
Statistical Performance Modeling:Case Study of the NPB 2.1 ResultsErich Strohmaier?Computer Science Department, University of Tennessee, Knoxville, TN 37996UTK-CS-97-354, March 1997Abstract. With the results of version 2.1 a consistent set of performancemeasurements of the NAS Parallel Benchmarks (NPB) are available. Un-changed portable MPI code was used for this set of 269 single measure-ments. In this study we investigate how this amount of information canbe condensed. We present a methodology for analyzing performance datanot requiring detailed knowledge of the codes. For this we study severaldi�erent generic timing models and �t the reported data. We show thatwith a joint timing model for all codes and all systems the data can be�tted reasonable well. This model also contains only a minimal set offree parameters. This method is usable in all cases where the analysis ofresults from complex application code benchmarks is necessary.1 IntroductionThe set of NAS Parallel Benchmarks (NPB) is one of the best accepted bench-marks for parallel processing [1]. End of 1995 a new version of this suite wasreleased which asked for the �rst time for performance measurements of the un-changed MPI code which is available from the NASA Ames Research Center [2].In August 1996 a �rst set of such results was released [3]. It contained an almostcomplete set of measurements of 4 codes on 4 di�erent systems for 3 di�erentproblem sizes. Such a homogeneous big set of performance data from applicationcodes is the optimal starting point for any in depth analysis of the benchmarkand systems in the set.The number of 269 single measurements immediately brings up the questionif and how this amount of information can be condensed. In previous studieswe already showed that for the older fully vendor optimized NPB 1.0 results alimited number of benchmarks would be su�cient [4] and that Amdahl's Lawdescribes these results very well [5].In this paper we study to which extend this is true for the measurementsof unchanged portable MPI code. We propose a generic timing model with aminimal number of free parameters and �t this model to the data using nonlinearregression. We evaluate the quality of our model by comparison with simplermodels with more free parameters and careful examination of the statistical? e-mail: erich@cs.utk.edu, Tel: (+1) (423) 974 0293, Fax: (+1) (423) 974 8296



properties of the obtained �ts2. A basic introduction to the statistical term usedmay be found in [6].2 Timing models for single systemsStarting point for our analysis are the measured execution times Ts;c of a sampleof n application codes c which are measured on m di�erent systems s. Thesetimes are usually functions of the number of processors p and the problem sizecharacterized by some set of input parameter n. The measured times can beseparated in a sum of execution times for di�erent computational phases ofthe execution during which basic types of computational work j like parallelcomputation, serial computation or communication take place.Ts;c(n; p) = nXj=1 ts;cj (n; p) (1)For simplicity reasons we consider in the following only the dependency onthe processor number p and not on the problem size n. In principal a similarapproach as ours can be chosen to account for the dependency on the problemsize n. In practice this is more di�cult as the metric \problem size" is not byitself as well de�ned as the number of processor. It also requires measurementsfor a reasonable number of problem sizes which are not available for the NPB.We now split each of these basic types of work j into a sum of products.One factor ui(p) of each term contains all the dependencies on p and is indexedindependent of code or system. We normalize these functions such that ui(1) = 1or ui(1) = 0. The other factors ts;cj;i are parameters depending on the combinationof code and system. Ts;c(p) = JXj=1 IXi=1 ts;cj;iui(p) (2)We call ui the \characteristic functions" as they contain all the dependencies ofthe performance on p and they therefor characterize the scaling behavior of thecode with increasing processor number p. The set of the characteristic functionsui re
ects the typical algebraic form of timing relations for parallel computing.This set of functions is not chosen because of special mathematical properties likeorthogonality but because of its relevance for the expected behavior of parallelperformance measurements.We now continue by using the following general timing model for analyzingthe measured data:Ts;c(p) = IXi=1 �s;ci ui(p) with �s;ci = JXj=1 ts;cj;i (3)2 All analysis discussed in this paper are done with the SAS statistical software package



