
Resource Cataloging and Distribution System�Keith Moore, Shirley Browne, Jason Cox, and Jonathan GettlerUniversity of Tennessee Technical ReportJanuary 1997AbstractWe describe an architecture for cataloging the characteristics of Internet-accessible resources, forreplicating such resources to improve their accessibility, and for registering the current locations of theresources so replicated. Message digests and public-key authentication are used to ensure the integrity ofthe �les provided to users. The service is designed to provide increased functionality with only minimalchanges to either a client or a server. Resources can be named either by URNs or by existing URLs, andeither type of resource name can be resolved to a description and ultimately to a set of locations fromwhich the resource can be retrieved.�This material is based upon work supported by the U.S. Army Research O�ce under grant number DAAH04-95-1-0595

1



1 IntroductionAlmost any user of the World Wide Web will be familiar with the following problems:� Frequently, the �le server mentioned in a particular URL is down, unreachable, or busy.� While additional copies of the �le named by that URL may exist (on so-called mirror sites), there isno mechanism for �nding them, no way to know whether such copies are current, and no means ofensuring that the mirrored copy has not been altered.� URLs become stale, that is, a URL which once pointed to a particular �le no longer points to anyversion of that �le.� Search services are often out-of-date due to the sheer size of the net and the necessity to periodicallypoll each server to see whether its �les have changed.� Search services that return URLs often return duplicate hits because the same �le is accessible by mul-tiple URLs. Search services do attempt to eliminate duplicates, but often with the result of eliminatingthe more desirable URLs from the point of view of proximity.� There is a need to be able to label resources according to certain criteria, and for the user to be ableto examine such labels before attempting to access the resource.� Given the ease by which many �le servers (whether primary servers or mirror sites) may be compro-mised, there is a need for a service that allows the integrity and authenticity of a �le to be checked.The Internet Architecture Board (IAB) held a workshop on Internet Information Infrastructure in Octoberof 1994 which led to the following recommendations [7]:� increased focus on a general caching and replication architecture,� rapid deployment of name resolution services,� articulation of a common security architecture for information applications.The workshop report pointed out performance, reliability, and scaling problems with current Internet infor-mation services similar to those we have listed above. In general, the report recommended inclusion of a\wholesale", or \middleware" layer in the information architecture that would sit between the lower \rawmaterials" layer and upper \retail" layer, with standard interfaces between the layers.We propose an architecture for a system, called the Resource Cataloging and Distribution System (RCDS)which addresses the problems described above. We hope that our work will constitute a substantial contri-bution toward realization of the middleware layer described in the IAB report and toward solving the scalingproblems described in [3].1.1 Design GoalsThe goals of RCDS include:� It must be easy to deploy in the current Internet.� It must be highly reliable and fault-tolerant.� It must use the network e�ciently.� It must provide adequate security, both to ensure that its authentication/integrity assurance servicesare trustworthy, and to thwart denial-of-service attacks.2



� It must be 
exible and general so that it can incorporate existing network protocols as well as evolveto meet future needs.� It must be scalable to several orders of magnitude beyond the current resource base size withoutfundamental changes in the structure of resource names, or in the means by which a resource name isresolved to the network location of a server that provides the resource.These goals have certain implications for our design:� The 
exibility goal dictates that the system should not assume present-day notions of roles suchas \author", \publisher", or \editor" in determining who can supply information about a resource.It also compels us to accommodate multiple data models for use by catalog records, as well as avariety of cryptographic authentication and integrity checking algorithms. Likewise, the service shouldaccomodate several di�erent protocols for accessing and retrieving resources, including those that willbe de�ned in the future as well as those in use today.� The scalability, reliability, and network e�ciency goals dictate that the system maintain replicatedcopies of the information which it provides and keep those copies in reasonable synchronization.� The goal of ease of deployment implies that the service should augment, rather than replace, thecurrent World Wide Web infrastructure. Furthermore, it should be easy for authors or publishers toset up and maintain their RCDS servers for the resources that they own.1.2 IssuesThe following issues must be considered:� Transition issues. In general, it is di�cult to build new infrastructure in the Internet, because theinfrastructure must be in place before its costs can be justi�ed by its bene�ts.� Security and Survivability. It is di�cult to provide network services that are immune to hostile attackor accidental damage. Doing so requires careful attention to the operation of the server machines, theability to detect possible problems, and su�cient logging to analyze security breaches and recover from�le loss or corruption.� Consistency. Consistency models for replicated data range from strict one-copy serializability [1] to abest-e�ort, eventual convergence model. Because of the high overhead of maintaining strict consistency,most distributed databases and �le replication schemes deployed on the Internet, such as the DomainName System, use looser consistency models. However, some applications, for example an automaticprogram builder that retrieves software components from distributed sites and constructs an executablesuitable for the user's platform, may require stricter consistency.� DNS. There are both advantages and disadvantages to using the Domain Name System as a componentof a resource cataloging system. On the positive side, DNS is widely deployed and implementationsare already available for most platforms. On the negative side, DNS is known to be insecure againstattack, to have problems with stale data, to have di�culty tolerating domains with a large fan-out(such as the .COM domain), and to be easy to miscon�gure. All but the last of these problems arebeing addressed by IETF working groups, and similar issues would be encountered in any other widelydistributed database.The assumed signi�cance of transition issues on the success of the project in
uenced our design in thefollowing ways: (a) we allow ordinary URLs as one kind of resource name, (b) we use existing �le serversand �le access protocols, and (c) we employ DNS as a component of the system rather than building a newdistributed database from the ground up. 3



