Statistical Performance Modeling:
Case Study of the NPB 2.1 Results

Erich Strohmaier*

Computer Science Department, University of Tennessee, Knoxville, TN 37996

UTK-CS-97-354, March 1997

Abstract. With the results of version 2.1 a consistent set of performance
measurements of the NAS Parallel Benchmarks (NPB) are available. Un-
changed portable MPI code was used for this set of 269 single measure-
ments. In this study we investigate how this amount of information can
be condensed. We present a methodology for analyzing performance data
not requiring detailed knowledge of the codes. For this we study several
different generic timing models and fit the reported data. We show that
with a joint timing model for all codes and all systems the data can be
fitted reasonable well. This model also contains only a minimal set of
free parameters. This method is usable in all cases where the analysis of
results from complex application code benchmarks is necessary.

1 Introduction

The set of NAS Parallel Benchmarks (NPB) is one of the best accepted bench-
marks for parallel processing [1]. End of 1995 a new version of this suite was
released which asked for the first time for performance measurements of the un-
changed MPI code which is available from the NASA Ames Research Center [2].
In August 1996 a first set of such results was released [3]. It contained an almost
complete set of measurements of 4 codes on 4 different systems for 3 different
problem sizes. Such a homogeneous big set of performance data from application
codes is the optimal starting point for any in depth analysis of the benchmark
and systems in the set.

The number of 269 single measurements immediately brings up the question
if and how this amount of information can be condensed. In previous studies
we already showed that for the older fully vendor optimized NPB 1.0 results a
limited number of benchmarks would be sufficient [4] and that Amdahl’s Law
describes these results very well [5].

In this paper we study to which extend this is true for the measurements
of unchanged portable MPI code. We propose a generic timing model with a
minimal number of free parameters and fit this model to the data using nonlinear
regression. We evaluate the quality of our model by comparison with simpler
models with more free parameters and careful examination of the statistical

* e-mail: erich@cs.utk.edu, Tel: (+1) (423) 974 0293, Fax: (+1) (423) 974 8296

properties of the obtained fits?. A basic introduction to the statistical term used
may be found in [6].

2 Timing models for single systems

Starting point for our analysis are the measured execution times T . of a sample
of n application codes ¢ which are measured on m different systems s. These
times are usually functions of the number of processors p and the problem size
characterized by some set of input parameter n. The measured times can be
separated in a sum of execution times for different computational phases of
the execution during which basic types of computational work j like parallel
computation, serial computation or communication take place.

T, (n;p) = Z t2(n; p) (1)

For simplicity reasons we consider in the following only the dependency on
the processor number p and not on the problem size n. In principal a similar
approach as ours can be chosen to account for the dependency on the problem
size n. In practice this is more difficult as the metric “problem size” is not by
itself as well defined as the number of processor. It also requires measurements
for a reasonable number of problem sizes which are not available for the NPB.

We now split each of these basic types of work j into a sum of products.
One factor u;(p) of each term contains all the dependencies on p and is indexed
independent of code or system. We normalize these functions such that u;(1) =1
or u;(1) = 0. The other factors tjf are parameters depending on the combination
of code and system.

1
Toelp) = D) t55uip) (2)

=1 =1

We call u; the “characteristic functions” as they contain all the dependencies of
the performance on p and they therefor characterize the scaling behavior of the
code with increasing processor number p. The set of the characteristic functions
u; reflects the typical algebraic form of timing relations for parallel computing.
This set of functions is not chosen because of special mathematical properties like
orthogonality but because of its relevance for the expected behavior of parallel
performance measurements.

We now continue by using the following general timing model for analyzing
the measured data:

1 J
Toelp) =D 67 ui(p) with 67°=Y 3¢ (3)
=1 7j=1

2 All analysis discussed in this paper are done with the SAS statistical software package

If we analyze the performance data of a single code on a single system we will
only be able to fit the sums ¢;°. With statistical methods we will not be able
to gain information about the individual tjf [7]. This can be achieved only by
analyzing the results of a set of codes measured on a set of systems as done in
section d.

We now want to use equation 3 to analyze the performance results of an ap-
plication without inspecting the code. For this it is critical to select a reasonable
set of characteristic functions u; such that the set can effectively characterize the
execution times of parallel applications. This set of functions together with the
amount and quality of measured times will determine how many of the param-
eters 9;°° can be fitted in a meaningful way. Calculating confidence intervals for
the fitted parameters and analyzing the total Sum of Squares (SST), the Sum
of Squares for the model (SSR) and for the remaining error (SSE) are necessary
to judge on the overall quality of the fitted model. We will use the coefficient of
determination R? = 25L_55E for this purpose.

