
Tiling with limited resources�Pierre-Yves Calland1, Jack Dongarra2;3 and Yves Robert21 LIP, Ecole Normale Sup�erieure de Lyon, 69364 Lyon Cedex 07, France2 Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301, USA3 Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USAe-mail: pycallan@lip.ens-lyon.fre-mail: [dongarra, yrobert]@cs.utk.eduFebruary 1997
AbstractIn the framework of perfect loop nests with uniform dependences, tiling has been extensivelystudied as a source-to-source program transformation. Little work has been devoted to themapping and scheduling of the tiles on to physical processors. We present several new resultsin the context of limited computational resources, and assuming communication-computationoverlap. In particular, under some reasonable assumptions, we derive the optimal mapping andscheduling of tiles to physical processors.Key-words: tiling, communication-computation overlap, mapping, limited re-sources.

�This work was supported in part by the National Science Foundation Grant No. ASC-9005933; by the Defense Ad-vanced Research Projects Agency under contract DAAH04-95-1-0077, administered by the Army Research O�ce; bythe O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract DE-AC05-84OR21400; by the NationalScience Foundation Science and Technology Center Cooperative Agreement No. CCR-8809615; by the CNRS{ENSLyon{INRIA project ReMaP; and by the Eureka Project EuroTOPS. Yves Robert is on leave from Ecole NormaleSup�erieure de Lyon and is partly supported by DRET/DGA under contract ERE 96-1104/A000/DRET/DS/SR.Pierre-Yves Calland is supported by a grant from R�egion Rhône-Alpes.1

1 IntroductionTiling is a widely used technique to increase the granularity of computations and the locality ofdata references. This technique is restricted to perfect loop nests with uniform dependences, whichwe de�ne as in Banerjee [3]. The basic idea is to group elemental computation points into tiles thatwill be viewed as computational units. The larger the tiles, the more e�cient the computationsare performed using state-of-the-art processors with pipelined arithmetic units and a multi-levelmemory hierarchy (this is illustrated by recasting numerical linear algebra algorithms in termsof blocked Level 3 BLAS kernels [7, 6]). Also, another advantage of tiling is the decrease of thecommunication time (which is proportional to the surface of the tile) relatively to the computationtime (which is proportional to the volume of the tile). The price to pay for tiling may be anincreased latency (if there are data dependences, say, we need to wait for the �rst processor tocomplete the whole execution of the �rst tile before another processor can start the execution ofthe second one, and so on), as well as some load-imbalance problems (the larger the tile, the moredi�cult to distribute computations equally among the processors).Tiling has been studied by several authors and in di�erent contexts. A short review of theexisting literature is provided in the extended version of this paper [5]. Basically, most of the workamounts to partitioning the computation domain of a uniform loop nest into tiles whose shape andsize are optimized according to some criteria. Little attention has been paid to distributing thetiles to physical processors and to computing the �nal scheduling. For example, if each physicalprocessor is assigned several tiles, what should be the computation ordering of these tiles? Anin-depth study has been presented by Ohta et al [10], who have extended results of Hiranandani etal. [8] on �ne grain pipelining for DOACROSS loops. We survey their work in Section 3.In this paper, we build upon the work of Ohta et al [10]. We reformulate the problem of tilingwith limited resources using more realistic assumptions on data dependences and communication-computation overlap than those used in [10]. We also derive an optimal mapping to assign tilesto physical processors. All these results are presented in Sections 4 and 5. Finally, we state someconclusions in Section 6.2 Tiling as a loop transformation techniqueWhen targeting a data-parallel or SPMD style of programming, classical constraints in the literatureto de�ne tiles are the following:Tiles are bounded For scalability reasons, we want the number of points inside a tile to bebounded by a constant independent of the domain size.Tiles are identical by translation This constraint is imposed to allow for automatic code gen-eration: a tile must be the image by a translation of any other one unless it crosses thecomputation domain boundaries.Tiles are \atomic" Each tile is a unit of computation: all synchronization points are beginningsand ends of tiles. The order on tiles must be compatible with the order on nodes: one mustthus avoid that two distinct tiles depend upon each other.As already said, tiling is restricted to perfectly nested loops with uniform dependences, such asthe following simple example:for i = 0 to N1 do 2