The need for reliable authentication and integrity assurances, coupled with the di�culty of providingsecure servers, prompted us to use end-to-end (between information provider and user) authentication,consisting of public-key signatures and cryptographically signed certi�cates, rather than depending on thesecurity of resource catalog servers or �le servers (though reasonable security for these is still required tothwart denial-of-service attacks).We have implemented a 
exible consistency model which combines a convergence based peer updateprotocol for resource locations with a stricter token-based protocol for catalog information.Finally, some of the inherent limitations of DNS and the desire to separate administration of \namingauthority" names from administration of resource names for a particular naming authority, led us to use DNSonly as a means to identify one or more resource catalog servers for a particular resource naming authority,rather than to provide resource location or catalog information directly through DNS.2 Description of RCDSThe Resource Cataloging and Distribution System (RCDS) consists of the following components:� Clients, which are the consumers of the resources provided by the system. One kind of RCDS client isan ordinary WWWbrowser with slight modi�cations to make use of the resolution system. Unmodi�edWWW browsers can also access RCDS through the use of a RCDS-aware proxy server.� File servers, which provide access to the �les themselves. These can be ordinary general-purpose �leservers that use http, ftp, nntp, imap, NFS, or some other �le access protocol, or servers that use aprotocol designed for some special purpose (such as those designed for the real-time transmission ofaudio or video), or even multicast transmission sources.� Resource catalog servers, which maintain information about the characteristics of network-accessibleresources and accept queries about the characteristics of such resources from clients.� Location servers, which maintain information about the locations of network-accessible resources, andaccept queries for location data from clients.� Collection managers. The collection of �les on a �le server is maintained by a collections manager,which learns about newly published �les and determines when a �le server should acquire replicasof new �les and reap old ones, according to site-speci�ed criteria. The collections manager is alsoresponsible for actually acquiring and deleting the chosen �les. Finally, when a new �le is added to thecollection or an old one removed, the collections manager informs the location servers about changesin �le availability.� Publication tools, which accept new �les and descriptions from content providers (e.g. authors), andinject them into the system.� SONAR, which allows a choice of locations to be made by an RCDS client. Given several alternativelocations from which to access a resource, an application program can query a nearby SONAR serverto determine which locations are closer than others. The SONAR server will return, for several of thoselocations, a metric which provides a rough indication of the proximity of that location to the SONARserver. Using those metrics, the application can then choose a single location from those returned fromwhich to access the resource.2.1 Resource namesRCDS uses three kinds of resource names: URLs, URNs, and LIFNs. Web users will already be familiar withthe syntax of URLs and how they are used. URNs or Uniform Resource Names are similar in appearanceto to URLs but are designed to be stable, persistent, and independent of any access protocol or location.RCDS can serve as a resolution system for both URNs and URLs.4