If we analyze the performance data of a single code on a single system we willonly be able to �t the sums �s;ci . With statistical methods we will not be ableto gain information about the individual ts;cj;i [7]. This can be achieved only byanalyzing the results of a set of codes measured on a set of systems as done insection 5.We now want to use equation 3 to analyze the performance results of an ap-plication without inspecting the code. For this it is critical to select a reasonableset of characteristic functions ui such that the set can e�ectively characterize theexecution times of parallel applications. This set of functions together with theamount and quality of measured times will determine how many of the param-eters �s;ci can be �tted in a meaningful way. Calculating con�dence intervals forthe �tted parameters and analyzing the total Sum of Squares (SST), the Sumof Squares for the model (SSR) and for the remaining error (SSE) are necessaryto judge on the overall quality of the �tted model. We will use the coe�cient ofdetermination R2 = SST�SSESST for this purpose.It is also important to notice that in general not only execution times canbe analyzed this way but all performance metrices which can be split up asin equation 3. This especially includes temporal e�ciencies and dimensionlesstemporal e�ciencies which can be scaled by additional functions of p. In section 3we show that for statistical reasons it is preferable to use such derived metricesand not the measured times directly.As characteristic functions for the further analysis we use the following setwhich is collected from di�erent sources [8, 9, 10, 5]u1 = 1p2 (4)u2 = 1p (5)u3 = log(p)p (6)u4 = 1pp (7)u5 = 1 (8)u6 = log(p) (9)u7 = p (10)3 Preparation of the dataElapsed execution time is the only system and code independent de�ned perfor-mance metric. Therefor measured execution times are the natural starting pointfor any performance analysis which attempts to compare di�erent systems withseveral codes. Looking on the published execution times of the NPB 2.1 we noticea big range in the measured times3. For class A problem size (as example) mea-3 see http://www.nas.nasa.gov/NAS/NPB/



sured times range from 0.75 seconds for MG on a 128 processor IBM SP2 up to4873.7 seconds for BT on a single processor of the Power Challenge. This rangeof 4 magnitudes of orders poses a severe scale problem for any statistical methodand a transformation of this scale is required. Rather than trying model inde-pendent techniques for scale transformation we are using the following sequenceof three physically inspired scale transformations.One major source for the huge di�erences in measured times is of course theusage of a quite di�erent number of processors between 1 and 256. As we aredealing with well parallelized codes multiplication of the measured times withthe number of processor4 can be expected to have a smoothening e�ect on thedata. The observed range of this total time for class A is between 50 secondsand 30,000 seconds and thus by one magnitude of order reduced.The 
oating-point operation count Wc of all the di�erent NPB codes wasdetermined by code inspection and measurement on single processors [3]. Thevariation in this operation count is the major reason for the di�erences betweenthe execution time of the di�erent codes. Scaling measured times with the inverseof this operation count tends to equalize the scale for the di�erent codes. This isequivalent to using inverse MFlop/s values if these values are based on a constantoperation count. For class A we get a variation form 13 s/GFlop to 250 s/GFlopafter this transformation.Using processor with di�erent computational power is the major reason forthe di�erences between the times on di�erent systems. The only ad hoc avail-able information about the potential performance of a processor is it's peakperformance rpeak . Even as the peak performance is not a good approximationof the real performance a multiplication of the measured times with peak per-formance provides some correction of the scale of used values which vary afterthis transformation between 3.5 and 21 for class A.Applying all three transformation in sequence the measured execution timest(p) get transformed in a value t0(p) which is given ast0(p) = t(p) � pWc � rpeak : (11)t0 is a dimensionless value which can be interpreted as inverse temporal e�ciency.It is interesting to notice that Roger Hockney's framework of computationalsimilarity is based on a similar dimensionless temporal e�ciency [9]. The valuesof t0 now vary by a factor of 4 to 7 for the three di�erent problem size classes.This value is still moderately high but much smaller than the scale of the originalmeasured times.Next we have to inspect the sample of t0 values for outliers. These are valueswhich represent atypical measurements and are typically created by using asystem outside of it's normal mode of operation. While such measurements mightstill be correct and provide insight in the limitation of a system they can disturba statistical analysis substantially and therefor have to be removed. In the case4 For our analysis we are using the number of active processors and not the numberof allocated processors as done in the NPB report [3].