for j = 0 to N2 doa(i; j) = a(i� 3; j) + a(i; j � 2)b(i; j) = a(i� 2; j � 3) + b(i� 2; j � 1)enddoenddoThis loop nest has depth 2. The dependences are uniform (intuitively, dependence vectors aretranslations), and they can be encapsulated into the dependence matrixD = � 0 3 2 22 0 3 1 � :The atomicity constraint can be expressed by the analytical condition HD � 0, where H is thematrix of vectors normal to the edges (or the edges in two-dimensional problems) of the tile [9].In Figure 1, we sketch a valid tiling for our example. The matrix H is the one derived using thescalable communication-to-computation criteria of Boulet et al. [4]:H = 116 � 0 1312 0 � :We check that HD � 0. Note that the volume of the tile, which represents the number of com-putations per tile, is given by the determinant of H�1: Vcomp = det(H�1) = 96. The number ofcommunications is the following: each tile sends� 24 data items to its right neighbor,� 34 data items to its lower neighbor,� and 6 data items to its lower-right neighbor.Note that the third message (the diagonal communication) may be routed horizontally and thenvertically, or the other way round, and even may be combined with any of the �rst two messages.

j

i

Figure 1: Optimal tiling for a computation volume Vcomp = 96.It is important to point out that the dependences between tiles are summarized by the vectorpair f� 10 � ;� 01 �g:3

In other words, the computation of a tile cannot be started before both its left and upper neighbortiles have been executed.As stated above, the atomicity constraint implies that inter-processor communications onlytake place at the end of the processing of each tile. Note that current architectures do allow forcommunications and computations to overlap, and it is important to point out that the atomicityconstraint does not prevent a given processor from simultaneously communicating boundary dataof one tile (whose execution it just completed) and starting the computation of another tile. Also,minimizing communication start-up overheads is a \sine-qua-non" condition towards achievinggood performance. Even though sophisticated routing strategies are designed and implemented inhardware, communication start-up costs remain very expensive as opposed to the elemental time forcommunicating one data item (and even worse for performing a computation). Frequent exchangesof short messages should therefore be replaced by fewer sends and receives of longer messages. Tosummarize, in the context of distributed memory architectures, tiling is a technique that permitsto optimize communications while increasing the granularity of computations.3 Tiling with resource constraintsOhta et al. [10] aim at determining the best tile size under the following hypotheses:(H1) There are P available processors interconnected as a ring.(H2) The computation domain is a two-dimensional rectangle of size N1 �N2.(H3) Tiles are rectangular and their edges are parallel to the axes (see Figure 2). The size of atile is n1 � n2, where n1 and n2 are unknowns.(H4) Dependences between tiles are summarized by the vector pair f� 10 � ;� 01 �g (as in theexample of Section 2).(H5) Tiles are assigned to processor using a one-dimensional cyclic distribution: in other words,tile (i; j) is allocated to processor j mod P .(H6) The scheduling of the tiles is column-wise: at step 0, processor P0 executes tile (0; 0) and thecomputed value is communicated to the adjacent processor P1 (more precisely, a rectangularslice of width w and height n2 is sent). At step 1, processors P0 and P1 execute tiles (0; 1)and (1; 0) simultaneously. After having executed a whole column of tiles, a processor moveson to its next column.A step is the time required to compute a tile and to communicate data. Ohta et al. [10] use thefollowing expression: Ttile = Tcomp + Tcomm = n1n2t+ (a+ bn2)where t is the elemental computation time, a is a communication start-up and b is the inverse of thecommunication bandwidth times the width w of the slice being communicated (the communicationcost is a linear expression in the message size).To compute the total execution time, Ohta et al. [10] use the formula (Ml +Mp)Ttile, whereMl = P � 1 is the latency (the step at which the last processor begins to work) and Mp = N1�N2P�n1�n24