2.1.1 URNs and LIFNsURNs (Uniform Resource Names) are used to provide stable names for resources whose characteristics mayvary over time. For instance, a URN may be used as a stable reference to a web page. The web page can thenmove, be replicated, or change its contents and still remain accessible through the same URN. In contrastto URLs which have wired-in location information, the location information and other characteristics of aURN are provided by external resolution servers.A LIFN (Location-Independent File Name) is similar to a URN in that it is a stable name and that it canbe resolved to �nd locations of a resource that it names. However, unlike a URN, a LIFN is constrained toname a speci�c �xed instance of a resource. All copies of a �le named by a LIFN are byte-for-byte identical.The meaning of a LIFN also does not change over time. Once a LIFN is used to refer to a particular �le, itmust always refer to that same sequence of octets. 1 A URN is associated with a description of the resourceit names, while a LIFN is associated with with one or more locations of identical copies of that resource.The description associated with a URN normally contains one or more LIFNs, which name particularinstances of that resource, and describes the characteristics of each instance. For example, if the resourcenamed by a particular URN exists in several di�erent data formats (e.g. plain text, PostScript, PDF,HTML), the description for that URN will list each of these, along with a LIFN for each speci�c instance.Similarly, if the resource associated with a URN has changed over time, and multiple versions of the resourceare accessible, the description of that resource would contain a list of the current and previous versions alongwith the LIFNs for each. Because the LIFN can then be used to �nd the current locations of a resource,it serves as a \link" or \�le handle" from the description of a resource instance to the list of its currentlocations.LIFNs have several purposes in RCDS:1. A LIFN serves as a link between a catalog record that describes a resource and the locations of aparticular instance of that resource.2. LIFNs are used by replication daemons (mirroring tools) which create new replicas by copying �lesacross a network. The replication daemons use LIFNs to refer to the �les being replicated, so thatthere is no ambiguity about which version of a �le is being copied. This also allows the locations of allreplicas created by such daemons to be associated with the same identi�er.3. LIFNs are intended to be used as cache validators. If a client determines that a user request can besatis�ed by the �le named by a particular LIFN, and the client �nds a cached copy of the �le namedby that LIFN, (and the client trusts the integrity of the cache), the client can use the cached copy. Inthis use LIFNs are similar to the \strong entity tags" of the HTTP/1.1 protocol, and can be used inHTTP's ETag: entity-header �eld.The distinction between URNs and LIFNs was crafted for several reasons:� Location data and descriptions are maintained by di�erent parties. The description of a resource willnormally be maintained by its author, publisher, editor, or reviewers, while the location data will bemaintained by the managers of speci�c �le servers.� If a resource suddenly becomes of interest to a large population, the set of replicated copies of thatresource may need to change quickly according to demand. Under such conditions, the location datafor that resource may need to change much more quickly than the description of the resource itself.� The location directory (accessed by LIFN) and the description server (accessed by URN) have di�erentneeds for consistency across replicas. There is little need to maintain a consistent list of locations acrossthe set of replicated location servers. On the other hand, it can be very important to have an up-to-date description of a resource and for the replicated copies of that description to be consistent withone another.1Although LIFNs were intended to refer to �les, it should also be possible to use LIFNs to refer to replicated services thatprovide the same results at di�erent locations, but that change over time. Such an extension of LIFNs is a subject for futurework. 5



