertices in the graph. Since we testfor all obstructions of order less than 8, ours is an exact algorithm for graphs with 7or fewer vertices. Therefore, we start our experiments with graphs of order 8. For anygiven edge-probability, large graphs have a greater chance of containing an obstructionthan small graphs; beyond a certain size, this probability is so overwhelming that we�nd no candidates for self-reduction. We terminate our experiments at this point.Columns three through �ve show results obtained using [DKL]. The third columnlists the number of layouts found. The fourth column lists the number of inputsfor which no layout is possible. The �fth column lists the number of inputs [DKL]could not resolve (each input was given at least four hours of CPU time before itwas halted). The sixth column shows the result of using algorithm MINOR-FREEto decide whether the circuit has a three-track layout. The value in this column isnever less than the actual number of layouts that exist; any di�erence is due to theoccurrence of false positives.Columns seven, eight and nine show the results of self-reduction. Each circuit thatsatis�es MINOR-FREE is self-reduced using SR1, SR2 and SR3. Not surprisingly,SR1 is the worst of the three, because the incidence matrices of a large number ofthe graphs generated do not have the consecutive 1's property. SR2 is a tremendousimprovement over SR1 and in fact is fairly close to the exact algorithm for smallgraphs. SR3 turns out to be only a marginal improvement over SR2, and probablydoes not justify its additional computing time.22

As the graphs tested grow larger and sparser, we tend to encounter more falsenegatives, since we are apt to introduce a (large) obstruction during self-reduction.Even so, our algorithm �nds a layout almost as often as [DKL], and does so indrastically far less time. To illustrate, with the edge-probability set at 0.15 and thenumber of vertices set at 14, [DKL] takes an average of 4.2 seconds per graph to �nda layout; in contrast, SR2 takes 0.018 seconds. More dramatically, with the edge-probability set at 0.075 and the number of vertices set at 25, and (conservatively)counting only four hours of CPU time for the input instances on which [DKL] doesnot terminate, the numbers are 91 minutes and 0.09 seconds, respectively.The DKL code we employed has already been highly optimized for speed, forexample by pruning pendant paths in the input graph and by collapsing edges thatbelong to a clique [Ki]. Therefore, it is unlikely that its performance can be improvedsigni�cantly. On the other hand, the code for our algorithm was written primarilyas a proof of concept without much e�ort at optimization. It should be possible toenhance its performance substantially. Furthermore, it strikes us as likely that falsenegatives can be reduced with some more complicated self-reduction scheme.
23

Table 1: Experimental results on small graphsedge no. of dynamic programming MINOR-FREE: self-reduction: layout foundprobability vertices yes no halted layout possible SR1 SR2 SR38 49 51 0 49 23 49 499 20 80 0 20 2 19 190.375 10 6 94 0 7 3 6 611 1 99 0 1 0 1 112 0 100 0 0 0 0 08 88 12 0 88 51 88 889 82 18 0 82 35 79 8010 62 38 0 63 22 62 6211 45 55 0 48 7 42 420.25 12 22 78 0 24 6 19 2013 12 88 0 12 2 8 914 3 97 0 4 0 3 315 1 99 0 1 0 1 116 0 100 0 0 0 0 08 100 0 0 100 85 100 1009 100 0 0 100 83 100 10010 98 2 0 98 66 97 9711 97 3 0 98 54 95 9512 89 11 0 89 38 82 8313 82 18 0 82 20 72 7314 65 35 0 69 21 61 6115 51 49 0 53 9 33 330.15 16 34 66 0 37 10 24 2217 26 49 25 33 2 14 1418 16 23 61 25 2 14 1419 7 14 79 13 0 3 320 2 3 95 10 0 2 221 0 1 99 1 0 1 122 0 0 100 1 0 0 023 0 1 99 1 0 0 024 0 0 100 0 0 0 024

