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AbstractOne approach to solving the nonsymmetric eigenvalue problem in parallel is to parallelize theQR algorithm. Not long ago, this was widely considered to be a hopeless task. Recent e�ortshave made signi�cant advances, although the methods proposed up to now have su�ered fromscalability problems. This paper discusses an approach to parallelizing the QR algorithm thatgreatly improves scalability. A theoretical analysis indicates that the algorithm is ultimately notscalable, but the nonscalability does not become evident until the matrix dimension is enormous.Experiments on the Intel ParagonTM system, the IBM SP2 supercomputer, and the Intel ASCIOption Red Supercomputer are reported.Key Words: Parallel computing, eigenvalue, Schur decomposition, QR algorithmAMS (MOS) Subject Classi�cation: 65F15, 15A181 IntroductionOver the years many methods for solving the parallel unsymmetric eigenvalue problem have beensuggested. Most of these methods have serious drawbacks, either in terms of stability, accuracy,scalability, or requiring extra work. This paper describes a version of the QR algorithm [21] thathas signi�cantly better scaling properties than earlier versions, as well as being stable, accurate,and e�cient in terms of 
op count or iteration count.Most implementations of the QR algorithm perform QR iterations implicitly by chasing bulgesdown the subdiagonal of an upper Hessenberg matrix [24, 44]. The original version due to J. G.F. Francis [21], which has long been the standard serial algorithm, is of this type. It begins eachiteration by choosing two shifts (for convergence acceleration) and using them to form a bulge ofdegree 2. This bulge is then chased from top to bottom of the matrix to complete the iteration.�Computer Science, 111 Ayres Hall, University of TN, Knoxville, TN 37996-1301, ghenry@cs.utk.eduyPure and Applied Mathematics, Washington State University, WA 99164-3113, watkins@wsu.edu, Mailingaddress: 6835 24th Ave. NE, Seattle, WA 98115-7037. Supported by the National Science Foundation undergrant DMS-9403569zComputer Science, 111 Ayres Hall, University of TN, Knoxville, TN 37996-1301, dongarra@cs.utk.edu1



The shifts are normally taken to be the eigenvalues of the 2 � 2 submatrix in the lower righthand corner of the matrix. Since two shifts are used, we call this a double step. The algorithm isthe implicit, double-shift QR algorithm. One can equally well get some larger number, say M , ofshifts by computing the eigenvalues of the lower right hand submatrix of orderM and using thoseshifts to form a larger bulge, a bulge of degree M . This leads to the multishift QR algorithm,which will be discussed below. The approach taken in this paper is to getM shifts, where M is afairly large even number (say 40) and use them to form S =M=2 bulges of degree two and chasethem one after the other down the subdiagonal in parallel. In principle this procedure shouldgive the same result as a multishift iteration, but in practice (in the face of roundo� errors), ourprocedure performs much better [45].Of the various parallel algorithms that have been proposed, the ones that have received mostattention recently have been based on matrix multiplication. The reason is clear: large matrixmultiplication is highly parallel. Auslander and Tsao [2] and Lederman, Tsao, and Turnbull [36]use multiply-based parallel algorithms based on matrix polynomials to split the spectrum. Baiand Demmel [4] use similar matrix multiply techniques using the matrix sign function to splitthe spectrum (see also [6, 10, 5, 7].)Dongarra and Sidani [17] introduced tearing methods based on doing rank one updates to anunsymmetric Hessenberg matrix, resulting in two smaller problems, which are solved indepen-dently and then glued back together with a Newton iteration. This tends to su�er from stabilityproblems since the two smaller problems might have arbitrarily worse condition than the parentproblem [33].In situations where more than just a few of the eigenvalues (and perhaps eigenvectors as well)are needed, the most competitive serial algorithm is the QR algorithm [21, 1]. Matrix multiplymethods tend to require many more 
ops, as well as sometimes encountering accuracy problems[4]. Although matrix tearing methods may have lower 
ops counts, they require �nding all theeigenvectors and hence are only useful when all the eigenvectors are required. Furthermore,there are instances where they simply fail [33]. Jacobi methods [24] have notoriously high 
opcounts. There are also methods by Dongarra, Geist, and Romine based on initial reductions totridiagonal form [14, 48]. These might require fewer 
ops but they are plagued by instability.Against this competition, blocked versions of the implicit double shift QR algorithm [28, 31, 1]appear promising.One serious drawback of the double implicit shift QR algorithm is that its core computationis based on Householder re
ections of size 3. This is a drawback for several reasons: it lacks thevendor supported performance tuning of the BLAS (basic linear algebra subroutines [13, 34]),and it has data re-use similar to level-1 operations (it does O(n) 
ops on O(n) data [24].) Thisimposes an upper limit to how fast it can run on the high performance computers with a memoryhierarchy. One attempt to rectify this problem was the multishift QR algorithm of Bai andDemmel [3], which we mentioned earlier. The idea was to generate a large number M of shiftsand use them to chase a large bulge. This allowed for a GEMM-based (level-3 BLAS) algorithm tobe used [3]. Unfortunately, this requires too many more 
ops and the GEMM itself has two of thethree required dimensions very small [31]. However, even if a multishift QR algorithm is usedwithout the additional matrix multiply (as was implemented in LAPACK [1]), the algorithmhas convergence problems caused by roundo� errors if the value of M is too large. This was2