� The portions of RCDS responsible for replicating �les and keeping track of their locations need anunambiguous name for a particular instance of a resource, to avoid confusing it with other instancesof the same resource.� If all instances of a �le associated with a LIFN are identical, the client's choice of which instance of aresource to access (data type, version, etc) may be cleanly separated from its choice of which locationto use when accessing the resource. The former choice can then be made on the basis of browsercapabilities, user requirements, etc., while the latter choice can be based on (say) proximity estimates.2.1.2 Format of URNs and LIFNsNOTE: The format of RCDS URNs and LIFNs described here is based on recent discussions in the InternetEnginering Task Force and elsewhere, and is subject to change until the standards are �nalized. RCDS canthus serve as an early URN testbed, and will migrate to whatever URN format and resolution schemes areadopted as Internet standards.A URN consists of three parts:1. The �xed pre�x string URN:.2. A namespace identi�er (NSI), which identi�es the format of the remaining portion of the URN.3. A namespace speci�c su�x (NSS), which is an identi�er assigned according to the rules for that par-ticular name space.The NSS will usually be subdivided into a naming authority, and a string which is assigned by that namingauthority, which may itself be subdivided if further delegation is needed. So URN:inet:foo.bar:mumblefrotzwould be a URN that was assigned by the naming authority foo.bar.The location of the naming authority within the NSS is not �xed; rather, it is a characteristic of thename space. This allows URNs to serve as an \umbrella" for other naming schemes (e.g. ISBNs, SGMLFormal Public Identi�ers, Usenet Message-IDs) that have a variety of structures.For RCDS URNs, the name space identi�er will normally be inet (though any URN can be used) andthe naming authority will be an Internet domain name. A LIFN is a URN from the name space lifn; thenaming authority portion of a LIFN will also be an Internet domain name. While any Internet domain namecould potentially be used, domain names used for URNs and LIFNs should be chosen to allow them to bepersistent for the useful life of the resource.2.1.3 Resolution of URNs and LIFNsThe structure of URNs provides just enough of a toe-hold to facilitate scalable, distributed resolution.Resolution is a process by which a client may access the resource named by a URN. It works as follows:1. The client queries a well-known registry for information about the namespace identi�er. The infor-mation returned will either indicate services and locations for all URNs with that identi�er, or it willcontain instructions, speci�c to that name space, which indicate the location of the naming authoritywithin the NSS, and where to �nd the registries for that naming authority.2. In the latter case, the naming authority is extracted from the URN and one of the registries for thatnaming authority is queried.3. Each registry queried returns either (a) referral instructions for further queries (for a narrower portionof the name space) or (b) a list of services, locations of those services, and protocols which may beused when communicating with those services.4. When the latter is found, the resolution process stops, and the client chooses one of the availableservices and locations. Among the services provided by RCDS are: URN-to-catalog record mappingand LIFN-to-location mapping. 6



The resolution process allows for mutiple servers at each registry, so it is both scalable (allowing the loadto be split across multiple servers) and fault-tolerant (if a query fails at one server, the same query may besubmitted to a di�erent server).RCDS clients may also be con�gured to consult \proxy" resolution servers (which perform queries onbehalf of clients and cache results) as well as \fallback" resolution servers (which can be consulted whenthere are no \o�cial" servers for a domain or when the \o�cial" servers do not respond.)2.2 Publication and DistributionFigure 1 illustrates how �les are published in RCDS.1. An author submits a �le to RCDS using a publication tool. If this is a new �le, a new description(containing catalog information) of that �le is created and a new URN is assigned; otherwise, thedescription of the old URN is updated to re
ect the new version of the �le. A LIFN is assigned to thenew �le, and this LIFN is included in the description of that �le. The part of the description containingthe LIFN and �le �ngerprint (and perhaps other parts of it) is cryptographically signed by the authorusing the publication tool.2. The publication tool deposits a copy of the �le on a �le server, and a copy of the description on anyresource catalog server associated with the URN's domain. 2 The publication tool also sends a copy ofthe description of the new �le to interested parties, which might include �le servers and search services.3. The resource catalog server updates its peers with the new description.4. The �le server informs any location server associated with the LIFN's domain, that it has a copy ofthe �le with that particular LIFN.5. As other �le servers �nd out about the existence of the new �le, their collections managers decidewhether to acquire it. When a �le server acquires the new �le and makes it accessible, it informs alocation server about it.6. The location servers propagate new �le location information to one another.2.3 Access and RetrievalFigure 2 illustrates how �les are accessed or retrieved in RCDS.1. A user acquires a URN of a resource that seems to suit his needs from a search service, hypertext link,or other means. This URN is resolved using DNS (see below) to �nd the network addresses of one ormore resource catalog servers. One of those servers is selected by the client, perhaps based on networkproximity estimates.2. The resource catalog server is queried for the description of the resource named by the URN. Thisdescription may itself contain sub-descriptions for each of several versions of a resource (which mightvary according to time created, medium, language, etc.). Each of these sub-descriptions will contain aLIFN for that particular version. The client selects a particular LIFN from those available.3. The client resolves the LIFN using DNS to �nd the network addresses of one or more location servers.One of those location servers is then queried for locations of the �le named by that LIFN.4. The location server returns one or more URLs at which the �le can be obtained.2If this is a modi�cation to the existing URN, the publication tool also ensures that that particular catalog server has acurrent copy of the description. This discipline is followed any time a catalog server is updated, to ensure single-copy serializationof resource descriptions. 7



Description
(LIFN,MD5,
certificates,
title,author,
etc.)