Table 2: Experimental results on larger graphsedge no. of dynamic programming MINOR-FREE: self-reduction: layout foundprobability vertices yes no halted layout possible SR1 SR2 SR315 98 2 0 99 55 82 8220 40 20 40 56 9 32 320.1 25 1 0 99 15 1 4 430 0 0 100 0 0 0 020 79 12 9 85 28 67 6725 27 2 71 66 7 22 230.075 30 5 0 95 25 2 9 935 0 0 100 3 0 0 040 0 0 100 0 0 0 020 100 0 0 100 74 94 9425 86 1 13 98 48 79 7930 43 4 53 84 22 42 4235 14 2 84 64 3 13 130.05 40 2 0 98 30 0 1 145 0 0 100 5 0 0 050 0 0 100 2 0 0 055 0 0 100 0 0 0 025 98 0 2 100 73 95 9530 87 0 13 100 54 78 7835 57 4 39 88 23 42 4240 29 0 71 78 10 18 180.0375 45 11 0 89 49 2 7 750 1 0 99 33 0 2 255 0 0 100 13 0 0 060 0 0 100 4 0 0 065 0 0 100 0 0 0 030 100 0 0 100 94 98 9840 89 0 11 100 55 78 7850 38 0 62 92 21 41 410.025 60 12 0 88 66 4 15 1570 1 0 99 30 1 1 180 0 0 100 5 0 0 090 0 0 100 0 0 0 025

8 SummaryOur main intent has been to illustrate the utility of an obstruction-based approach toalgorithm design. Many well-known graph families are amenable to this method [FL4].Because the number of obstructions to such families is generally a steep function of arelevant input parameter, our technique may merit further study whenever (i) a smallset of key obstructions can be identi�ed, and (ii) a fast test for them can be devised.References[BFL] D. J. Brown, M. R. Fellows, and M. A. Langston, \Polynomial-Time self-reducibility: theoretical motivations and practical results," InternationalJournal of Computer Mathematics 31 (1989), 1{9.[BL] K. S. Booth and G. S. Lueker, \Testing for the consecutive ones property,interval graphs, and graph planarity using PQ-tree algorithms," Journalof Computer and Systems Science 13 (1976), 335{379.[Bol] B. Bollob�as, \Extremal Graph Theory," Academic Press, New York(1978).[Bod] H. L. Bodlaender, \A linear time algorithm for �nding tree-decompositions of small treewidth," Proceedings, 25th Annual ACM Sym-posium on Theory of Computing (1993), 226{234.[DKL] N. Deo, M. S. Krishnamoorthy, and M. A. Langston, \Exact and approxi-mate solutions for the Gate Matrix Layout problem," IEEE Transactionson Computer-Aided Design 6 (1987), 79{84.[DN] S. Devadas and R. Newton, \Topological optimization of multiple-levelarray logic," IEEE Transactions on Computer-Aided Design 6 (1987),915{940. 26

[Du] R. J. Du�n, \Topology of series-parallel networks," Journal of Mathe-matical Analysis and Applications 10 (1965), 303{318.[FG] D. R. Fulkerson and O. A. Gross, \Incidence matrices and intervalgraphs," Paci�c Journal of Mathematics, 15:3 (1965), 835{855.[FL1] M. R. Fellows and M. A. Langston, \Nonconstructive advancesin polynomial-time complexity," Information Processing Letters, 26(1987/88), 157{162.[FL2] M. R. Fellows and M. A. Langston, \Nonconstructive tools for provingpolynomial-time decidability," Journal of the ACM , 35:3 (1988), 727{739.[FL3] M. R. Fellows and M. A. Langston, \On search, decision and the e�-ciency of polynomial-time algorithms," Proceedings, 21st Annual ACMSymposium on Theory of Computing (1989), 501{512.[FL4] M. R. Fellows and M. A. Langston, \On well-partial-order theory and itsapplication to combinatorial problems of VLSI design," SIAM Journal onDiscrete Mathematics 5:1 (1992), 117{126.[FRS] H. Friedman, N. Robertson, and P. Seymour, \The metamathematics ofthe graph minor theorem," Contemporary Mathematics 65 (1987), 229{261.[HS] A. Hashimoto and J. Stevens, \Wire routing by optimizing channel as-signment within large apertures," Proceedings, 8th Design AutomationWorkshop (1971), 155{169.[KF] T. Kashiwabara and T. Fujisawa, \NP-Completeness of the problem of�nding a minimum-clique-number interval graph containing a given graphas a subgraph," Proceedings, International Symposium on Circuits andSystems (1979), 657{660.[Ki] N. G. Kinnersley, Private Communication.27