P20
P P1

(0,0) (1,0)

(0,1)

Figure 2: Mapping rectangular tiles onto a ring of processors.is the number of tiles per processor (assumed to be an integer). Using the approximation Ml = P ,they derive the total execution time T asT = (P + N1N2Pn1n2)(n1n2t+ a+ bn2):The execution time is found to be minimal when choosing n1 = N1P and n2 =qN2aN1t .The objective of this paper is to discuss the hypotheses (H1) to (H6) of Ohta et al., and toreformulate their results using a more accurate modeling of current architectures. Indeed, theirstudy is conducted while assuming that processors cannot simultaneously communicate borderingdata items of the last tile and perform computations for the next tile. However, overlappingcomputations and communications is a facility provided by all distributed memory computers, sowe relax this restriction. This simple modi�cation has a tremendous e�ect on the determination ofthe best tile size.4 Allowing for communication-computation overlap4.1 On the modelHypotheses (H2), (H3) and (H4) may appear very restricting. However, we point out the followingjusti�cations:Tile shape We assume that the tiles are rectangular. This is to be understood as the outcome ofprevious program transformations. The �rst step in tiling amounts to determining the bestshape and size of the tiles, assuming an in�nite grid of virtual processors. Because this stepwill lead to tiles whose edges are parallel to extremal dependence vectors in the convex hull ofthe dependence cone, we can perform a unimodular transformation and rewrite the originalloop nest along the edge axes. The resulting domain may not be a rectangular, but we canapproximate it using the smallest bounding box (however, this approximation may impactthe accuracy of our results).Dependence vectors We assume that dependences are summarized by the vector pair V =f� 10 � ;� 01 �g. Note that these are dependences between tiles, not between elementary5

computations. In the example of Section 2, we had 4 dependence vectors in the original loopnest, but we ended up with V after tiling. This is a very general situation if the tiles are largeenough. For instance, having a dependence vector (0; a) with a � 2 between tiles, instead ofhaving vector (0; 1), would mean unusually long dependences in the loop nest (in the exampleof Section 2, a(i; j) would depend upon a(i; j� 8) but not on a(i; j�x) for x � 7). Note thathaving (0; a) in addition to (0; 1) as a dependence vector between tiles is simply redundant.On the other hand, hypotheses (H5) and (H6) are unnecessarily restrictive, because the mappingand scheduling of the tiles should be an output decision of the procedure of tiling with limitedresources, rather than being given a priori. We overcome this restriction in Section 5.4.2 Revisiting the results of Ohta et al.The total execution time is given by the following proposition:Proposition 1 Under the hypotheses (H1) to (H6) of Section 3, and allowing for communication-computation overlap, the total computation time T is (assuming all fractions to be integer):T = � T1 = (P � 1)(n1n2t+ a+ bn2) + N1N2P t if N2n1t � P (n1n2t+ a+ bn2)T2 = (N1n1 � 1)(n1n2t+ a+ bn2) +N2n1t otherwise (1)Proof According to hypothesis (H4), the computation goes column-wise. When a processor hascompleted the execution of a whole column of tiles, it starts the next column that has been assignedto it. The time to process a whole column of tiles is the number of tiles in the column, namely N2n2 ,times the time to compute a tile, namely Tcomp = n1n2t. We obtain the value N2n1t for processinga whole tile column.Now, according to hypothesis (H5), tile columns are distributed cyclically to processors. If aprocessor starts the execution of the �rst tile in a given column at time-step t, its right neighborcannot start the execution of the �rst tile in the next column before time-step t + Ttile, whereTtile = Tcomp + Tcomm = n1n2t + (a + bn2) (this is due to the dependence vector � 10 �). Notethat Ttile is the same as in Section 3, but we pay a communication cost only when the processorsowning the tiles are not the same. Two cases can occur:� Either there are enough tiles in each column so that when a processor has completed theexecution of a whole tile column, it does not have to wait for its next tile column to beready. This will happen if N2n2 Tcomp = N2n1t is greater than or equal to the delay imposed byhorizontal constraints, i.e. if N2n2 Tcomp � P Ttile:If this condition holds, all processors remain active throughout the entire computation, oncethey have started execution. Since the last processor starts at time (P � 1)Ttile and hasN1N2Pn1n2 tiles to execute (each in time Tcomp = n1n2t), we obtain T1, the �rst expression inEquation (1). See Figure 3 where Tcomp = Tcomm = 1, and P = 3. There are N2n2 = 8 tiles percolumn, and PTtile = 6, hence the condition is satis�ed.� Or each processor has to wait upon �nishing a tile column until the next one is ready. Thistranslates into the condition N2n2 Tcomp � PTtile. In that case, the total computation time is6