discussed by Dubrulle [19] and Watkins [45, 46]. Because of this, a multishift size of M = 6 wasimplemented in LAPACK. It is not clear that this is faster than the double implicit shift QRwhen blocked [31].Because of the di�culties in chasing large bulges, we restrict our analysis in this paper tobulges of degree two. Most of the results we present, with a few minor modi�cations to themodeling, would also hold true for slightly larger bulges (e.g. degree six).The �rst attempts at parallelizing the implicit double shift QR algorithm were unsuccessful.See Boley et. al. [11], Geist et. al. [22, 23], Eberlein [20], and Stewart [38]. More successfulmethods came from vector implementations [16]. Usually, the key problem is to distribute thework evenly given its sequential nature.A major step forward in work distribution was made by van de Geijn [40] in 1988. There, andin van de Geijn and Hudson [42], a wrap Hankel mapping was used to distribute the work evenly.A simple case of this, anti-diagonal mappings, was exploited in the paper by Henry and van deGeijn [32]. One di�culty these algorithms faced is that they all used non-Cartesian mappings. Inthese mappings, it is impossible to go across both a row and a column with a single �xed o�set.Losing this important feature forces an implementation to incur greater indicing overheads and,in some cases, have shorter loops. However, in Cartesian mappings, both rows and columns of theglobal matrix correspond to rows and columns of a local submatrix. If a node owns the relevantpieces, it can access both A(i+1,j) and A(i,j+1) as some �xed o�set from A(i,j) (usually 1 andthe local leading dimension respectively.) This is impossible for Hankel mappings on multiplenodes. In addition to this problem, the algorithms resulting from all these works were onlyiso-e�cient [25]. That is, you could get 100 percent e�ciency, but only if the problem size wasallowed to scale faster than memory does. Nevertheless, these were the �rst algorithms ever toachieve theoretically perfect speed-up.In [32] it was also proved that the standard double implicit shift QR algorithm (not just theone with anti-diagonal mappings) cannot be scalable. The same work also showed that if Mshifts are employed to chase M/2 bulges of degree two, then the algorithm might be scalable aslong as M was at least O(pp), where p is the number of processors.Here we pursue the idea of using M shifts to form and chase M/2 bulges in parallel. Theidea of chasing multiple bulges in parallel is not new [26, 38, 39, 41, 35]. However, it was longthought that this practice would require the use of out-of-date shifts, resulting in degradationof convergence [41]. What is new [45] (having seen [19]) is the idea of generating many shiftsat once rather than two at a time, thereby allowing all bulges to carry up-to-date shifts. Thedetails of the algorithm will be given in the next section, but the important insight is that onecan then use standard Cartesian mappings and still involve all the processors if the bulge chasingis divided evenly among them.2 Serial QR AlgorithmWe start this section with a brief overview of the sequential double implicit shift QR algorithm.Before we detail the parallel algorithm in x3 it is necessary to review the di�culties in parallelizingthe algorithm. This is done in x2.2. In x2.3 we make some modi�cations to overcome thesedi�culties. Finally, in x2.4 we give some experimental results to indicate the impact of the3



Francis HQR Stepe = eig(H(n� 1 : n; n� 1 : n))Let x = (H � e(1)In) � (H � e(2)In)e1Let P0 2 <n�n be a Householder matrix such thatP0x is a multiple of e1.H  P0HP0for i = 1; : : : ; n� 2Compute Pi so thatPiH has zero (i + 2; i) and(i + 3; i) entries.Update H  PiHPiUpdate Q QPiendforFigure 1: Sequential Single Bulge Francis HQR Stepchanges.2.1 Single BulgeThe double implicit Francis step [21] enables an iterative algorithm that goes from H (upperHessenberg) to H = QTQT (Schur decomposition [24, 48]). Here, Q is the orthogonal matrix ofSchur vectors, and T is an upper quasi-triangular matrix (1� 1 and 2� 2 blocks along the maindiagonal). We can assume that H is upper Hessenberg because the reduction to Hessenberg formis well understood and can be parallelized [8, 15, 18].The implicit Francis iteration assumes that H is unreduced (subdiagonals nonzero). As theiterates progress, wise choices of shifts allow the subdiagonals to converge to zero. As in [24], atsome stage of the algorithm H might be in the following form:H = 264 H11 H12 H13H22 H23H33 375 :We assume thatH22 is the largest unreduced Hessenberg matrix above H33 (which has converged)in the current iteration. The algorithm proceeds on the rows and columns de�ned by H22.One step of the Francis double shift QR algorithm is given in Figure 1. A single bulge of degreetwo is chased from top to bottom. Here, the Householder matrices are symmetric orthogonaltransforms of the form: Pi = I � 2vvTvTv :4



where v 2 <n and vj = ( 0 if j < i + 1 or j > i+ 31 if j = i + 1 ) :Suppose the largest unreduced submatrix of H (H22 above) is in H(k : l; k : l). We then applythe Francis HQR Step 1 to the rows and columns of H corresponding to the submatrix; that is,H(k : l; :) PiH(k : l; :)H(:; k : l) H(:; k : l)Pi:Naturally, if we are not after a complete Schur decomposition, but instead only desire the eigen-values, then the updating of H23 and H12 above can be skipped. The two shifts are chosen tobe e = eig(H(l � 1 : l; l � 1 : l)):In practice, after every few iterations, some of the subdiagonals of H will become numericallyzero, and at this point the problem de
ates into smaller problems.2.2 Di�culties in Parallelizing the AlgorithmConsider the following upper Hessenberg matrix with a bulge in columns 5 and 6:
H =

26666666666666666664
X X X X X X X X X XX X X X X X X X X XX X X X X X X X XX X X X X X X XX X X X X X XX X X X X X+7;5 X X X X X+8;5 +8;6 X X X XX X XX X

37777777777777777775 :Here, the Xs represent elements of the matrix, and the +s represent some bulge created by thebulge chasing step in Figure 1. A Householder re
ection must be applied to rows 6, 7, and 8 tozero out H(7 : 8; 5). To maintain a similarity transformation, the same re
ection must be thenapplied to columns 6, 7, and 8, thus creating �ll-in in H(9; 6) and H(9; 7). In this way, the bulgemoves one step down and the algorithm in Figure 1 proceeds.Suppose one used a one dimensional column wrapped mapping of the data. Then the applica-tion of the re
ection to rows 6, 7, and 8 would be perfectly distributed amongst all the processors.Unfortunately, this would be unacceptable because applying all the column re
ections, half thetotal work, would involve at most 3 processors, thus implying the maximum speed-up obtainablewould be 6 [23]. Tricks to delay the application of the rows and/or column re
ections appear to1We use the term \HQR" to mean a practical Hessenberg QR iteration, for example, EISPACK's HQR code[37] or LAPACK's HSEQR or LAHQR code [1]. 5