[KL] N. G. Kinnersley and M. A. Langston, \Obstruction set isolation for theGate Matrix Layout problem," Discrete Applied Mathematics 54 (1994),169{213.[KoT] A. Kornai and Z. Tuza, \Narrowness, pathwidth, and their application innatural language processing," Discrete Applied Mathematics 36 (1992),87{92.[La] M. A. Langston, \An Obstruction-Based Approach to Layout Optimiza-tion," Graph Structure Theory, (N. Robertson and P. D. Seymour, editors),AMS Press, 1993, 623{630.[Le] T. Lengauer, \Combinatorial algorithms for integrated circuit layout,"John Wiley & Sons, New York, 1990.[Li] J-T. Li, \Algorithms for Gate Matrix Layout", Proceedings, InternationalSymposium on Circuits and Systems (1983), 1013{1016.[LL] A. D. Lopez and H-F. S. Law, \A dense gate matrix layout method forMOS VLSI," IEEE Transactions on Electron Devices ED-27 (1980), 1671{1675.[RS1] N. Robertson and P. D. Seymour, \Graph Minors I. Excluding a forest,"Journal of Combinatorial Theory, Series B 35 (1983), 39{61.[RS2] N. Robertson and P. D. Seymour, \Graph Minors V. Excluding a planargraph," Journal of Combinatorial Theory, Series B 41(1986), 92{114.[RS3] N. Robertson and P. D. Seymour, \Graph Minors XIII. The disjoint pathsproblem," manuscript (1986).[RS4] N. Robertson and P. D. Seymour, \Graph Minors XX. Wagner's Conjec-ture," manuscript (1988).[WHW] O. Wing, S. Huang, R. Wang, \Gate Matrix Layout," IEEE Transactionson Computer-Aided Design 4 (1985), 220{231 .28

[Wi] O. Wing, \Interval-graph-based circuit layout," Proceedings, Interna-tional Conference on Computer-Aided Design (1983), 84{85.

29

APPENDICESA Proof of Correctness of Rules A1, A2, A3Lemma A.1 If G0 is obtained from G by an application of rule A1, A2 or A3, thenK4 �m G0 if and only if K4 �m G.Proof Suppose G0 is obtained from G by an application of rule A1, A2 or A3.()): If G0 is obtained from G by using rule A1 or A3, then G0 � G. Rule A2 isequivalent to contracting v to u along the edge (u; v). Therefore, G0 �m G in all threecases. Hence, K4 �m G0) K4 �m G.((): Let v 2 V (G) and �(v) � 2. Suppose v belongs to the connected subgraph Giin the model M of a K4. Then a neighbor u of v and the edge (u; v) are also in Gibecause �(K4) = 3. Observe that each of the rules A1, A2 and A3 simply contractsthe edge (u; v) to u. After this contraction, Gi becomes a connected graph G0i. Byreplacing Gi with G0i in M , we obtain a model M 0 of K4 in G0.B Proof of Correctness of Rules B1, B2, B3For the purpose of this proof, edge-weighted graphs will be distinguished with a hat(^).The simpli�cation of an edge-weighted graph Ĝ is the simple graph G obtained asfollows:i. Let G be the simple graph obtained by ignoring the edge weights of Ĝ.ii. For each edge (u;w) with weight 2 in Ĝ, introduce a new vertex v in G andmake v adjacent to both u and w.Note that every edge-weighted graph has a unique simpli�cation. For example,the simpli�cation of graph B̂ shown in Figure 3 is obstruction B.30