It is also important to notice that in general not only execution times can
be analyzed this way but all performance metrices which can be split up as
in equation 3. This especially includes temporal efficiencies and dimensionless
temporal efficiencies which can be scaled by additional functions of p. In section 3
we show that for statistical reasons it is preferable to use such derived metrices
and not the measured times directly.

As characteristic functions for the further analysis we use the following set
which is collected from different sources [8, 9, 10, 5]

1
Uy = }? (4)
1
U2 = 5 (5)
log(p)
g =— (6)
1
ug = 75 (7)
Us = 1 (8)
ug = log(p) 9)
ur =p (10)

3 Preparation of the data

Elapsed execution time is the only system and code independent defined perfor-
mance metric. Therefor measured execution times are the natural starting point
for any performance analysis which attempts to compare different systems with
several codes. Looking on the published execution times of the NPB 2.1 we notice
a big range in the measured times®. For class A problem size (as example) mea-

% see http://www.nas.nasa.gov/NAS/NPB/

sured times range from 0.75 seconds for MG on a 128 processor IBM SP2 up to
4873.7 seconds for BT on a single processor of the Power Challenge. This range
of 4 magnitudes of orders poses a severe scale problem for any statistical method
and a transformation of this scale is required. Rather than trying model inde-
pendent techniques for scale transformation we are using the following sequence
of three physically inspired scale transformations.

One major source for the huge differences in measured times is of course the
usage of a quite different number of processors between 1 and 256. As we are
dealing with well parallelized codes multiplication of the measured times with
the number of processor* can be expected to have a smoothening effect on the
data. The observed range of this total time for class A is between 50 seconds
and 30,000 seconds and thus by one magnitude of order reduced.

The floating-point operation count W, of all the different NPB codes was
determined by code inspection and measurement on single processors [3]. The
variation in this operation count is the major reason for the differences between
the execution time of the different codes. Scaling measured times with the inverse
of this operation count tends to equalize the scale for the different codes. This is
equivalent to using inverse MFlop/s values if these values are based on a constant
operation count. For class A we get a variation form 13 s/GFlop to 250 s/GFlop
after this transformation.

Using processor with different computational power is the major reason for
the differences between the times on different systems. The only ad hoc avail-
able information about the potential performance of a processor is it’s peak
performance r,¢q. Even as the peak performance is not a good approximation
of the real performance a multiplication of the measured times with peak per-
formance provides some correction of the scale of used values which vary after
this transformation between 3.5 and 21 for class A.

Applying all three transformation in sequence the measured execution times
t(p) get transformed in a value t'(p) which is given as

tl(p) = P * I'peak - (].].)

t' is a dimensionless value which can be interpreted as inverse temporal efficiency.
It is interesting to notice that Roger Hockney’s framework of computational
similarity is based on a similar dimensionless temporal efficiency [9]. The values
of t' now vary by a factor of 4 to 7 for the three different problem size classes.
This value is still moderately high but much smaller than the scale of the original
measured times.

Next we have to inspect the sample of ¢’ values for outliers. These are values
which represent atypical measurements and are typically created by using a
system outside of it’s normal mode of operation. While such measurements might
still be correct and provide insight in the limitation of a system they can disturb
a statistical analysis substantially and therefor have to be removed. In the case

4 For our analysis we are using the number of active processors and not the number
of allocated processors as done in the NPB report [3].

Class A Class B Class C
BT LU SP MG|Total||BT LU SP MG|Total|{|BT LU SP MG|Total
Cray T3D 11 812 6 371 9 7 9 5 30 5 3 8 3 19
IBM SP2 11 8 11 8 38({ 10 8 11 8 37 5 510 2 22
Intel Paragon | 5 4 7 3| 19| 3 4 7 2| 16/ 0 1 2 O
SGI PC-Array| 5 6 5 6 22/ 4 5 4 6 19 0 3 0 2 5
Total 32 26 35 23| 116| 26 24 31 21| 102{ 10 12 20 7| 49

Table 1. Number of observations in the analysis for each of the three problem size
classes.

of the NPB 2.1 measurements there are two clear outliers both for problem size
class C on the PowerChallenge Cluster. The measured performances of MG with
32 processor and SP with 16 processor are by one magnitude of order lower than
other measurements on this system and we delete these two observations from
the subsequent analysis.