Class A Class B Class CBT LU SP MG Total BT LU SP MG Total BT LU SP MG TotalCray T3D 11 8 12 6 37 9 7 9 5 30 5 3 8 3 19IBM SP2 11 8 11 8 38 10 8 11 8 37 5 5 10 2 22Intel Paragon 5 4 7 3 19 3 4 7 2 16 0 1 2 0 3SGI PC-Array 5 6 5 6 22 4 5 4 6 19 0 3 0 2 5Total 32 26 35 23 116 26 24 31 21 102 10 12 20 7 49Table 1. Number of observations in the analysis for each of the three problem sizeclasses.of the NPB 2.1 measurements there are two clear outliers both for problem sizeclass C on the PowerChallenge Cluster. The measured performances of MG with32 processor and SP with 16 processor are by one magnitude of order lower thanother measurements on this system and we delete these two observations fromthe subsequent analysis.The number of observation remaining in the analysis is shown in table 1. Forproblem size class A and B there are on the average about 6 to 7 observationsfor each code on each system which is su�cient for a statistical analysis. Thereare however almost no measurements for two of the systems in problem class Cwhich is a clear limitation in the usability of this set of results.A �nal inspection of the plotted performance data over the number of pro-cessors shows the following observations:{ Measurements for the Cray T3D often show unstable performance valuesover the number of processors. Performance values per processor can dropor rise by about 30% for measurements with similar processor numbers.{ The PowerChallenge Array shows clearly two regimes of operation associatedwith it's hierarchical architecture. Performance within a single SMP nodetend to show super linear speedup while performance between SMP nodescan drop signi�cantly.These two facts are limits for our analysis as none of our characteristic functionsfrom equations 4{10 can model such behavior e�ectively.4 Results for individual �tsFor analyzing measurements for each pair of system and code individually wedecided to start with two parameter models. They are a compromise betweenthe very limited usefulness of one parameter models and the limited number ofobservations available for each analysis. We started �tting each possible timingmodels based on two characteristic functions separately for each code and eachsystem to the measurement. The set of function we used is given in equations 4{10. As the number of observations for many cases was quite low (� 6) there are



u1 u2 SSE R2 �1 �2log(p)=p 1=p2 26.13 0.99289 3.616 64.0561=p 1=pp 26.40 0.99282 11.595 0.5581=p 1 28.06 0.99237 14.066 0.0271=p log(p)=p 28.17 0.99234 6.443 2.4221=p log(p) 29.18 0.99206 14.516 0.0051=p p 35.41 0.99037 15.304 0.0001=pp 1=p2 57.21 0.98444 1.386 170.512Table 2. All two parameter models with an R2 � 0:98 for the class A SP results onthe Cray T3D. We show only models which are better than the one parameter modelsbuild with one of their characteristic functions ui. The total Sum of Squares (SST)is 3677.85. SSE means Sum of Squares of the remaining Error, R2 is the coe�cientof determination and a measure for the quality of the used model, �i are the �ttedparameter.always several combinations of functions which explain almost the same fractionR2 of the total sum of squares in the model. As example we show in table 2 allmeaningful combinations with an R2 � 0:98 for the class A SP results on theCray T3D. We have chosen this example as this is the pair of code and systemwhich contributes the most to the total Sum of Squares of this problem sizeclass. For class A the Sum of Squares (SS) of SP on the Cray T3D is 3677.85which is equivalent to 26.4% of the total Sum of Squares (SST) of this class.Not only in this example but in almost all cases a precise selection of a singlebest model is not possible. There is however a clear trend to models containingu2 = 1p which is characteristic for parallel work. To �nd out which characteristicfunctions might be good candidates for a joint model for all codes and systemswe �tted the same model to all combinations of code and systems and calculatedthe total SSE. In table 3 we show the SSE values for the 5 best models for eachclass together with the SSE value if taking the best individual model for eachpair of code and system. We again eliminated all models which are worse thanone parameter models build with one of their characteristic functions. Againmost of the models contain u2 = 1p . Models which contain a second functioncharacteristic for limited parallelism u4 = 1pp or u3 = log(p)p or for serial worku5 = 1 tend to �t the data better then models including parallel overheadfunctions like u6 = log(p) or u7 = p.5 Joint timing model for all systemsWe now proceed the analysis by making an additional assumption about theform of the individual times ts;cj;i from equation 3. Based on the physical analogythat time is the quotient of work divided by power we assume that the ts;cj;i arethe quotient of factors which only depend on the code wcj;i (amount of work) or