2

B

2
2Figure 3: A graph with edge weightsLemma B.1 If Ĝ0 is obtained from Ĝ by an application of rule B1, B2 or B3, thenB is a minor of the simpli�cation of Ĝ0 if and only if B is a minor of the simpli�cationof Ĝ.Proof Suppose Ĝ0 is obtained from Ĝ by an application of rule B1, B2 or B3. LetG and G0 be the simpli�cation of Ĝ and Ĝ0 respectively.()): Suppose B �m G0. If rule B1 was used, then Ĝ0 is the same as Ĝ � fvg.Therefore, G0 �m G. Applying rule B2 is equivalent to contracting vertex v to ualong edge (u; v) both in Ĝ and in G. Hence, G0 �m G. If rule B3 was used, thenĜ0 � (u;w) � Ĝ � (u;w). Since weight(u;w) in Ĝ0 is 2, its simpli�cation results inan edge (u; v) and a path of length two between u and v in G0. The intermediatevertex on this path is adjacent only to u and w. The edge (u;w) exists in G also.Moreover, since u and v are neighbors of v in G, the edges (u; v); (v;w) constitute apath of length two between u and w. Since v 62 G0, G0 �m G.((): Let B �m G. Then G must satisfy Lemma 5.2. Consider the structure of themutually disjoint, connected subgraphs Gi of that lemma. Since v has at most twoneighbors in G, none of V (G1); V (G2) and V (G3) consists solely of v. Assume that ifu 2 Gi, then i = 1.If rule B1 is used to obtain Ĝ0, then every path from v passes through u in G.Therefore, if v 2 Gi, then u 2 Gi also. Then, the subgraphs G1�fvg; G2; G3 exist inG0 and satisfy Lemma 5.2. Hence, B �m G0.Suppose rule B2 or B3 is used to obtain Ĝ0. Then, deleting the edge (u;w) fromĜ0 results in the same graph as deleting vertex v and edge (u;w) from Ĝ. The rest31

of the proof is based on this fact.Since w and u are connected in G, we can assume that if u 2 G1, then w is insome Gi. If u and w are both in G1, then the subgraphs G2 and G3 also exist in G0.In G0, the subgraph induced by V (G1) can be taken instead of G1. Since u and w areconnected in G0, B �m G0.If u 2 G1 and w 2 G2, then the two vertex-disjoint paths between G1 and G2 in Gthat are necessary to form obstruction B also exist between G1 � fvg and G2 in G0.Moreover, these two paths are disjoint from the other four paths required by Lemma5.2, both in G and G0. Therefore, B �m G0.If neither u nor w is in any Gi, then the subgraphs Gi also exist in G0. Moreover,at most one path between some Gi and Gj can include both u and w in G. Since theedge (u;w) exists in G0, G0 satis�es Lemma 5.2. Therefore, B �m G0.We repeatedly modify Ĝ using rules B1, B2 and B3 until no further modi�cationis possible. If a vertex v has exactly two neighbors and both edges incident on v haveweight greater than one, then we do not modify it.Lemma B.2 If none of the rules B1, B2 and B3 is applicable to Ĝ, then B is a minorof the simpli�cation of Ĝ.Proof The proof is by induction on jV (Ĝ)j. In order for none of B1, B2 and B3to be applicable, jV (Ĝ)j � 3. Let G be the simpli�cation of Ĝ. If jV (Ĝ)j = 3, theneach edge of Ĝ has weight 2 and B �m G. Assume that the lemma holds whenever3 � jV (Ĝ)j � n.Suppose Ĝ is a graph of order n+ 1. Since rule B1 cannot be applied to Ĝ, eachvertex in Ĝ has at least two neighbors. Let v be a vertex with exactly two neighborsu and w in Ĝ (v exists because K4 6�m G). Both edges incident on v have weight 2,because rules B2 and B3 cannot be applied. If (u;w) 62 E, then contracting v to ualong edge (u; v) results in a graph Ĝ0 to which none of the rules can be applied. Let32