The number of observation remaining in the analysis is shown in table 1. For
problem size class A and B there are on the average about 6 to 7 observations
for each code on each system which is sufficient for a statistical analysis. There
are however almost no measurements for two of the systems in problem class C
which is a clear limitation in the usability of this set of results.

A final inspection of the plotted performance data over the number of pro-
cessors shows the following observations:

— Measurements for the Cray T3D often show unstable performance values
over the number of processors. Performance values per processor can drop
or rise by about 30% for measurements with similar processor numbers.

— The PowerChallenge Array shows clearly two regimes of operation associated
with it’s hierarchical architecture. Performance within a single SMP node
tend to show super linear speedup while performance between SMP nodes
can drop significantly.

These two facts are limits for our analysis as none of our characteristic functions
from equations 4-10 can model such behavior effectively.

4 Results for individual fits

For analyzing measurements for each pair of system and code individually we
decided to start with two parameter models. They are a compromise between
the very limited usefulness of one parameter models and the limited number of
observations available for each analysis. We started fitting each possible timing
models based on two characteristic functions separately for each code and each
system to the measurement. The set of function we used is given in equations 4—
10. As the number of observations for many cases was quite low (< 6) there are

U w | SSE R o 55
log(p)/p 1/p° |26.13 0.99289] 3.616 64.056
1/p 1/\/p |26.40 0.99282[11.595 0.558
1/p 1 |28.06 0.99237|14.066 0.027
1/p log(p)/p|28.17 0.99234| 6.443 2.422
1/p log(p) |29.18 0.99206(14.516 0.005
1/p p |35.410.99037|15.304 0.000
1//p 1/p* |57.21 0.98444| 1.386 170.512

Table 2. All two parameter models with an R? > 0.98 for the class A SP results on
the Cray T3D. We show only models which are better than the one parameter models
build with one of their characteristic functions w;. The total Sum of Squares (SST)
is 3677.85. SSE means Sum of Squares of the remaining Error, R? is the coefficient
of determination and a measure for the quality of the used model, §; are the fitted
parameter.

always several combinations of functions which explain almost the same fraction
R? of the total sum of squares in the model. As example we show in table 2 all
meaningful combinations with an R? > 0.98 for the class A SP results on the
Cray T3D. We have chosen this example as this is the pair of code and system
which contributes the most to the total Sum of Squares of this problem size
class. For class A the Sum of Squares (SS) of SP on the Cray T3D is 3677.85
which is equivalent to 26.4% of the total Sum of Squares (SST) of this class.
Not only in this example but in almost all cases a precise selection of a single
best model is not possible. There is however a clear trend to models containing
uy = L which is characteristic for parallel work. To find out which characteristic
functions might be good candidates for a joint model for all codes and systems
we fitted the same model to all combinations of code and systems and calculated
the total SSE. In table 3 we show the SSE values for the 5 best models for each
class together with the SSE value if taking the best individual model for each
pair of code and system. We again eliminated all models which are worse than
one parameter models build with one of their characteristic functions. Again
most of the models contain us = %. Models which contain a second function

. l .
characteristic for limited parallelism w, = Lp or ug = %(p) or for serial work

us; = 1 tend to fit the data better then models including parallel overhead
functions like ug = log(p) or ur = p.

5 Joint timing model for all systems

We now proceed the analysis by making an additional assumption about the
form of the individual times 77 from equation 3. Based on the physical analogy
that time is the quotient of work divided by power we assume that the ¢77 are
the quotient of factors which only depend on the code w$; (amount of work) or

| UL Uus | SSE RZH UL Uus | SSE Rz|
Class A SST = 13937.17 Class B SST = 10769.02
best best 39.14 0.99719|| best best 85.17 0.99209
1/p 1 47.04 0.99663 1/p 1/\/]3 95.44 0.99114
1/p log(p) | 48.59 0.99651|| 1/p 1 96.95 0.99100
Ip /P | 52.39 099624 1/p log(p) | 99.15 0.99079
1/p log(p)/p| 80.87 0.99420|| 1/p log(p)/p|101.51 0.99057
log(p)/p 1/p® |103.91 0.99254||log(p)/p 1/p> [124.63 0.98843

Class C SST = 4667.79

best best [15.06 0.99677

1/p 1/\/p [16.05 0.99656

1/p 1 16.16 0.99654

1/p log(p) |16.21 0.99653

1/p log(p)/p|16.55 0.99646

log(p)/p 1/p* [23.64 0.99494

Table 3. The SSE values for the best 5 two parameter models used for all observations
compared to the SSE value when using the best individual model for each pair of code
and system.

the system 77 ; (power of the system).