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

2

3

4

5

6

7

8

9

8

9

10

11

12

13

14

15

0
P 1P 2P 0

P

i

jFigure 3: Scheduling tiles with Tcomp = 1, Tcomm = 1 and P = 3.
0

1

2

3

4

5

6

7

0
P 1P 2P 0

P

3

4
5

6

7

8

9

6

7

8

9

10

11

12

13

9

10

11

12

13

14

15

1610

i

jFigure 4: Scheduling tiles with Tcomp = 1, Tcomm = 2 and P = 3.equal to the time at which the last processor starts the execution of the �rst tile in the lastcolumn, namely (N1n1 � 1)Ttile plus the time needed to process this column. We obtain theexpression (N1n1 � 1)Ttile + N2n2 Tcomp, as stated in the second formula of Equation (1). SeeFigure 4 where Tcomp = 1, Tcomm = 2, and P = 3. There are N2n2 = 8 tiles per column, andPTtile = 9, hence N2n2 Tcomp � PTtile. Processors remain idle at the end of each tile column,waiting for their next column to be ready.The optimal number of processors that should be used so as to minimize the total executiontime is given by the following proposition:Corollary 1 Under the hypotheses (H2) to (H6) of Section 3, and allowing for communication-computation overlap, letP� =r N1N2tn1n2t+ a+ bn2 and P� = N2n1tn1n2t+ a+ bn27

The number of processors P that minimizes the total execution time is given by:� if P� � 1 or P� � 1 � P�, then P = 1,� if 1 � P� � P� then P = P�,� if 1 � P� � P� then P = P�.Proof The \steady-state" condition N2n1t � P (n1n2t+a+bn2) in Equation (1) can be rewrittenas P � P�:Consider T1 = (P �1)(n1n2t+a+ bn2)+ N1N2P t (see Equation (1)). The minimum of T1 is obtainedfor P = P�. The expression of T1 shows that is a non-increasing function of P when P � P�, andthen a non-decreasing function of P when P � P�. Also, note that T2 does not depend on P (exceptthan through the condition P � P�). Then the result follows according to a simple case analysis.For large domains, we will have 1 � P� � P�, and it is no surprise that the optimal numberof processors is the one required to ensure steady-state execution: Equation (1) in Proposition 1states that all processors remain active once started ifN2n1t � P (n1n2t+ a+ bn2):So far, we have assumed that n1 and n2 were input parameters, because the size and shape ofthe tiles may be imposed by some a priori considerations (such as the cache size). We can try todetermine the values of n1 and n2 in the range 1 � n1 � N1, 1 � n2 � N2 that would minimize thetotal execution time. We rewrite the steady-state equation by introducing the following functionf : n2 � f(n1) = N2n1t� PaP (n1t+ b) (2)Corollary 2 Under the hypotheses (H1) to (H6) of Section 3, and allowing for communication-computation overlap, the total execution time is minimum for� n1 =qN1(a+b)(N2�1)t and n2 = 1 if f(N1P) � 1� n1 = P (a+b)t(N2�P) and n2 = 1 otherwise.Proof We break down the problem into two subcases depending on the values taken by thefunction f , whose argument n1 ranges from 1 to N1P ;� 8n1; f(n1) � 1. Since f is a nondecreasing function of n1, this condition is equivalent tof(N1P) � 1. In this case, Equation (2) is always satis�ed (n2 � 1). Then the minimum of Tis obtained by minimizing T2 with n2 = 1, namelyT = (N1n1 � 1)(n1t+ a+ b) +N2n1tThis easily leads to n1 =qN1(a+b)(N2�1)t , as stated in the theorem8