G0 be the simpli�cation of Ĝ0. Since jV (Ĝ0)j = n, it follows that B �m G0. Further,since G0 �m G, we have B �m G.If the edge (u;w) exists and weight(u;w) � 2, then the graph B̂ (see Figure 3) is asubgraph of Ĝ. Hence, B �m G. The only remaining possibility is that weight(u;w)= 1.We know that any graph has a biconnected component that contains at most oneof the articulation points in the graph. Let Ĥ be such a biconnected component ofĜ and let H be the simpli�cation of Ĥ. We will show that B �m H.We know that K4 6�m H, because K4 6�m G and H � G. According to Lemma5.1, there exists a vertex v 2 Ĥ, such that v has exactly two neighbors in Ĥ and v isnot an articulation point of Ĝ. Let N(v) = fu;wg. Then weight(u; v) = weight(v;w)= 2, and weight(u;w) = 1. One of u and w, say w, is not an articulation point of Ĝ.Since rules B2 and B3 are not applicable, w has a third neighbor x (besides u and v)in Ĥ. Since Ĥ is biconnected, there exist vertex-disjoint paths connecting u and wto x. These two paths and the edge (u;w) together make two vertex-disjoint pathsbetween u and w that are disjoint from v in Ĥ. Therefore, according to Lemma 5.2,B �m H. Since H � G, we conclude that B �m G.C Proof of Correctness of Rules C1{C5Graphs with both vertex and edge weights will be distinguished with a check (�).An expansion of a weighted graph �G is a simple graph G obtained using thefollowing sequence of �ve steps:i. Let G be the simple graph obtained by ignoring the weights of �G.ii. If an edge of �G has weight 2, then subdivide the corresponding edge in G.iii. If an edge has weight 3 in �G, then replace that edge in G with a link of anykind. 33

iv. If an edge has weight 4 in �G, replace that edge in G with a pair of vertex-disjointlinks of any kind.v. Finally, if a vertex v of weight 1 in �G has fewer than three neighbors in G, thenadd a new vertex to G and make it adjacent to v.
1

1

0 0

H

4
2Figure 4: A graph with vertex and edge weightsIn general, a graph �G can have more than one expansion. For example, each of theobstructions C;D;E and F is a minor of an expansion of graph �H shown in Figure4. The expansion of a graph is unique only if its maximum edge weight is 2.Lemma C.1 If �G0 is obtained from �G by an application of rule C1, C2, C3, C4 orC5, then an expansion of �G0 contains one of the obstructions C;D;E and F as minorif and only if an expansion of �G does.Proof()): Suppose G0 is an expansion of �G0 that contains one of C;D;E and F as a minor.If �G0 was obtained using rule C1 or C5, then �G0 is the same as �G � fvg. Therefore,G0 is a minor of an expansion of �G.If one of the rules C2, C3 and C4 was used, then deleting the edge (u;w) from �G0results in a graph identical to that obtained by deleting vertex v and edge (u;w) from�G. If rule C2 or C3 was used, then weight(u;w) in �G0 � weight(u; v) + weight(v;w)+ weight(v) in �G. Therefore, G0 is a minor of an expansion of �G.Let �H 0 be the subgraph induced by u and w in �G0, and let �H be the subgraphinduced by u; v and w in �G. Consider the expansion H 0 � G0 of �H 0 and an expansion34