File, LIFN

random
location
server

other
location
servers

Publication
tool

Publication/Distribution Flow

random resource
catalog server

other
resource
catalog
servers

random
file
server

other
file
serversFigure 1: Publication of �les in RCDS.8



description
(URC)

LIFN
(from description)

locations
(URLs)

URL

file

location
servers

file
servers

resource
catalog
servers

x

URN or URL

local
sonar
server

IP addresses

proximity
estimates

Access/Retrieval Flow

Figure 2: Accessing a �le via RCDS.9



5. The client chooses one of those �le servers (again, perhaps based on network proximity estimates) andfetches the �le from that server.The interaction with RCDS may be accomplished either directly by a client, or via a proxy server whichcommunicates with the client via HTTP. The proxy arrangement is shown in Figure 3.3 ProtocolsBecause an understanding of some of the protocol details is important to understand how well RCDS achievesit goals, this section outlines important aspects of the protocols used by the current prototype.RCDS currently uses a lightweight query-response protocol based on Sun's Open Network ComputingRemote Procedure Call technology. Either UDP datagrams or TCP streams may be used. Unlike normalRPC applications which use a separate binding protocol to associate an RPC function to a TCP or UDPport, RCDS requests are sent to a \well-known port" on the server machine, cutting the network overheadin half.There are currently �ve function calls:1. update name adds zero or more assertions and/or certi�cates to the catalog record for a URN or URL.2. update lifn adds a resource location (URL) to the list of locations associated with a LIFN.3. query name allows a client to obtain the catalog record (or portions thereof) associated with a URNor URL.4. query lifn allows a client to obtain the current list of resource locations for a particular LIFN.5. create uri allows a client to request that the server allocate a unique URN or LIFN in a particulardomain. This is used by publication tools.Although the catalog records and the locations are maintained separately, the server optimizes for thecommon case where a catalog record contains a LIFN whose locations are kept on the same server. In thiscase, the URLs associated with that LIFN are returned in the same response that contains the catalog record,space permitting.For the update calls, authentication is accomplished by the use of a secret shared by client and server.The request, along with the shared secret and a timestamp, is used to calculate a 128-bit digest using avariant of the \keyed MD5" algorithm. This digest is transmitted by the client along with the request andthe timestamp, but omitting the shared secret. The server computes the same digest using its copy of theshared secret, and compares the result it obtained with the digest included in the request. Only if the resultmatches is the client considered to be authenticated. The client must still have appropriate permissions toperform the request.Replay attacks are thwarted (while allowing for duplicated UDP datagrams) as follows: the server keepsa copy of the last request id and the last result of any update call from a particular client. If the last requestwas repeated, the server repeats the response obtained from the previous call (which consists of a singleinteger indicating success or failure), without modifying the database. The client must increase the requestid on each call; if the request id from a particular client is less than the previous request id, the request isconsidered to be a delayed duplicate and ignored.Catalog records used by the update name and query name functions are composed of assertions andcerti�cates. An assertion is essentially of the form \A states that, as of time Ta, the attribute named N ofthe resource named U had value V, and that this value is expected to be valid until time Te." A certi�cateis essentially of them form \C warrants that, as of time Tc, assertions A1; A2; :::; An" are valid. A certi�catealso contains C's cryptographic signature, computed over Tc and the contents of assertions A1; A2; :::; An.Location records associated with a LIFN (and used by the update lifn and query lifn functions)consist of a URL, a cache retention time-to-live Tr , and an expiration date Tx. The cache retention time-to-live is a contract by the �le server that supplied the binding, that it will notify the server at least Tr seconds10



locations
(URLs)

URL

file

location
servers

file
servers

resource
catalog
servers

local
sonar
server

IP addresses

proximity
estimates

Access/Retrieval Flow

p
ro

xy
 s

er
ve

r

URN or URL

description
(URC)

LIFN
(from URC)

URN
or
URL

file

(using http proxy server)