u1 u2 SSE R2 u1 u2 SSE R2Class A SST = 13937.17 Class B SST = 10769.02best best 39.14 0.99719 best best 85.17 0.992091=p 1 47.04 0.99663 1=p 1=pp 95.44 0.991141=p log(p) 48.59 0.99651 1=p 1 96.95 0.991001=p 1=pp 52.39 0.99624 1=p log(p) 99.15 0.990791=p log(p)=p 80.87 0.99420 1=p log(p)=p 101.51 0.99057log(p)=p 1=p2 103.91 0.99254 log(p)=p 1=p2 124.63 0.98843Class C SST = 4667.79best best 15.06 0.996771=p 1=pp 16.05 0.996561=p 1 16.16 0.996541=p log(p) 16.21 0.996531=p log(p)=p 16.55 0.99646log(p)=p 1=p2 23.64 0.99494Table 3. The SSE values for the best 5 two parameter models used for all observationscompared to the SSE value when using the best individual model for each pair of codeand system.the system rsj;i (power of the system).ts;cj;i = wcj;irsj;i (12)The total execution time is nowTs;c(p) = JXj=1 IXi=1 wcj;irsj;i ui(p) (13)which again can be written asTs;c(p) = IXi=1 �s;ci ui(p) with �s;ci = JXj=1 wcj;irsj;i (14)By using this product representation we have introduced an additional degree offreedom for each characteristic function in equation 13. This follows from equa-tion 14 as each �s;ci is invariant if we multiply the values of wcj;i and rsj;i for all jby an arbitrary factor. This degree of freedom has to be �xed by an additionalcondition on the parameters wcj;i and rsj;i. For simplicity reasons we choose forthis study to �x one of the system parameters wc equal to 1. This additional de-gree of freedom also implies that the absolute values of the parameters wcj;i andrsj;i by them self have now meaning as they can be manipulated by changing thenormalization. Only the ratios of these parameters are invariant to such changesand can be interpreted in a safe way. This implies that we will not be able to



derive quantities such as absolute power of a system or absolute size of a codebut only relative ratios between systems and between codes.Analyzing the full matrix of results Ts;c we can now �t values to the individualts;cj;i . The two sets of parameters work wcj;i and speed rsj;i together with thecharacteristic functions ui(p) fully describe the timing models for all codes onall systems included in the analysis. The same basic timing model (equation 14)and normalization is used for all system and code parameters which enables faircomparisons between systems and codes.Overall this product representation reduces the number of free parametersin the analysis e�ectively by a factor of nmn+m�1 compared to �tting individualmodels for each pair of the m systems and the n codes. The number of freeparameters is indeed quite small as we have for each \type of work" describedby the characteristic functions only one parameter for each code and one for eachsystem. This reduction in the free parameters represent the possible value of thismodel as it potentially can explain the same number of observations with less oreven a minimal set of free parameters. It also implies that �tting experimentaldata not necessarily lead to an overall model with the same low values of theSum of Square of the Errors (SSE) as we saw by �tting individual models to theobservations for each pair of system and code. We have to expect that the SSEvalues increase and only by the amount of increase we can judge on the qualityof our assumption.6 Results for the combined modelWe now �t all possible timing models of the form of equation 14 based on twocharacteristic functions to all measurements. It turns out that for problem sizeclass C because of the high number of missing measurements for two of thesystems no analysis comparable to class A and B is possible. We now comparethe results show in table 4 to the results for �tting individual models in table 3.u1 u2 SSE R2 u1 u2 SSE R2Class A SST = 13937.17 Class B SST=10769.021=p 1=pp 130.28 0.99065 1=p log(p)=p 134.73 0.987491=p 1 142.02 0.98981 1=p 1=pp 156.03 0.985511=p log(p)=p 146.24 0.98951 1=p 1 179.27 0.983351=p log(p) 148.84 0.98932 1=p 1=p 180.67 0.98322log(p)=p 1=p2 261.88 0.98121 1=p log(p) 185.13 0.98281Table 4. The SSE values for the best 5 two function models using the product repre-sentation from equation 12.The values of SSE which characterize the unexplained sum of square are