8 = (12)
The total execution time is now
J w -
,
Toelp) =D > —Fuilp) (13)
7j=11i=1 J,0
which again can be written as
I J we -
_ s,c, . s,c __ i
Ts..(p) = 2(2 ui(p) with 9, = Z; " (14)
1=]:)

By using this product representation we have introduced an additional degree of
freedom for each characteristic function in equation 13. This follows from equa-
tion 14 as each ¢;"" is invariant if we multiply the values of w$, and 7%, for all j
by an arbitrary factor. This degree of freedom has to be fixed by an additional
condition on the parameters wf,; and r; . For simplicity reasons we choose for
this study to fix one of the system parameters w® equal to 1. This additional de-
gree of freedom also implies that the absolute values of the parameters w} ; and
r;; by them self have now meaning as they can be manipulated by changing the
normalization. Only the ratios of these parameters are invariant to such changes
and can be interpreted in a safe way. This implies that we will not be able to

derive quantities such as absolute power of a system or absolute size of a code
but only relative ratios between systems and between codes.

Analyzing the full matrix of results T . we can now fit values to the individual
t7;- The two sets of parameters work w¢, and speed r?, together with the
characteristic functions u;(p) fully describe the timing models for all codes on
all systems included in the analysis. The same basic timing model (equation 14)
and normalization is used for all system and code parameters which enables fair
comparisons between systems and codes.

Overall this product representation reduces the number of free parameters
in the analysis effectively by a factor of = compared to fitting individual
models for each pair of the m systems and the n codes. The number of free
parameters is indeed quite small as we have for each “type of work” described
by the characteristic functions only one parameter for each code and one for each
system. This reduction in the free parameters represent the possible value of this
model as it potentially can explain the same number of observations with less or
even a minimal set of free parameters. It also implies that fitting experimental
data not necessarily lead to an overall model with the same low values of the
Sum of Square of the Errors (SSE) as we saw by fitting individual models to the
observations for each pair of system and code. We have to expect that the SSE
values increase and only by the amount of increase we can judge on the quality
of our assumption.

6 Results for the combined model

We now fit all possible timing models of the form of equation 14 based on two
characteristic functions to all measurements. It turns out that for problem size
class C because of the high number of missing measurements for two of the
systems no analysis comparable to class A and B is possible. We now compare
the results show in table 4 to the results for fitting individual models in table 3.

| w u; | SSE Rui uy | SSE R
Class A SST = 13937.17|| Class B |SST=10769.02
1/p 1/\/p [130.28 0.99065(|1/p log(p)/p|134.73 0.98749
1/p 1 142.02 0.98981||1/p 1//p |156.03 0.98551

1/p log(p)/p|146.24 0.98951||1/p 1 179.27 0.98335

1/p log(p) |148.84 0.98932||1/p 1/p [180.67 0.98322
log(p)/p 1/p® |261.88 0.98121||1/p log(p) |185.13 0.98281

Table 4. The SSE values for the best 5 two function models using the product repre-
sentation from equation 12.

The values of SSE which characterize the unexplained sum of square are

higher for the combined model but this was to expected as we now have only
14 free parameters instead of 32. The absolute increase compared to the Total
Sum of Squares (SST) is quite small for each problem size class. This is a first
strong confirmation that our factorization assumption from equation 12 works
quite well.

We analyze and discuss now three of the overall best models in more de-
tail. All three models contain us = % as first characteristic function. As second

log(p)

function they contain us = 1 or uy = uz = == This sequence of sec-

)
ond functions is equivalent from going fr\(/)ﬁm serial work to less and less limited
parallel execution.

In table 5 we show the actual fitted values for the 14 free parameters together
with their asymptotic standard error for the class A and B. The parameters are
fitted for the transformed ¢’ from equation 11. This means that system param-
eters are scaled by the peak performance and code parameters by the single
processor floating point operation count. The parameters can be interpreted as
the inverse of processor efficiencies and as code overhead factors. The absolute
value of the parameters is however without any meaning. Only appropriate cho-
sen quotients of them represent measurable values.