Figure 3: Accessing a �le via RCDS, using a proxy server.11



before making that �le inaccessible to clients. Clients and caches should not use that LIFN to URL bindingafter Tr has expired. 3 The expiration date is an indication that4 How RCDS Achieves its Goals4.1 Ease of DeploymentDeployment of RCDS requires no new infrastructure other than that which can be provided directly byexisting publishers. Clients, information providers, and mirror servers can each begin supporting RCDSindependently of one another, except that \o�cial" mirror servers need to obtain credentials in order to addlocation information to the resource owner's RCDS server.Clients. A user must have an RCDS aware client in order to bene�t directly fromRCDS. Such a client maybe either a web browser which has RCDS support built-in, or a web proxy which serves as an intermediarybetween the client and the rest of the Web, using RCDS whenever available. Information providers. In orderto support RCDS, an information provider must install (preferably multiple) RCDS servers, register thelocations of those servers in the Domain Name System (DNS), and update those servers when resources arechanged or new locations are added. The RCDS and DNS servers are freely available. The publisher mustalso arrange to update the RCDS servers when a resource is changed. Mirror servers. Many resources todayare replicated, or mirrored, from their original server. RCDS clients can �nd such replicas automatically ifthe original server supports RCDS, and the mirror server updates the appropriate RCDS server whenever itcreates or deletes a replica. We have modi�ed some commonly-used mirroring tools to perform this function,and we are developing a new high-performance replication tool. Mirror servers do need permission (andauthentication credentials) to add their locations to an RCDS server.4.2 Reliability and Fault-toleranceReliability is achieved by robust construction of the components and by allowing redundancy at every step.Multiple DNS servers may exist for a particular domain, multiple RCDS servers for any portion of URI-space may be registered in DNS, and RCDS servers may list multiple locations for a particular resource.Fault-tolerance is achieved by having clients attempt to reach multiple servers before declaring failure.4.3 E�cient use of the networkRCDS promotes e�cient use of the network by providing a lightweight protocol for queries and updates.In most cases, the resolution process is expected to cost one extra long-distance round-trip (to an RCDSserver), and one extra local round-trip (to a SONAR server), as compared to the name-to-address lookupfor a URL. The bene�t is that the client can then choose to access the resource from a nearby server (ratherthan the one explicitly listed in a URL); the client can also avoid fetching the resource at all if it can tell bythe catalog record that it is not needed, or (using the LIFN as a cache validator) that a locally-cached copyexists. Finally, because RCDS allows listing of multiple URLs for a resource, it allows the client to choosenot only a nearby server, but also the best access protocol that it supports. RCDS thus provides a means totransition from ftp and http to more e�cient protocols; for instance, streaming protocols for real-time audioand video, or multicast-based protocols for information which is transmitted simultaneously to many users.4.4 SecurityRCDS servers are associated (via the URI resolution process) with a particular subset of URI-space; itis assumed that the o�cial RCDS servers for a resource are maintained or authorized by the owner ofthat resource. The owner or an authorized party must therefore provide permission and authentication3Note that Tr for a LIFN to URL binding is no indication of the expected lifetime of the resource itself, and is only a lowerbound of the expected time during which the resource is expected to be available at that location.12



credentials to a party before it can add assertions, certi�cates, or locations to an RCDS database. Thisprovides a mechanism to ensure that only authorized catalog information or replicas are listed in the o�cialservers. Nothing prevents an unauthorized third party from establishing its own RCDS servers, but (barringattack of the resolution system) those servers must be explicitly con�gured by the user { they will not befound by a normal URI resolution process.The authentication required to update an RCDS server does not ensure the authenticity or integrityof a resource listed by that server; it is intended only to provide some protection against denial-of-serviceattacks. RCDS provides end-to-end authenticity and integrity assurance for ordinary �les through the useof message digests such as SHA or MD5, and public-key signatures for assertions that a particular messagedigest represents a particular version of a �le.Public keys are of limited utility without a means of key certi�cation. It may be possible to use RCDSto as a repository for key certi�cates { signed assertions from a well-known party that a particular publickey is associated with a particular RCDS asserter or certi�er. The di�culty is not with RCDS itself, but in�nding a trusted certi�cate authority (or chain of intermediaries) that can verify the asserter's public key.While there appears to be no general solution to this problem (i.e. no single certi�cate hierarchy) that canbe trusted for every authentication need, it is often possible to establish a hierarchy or \web of trust" forspeci�c purposes.4.5 FlexibilityRCDS provides 
exibility by having few wired-in assumptions about the structure of catalog information.No particular data model is assumed, and any party can (subject to permissions) potentially add any kind ofassertion. Catalog information stored in an RCDS server is currently assumed to be \
at" lists of (attribute,value) pairs. Clients can retrieve portions of the catalog information for a resource by the attribute's fullname or by the pre�x of a name.Likewise, RCDS catalog servers know nothing about particular message digest algorithms or signaturealgorithms. This allows RCDS to work with multiple existing public-key authentication methods, multiplesignature formats, and a variety of key certi�cate formats. Experience with several other protocols (X.400,X.500, MIME) indicates that it is di�cult to retro-�t security into a protocol after it is deployed, especiallyif there are multiple ways in which a protocol element may be represented. RCDS therefore supports cryp-tographic authentication without specifying any particular algorithm for signing certi�cates. In particular,it does not specify the representation of a set of assertions before signing. Such representation is bound tothe signature algorithm identi�er. In general, RCDS catalog servers do not interpret assertions or certi�cates.They merely serve as repositories at which they can be stored and retrieved.4.6 ScalabilityScalability is provided by allowing multiple instances of any particular server (to distribute the load), andby minimizing the overhead necessary to propagate updates between RCDS servers. In particular, thereis no requirement that all RCDS servers for a particular portion of LIFN-space contain the same set oflocations, so long as a client can query multiple RCDS servers until it �nds an accessible location for thedesired resource. Location updates can thus be submitted to any location server associated with the LIFN'sdomain, and propagated to the others without needing a commit protocol. Similarly, updates to catalogrecords can be submitted to any catalog server for the URN's domain, though the asserter must �rst updatethat catalog server if it has stale data. In e�ect, updates to catalog records use a token-based algorithm,with the asserter obtaining the token and any accompanying updates before applying the new update.Scalability of RCDS is also enhanced by limiting its scope (for instance, it does not do searching) andallowing it to be optimized for a small number of simple functions.13