only delay the inevitable load imbalance. The same argument holds for using a one dimensionalrow wrapped mapping of the data, in which the row transforms are unevenly distributed.For scalability reasons, distributed memory linear algebra computations often require a twodimensional block wrap torus mapping [27, 43]. To maximize the distribution of this computation,we could wrap our 2D block wrap mapping as tightly as possible with a block size of one (thiswould create other problems which we will ignore for now). Let us assume the two dimensionallogical grid is R � C where their product is P (the total number of processors). Then any rowmust be distributed amongst C processors and the row re
ections can be distributed amongstno more than 3C processors. Similarly, column re
ections can use at most 3R processors. Themaximum speed-up obtainable is then 3(R + C), where in practice one might expect no morethan two times the minimum of R and C.If one used an anti-diagonal mapping of the data [32], then element H(i; j) or (if one uses ablock mapping as one should) submatrix Hij is assigned to processor(i+ j � 2)mod P;where P is the number of processors. That is, the distribution amongst the processors is asfollows [42]: 2666666664 H(0)1;1 H(1)1;2 H(2)1;3 � � � H(p�2)1;p�1 H(p�1)1;pH(1)2;1 H(2)2;2 H(3)2;3 � � � H(p�1)2;p�1 H(0)2;pH(2)3;1 H(3)3;2 H(4)3;3 � � � H(0)3;p�1 H(1)3;p... . . . ... ...H(p�1)p;1 : : : H(p�3)p;p�1 H(p�2)p;p
3777777775where the superscript indicates the processor assignment. Clearly, any mapping where (if thematrix is large enough) any row and any column is distributed roughly evenly among all theprocessors would su�ce. Unfortunately, no Cartesian mappings satisfy this criterion. There arereasons to believe that the anti-diagonal distribution is ideal. Block diagonal mappings havebeen suggested [49], but these su�er from load imbalances that are avoided in the anti-diagonalcase.By making a slight modi�cation to the algorithm, one could chase several bulges at once andcontinue to use a two dimensional Cartesian mapping. That is, if our grid is R�R and we chaseR bulges, separated appropriately, then instead of only involving 3 rows and 3 columns, we wouldinvolve 3R rows and columns. This allows the work to be distributed evenly. Furthermore, wemaintain this even distribution when we use any multiple of R bulges- a mechanism useful fordecreasing the signi�cance of pipeline start-up and wind-down.2.3 Multiple BulgesThe usual strategy for computing shifts is the Wilkinson strategy [48], in which the shifts aretaken to be the eigenvalues of the lower 2 � 2 submatrix. This is inexpensive and works wellas long as only one bulge at a time is being chased. The convergence rate is usually quadratic[48, 47]. However, this strategy has the following shortcoming for parallel computing. The correctshifts for the next iteration cannot be calculated until the bulge for the current iteration has been6



chased all the way to the bottom of the matrix. This means that if we want to chase severalbulges at once and use the Wilkinson strategy, we must use out-of-date shifts. This practiceresults in subquadratic (although still superlinear) convergence [39, 41].If we wish to chase many bulges at once without sacri�cing quadratic convergence, we mustchange the shifting strategy. One of the strategies proposed in [3] was a generalization of theWilkinson shift. Instead of choosing the two shifts to be the eigenvalues of the lower 2�2 matrix,one calculates the eigenvalues of the lower M �M matrix, where M is an even number that issigni�cantly greater than two (e.g. M = 32). Then one has enough shifts to chase M=2 bulges ineither serial or parallel fashion before having to go back for more shifts. This strategy also results(usually) in quadratic convergence, as was proved in [47] and has been observed in practice. Werefer to each cycle of computing M shifts and chasing M=2 bulges as a super-iteration.The question of how to determine the number of bulges S = M=2 per super-iteration isimportant. If one chooses S = 1, we have the standard double shift QR algorithm|but this hasthe scalability problems. If we choose S large enough, and the bulges are spaced appropriately,and we address these issues in the next section, then there are su�cient bulges to distribute theworkload evenly. In fact, we later (x 4.2.5) discuss the motivations for choosing S larger thanthe minimum number required for achieving an even distribution of work. Of course, choosing Stoo large might result in greater 
ops overall or other general imbalances (since the computationof the shifts is usually serial and grows as O(S3)).The general algorithm proceeds as described in Figure 2.In Figure 2, the i index refers to the same i index as the previous algorithm in Figure 1.Because there are multiple bulges, M=2 of them, there is a certain start-up and wind-down, inwhich case some of the bulges might have already completed or not started yet (when i < 0 ori > n� 2).Here, we are spacing the bulges 4 columns apart, however it is clear that this spacing can beanything 4 or larger, and for the parallel algorithm we will give a rationale for choosing thisspacing very carefully. In Figure 3, we see a Hessenberg matrix with four bulges going at once.The shifts are the eigenvalues of a trailing submatrix. Notice that the bottom shifts are applied�rst (j = m;m� 2; : : : ; 2). These are the ones that emerged �rst in the shift computation, andthese are the shifts that are closest to the eigenvalues that are due to de
ate next. Applyingthem �rst enhances the de
ation process.Complex shifts are applied in conjugate pairs. One �ne point that has been left out of Figure 2is that whenever a lone real shift appears in the list, it must be paired with another real shift.This is done by going up the list, �nding the next real shift (and there will certainly be one),and launching a bulge with the two real shifts.One critical observation is that whenever a subdiagonal element becomes e�ectively zero, itshould be set to zero immediately, rather than at the end of the super-iteration. This saves timebecause the information is in cache, but, more importantly, it reduces the number of iterationsand total work. An entry that has become negligible early in a super-iteration might no longermeet the de
ation criterion at the end of the super-iteration.Another critical observation is that consecutive small subdiagonal elements may negativelyimpact convergence by washing out the e�ects of some of the shifts. Robust implementationsof QR usually search for a pair of small subdiagonal elements along the unreduced submatrix7