We notice that the standard errors for most parameters are in the range of
5% to 20% of the fitted value. For Class A only the second system parameter
of the SGI PowerChallenge Array shows quite big error bars. This is certainly
related to the previous mentioned special behavior of the measured data for this
system. For class B the same is true for the second system parameter of the Intel
Paragon. As an inspection of the measured data shows no special behavior of
this system the most likely explanation of this large error is the small number
of measurements for this system (16 out of 102).

For all systems the first system parameter varies only little between the three
different models. If we interpret it as computational power then the IBM SP2
shows always performance efficiencies twice as large as the other systems. This
is not always true in the second set of system parameters.

Looking on the first set of code parameters we see a larger influence of the
chosen model on the parameter. This corresponds to the effect of the second
functions which represent gradually different limited parallelism. The second
code parameter increases as the second function changes to more parallel work.
At the same time the first code parameter decreases. If the single processor
floating point count which we used for scale transformation would accurately
describe the amount of the total computational work then all code parameters
should be equal. The values for BT, LU and MG seem indeed to be roughly
equal. The values for SP are however consistently higher especially in the second
parameter. This indicates that SP contains a substantial additional amount of
computational work which is only partially parallelized.

Now we have to check the statistical quality of the obtained fits. The correla-
tion matrix of the parameters for the three models shows typical values of about
0.5-0.7 for the first parameters and much smaller values for all other entries.
The quantile-quantile plots for the errors are quite straight but show typically

Parameter Class A
w =1/p
pIBMSP2 1. 1. 1.
plaragen | .4055 + 0.0257 {0.3704 + 0.0316/0.3650 4 0.0406
FIrevTED 10,4249 £ 0.0243 [0.4103 £ 0.0311{0.4655 + 0.0467
pPCATTeY 10,4822 + 0.0313 [0.4082 £ 0.0372|0.3715 + 0.0406
wPT 45723 £+ 0.2967 |4.0087 + 0.3646|3.7135 + 0.4162
wfY 4.0230 £ 0.2491 (3.5062 + 0.2973|3.4295 =+ 0.3668
wi? 5.3556 £ 0.3079 [4.1202 % 0.3373|3.5209 % 0.3887
wM¢ 4.6719 £ 0.2928 [3.9703 £ 0.3467|3.4080 + 0.3729
uy =1 uz =1/\/p uz = log(p)/p
L BMSP2 1. 1. 1.
pParesen 115382 4 0.3595 |1.2210 =+ 0.2331]1.0122 + 0.2003
rSTvTEP 11,9133 £ 0.2657 |1.1064 =+ 0.1258]0.6986 + 0.0791
ry CATTeY 12,3510 + 3.6283 |3.8782 & 4.9177|4.0372 + 3.7810
wBT 0.0125 % 0.0055 [0.1716 =+ 0.0561|0.4799 + 0.1143
wk? 0.0327 + 0.0067 |0.3194 + 0.0637|0.5768 + 0.1257
wst 0.0665 £ 0.0072 |0.7525 % 0.0705|1.5352 £ 0.1540
wh@ 0.0140 =+ 0.0066 |0.2350 =% 0.0667|0.7503 =+ 0.1323
Parameter Class B
w =1/p
rIBMSP2 1. 1. 1.
Freresen 10,4007 £ 0.03295 |0.3816 =+ 0.0381/0.3810 % 0.0420
CrayT8D | 04790 + 0.03536 |0.5406 + 0.0533|0.6696 + 0.1024
pPCATTeY 10,4565 + 0.03413 [0.4521 £ 0.0408|0.4455 + 0.0416
wPT 4.8398 £ 0.38984 |4.5633 £ 0.4261[4.3062 %+ 0.4130
wk? 4.2274 + 0.31716 |4.2681 + 0.3861[4.3097 + 0.4034
wi? 5.7293 + 0.40238 [5.1657 + 0.4597|4.9873 =+ 0.4747
wM@ 4.0487 =+ 0.32420 |3.4547 + 0.3751(3.1617 + 0.3677
uy =1 uy =1//p | us =log(p)/p
P BMSP2 1. 1. 1.
ryeTH9Om 16,5208 + 18.07674(2.9015 + 3.8635(1.8887 + 1.8287
§revT3l 11,0531 4 0.32794 |0.5371 =+ 0.1433[0.3346 + 0.0878
pPOATTeY 101823 + 0.08624 |0.3431 =+ 0.1263]0.4218 + 0.1318
wPT 0.0036 £ 0.00496 |0.0893 £ 0.0435[0.2713 + 0.0857
wV 0.0074 =+ 0.00557 |0.0594 =+ 0.0473[0.1576 + 0.0871
ws? 0.0291 =+ 0.00845 |0.3063 £ 0.0811[0.6151 % 0.1553
wh@ 0.0199 =+ 0.00713 |0.2595 + 0.0745(0.5476 % 0.1429