5 Current ImplementationWe have implemented the catalog and location server in a single piece of software called rc server. The serverreplicates its database using a simple replica updating scheme based on journal �les. A more sophisticatedreplication scheme is needed. The catalog servers currently use shared secrets for symmetric authenticationof udpates; public key authentication would be better.We have modi�ed the popular ftp-mirror replication tool to update a RCDS location server when a�le is mirrored. We are developing a high-performance bulk �le transfer tool called blitzfer which usesmultiplexing and compression and supports checkpoint and restart.We have written a publication tool that extracts a resource description from the results of �lling out anHTML form, signs the description with RSA, and uploads the resource �les to a designated �le server.We have implemented an HTTP proxy server that acts as a RCDS client. We have modi�ed an olderversion of Mosaic to understand RCDS. We will modify the new redesigned Mosaic to be an RCDS clientas soon as it becomes available. We are also looking at the possibility of an Active X plug-in for use withMicrosoft Explorer.Our initial implementation of SONAR sends ICMP echo requests to each of the addresses for which aproximity measure is desired, and uses the time between when the request is sent, and when an ICMP echoreply is received, as its metric for evaluating relative proximity. Round-trip-time estimates obtained usingICMP are cached for a certain amount of time (currently several hours) so that subsequent SONAR querieswithin that time do not result in generation of additional ICMP requests. Any ICMP \unreachable" repliesare also noted, though these are cached for a smaller amount of time. We are investigating alternativealgorithms for measuring proximity that place less load on the network.A testbed for RCDS has been established at �ve geographically dispersed US sites (University of Ten-nessee, Syracuse, Rice, CalTech, and Argonne). This testbed serves as a platform to stress-test RCDSimplementations and to provide a demonstration of RCDS technology. The RCDS testbed servers are beingused to keep track of widely-mirrored network resources, including the Linux operating system and relatedsoftware, the Internet RFC and Internet-Drafts repositories, the netlib software repository, and others. Thisprovides a means to test the use of RCDS with resources that have large numbers of replicas.6 Related WorkThe Harvest caching architecture, in which individual caches can be interconnected hierarchically to mirroran internetwork's topology, is described in [5]. There is an e�ort underway, headed by Hans-Werner Braunand Kim Cla�y at the San Diego Supercomputer Center, to put Harvest caches into place at high-levelparts of the U.S. research and educational networking infrastructure, for the purpose of reducing backbonenetwork tra�c [8].Server-based replication of objects is argued for in [2] and [6]. Both papers argue that network tra�cand server load could be reduced considerably by having servers disseminate their most popular documentson servers closer to clients. Both also point out the need for integration of producer-based disseminationand consumer-based caching of documents, with caching being the most e�ective way to reduce latency.Furthermore, both papers point out the need for naming conventions and name resolution protocols thatprovide location and replication transparency.The use of a wide-area �le system for storing and retrieving WWW documents is proposed in [10]. Wide-area �le system features of location transparency, access control lists, authentication, client caching, datareplication, and �le migration are suggested for improving performance, decreasing server and network load,and increasing security. Based on their analyses of WWW client and server traces, the authors recommendthe use of predictive document repositories rather than reactive document caches.The Internet Engineering Task Force (IETF) has formed a working group to standardize formats forUniform Resource Names (URNs) [9] and protocols for URN resolution.14