Multiple Bulge HQR Super-iteratione = eig(H(n�m + 1 : n; n�m+ 1 : n))for k = 0; : : : ; n� 6 + 2 �mfor j = m;m� 2; m� 4; : : : ; 2i = k � 2j + 4if i < 0 then Pi = Iif i = 0Let x = (H � e(j � 1)In) � (H � e(j)In)e1Let Pi 2 <n�n be a Householder matrixsuch that Pix is a multiple of e1.if 1 � i � n� 2Compute Pi so thatPiH has zero (i + 2; i) and(i + 3; i) entries.if i > n� 2 then Pi = IH  PiHPi, Q QPiendforendforFigure 2: Sequential Multiple Bulge HQR Super-iteration
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@@ @@ @@ @@ @@@Figure 3: Pipelined QR stepsand attempt to start the bulge chasing from there. In the multishift and multi-bulge case, ifany shifts could be started in the middle of the submatrix at some small subdiagonal elements,it might save 
ops to do so. However, the subdiagonals change with each bulge, and it couldeasily happen that 10 bulges were computed, but after the second bulge went through, the thirdbulge was unable to given that the subdiagonals became too large. We suggest maximizing thenumber of shifts that can go through, so that if the third bulge is unable to, we suggest skippingthat one, and trying the fourth.Finally, when we need M shifts, there is no reason to require that these be the eigenvaluesof only the lower M � M submatrix. For example, we could take W > M and choose Meigenvalues from the lower W �W submatrix. This strategy tends to give better shifts, but it ismore expensive.2.4 Serial Experimental ComparisonsWe now have two di�erent HQR algorithms: the standard one based on the iteration given inFigure 1, and the multiple bulge algorithm based on the iteration given in Figure 2. We treatconvergence criteria the same, and use the same outsides of the code to generate the largestunreduced submatrix and to determine when something de
ates o�.We are now ready to ask what is a reasonable way to compare the two algorithms in terms ofwork load.2 The clearest method is a 
op count. That is, run the two algorithms to completionin the exact same way, monitoring the 
ops as they proceed (including extra 
ops required ingenerating the shifts).Since both algorithms normally converge quadratically, it is not unreasonable to expect themto have similar 
op counts; if M is not made too large, the extra cost of the shift computationwill be negligible.Our practical experience has been that the 
op count for the multiple bulge algorithm isusually somewhat less than for the standard algorithm. For example, in Figure 4 the 
op countsfor two versions of QR applied to random upper Hessenberg matrices with entries between -22At this stage, we are not interested in execution time, because that is dependent on other factors such as thelogical mapping and blocking sizes. 9
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Figure 4: The Decreasing Average Flops for a 1x1 and 4x4 Gridand 2 are given. The curve labeled 1 � 1 is the standard algorithm. The curve labeled 4 � 4gives 
op counts for a multiple bulge algorithm run on a 4� 4 processor grid. The way the codeis written, the number of bulges per super-iteration varies in the course of a given computation,but in these cases it was typically 4, i.e. M = 8.The 
op count of the Hessenberg QR algorithm is normally reckoned to be O(N3), based onthe following considerations: Each iteration requires O(N2) work, at least one iteration will beneeded for each eigenvalue or pair of eigenvalues, and there are N eigenvalues. Golub and VanLoan [24] report the �gure 25N3.All of the numbers in Figure 4 are less than 25N3. More importantly there is a clear tendency,especially in the 1 � 1 case, for the multiple of N3 to decrease as N increases. Let us take acloser look at the 
op counts.Consider �rst the standard algorithm. Experience with matrices of modest size suggests thatapproximately four iterations (double steps) su�ce to de
ate a pair of eigenvalues.3 Thus onereckons that it takes about two iterations to calculate each eigenvalue. For each eigenvalue wede
ate, we reduce the size of the active submatrix by one. A double QR iteration applied to ak � k submatrix of an N �N matrix costs about 20Nk 
ops.4 This �gure is derived as follows.The bulge chase is e�ected by application of k�1 Householder transformations of size 3�3. EachHouseholder transformation is applied to N + 4 rows/columns of the Hessenberg matrix H and3This number should not be taken too seriously; it depends on the class of matrices under consideration. Ifwe want to be conservative, we might say �ve or six instead of four. Whatever number we pick should be viewedonly as a rough average. In practice there is a great deal of variation.4This is for the computation of the complete Schur form. If only the eigenvalues are wanted, the cost is 10k2
ops. 10



N columns of the transforming matrix Q. The cost of applying a Householder transformation toa single row/column is 10 
ops. Thus the total is10� (2N + 4)� (k � 1) � 20Nk:If we assume there are two iterations for each submatrix size k, we get a total 
op count ofapproximately 2� 20N NXk=1 k � 20N3:We could have obtained the count 25N3 reported by Golub and Van Loan by assuming �veiterations per pair instead of four. The �gure 20N3 is closer to what we see in Figure 4. It is aparticularly good estimate when N is small.This count applies to the standard single bulge algorithm. The multiple bulge algorithm ofFigure 2, which goes after the eigenvalues M at a time rather than two at a time, has verydi�erent de
ation patterns. We can arrive at the �gure 20N3 for this algorithm by assumingthat M=4 eigenvalues are de
ated per superiteration (with M shifts carried by M=2 bulges).This is approximately what is seen in practice, although there is a great deal of variation.As N gets large, the �gure 20N3 looks more and more like an overestimate. The discrepancycan be explained as follows. Our 
op count takes de
ations into account, but it ignores thefact that the matrix can split apart in the middle due to some Hi+1;i (1 � i � N) becominge�ectively zero. Many of the subdiagonal entries Hi+1;i drift linearly toward zero [48] in thecourse of the computation, so it is to be expected that such splittings will sometimes occur. Itis reasonable to expect splittings to occur more frequently in large problems than in small ones.Whenever such a split occurs, the 
op count is decreased. As an extreme example, suppose thaton an early iteration we get Hi+1;i � 0, where i � N=2. Then all subsequent operations areapplied to submatrices of order � N=2 or less. Even assuming no subsequent splittings, the total
op count is about 2� 2� 20N N=2Xk=1 k � 10N3;which is half what it would have been without the split.Figure 5 gives further support for the view that splittings are signi�cant for large N . Becauseof de
ations and splittings, all but the �rst few iterations are applied to submatrices of sizek < N . The size of the submatrices decreases as the computation progresses. In Figure 5 we arelooking at each iteration, computing the size of the submatrix we are working on divided by theoriginal problem size, and then averaging these fractions of the course of the problem. Severaldi�erent problems were done with random Hessenberg matrices consisting of elements from -2to 2, and the average fraction is given in the Figure. If a pair of eigenvalues is de
ated everyfour (or whatever number) of iterations, as in our model, the average submatrix size will be :5N .In fact one might expect a somewhat larger average, based on the observation [48] that moreiterations per eigenvalue are required in the earlier iterations (large matrices) than in the lateriterations (small matrices). On the other hand, splittings will have the e�ect of decreasing theaverage. The fact that the average size is in fact less than :5N and decreases as N is increased,is evidence that splittings eventually have a signi�cant e�ect.11
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Figure 5: The Decreasing Average Submatrix Size3 Parallel QR AlgorithmThe most critical di�erence between serial and parallel implementations of HQR is that the numberof bulges must be chosen to keep the processors busy. Assume that the processors are arrangedlogically as a grid of R rows and C columns. Thus there are P = R�C processors. Clearly, thenumber of bulges will optimally be a multiple of the least common multiple of R and C; thatway all nodes will have equal work. As we shall see, there are tradeo�s involved in using morebulges than necessary. The matrix is chopped into H �H blocks, which are parceled out to theprocessors by a torus wrap mapping. The bulges must be separated by at least a block, andremain synchronized, to ensure that each row/column of processors remains busy. Usually theblock size must be large, since otherwise there will be too much border communication.We try to keep the overall logic as similar to the well-tested standard QR algorithm as possible.For this reason each super-iteration is completed entirely before new shifts are determined andanother superiteration is begun. Information about the \current" unreduced submatrix mustremain global to all nodes.The Householder transforms are of size 3, which means they are speci�ed by sending 3 dataitems. The latency associated with sending such small messages would be ruinous, so we bundlethe information from several (e.g. 30) Householder transformations in each message. Let Bdenote the number of Householder transforms in each bundle. Since the processors own H �Hblocks of the matrix, we must have B � H. Another factor that limits the size of B is thatprocessors must sometimes sit idle while waiting for the Householder information. In order tominimize this e�ect, the processors that are generating the information should do so as quicklyas possible. This means the while pushing the bulge ahead B positions, they should operate12