higher for the combined model but this was to expected as we now have only14 free parameters instead of 32. The absolute increase compared to the TotalSum of Squares (SST) is quite small for each problem size class. This is a �rststrong con�rmation that our factorization assumption from equation 12 worksquite well.We analyze and discuss now three of the overall best models in more de-tail. All three models contain u2 = 1p as �rst characteristic function. As secondfunction they contain u5 = 1 or u4 = 1pp , u3 = log(p)p . This sequence of sec-ond functions is equivalent from going from serial work to less and less limitedparallel execution.In table 5 we show the actual �tted values for the 14 free parameters togetherwith their asymptotic standard error for the class A and B. The parameters are�tted for the transformed t0 from equation 11. This means that system param-eters are scaled by the peak performance and code parameters by the singleprocessor 
oating point operation count. The parameters can be interpreted asthe inverse of processor e�ciencies and as code overhead factors. The absolutevalue of the parameters is however without any meaning. Only appropriate cho-sen quotients of them represent measurable values.We notice that the standard errors for most parameters are in the range of5% to 20% of the �tted value. For Class A only the second system parameterof the SGI PowerChallenge Array shows quite big error bars. This is certainlyrelated to the previous mentioned special behavior of the measured data for thissystem. For class B the same is true for the second system parameter of the IntelParagon. As an inspection of the measured data shows no special behavior ofthis system the most likely explanation of this large error is the small numberof measurements for this system (16 out of 102).For all systems the �rst system parameter varies only little between the threedi�erent models. If we interpret it as computational power then the IBM SP2shows always performance e�ciencies twice as large as the other systems. Thisis not always true in the second set of system parameters.Looking on the �rst set of code parameters we see a larger in
uence of thechosen model on the parameter. This corresponds to the e�ect of the secondfunctions which represent gradually di�erent limited parallelism. The secondcode parameter increases as the second function changes to more parallel work.At the same time the �rst code parameter decreases. If the single processor
oating point count which we used for scale transformation would accuratelydescribe the amount of the total computational work then all code parametersshould be equal. The values for BT, LU and MG seem indeed to be roughlyequal. The values for SP are however consistently higher especially in the secondparameter. This indicates that SP contains a substantial additional amount ofcomputational work which is only partially parallelized.Now we have to check the statistical quality of the obtained �ts. The correla-tion matrix of the parameters for the three models shows typical values of about0.5{0.7 for the �rst parameters and much smaller values for all other entries.The quantile-quantile plots for the errors are quite straight but show typically



Parameter Class Au1 = 1=prIBMSP21 1. 1. 1.rParagon1 0.4055 � 0.0257 0.3704 � 0.0316 0.3650 � 0.0406rCrayT3D1 0.4249 � 0.0243 0.4103 � 0.0311 0.4655 � 0.0467rPCArray1 0.4822 � 0.0313 0.4082 � 0.0372 0.3715 � 0.0406wBT1 4.5723 � 0.2967 4.0087 � 0.3646 3.7135 � 0.4162wLU1 4.0230 � 0.2491 3.5062 � 0.2973 3.4295 � 0.3668wSP1 5.3556 � 0.3079 4.1202 � 0.3373 3.5209 � 0.3887wMG1 4.6719 � 0.2928 3.9703 � 0.3467 3.4080 � 0.3729u2 = 1 u2 = 1=pp u2 = log(p)=prIBMSP22 1. 1. 1.rParagon2 1.5382 � 0.3595 1.2210 � 0.2331 1.0122 � 0.2003rCrayT3D2 1.9133 � 0.2657 1.1064 � 0.1258 0.6986 � 0.0791rPCArray2 2.3510 � 3.6283 3.8782 � 4.9177 4.0372 � 3.7810wBT2 0.0125 � 0.0055 0.1716 � 0.0561 0.4799 � 0.1143wLU2 0.0327 � 0.0067 0.3194 � 0.0637 0.5768 � 0.1257wSP2 0.0665 � 0.0072 0.7525 � 0.0705 1.5352 � 0.1540wMG2 0.0140 � 0.0066 0.2350 � 0.0667 0.7503 � 0.1323Parameter Class Bu1 = 1=prIBMSP21 1. 1. 1.rParagon1 0.4007 � 0.03295 0.3816 � 0.0381 0.3810 � 0.0420rCrayT3D1 0.4790 � 0.03536 0.5406 � 0.0533 0.6696 � 0.1024rPCArray1 0.4565 � 0.03413 0.4521 � 0.0408 0.4455 � 0.0416wBT1 4.8398 � 0.38984 4.5633 � 0.4261 4.3062 � 0.4130wLU1 4.2274 � 0.31716 4.2681 � 0.3861 4.3097 � 0.4034wSP1 5.7293 � 0.40238 5.1657 � 0.4597 4.9873 � 0.4747wMG1 4.0487 � 0.32420 3.4547 � 0.3751 3.1617 � 0.3677u2 = 1 u2 = 1=pp u2 = log(p)=prIBMSP22 1. 1. 1.rParagon2 6.5208 � 18.07674 2.9015 � 3.8635 1.8887 � 1.8287rCrayT3D2 1.0531 � 0.32794 0.5371 � 0.1433 0.3346 � 0.0878rPCArray2 0.1823 � 0.08624 0.3431 � 0.1263 0.4218 � 0.1318wBT2 0.0036 � 0.00496 0.0893 � 0.0435 0.2713 � 0.0857wLU2 0.0074 � 0.00557 0.0594 � 0.0473 0.1576 � 0.0871wSP2 0.0291 � 0.00845 0.3063 � 0.0811 0.6151 � 0.1553wMG2 0.0199 � 0.00713 0.2595 � 0.0745 0.5476 � 0.1429Table 5. The �tted parameter with their asymptotic standard error for the best threecombined models. The values shown are parameters for transformed t0. This meansthat system parameters are scaled by the peak performance and code parameters bythe single processor 
oating point operation count.