� 9n1; f(n1) � 1. Since f is a nondecreasing function of n1, we can safely take n01 be such thatf(n01) = 1. Note that all values of n1 � n01 will lead to admissible values for n2, because wealways have f(n1) � N2P by de�nition of f . Now consider the expression of T for arbitrary n1and n2:{ if n2 � f(n1), then T = T1, T is a non-increasing function of both n1 and n2 decreases,then the minimum is obtained with n2 = 1 and n1 = n01.{ if n2 � f(n1) then T = T2 and is a non-increasing function of n2. Then the minimumof T is reached if n2 = f(n1). In that case T2 = T1, and again the minimum is reachedwhen n2 = 1 and n1 = n01.This result is disappointing in that we end up with degenerate tiles in most practical situations.For instance if P � N2 (which is very likely to happen in practice), f(1) � 1, and the optimal tilesize is n1 = n2 = 1, not a very coarse-grain tiling indeed! For other values of the problem parameterswe would have an optimal tile size that depends upon the domain size, thereby contradicting theassumption that tiles are bounded (Section 2). Note that Ohta et al [10] also have this problemin their original model. The
aw is that the model is not accurate enough to take the impact ofdata locality and data reuse into account (which are the main objectives of tiling, and the mainmotivation for designing blocked linear algebra algorithms [7]). A �rst solution is to model thecomputation cost of a tile by an a�ne expression like Tcomp = n1n2t+ u, where u represents someaccess overhead. It is not di�cult to plug this expression into the formula given for the totalexecution time T , and to derive the optimal tile size. Another solution is to assume a �xed tile sizethat would be imposed by some a priori considerations (such as the cache size). Again, we can letn1n2 = S in Equation (1), and minimize T for n1, say.4.3 Generalizing the modelAssuming communication-computation overlap seems a reasonable hypothesis for current machineswhich have communication coprocessors and allow for asynchronous communications (posting in-structions ahead, or using active messages). We can think of independent computations goingalong a thread while communication is initiated and performed by another thread. As writtenin Pacheco [11, p. 268], \if we have communication coprocessors (and smart compilers) ... theactual running time [for performing k computations and sending/receiving a message of length m]... might be maxfts +mtc; ktag" (with our notations, ta = t, ts = a and tc = b=w).A very interesting approach has been proposed by Andonov and Rajopadhye [2]: they introducethe tile period Pt as the time elapsed between corresponding instructions of two successive tiles thatare mapped to the same processor, while they de�ne the tile latency Lt to be the time betweencorresponding instructions of two successive tiles that are mapped to di�erent processors. Withthese notations, the parallel execution time becomes [2]T = 8<: T1 = (P � 1)Lt + N1n1 N2n2 1P Pt if N2n2 Pt � PLtT2 = (N1n1 � 1)Lt + N2n2 Pt otherwise (3)The power of this approach is that the expressions for Lt and Pt can be modi�ed to takeinto account several architectural models, while Equation (3) still remains valid. A very detailedarchitectural model is presented in [2], and several other models are explored in [1].9