H of �H.If rule C4 was used, then weight(u;w) = 4 in �G0. Hence, there are twovertex-disjoint links between u and w in H 0. Since weight(u;w) = 3 in �G,there exists a link in H between u and w that excludes vertex v. Further, sinceweight(u; v)+weight(v;w)+weight(v)� 3, a link between u and w in H that includesvertex v can be obtained by contracting zero or more edges. Therefore, G0 is a minorof an expansion of �G.((): Let G be an expansion of �G that contains one of the four obstructions. Weshow that an expansion G0 of �G0 also contains an obstruction.If an expansion of �G� fvg contains an obstruction, then so does some expansionof �G0. This is because for rules C1 and C5 �G0 is identical to �G�fvg. For rule C2, theedge (u;w) does not exist �G. For rules C3 and C4, the weight of edge (u;w) in �G0 isnot less than its weight in �G. Therefore, every expansion of �G�fvg is a subgraph ofan expansion of �G0.Suppose no expansion of �G� fvg contains an obstruction. Let G1; G2 and G3 bethe connected subgraphs, and let x and y be the corners of an obstruction in G thatsatisfy Lemma 5.4. Notice that only those vertices that were originally in �G and noneof the vertices introduced during expansion can serve as corners in G. Since v has atmost two neighbors in �G, it cannot be a corner in G . Thus v must be an essentialpart of a link between the corners of any obstruction in G. Therefore, assume that vis in the connected subgraph G1 of G.If v is part of a T-link between the corners, then it must be the intermediate vertexof the T-link. Otherwise, the intermediate vertex of the T-link would have weight 1in both �G and �G � fvg and as a result, an expansion of �G � fvg would contain thesame obstruction as G. Therefore, if v has only one neighbor in �G, then it cannot bepart of a link between the corners. Hence, v must have at least two neighbors in �G,and rule C1 is not applicable. Let N(v) = fu;wg.35

Suppose v is part of a T-link between the corners. Then v is the intermediatevertex of T-link between u and w, and weight(v) = 1. Therefore, u and w must alsobe in G1 besides v. Also, weight(u; v) + weight(v) + weight(v;w) � 3 in �G.If v does not form a T-link, then it must be part of a path of length at least threebetween the corners. Therefore, u and w must also be in G1 besides v. Observe thatG1 can be contracted to a path of length three between u and w that also includes vif and only if weight(u; v)+ weight(v;w) � 3 in �G.Suppose weight(u; v)+ weight(v)+ weight(v;w) � 3. In this case, rule C5 cannotbe applied. Let �G0 be obtained by applying one of the rules C2, C3 and C4. Sincethe number of vertex-disjoint links between u and w in any expansion G0 of �G0 is thesame as the number in G, we conclude that G0 also contains an obstruction.Suppose weight(u; v)+ weight(v)+ weight(v;w) < 3. In this case, rule C4 cannotbe applied. Since v has to be part of a path of length at least three between thecorners, u and w cannot both be corners. Hence, if the edge (u;w) exists, thenweight(u;w) = 1. Therefore, rule C5 cannot be applied. Let �G0 be obtained byapplying rule C2 or C3. Then the length of the longest path between u and w in G0is the same as that in G. Therefore, G0 contains an obstruction also. This completesthe proof.Lemma C.2 If none of the rules C1, C2, C3, C4 and C5 can be applied to �G, thenan expansion of �G contains one of the obstructions C;D;E and F as a minor.Proof Since rule C1 cannot be applied, each vertex of �G has at least two neigh-bors. Since K4 is not a minor of any expansion of �G, there exists a vertex v withexactly two neighbors in �G. Let N(v) = fu;wg. As in the rules C2{C5, assume thatweight(u; v) � weight(v;w). There are two cases to consider.Case 1: weight(u; v) � weight(v;w) � 3.In order for v not to meet the conditions of rules C2{C5, the edge (u;w) 2 E,36