-3

-2

-1

0

1

2

3

4

5

2 4 6 8 10 12 14 16 18 20 22

R
es

id
ua

ls

predicted t’

Class A

Cray T3D
IBM SP2

Intel Paragon
SGI R8000 Array

Fig. 1. Distribution of the residuals over the predicted values for the model build with1=p and 1=pp for problem size class A.some outliers at the higher end of the curve. As it is not feasible to visualizethe amount of data involved in the whole analysis we present as only �guresthe values of the residuals versus the predicted values for one of the models andproblem size class A in �gure 1. The maximum relative error of the predictedvalues is about 30% with only one value above 30% and the mean value of therelative error is only 7%.7 ConclusionsIn this paper we present a methodology for analyzing performance measurementswithout detailed knowledge of the used codes. It is based on the usage of generictiming models build with characteristic function which are typical for the alge-braic form of timing equation in parallel computing. We use this methodologyto analyze the NPB 2.1 results. Our results can be summarized as follows:{ Using a sequence of physically motivated transformations solves the scaleproblem of the measured times.{ Analyzing each pair of system and code separately between 99.2% and 99.7%of the total Sum of Square (SST) can be explained with individual twoparameter functions. This model has 32 free parameters for each class.{ Using a joint timing model with only 14 free parameter 99.1% of the SST ofclass A and 98.7% of the SST of class B can be explained by this model.



{ Typical standard error for the �tted parameter are in the range of 10%. Onlyone parameter per class is not signi�cantly di�erent from 0.{ The maximum relative error of the predicted values is about 30% and themean value of the relative error is 7%.{ The average e�ciency of the SP2 processor is more than twice as high as forthe other processors.{ The simulated CFD application SP contains a substantial amount of workwhich is not included in the single processor 
oating point counts.{ Limitations of the model are strongly varying measurements on the CrayT3D and strong e�ects of the hierarchical architecture for the SGI R8000Cluster.This methodology for empiric modeling of performance measurements doesnot require detailed analysis of the implementations of the code. This makesthis method to a good alternative in all cases where the analysis of results fromcomplex application code benchmarks is necessary.References1. D. Bailey, J. Barton, T. Lasinski, and H. Simon (editors). The NAS parallel bench-marks. Technical Report RNR-91-02, NASA Ames Research Center, Mo�ett Field,CA 94035, January 1991.2. D. Bailey, T. Harris, W. Saphir, R. van der Wjingaart, A. Woo and M. Yarrow.The NAS parallel benchmarks 2.0. Technical Report NAS-95-020, NASA AmesResearch Center, Mo�ett Field, CA 94035, December 1995.3. W. Saphir, A. Woo and M. Yarrow. The NAS parallel benchmarks 2.1 Results.Technical Report NAS-96-01, NASA Ames Research Center, Mo�ett Field, CA94035, August 1996.4. Horst D. Simon and Erich Strohmaier. Statistical Analysis of NAS Parallel Bench-marks and LINPACK Results. In Bob Hertzberger and Guiseppe Serazzi, editors,High-Performance Computing and Networking, pages 626{633, May 1995.5. Strohmaier, Erich. Using Computational Similarity to Analyze the PerformanceData of the NAS Parallel Benchmarks. Technical Report 44, Rechenzentrum derUniversitaet Mannheim, April ,1995,6. Raj Jain. The Art of Computer Systems Performance Analysis. Wiley, 19917. Strohmaier, Erich. Extending the Concept of Computational Similarity for Analyz-ing Complex Benchmarks. Technical Report 43, Rechenzentrum der UniversitaetMannheim, April ,1995,8. Vipin Kumar et al.. Introduction to Parallel Computing: Design and analysis ofparallel algorithms. Benjamin/Cummings, 1994.9. R.W. Hockney. The Science of Computer Benchmarking. SIAM, Philadelphia,1996.10. Jurgen Brehm and Patrick H. Worley and Manish Madhukar. Performance Mod-eling for SPMD Message-Passing Programs. Technical Report TM-13254, OakRidge National Laboratory, June 1996This article was processed using the LATEX macro package with LLNCS style