With our notations, Pt = Tcomp and Lt = Tcomp + Tcomm. We can rewrite Equation (1) asT = 8<: T1 = (P � 1)(Tcomp + Tcomm) + N1n1 N2n2 1P Tcomp if N2n2 Tcomp � P (Tcomp + Tcomm)T2 = (N1n1 � 1)(Tcomp + Tcomm) + N2n2 Tcomp otherwise (4)Equation (3), or its variant Equation (4), is the key to our tiling problem, because it expressesthe parallel execution time as a function of the domain size, of the number of processors, and ofthe tile parameters Pt and Lt, or equivalently Tcomp and Tcomm.5 Optimal mapping and schedulingHypotheses (H5) and (H6) are very restrictive in that they impose the mapping of tiles to processorsas well as their scheduling. The intuitive motivation for (H5) is that a cyclic distribution oftiles is quite natural to load-balance computations. Once the distribution of tiles to processors is�xed, there are several possible schedulings (any wavefront execution that goes along a left-to-rightdiagonal is valid). Specifying a column-wise execution may lead to the simplest code generation.It turns out that (H5) and (H6) provide the best solution among all possible distributions oftiles to processors, which is a very strong result. This result holds true under the assumption thatthe communication cost for a tile is not larger than its computation cost. Since the communicationcost for a tile grows linearly with its size, while the computation costs grows quadratically, thishypothesis will be satis�ed if the tile is large enough1. This result is formally stated in the theorembelow. Beforehand, we need to re�ne the communication cost as follows:� Tcomm horiz = a + bn2 is the cost of communicating data from (the processor owning) tile(i; j) to (the processor owning) its right neighbor tile (i+ 1; j),� Tcomm vert = a0 + b0n1 is the cost of communicating data from (the processor owning) tile(i; j) to (the processor owning) its bottom neighbor tile (i; j + 1).We pay a communication cost only when the two processors that own the neighboring tiles arenot the same. So far we never paid any cost for vertical communications, and we always did forhorizontal communications, because of hypothesis (H5). We had to re�ne the communication costbecause in this section, we do not make any assumption on the mapping of tiles to processors.Depending upon the values of Tcomm horiz and Tcomm vert, the best mapping will be column-wiseor row-wise:Theorem 1 Under the hypotheses (H2) to (H4) of Section 3, and allowing for communication-computation overlap, let n1 and n2 be chosen so thatmaxfTcomm horiz; Tcomm vertg = maxfa+ bn2; a0 + b0n1g � Tcomp = n1n2t:1. If Tcomm horiz � Tcomm vert, assume that the steady state equation holds: N2n1t � P (n1n2t+a+ bn2). Then the absolute minimum for the total execution time isT1 = (P � 1)(Tcomp + Tcomm horiz) + N1N2P tand it is achieved by mapping and scheduling tiles according to hypotheses (H5) and (H6),1Of course, we can imagine theoretical situations where the communication cost is so large that a sequentialexecution would lead to the best result. 10

2. If Tcomm vert � Tcomm horiz, assume that the steady state equation holds: N1n2t � P (n1n2t+a0 + b0n1). Then the absolute minimum for the total execution time isT 01 = (P � 1)(Tcomp + Tcomm vert) + N1N2P tand it is achieved by mapping rows of tiles using a one-dimensional cyclic distribution (tile(i; j) is allocated to processor i mod P), and by scheduling the tiles row-wise.Proof Without loss of generality, assume that Tcomm vert � Tcomm horiz (the result is symmetricin the rows and columns), and let Tcomm = Tcomm vert. We begin the proof with the followingpreliminary result, where � denotes any valid scheduling of the tiles (�(I) is the time-step at whichthe execution of I begins):Lemma 1 Let I = (i; j) be a tile index, and let I 0 = (i + 1; j) and I 00 = (i; j + 1) be its successortiles. We have maxf�(I 00)� �(I); �(I 0)� �(I)g � Tcomm + Tcomp:Proof Let proc(I) be the processor that executes tile I. We have three cases to consider, depend-ing upon whether proc(I) also executes both successors I 0 and I 00, or exactly one of them, or noneof them:both successors: proc(I) = proc(I 0) = proc(I 00)The same processor executes both successors. They are executed sequentially and the lastone being executed cannot begin execution before time-step �(I)+2Tcomp. As Tcomm � Tcompthe result is proven.one successor: proc(I) = proc(I 0) and proc(I) 6= proc(I 00)(respectively proc(I) = proc(I 00) and proc(I) 6= proc(I 0)). A communication is needed be-tween I and I 00 (respectively I and I 0), hence �(I 00) � �(I) � Tcomm + Tcomp (respectively�(I 0)� �(I) � Tcomm + Tcomp)no successor: proc(I) 6= proc(I 0) and proc(I) 6= proc(I 00)This case is similar to the previous one.Back to the proof of the theorem, let T== the total execution time using P processors. Let Idlebe the cumulated idle time of all processors during execution. Finally, let Tseq = N1N2t be thesequential execution time. Clearly, PT== = Idle+ Tseq:Hence, to show that T== � T1 = (P � 1)(Tcomp + Tcomm) + TseqP , we need to show thatIdle � P (P � 1)(Tcomp + Tcomm):The structure of the dependence graph does impose that some processors are idle at the be-ginning of the computation, which will lead to a lower bound for Idle. For instance, during theexecution of tile (0; 0), there are necessarily P � 1 idle processors. To go on, we recursively de�nepivot tile(k) as follows (see Figure 5):� pivot tile(0) = (0; 0), and 11