only on the (B + 2)� (B + 2) subblock through which the bulge is currently being pushed. TheHouseholder transforms can be applied to the rest of the block after they have been broadcastto the processors that are waiting.If many bulges are being chased simultaneously, there may be several bulges per row or columnof processors. In that case, we can reduce latency further by combining the information from allbulges in a given row or column into a single message.The broadcasts must be handled with care. Consider the situation depicted in Figure 6. Here,we have two bulges. Suppose while the bottom bulge is doing a vertical broadcast, the top bulgestarts a horizontal broadcast. This results in a collision that prevents these two broadcasts fromhappening in parallel. Our solution is to do all the vertical broadcasts at once, followed by allthe horizontal broadcasts.
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Figure 6: Multiple Bulge Broadcasts Colliding3.1 Block Householder TransformsSince Householder information arrives in bundles, we might as well apply the transformation inblocks to reduce data reuse. (Unfortunately, there is no BLAS for the application of a series ofHouseholder transforms.) Normally B Householder transforms of size 3 are received at once. Ifwe apply them to B+2 columns of size N, we perform 10NB 
ops, and we must access (B+2)N13



data. The data re-use fraction [31] is at best 10 
ops per data element accessed in the limit. If Bis one, which is the worst case, then only 3 
ops are done per data element accessed. So, roughlyone can improve the data re-use by a factor of 3 by applying these transforms simultaneously.Due to diminishing returns, the data re-use is not signi�cantly better when going from tenapplications at a time to twenty. In fact, things are worse because one accesses almost twice thedata for only a marginal improvement in data reuse. Because data will be pushed out of cache,it is clear that one needs to �nd a compromise between data reuse and data volume.Fortunately, the number of transforms applied at once is independent of anything we laterdetermine for B. The only reasonable restriction we suggest is that the number of transformsapplied at once in a block fashion be no greater than B. In practice, one might apply thesetransforms in sets of two, three, or four.3.2 E�cient Border CommunicationsWhen a bulge reaches a border between two processors or columns, some communication isnecessary for the bulge to proceed. These \border communications" should be done in parallelif possible. That is, if we have 36 nodes logically mapped into 6 processor rows and 6 processorcolumns, and we have 6 bulges spaced a block apart, then we have 6 border communications thatshould happen at the same time. A border communication typically consists of a node sendingdata to another node, and then waiting for its return while the other node updates the data.If they are handled one at a time, then this sequentializes a good portion of the computation.Nevertheless, it is clear that if there are only 2 rows and/or columns, the overhead costs ofloading up all the bulge information to send it out, only to later re-load up all the informationto receive it back in, might not justify the e�ort to parallelize the border communications.This implies an entirely di�erent approach to border communication should be used when thereare a small number of rows (or columns) compared to a large number. The method currentlyimplemented in our code is a hybrid approach. For a small number of rows or columns (threeor less), each bulge has its border communication resolved at once. That is, a node sends thedata out and does nothing until that data has been returned and a new bulge can be worked on.For a large number of rows or columns (four or more), each bulge has its border communicationresolved in parallel. All the rows (or columns) try to send the information out, all the recipientstry to update the information at once and send it back, and then all the original senders try toreceive the data.4 ModelingThe variable names used in this section are summarized in Table 1.4.1 Serial Cost AnalysisConsider �rst the serial cost of one super-iteration of Figure 2. The shift computation costsO(W 3), where W is the size of the shift determination matrix. Once the shifts have beendetermined, all bulge chases are independent have the same amount of work. Thus it su�ces to14



Variable De�nition� Message latency� Time to send one double precision elementSending a message of length n takes � + n� time units
 Time to implement a single 
oating point operation used in aHouseholder application.N The matrix order/sizeR Number of rows of processors.C Number of columns of processors.P Number of nodes, P = R� CB Number of Householder transforms per bundleH Blocking size of the matrix data on the 2D block torus wrap mapping.V Time to compute a single Householder transform of size three.M Number of shifts.S Number of bulges. S = M/2W Size of the generalized Wilkinson shift determination submatrix atthe bottom. Note that N �W � 2S =MTable 1: Model De�nitionscompute the cost of one iteration of Figure 1 and multiply it by S, the number of bulges. Withinthe loop indexed by i in Figure 1, each Householder transform of size 3 is applied to N � i + 1triplets of rows and i + 3 triplets of columns. Since each transform applied to a row or columnof size j requires 10j 
ops, there are approximately 10(N + 4) 
ops required on the Hessenbergmatrix, and 10N 
ops required on the Schur matrix Q. In addition, it takes time V to generateeach Householder transform. There are N � 1 Householder transforms per bulge chase, so thecost of one bulge chase is (10(2N + 4)
 + V )(N � 1). Thus the serial cost of one super-iterationof Figure 2 is (10(2N + 4)
 + V )(N � 1)S +O(W 3) = 20N2S
 +O(N)if W � N .4.2 Parallel Cost AnalysisThe processors are arranged logically in a grid of R rows and C columns. We assume that theblock size H is small enough, compared to N , that each row (column) of processors has about asmuch work as any other row (column). We divide the work into two categories: horizontal andvertical.4.2.1 Computational CostThe amount of computational work associated with each super-iteration is roughly 10N2S 
opsfor the Hessenberg matrix and 10N2S 
ops for the Schur vectors. The work on the Hessenberg15



matrix is initially half row transforms and half column transforms The work on the Schur vectorsis all column transforms. Thus the amount of horizontal work is 5N2S 
ops. Each row isdistributed evenly over C processors, so the execution time is about (5N2=C)
 per bulge. Ifthere are four bulges (S = 4) and two rows (R = 2), one might except this time to double, hencewe multiply by the ceiling of S=R to obtain (5N2=C)d(S=R)e
 for the horizontal work. Similarly,the time to do the vertical work is ((15N2)=R)d(S=C)e
. Thus the total time for horizontal plusvertical computational work is  5N2C dSRe+ 15N2R dSC e! 
 (1)For the special case of S = R = C, Equation 1 reduces to (20N2S=P )
 where the factor P in thedenominator indicates perfect speedup. However, this expression and Equation 1 ignore manyoverheads, all of which will be considered in the following subsections.4.2.2 Broadcast CommunicationFor each bulge chase, there are N � 1 Householder transforms. They are bundled together ingroups of B, so there will be about (N � 1)=B bundles, each of which needs to be broadcastboth horizontally and vertically. Since each bundle contains 3B data items, the communicationoverhead associated with each bundle is �+3B�. For horizontal messages, each message must bebroadcast to a logical row of processors. Using a minimum spanning tree broadcast, this requireslog(C) messages. When there is only one bulge (S = 1), the total horizontal broadcast overheadis therefore N � 1B log(C)(� + 3B�); (2)and the total vertical broadcast overhead isN � 1B log(R)(� + 3B�):When there are S > 1 bulges, the amount of horizontal data to be broadcast gets multipliedby S. If there are no more bulges than rows (S � R), the horizontal broadcast overhead willbe the same as if there were only one bulge, because the messages are broadcast in parallel. IfS > R, we assume the broadcasts are combined so that there are at most R messages, or a singlemessage per row. The amount of horizontal data that must be broadcast on the most burdenedrow is 3BdS=Re. Similar remarks apply to the vertical broadcasts. Therefore the total time forhorizontal and vertical transform broadcasts isN � 1B �log(C)(� + 3BdSRe�) + log(R)(� + 3BdSC e�)� : (3)4.2.3 Border CommunicationIn addition to Householder broadcasts, there is border communication whenever a bulge hitsthe boundary between two rows or columns of processors. At this point, it is necessary to sendboundary data back and forth in order to push the bulge past this point.16