weight(u;w) > 3, and weight(u; v) + weight(v;w) + weight(v) � 3. Consider thesubgraph �H induced by vertices u; v and w in �G. There exist two links between uand w, and the vertex v along with its two edges is the third link. Therefore, �H canbe expanded into an obstruction.Case 2: weight(u; v) � weight(v;w) = 4.The proof of this is by induction on jV (�G)j. If jV (�G)j = 3, then every vertex of �G hastwo neighbors. If weight(u; v) � 3 and weight(u;w) � 3, then this reduces to Case1. Otherwise, at least one of the edges (u; v) and (u;w) has weight 4. As a result, anexpansion of �G contains an obstruction.Suppose the lemma is true for all 3 � jV (�G)j � n. Let jV (�G)j = n + 1, and letv 2 V (�G) with N(v) = fu;wg.If weight(u; v) < 3, then we contract the edge (u; v) to obtain �G0. Since jV (�G0)j =n, an expansion G0 of �G0 contains an obstruction. Moreover, there exists an expansionG of �G such that G0 �m G. Therefore, G also contains the obstruction.If weight(u; v) � 3, let �H be a biconnected component of �G containing only onearticulation point of �G. There exists a vertex v 2 V (�H) such that N(v) = fu; vg andv is not an articulation point of �G. Moreover, there exists a path from u to w in �Hthat does not include v. Since weight(v;w) = 4 and weight(u; v) � 3, the subgraphof �H induced by u; v and w, along with this path between u and w can be expandedto a simple graph that contains an obstruction. Therefore, an expansion of �G alsocontains the obstruction.D Software Package (SIXPACK)Our software package (which we humorously dub SIXPACK) is written entirely in C.It is portable to any platform with an ANSI C compiler. Although SIXPACK canbe used in stand-alone fashion, any of the constituent functions of the package caneasily be used independently with the appropriate data structures. This is facilitated37

by the user interface, which permits either interactive use or invocation from withinanother program.The package also contains routines supplementary to the main aim of obstructiontesting and self-reduction. Included is an implementation of the algorithm, due toFulkerson and Gross, that tests if an input matrix has the consecutive 1's property.This routine may be used to �nd a three-track layout after a successful self-reduction.Also included are routines that generate random graphs of speci�ed order and edgedensity and random matrices of speci�ed size and number of non-zero entries. Theseare helpful in evaluating the e�ectiveness of our approach on graphs and matrices ofvarying size and sparseness.Source code for SIXPACK, comprising our implementation of algorithm MINOR-FREE and three di�erent versions of self-reduction, along with a make�le to helpcompile the programs, is available as a tar �le. Our program accepts either a graphor a 0-1 matrix as input and can also generate its own input using random graphgeneration and random matrix generation routines. Various options to the programcan be set so that a simple obstruction test or one of three variants of self-reductionis performed.Since our algorithm is graph-based, input matrices are converted into their inter-section graphs for processing. Graphs are stored in a simple adjacency list format.Each graph has a header node that contains information about the graph and apointer to an array of vertex nodes. Each vertex node contains �elds that store thelabel, degree and weight (a parameter used by algorithm MINOR-FREE) of the cor-responding vertex and a pointer to a list of edge nodes. Each node in a list of edgenodes contains �elds that store one endpoint and the weight of the correspondingedge, and a pointer to the next node in the list. We prefer the adjacency list repre-sentation over the adjacency matrix representation because input graphs that do notcontain an obstruction must have fewer than twice as many edges as vertices. Since38

the adjacent list representation uses only linear space to store such graphs as opposedto the quadratic space used by the adjacency matrix representation, we expect inputgraphs of interest to have a comparatively compact representation in adjacency listform.Storing graphs in adjacency list format also allows us to implement e�cientlysuch basic operations on graphs as �nding connected and biconnected components,which are used by algorithm MINOR-FREE. Besides these, the only modi�cationsperformed by MINOR-FREE on the input graph are local to vertices of degree twoor less, and these can be performed quickly on the adjacency list representation aswell. The algorithms for self-reduction require one more operation, the addition of aspeci�ed edge, which can be done in constant time with our representation.

39