� for k � 1, pivot tile(k) is the one of the two successors of pivot tile(k � 1) which is executedlast: if pivot tile(k� 1) = I = (i; j), let I 0 = (i+1; j) and I 00 = (i; j +1) be the successors oftile I:{ If �(I 0) � �(I 00), then pivot tile(k) = I 0, and we de�ne S(k) as the remaining tiles incolumn j: S(k) = f(i; j + l); l � 1g),{ If �(I 00) � �(I 0), then pivot tile(k) = I 00, and we de�ne S(k) as the remaining tiles inrow i: S(k) = f(i+ l; j); l � 1g,We know from Lemma 1 that for all k � 1,�(pivot tile(k)) � �(pivot tile(k � 1)) � Tcomm + Tcomp:We prove by induction that for 1 � k � P � 1, at least P � k processors are kept idle betweenthe beginning of the execution of pivot tile(k � 1) and that of pivot tile(k). This will lead to:Idle � ((P � 1) + (P � 2) + : : :+ 1)(Tcomm + Tcomp) = P (P � 1)2 (Tcomm + Tcomp):This will prove the desired result, because the same amount of idleness, so to speak, will be spentat the end of the computation (by symmetry of the dependence graph). Now, for the induction:� Let k = 1: pivot tile(1) is either (0; 1) or (1; 0). See Figure 5 where pivot tile(1) = (1; 0) andS(1) = f(0; 0+ l); l � 1g. Between the the beginning of the execution of pivot tile(0) and thatof pivot tile(1), the only successors of pivot tile(0) that can be executed are in S(1). But alltasks in S(1) must be executed sequentially, hence between the beginning of the execution ofpivot tile(0) and that of pivot tile(1), at least (P � 1) processors are kept idle.� Assume that the hypothesis is true until step k. Between the beginning of the execution ofpivot tile(k) and that of pivot tile(k + 1), at most one processor can be active in S(1), atmost another one in S(2), : : :, and at most one processor in S(k + 1), so that at most k + 1processors can be active, or equivalently, at least P � (k + 1) processors remain idle.It is worth to point out that Theorem 1 holds true in a large framework. Whatever the modelused for estimating the communication time Tcomm and the computation time Tcomp, the parallelexecution time for a columnwise allocation of tiles to processors is given by Equation (4). Theorem 1basically says that such a columnwise or rowwise allocation will be optimal as soon as1. Tcomm � Tcomp2. Steady-state condition: the weight of a tile column (or tile row) is greater that the tile latencyLt = P (Tcomm + Tcomp)The �rst hypothesis will be ful�lled if the tile is large enough (because the communication costgrows linearly while the computation cost grows quadratically). The second hypothesis will beful�lled as soon as the domain is large enough in front of the number of processors, a situation verylikely to happen in practice. 12

0
p

1
p

2
p

3
p9

...
...

S
1

...
...