Let us begin by considering border communication in the Schur matrix Q. This is easier todiscuss than border communication in H, because it involves only columns. At each borderencounter, two columns of the matrix have to be passed from one processor to the next. This isa total of 2N numbers, which are split over R processor rows. Each message thus contains 2N=Rnumbers, and the time to pass R such messages in parallel is � + 2NR �. It takes the same timeto pass 2N numbers back. During a single bulge chase, there are about N=H border encounters,whose total overhead is thus 2NH �� + 2NR �� :If S > 1 bulges are chased, up to C border crossings can be accomplished in parallel. If S > C,the most burdened processors will have to handle l SC m border crossings at a time. Each batchof l SC m messages can be combined into a single large message to reduce latency. Thus the totaloverhead for border communication in the Schur matrix Q is2NH �� + 2NR �SC � �� : (4)The analysis of the border communication in the Hessenberg matrix H is more complicated,because both rows and columns need to passed, and they are not all the same length. However,the total amount of data that has to be passed is the same as for the Schur matrix, and it isdistributed roughly half and half between column and row communication. Because of the splitbetween row and column communication, the average message is only half as long, so the latencyis doubled. Thus the overhead for border communication in H is2NH �� +N=C �dSRe� ��+ 2NH �� +N=R�dSC e� �� : (5)We can remove the entire latency term in (4) by combining the vertical communication of Qwith the vertical communication of H.4.2.4 Bundling and Other OverheadsBefore a bundled horizontal transform broadcast can take place, one processor must compute thenext B Householder transforms. Once these are computed, they are broadcast horizontally andvertically so that processor's row and column can all participate in the subsequent computation.This means that the computation of these transforms is on the critical path.Each bulge must be advanced B steps, which requires doing the entire Francis iteration on a(B + 2)� (B + 2) submatrix. This requires time approximatelyhBV + 10B2i 
:This is what forces B to remain small since it is done by only one node. It happens N=B timesper bulge chase. Notice, however, that if R and C are relatively prime, and S is their leastcommon multiple (that is, S = P = R �C) that all the nodes can be doing this step in parallel.Let lcm(R;C) denote the least common multiple of R and C. Since diagonal blocks will repeatevery lcm(R;C), we see that the overall overhead must look something liked Slcm(R;C)eN [V + 10B] 
: (6)17
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@@@@@@@@@@@@@@@@@@@@@@Figure 7: Delaying Transforms to Reduce the Pipeline Fill4.2.5 Pipeline Start-up and Wind DownIn Figure 7, we suppose there are three processor rows and columns (R = C = 3) and threebulges (S = 3). Normally, it is not until the third bulge starts that all nine processors areoccupied. Until then, there are pipeline start up costs. Similarly, at the end of the iteration,there will be wind down costs.To one familiar with parallel linear algebra, the �rst instinct is to dismiss this overhead, or toinclude a small \fudge factor" in some modeling. In cases like doing a parallel LU decomposition[9], for example, there is a pipeline start-up when doing the horizontal broadcast of the multipliersaround a ring. The key di�erence, however, is that in that case all the nodes are busy while thepipe is beginning to grow. In this case, there are nodes completely idle until enough bulges havebeen created.The key observation to make in Figure 7 is that the boxed area does not need to be updateduntil all three bulges are going. This blocking can be used to reduce drastically the pipelinestart-up and wind-down.5Another observation to make is that if one uses more bulges S than are required to keepeveryone busy, the pipeline start-ups become less important. Furthermore, any blocking done assuggested by Figure 7 reduces pipeline start-up but not wind down.Since we have already modeled the total horizontal and vertical contribution time in x4.2.2,we would like to examine now the wasted time of nodes going idle if the code is unblocked. Westart by examining the horizontal impact of pipeline start-up.5Our current implementation does not do this, so for the remainder of this section we will assume this is notdone. 18



There are N=H block rows of the matrix. Assuming N is much larger than H, the numberof horizontal 
ops for the �rst R transforms will be roughly 10NH=C. As one marches downthe submatrix, the horizontal work decreases, but it is initially at its largest. Although it is notrequired in the equations below, we assume for simplicity of introducing them that S = R = C.The total horizontal work has already been shown to be 5N2S 
ops. The total horizontal timewas assumed previously to be (5N2=C)
 when S = R. The total speed-up then is R�C, whichis perfect.It is clear that the �rst bulge cannot have this ideal speed-up and hence we now introduceadditional time terms to re
ect wasted time. The �rst bulge, for example, working on the �rstrow, can only be done by one row of processors. The time spent is 10NH=C
. The ideal formulasuggests the time should have been 10NH=(RC)
. We must therefore consider the wasted timegiven by the real time minus the ideal time. This is10HRC (NR�N)
:When the �rst bulge reaches the second row, the second bulge can start. The two bulgesrequire 10NH and 10N(N �H) 
ops to do the horizontal work. The ideal time for this wouldbe (20NH � 10H2)=(RC)
. The real time it takes however is the time it takes to do the mostwork on one row of processors (namely the �rst row again). This time is again 10NH=C
. Thewasted time is then 10HRC (NR � 2N �H)
:When we continue this analysis for three bulges, we see that the 
ops required are 10NH,10N(N �H) and 10N(N � 2H). The ideal time would be (30NH � 30H2)=(RC)
. The wastedtime is then 10HRC (NR� 3N � 3H)
:Continuing as such we see the wasted time for when there are four bulges to be10HRC (NR� 4N � 6H)
:This continues (R� 1) steps until there are enough bulges to keep all the nodes busy. In generalthen, the wasted horizontal time for starting bulge j is10HRC (NR� 32j + j22 )
:The total horizontal start-up wasted time over all the above equations is10HRC �N � 34 � 16R� 
: (7)For simplicity, we ignore horizontal wind-down time as well as vertical start-up time. The onlyremaining item is the vertical wind-down time. This looks a lot like the horizontal Equation 7,19