7 Future WorkA subject for future work is extending the use LIFNs to name services in addition to �les. An interestingexample of a network service is the NetSolve system which accepts linear algebra problem descriptions fromusers, computes a solution, and returns the results to the user [4]. Not all NetSolve computational serverssolve all problems in all precisions. The computational servers also have di�erent machine architectures andperformance characteristics. Ideally one would like to be able to determine, for a given problem and inputcharacterization, a equivalence relation on the set of available computational servers, where the servers ina given equivalence class provide identical results for the given problem. The idea would be to name eachequivalence class with a LIFN and to resolve each LIFN to the set of locations for the servers. Computationalservers could then dynamically add and remove themselves to and from a given equivalence class by contactingan RCDS location server.Other planned work involves use of RCDS to distribute Usenet discussion groups. Such a RCDS-netnewshybrid would allow formation of \private" newsgroups, would not require each newsgroup to be replicatedonto each server, would have more robust propagation than Usenet's 
ooding algorithm, and would allowseamless integration of local stores of recent articles, with \archives" of older ones, even on di�erent servers,with the user viewing them as a single collection.A \program builder" client is planned which will allow automatic building of software packages on variousplatforms. A description of the software package, consisting of a bill of materials and assembly instructions,will be stored in an RCDS-accessible �le. The components of the package will be named with LIFNs and theirdescriptions (along with that of the package itself) will be cryptographically signed. The \program builder"will thus be able to fetch all components of a particular package, verify their authenticity and integrity,compile them and assemble them according to the instructions. This is intended to facilitate greater sharingof software packages by making it easier to construct large programs out of components from many di�erentsources.We plan to investigate an RCDS/Harvest Cache hybrid by modifying the Harvest Cache system to useRCDS servers. The hybrid system would combine the performance bene�ts of server-side (\push") replicationwith those obtained from client-side (\pull") replication.References[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in DatabaseSystems. Addison-Wesley, 1987.[2] A. Bestavros. Demand-based document dissemination for the World-Wide Web. Technical ReportTR-95-003, Computer Science Department, Boston University, Feb. 1995. Available as ftp://cs-ftp.bu.edu/techreports/95-003-web-server-dissemination.ps.Z.[3] C. M. Bowman, P. B. Danzig, U. Manber, and M. F. Schwartz. Scalable Internet resource discovery:Research problems and approaches. Commun. ACM, 37(8):98{107, Aug. 1994.[4] H. Casanova and J. Dongarra. Netsolve: A network server for solving computational science problems.In Supercomputing '96, Pittsburgh, PA, Nov. 1996.[5] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell. A hierarchicalInternet object cache. Technical Report 95-611, Computer Science Department, University of SouthernCalifornia, Mar. 1995.[6] J. Gertzman and M. Seltzer. The case for geographical push-caching. In HotOS Conference, 1994.Available as ftp://das-ftp.harvard.edu/techreports/tr-34-94.ps.gz.[7] M. McCahill, J. Romkey, M. Schwartz, K. Sollins, T. Verschuren, and C. Wieder. Report of the IABworkshop on Internet Information Infrastructure. Internet Request For Comments, 1862, Nov. 1995.15



[8] M. Schwartz. Harvest project status and directions. Available athttp://harvest.cs.colorado.edu/harvest/projstatus.html, Dec. 1995.[9] K. Sollins and L. Masinter. Functional requirements for uniform resource names. Internet RFC 1737,Dec. 1994.[10] M. Spasojevic, C. M. Bowman, and A. Spector. Using wide-area �le systems within the world-wide web. In Second International WWW Conference, Chicago, Illinois, Oct. 1994. Available ashttp://www.transarc.com/afs/transarc.com/public/trg/papers/www94/index.html.

16