S
3

...... S
20

2

3 5

6

8

j

i

Figure 5: A schedule when Tcomm = 1 and Tcomp = 2. Pivot tiles are labeled, and sets S(k) areframed.Finally, note that when the steady-state condition is not satis�ed, we can still derive similarresults. For instance assume a square N�N tiled iteration space (N tiles per row and per column).Let Tcomp be the computation time for a tile, and let Tcomm be the communication time (eitherhorizontal or vertical). With P processors, if NTcomp � P (Tcomm+Tcomp), a columnwise allocationof tiles to processors leads to the parallel execution time T = (N � 1)(Tcomp + Tcomm) + NTcomp.If Tcomm � Tcomp, this is optimal: use Lemma 1 to show that the execution of diagonal tile (i; i),0 � i < N , cannot start before time-step (i� 1)(2Tcomp + Tcomm).6 ConclusionIn this paper, we have studied tiling techniques aimed at adapting the granularity of uniform loopnest algorithms towards execution on distributed-memory machines. We view tiling as a two-stepprocess: the �rst step amounts to determining the best shape and size of the tiles (assuming anin�nite grid of virtual processors), while the second step consists in mapping and scheduling thetiles to physical processors. We have concentrated on the second step, assuming a realistic modelwhere (independent) communication and computation may overlap. We have obtained several newresults, including a strong result on the optimal mapping and scheduling. However, much remainsto be done to extend these results to arbitrary dimensions and domain shapes.More generally, the relationship between tiling, scheduling and mapping is not yet well under-stood, and the two-step approach may not prove too complicated for practical problems. Yet, sucha two-step approach is typical in the �eld of parallelizing compilers (other examples are generaltask graph scheduling, software pipelining and loop parallelization algorithms).Finally, the recent development of heterogeneous computing platforms may well lead to usingtiles whose size and shape will depend upon the characteristics of the processors they are assignedto ... a truly challenging problem!Acknowledgment We are deeply indebted to Sanjay Rajopadhye for his useful comments on a�rst version of this paper.
13

References[1] Rumen Andonov, Ha�d Bourzou�, and Sanjay Rajopadhye. Two-dimensional orthogonaltiling: from theory to practice. In International Conference on High Performance Computing(HiPC), pages 225{231, Trivandrum, India, 1996. IEEE Computer Society Press.[2] Rumen Andonov and Sanjay Rajopadhye. Optimal tiling of two-dimensional uniform recur-rences. Journal of Parallel and Distributed Computing, to appear. Available as TechnicalReport LIMAV-RR 97-1, http://www.univ-valenciennes.fr/limav/andonov.[3] Utpal Banerjee. An introduction to a formal theory of dependence analysis. The Journal ofSupercomputing, 2:133{149, 1988.[4] Pierre Boulet, Alain Darte, Tanguy Risset, and Yves Robert. (Pen)-ultimate tiling? Integra-tion, the VLSI Journal, 17:33{51, 1994.[5] Pierre-Yves Calland, Jack Dongarra, and Yves Robert. Tiling with limited resources. ResearchReport 97-350, Computer Science Department, University of Tennessee at Knoxville, February1997.[6] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker,and R. C. Whaley. ScaLAPACK: A portable linear algebra library for distributed memorycomputers - design issues and performance. Computer Physics Communications, 97:1{15, 1996.(also LAPACK Working Note #95).[7] J. J. Dongarra and D. W. Walker. Software libraries for linear algebra computations on highperformance computers. SIAM Review, 37(2):151{180, 1995.[8] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Evaluating compiler optimizationsfor Fortran D. Journal of Parallel and Distributed Computing, 21(1):27{45, 1992.[9] F. Irigoin and R. Triolet. Supernode partitioning. In Proc. 15th Annual ACM Symp. Principlesof Programming Languages, pages 319{329, San Diego, CA, January 1988.[10] H. Ohta, Y. Saito, M. Kainaga, and H. Ono. Optimal tile size adjustment in compiling generalDOACROSS loop nests. In 1995 International Conference on Supercomputing, pages 270{279.ACM Press, 1995.[11] Peter Pacheco. Parallel programming with MPI. Morgan Kaufmann, 1997.

14