except that timings are approximately (20NH=R)
:We then express the �nal vertical equivalentof Equation 7 as 20HCR �N � 34 � 16C� 
:The total overhead is for this section is therefore10HRC �R2N � 34R2 � 16R3 + 2C2N � 32C2 � 13C3� 
: (8)4.3 Overall ModelBecause the algorithm is iterative, analysis of its overall performance is di�cult. We can onlyguess at how many total iterations will be needed; faster convergence will be achieved for somematrices than for others. Furthermore, di�erent matrices have di�erent de
ation patterns, mak-ing it hard to model the reduction in size of the active matrix as the algorithm proceeds. Forthese reasons, we take a very crude approach to modeling overall performance. We shall assumethat it takes about four double iterations (bulge chases) to de
ate a pair of eigenvalues. Atthis rate, the entire job will take 2N bulge chases. Results in x2.4 suggest that this may be anoverestimate. Let us assume that these bulge chases are arranged into 2N=S super-iterations ofS bulges each. We assume further that each super-iteration acts on the whole matrix. That is,we ignore de
ations. This extremely pessimistic assumption assures that we will not overstatethe performance of the algorithm. It also excuses us from considering the load imbalances thatarise as the size of the active matrix is decreased by de
ations. Each de
ation causes a portionof the arrays holding H and Q to become inactive. As large portions of the arrays become inac-tive, processors begin to fall idle. Our model compensates for this e�ect by pretending that thecomputations are all carried out on the entire matrix, i.e. no portion of the matrix ever becomesinactive.This approach gives us no information about the e�ciency of the algorithm in terms of pro-cessor use relative to the actual 
op count, but we believe it gives a reasonable estimate of theexecution time of the algorithm.The total time to execute one super-iteration is obtained by summing (1), (3), (4), (5), (6),and (8). In terms of load balance, there are some clear advantages to taking C 6= R (e.g.lcm(R;C) = 1). However, in order to make the expressions tractable, we will now make theassumption C = R. We will also assume that S = kR, where k is an integer. This is agood choice for e�cient operation. Summing all of the expressions, we obtain the time for onesuperiteration,20N2k
R + 2NB log(R)(� + 3Bk�) + 2NH  3�+ 4Nk�R !+ kN(V + 10B)
 + 30NH
: (9)These terms correspond to 
op count, broadcast overhead, border communication, bundlingoverhead, and pipeline startup/wind-down, respectively. We have simpli�ed the last term byignoring two small negative terms in (8).The expression (9) re
ects the tradeo�s that we have already noted. B needs to be big enoughthat broadcast communication is not dominated by latency but not so big that it causes serious20



bundling overhead. H needs to be big enough that border communication is not too expensive,but not so big that the pipeline startup costs become excessive.4.4 ScalabilityLet us investigate how well the algorithm scales as N !1. For simplicity we consider here thetask of computing eigenvalues only. Similar (but better) results hold for the task of computingthe complete Schur form. As we shall see, the algorithm is ultimately not scalable, but it isnearly scalable for practical values of N .Since the amount of data is O(N2), the number of processors must be O(N2). Assuming therun time on a single processor is O(N3), the parallel run time should ideally be O(N).The processors are logically organized into R rows and C columns. We shall continue toassume that R = C. Thus we must have R = O(N). Let us say R = �N , where � is some �xedconstant satisfying 0 < �� 1. (For example, in the runs shown in Table 2 we have � = 1=1800.)As before, let S = kR be the number of double steps per super-iteration. We have S = �N ,where � = k�. Assuming 2N iterations su�ce, the number of super-iterations will be about2N=(�N) = 2=� = O(1). Thus we shall assume that the total number of super-iterations isO(1). Since the �gure 2N is only a rough estimate of the number of iterations, let us not committo the �gure 2=� quite yet. For now we shall let q denote the number of super-iterations requiredand assume that it is independent of N .Let �(N) denote the time to do one super-iteration, assuming that one can get the shifts forfree. This is about the same as (9), except that now we are just considering the time to calculatethe eigenvalues. Thus we cut the 
op count and the border communication in half. Let us assumethat B and H are large enough that we can ignore the latency terms. Then�(N) = K1N log �N +K2N +O(1);where K1 = 6k� and K2 = "k� + 3H + 10B# 10
 + 4kH��:Since � is tiny, we normally have K1 � K2. Thus the N logN term does not dominate �(N) untilN is enormous. The assumption that the shifts are free is also reasonable unless N is enormous.For example, the largest run listed in Table 2 (below) required computation of the eigenvalues ofa 32� 32 submatrix as shifts. This is a relatively trivial subtask when considered independentlyof the overall problem, considering that the dimension of the matrix is N = 14400.We conclude that even for quite large N the execution time will be well approximated byq�(N) and will appear to scale like O(N). That is, the algorithm will appear to be scalable.Only when N becomes really huge must the cost of computing shifts be taken into account.Eventually the submatrix whose eigenvalues are needed as shifts will be large enough that itseigenvalues should also be computed in parallel. Let us assume that the algorithm performsthis computation by calling itself. Let T (N) denote the time to compute the eigenvalues of amatrix of order N , including the cost of computing shifts. The shift computation for each super-iteration consists of computing the eigenvalues of a matrix of order W = 2�N , so it takes time21



T (2�N). Thus, making the simpli�cation �(N) = K3N logN (K3 = K1 +K2), we see that eachsuperiteration takes time K3N logN + T (2�N), soT (N) = qK3N logN + qT (2�N):We can calculate T (N) by unrolling this recurrence. We haveT (N) � qK3N logN(1 + 2�q + (2�q)2 + : : : (2�q)j) = qK3N logN  (2�q)j+1 � 12�q � 1 ! ;where j is the depth of the recursion. Notice that if we had 2�q < 1, we could say that thegeometric progression is bounded by 11� 2�q :This would make T (N) = O(N logN), and the algorithm would be scalable, except for theinsigni�cant factor logN . Unfortunately 2�q seems to be greater than 1, so this argument is notvalid. If we assume q = 2�, as suggested above, we have 2�q = 4. We are saved by the fact thatthe recursion is not very deep. An upper bound on j is given by (2�)jN � 1 or j � � logNlog 2� .Making this substitution for j, we �nd thatT (N) � qK32�q � 1N1+� logN;where � = � log 2�qlog 2� > 0:This shows that the algorithm is ultimately not scalable, but it is not a bad result if � is small. Ifwe assume 2�q = 4 and take � = 1=900 (as in Table 2), we have T (N) = O(N1:23 logN), whichis not too much worse than O(N). The assumption 2�q = 4 is actually a bit pessimistic. If weassume that the total number of iterations to convergence is 4N=3, as suggested by (4), we haveq = 4=(3�), and 2�q = 8=3. Then we get T (N) = O(N1:16) logN . As long as we assume that2�q is constant, the power of N approaches 1 as � ! 0. In this sense the algorithm is nearlyscalable if � is kept small.5 Performance ResultsFor most of the results in this section, only a single superiteration was performed. We have foundthat doing a single iteration tends to represent overall performance when we have run problemsto completion. The number of bulges was set at twice the least common multiple of R and C(lcm(R;C).) For square number of nodes, R = C. In all cases, the same amount of memory pernode was used (including the temporary scratch space). We provide the problem size, and thee�ciency as compared to LAHQR from LAPACK [1].In Table 2, we see the results for doing the �rst superiteration of a complete Schur decom-position on an Intel ParagonTM Supercomputer running OSF R1.4. The serial performance of22



Nodes N H B E�ciency1 1800 100 30 1.004 3600 100 30 0.929 5400 100 30 0.8816 7200 100 30 0.9025 9000 100 30 0.8936 10800 100 30 0.8949 12600 100 30 0.8964 14400 100 30 0.88Table 2: PDLAHQR Schur Decomposition Performance on the Intel Paragon SupercomputerDLAHQR in this case was 8.5 M
ops (compiled with -Knoieee -O4 -Mnoperfmon on the R5.0compilers). Note that these results are better than those previously released in ScaLAPACKversion 1.2 ALPHA. The serial performance of this code is around 10 M
ops, and e�ciencyresults are reported against this and not DLAHQR. Had they been reported against DLAHQR,the 64-node job would have shown a speed-up of 66.6. The reason for the enhanced performanceis the block application of Householder vectors in groups of 2 or 3. The reason for the blip inperformance between 9 nodes and 16 nodes was this was the arbitrary cut o� for doing the bordercommunications in parallel (see x3.2).We consider the results in Table 2 encouraging. E�ciencies remained basically the samethroughout all the runs, and the overall performance was in excess of the serial code it wasmodeled after.We brie
y compare this algorithm to the �rst successful parallel QR algorithm in [32]. Thatalgorithm achieved maximum performance when using 96 nodes, after which the nonscalabilitycaused performance degradation. The new algorithm achieves faster performance on 49 nodesand appears to scale on the Intel Paragon supercomputer.In Table 3, we see the analogous results to Table 2, but running just an eigenvalue onlyversion of the code. In this case, serial performance on the Intel Paragon system was around 8.2M
ops (for roughly half the 
ops.) These positive results may lead to even better methods infuture, since combining using HQR for �nding eigenvalues and new GEMM-based inverse iterationmethods for �nding eigenvectors [30] might lead to completing the spectrum signi�cantly fasterthan results in Table 2.Furthermore, there are better load balancing properties to the eigenvalue only code on aCartesian mapping. Some runs taken to completion on this version of the code have bettere�ciencies on the overall problem than any of their analogous timings given in the rest of thesetables. The only reason why we do not include these timings here is that we currently have nomeans of testing the accuracy of the solution, whereas all the other runs in the rest of the tablesare tested by applying the computed Schur vectors QTQT on the Schur matrix T and ensuringthat the result is close to the original Hessenberg matrix H.23



Nodes N H B E�ciency4 3600 100 30 0.969 5400 100 30 0.9016 7200 100 30 0.9325 9000 100 30 0.9236 10800 100 30 0.9149 12600 100 30 0.9164 14400 100 30 0.90Table 3: PDLAHQR Eigenvalue Only Performance on the Intel Paragon SupercomputerNodes N H B M
ops E�ciency1 1000 1000 500 47 1.002 1600 200 100 73 0.784 2000 250 100 147 0.786 3600 300 150 176 0.629 3600 200 100 283 0.6712 3600 300 150 345 0.61Table 4: PDLAHQR Schur Decomposition Performance on the IBM SP2 SupercomputerThe code also works with comparable e�ciency for a wide range of choices of R 6= C. We donot wish it to be misunderstood that simply because we have simpli�ed many equations withR = C that the code only works, or even only works well, under the condition that the number ofnodes is square. In fact, the code performs within the same ranges and e�ciencies for any numberof nodes less than 64 (with the possible minor - around 10% - performance hits to odd-balls like17, 19, etc.).In Table 4 we ran on a portion of Cornell's IBM SP2 Supercomputer. On this machine,e�ciencies did tend to drop as we increased the number of nodes. We found some of the timingserratic, and believe part of the problem was lack of dedicated time on the machine since thesenumbers were generated an interactive pool with others running other programs at the sametime. These were done on thin nodes.In Table 5 we ran on a portion of Intel's new ASCI Option Red Tera
ops technology supercom-puter. We ran problems to completion on this machine. Despite running problems to completion,the M
ops reported corresponds to actual 
ops computed. All problems except the problem runon 1 node used the exact same amount of memory per node. We also did a N = 18000 noderun on 96 nodes (in an 8 � 12 con�guration) that completed, with the right answer, in 34299seconds. For all the parallel runs, H was 100, and B was 25. The number of 
ops in these runstended to drop from 16N3 or so to around 12N3 where it leveled o�. Because of dropping 
ops,24



Nodes N M
ops Seconds E�ciency1 600 56 1.004 2200 156 1098 0.699 3300 316 1679 0.6316 4400 542 2109 0.6025 5500 815 2726 0.5836 6600 1104 3381 0.5549 7700 1392 3983 0.5164 8800 1714 4886 0.4881 9900 2052 5966 0.45100 11000 2390 6954 0.43121 12100 2757 7884 0.41144 13200 3137 9290 0.39169 14300 3464 10858 0.37196 15400 3865 11894 0.35225 16500 4180 13698 0.33Table 5: PDLAHQR Schur Decomposition on the Intel ASCI Option Red Supercomputerthe time to solution scales better than the parallel e�ciency suggests.6 ConclusionsIn this paper, we present new results for the parallel nonsymmetric QR eigenvalue problem.These new results demonstrate that this method is competitive and has a reasonable e�ciency.This code is available even though it is an enhanced version of what appeared in ScaLAPACKversion 1.2 ALPHA and will probably be in a future release. 6AcknowledgmentsThis work was initiated when Greg Henry was visiting the University of Tennessee at Knoxville,working with the ScaLAPACK project. We thank everyone involved in that project. Parallelruns were made on an Intel ParagonTM XP/S Model 140 Supercomputer and the IBM SP2 atCornell University and the IBM SP2 at Oak Ridge National Laboratory. We thank Intel, IBM,ORNL, and Cornell University. The work of David S. Watkins was supported by the NationalScience Foundation under grand DMS-9403569.6To obtain a copy of the code please send e-mail to Greg Henry at ghenry@cs.utk.edu.
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