Table 5. The fitted parameter with their asymptotic standard error for the best three
combined models. The values shown are parameters for transformed ¢'. This means
that system parameters are scaled by the peak performance and code parameters by
the single processor floating point operation count.

Class A

5 T T T T
<
Cray T3D ©
4+ IBM SP2 + |
Intel Paragon ©
x SGI R8000 Array x
3r o0 |
2 x i a
l) m
g 0 °
S 1r + x o . E
[%] +
&) . . 4 x a} . o 0o ° N
0 T e Tawl e
+ + * o o
Fot JXOO M o
;r+ + o >><§°o > g 04 o o
-1k ® N o h
2<(o, < S
©
o O © o
2+ i
o
_3 1 1 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20 22
predicted t'

Fig. 1. Distribution of the residuals over the predicted values for the model build with
1/p and 1/,/p for problem size class A.

some outliers at the higher end of the curve. As it is not feasible to visualize
the amount of data involved in the whole analysis we present as only figures
the values of the residuals versus the predicted values for one of the models and
problem size class A in figure 1. The maximum relative error of the predicted
values is about 30% with only one value above 30% and the mean value of the
relative error is only 7%.

7 Conclusions

In this paper we present a methodology for analyzing performance measurements
without detailed knowledge of the used codes. It is based on the usage of generic
timing models build with characteristic function which are typical for the alge-
braic form of timing equation in parallel computing. We use this methodology
to analyze the NPB 2.1 results. Our results can be summarized as follows:

— Using a sequence of physically motivated transformations solves the scale
problem of the measured times.

— Analyzing each pair of system and code separately between 99.2% and 99.7%
of the total Sum of Square (SST) can be explained with individual two
parameter functions. This model has 32 free parameters for each class.

— Using a joint timing model with only 14 free parameter 99.1% of the SST of
class A and 98.7% of the SST of class B can be explained by this model.

Typical standard error for the fitted parameter are in the range of 10%. Only
one parameter per class is not significantly different from 0.

The maximum relative error of the predicted values is about 30% and the
mean value of the relative error is 7%.

The average efficiency of the SP2 processor is more than twice as high as for
the other processors.

The simulated CFD application SP contains a substantial amount of work
which is not included in the single processor floating point counts.
Limitations of the model are strongly varying measurements on the Cray
T3D and strong effects of the hierarchical architecture for the SGI R8000
Cluster.

This methodology for empiric modeling of performance measurements does

not require detailed analysis of the implementations of the code. This makes
this method to a good alternative in all cases where the analysis of results from
complex application code benchmarks is necessary.

References

1.

10.

D. Bailey, J. Barton, T. Lasinski, and H. Simon (editors). The NAS parallel bench-
marks. Technical Report RNR-91-02, NASA Ames Research Center, Moffett Field,
CA 94035, January 1991.

D. Bailey, T. Harris, W. Saphir, R. van der Wjingaart, A. Woo and M. Yarrow.
The NAS parallel benchmarks 2.0. Technical Report NAS-95-020, NASA Ames
Research Center, Moffett Field, CA 94035, December 1995.

W. Saphir, A. Woo and M. Yarrow. The NAS parallel benchmarks 2.1 Results.
Technical Report NAS-96-01, NASA Ames Research Center, Moffett Field, CA
94035, August 1996.

Horst D. Simon and Erich Strohmaier. Statistical Analysis of NAS Parallel Bench-
marks and LINPACK Results. In Bob Hertzberger and Guiseppe Serazzi, editors,
High-Performance Computing and Networking, pages 626—633, May 1995.
Strohmaier, Erich. Using Computational Similarity to Analyze the Performance
Data of the NAS Parallel Benchmarks. Technical Report 44, Rechenzentrum der
Universitaet Mannheim, April ,1995,

Raj Jain. The Art of Computer Systems Performance Analysis. Wiley, 1991
Strohmaier, Erich. Extending the Concept of Computational Similarity for Analyz-
ing Complex Benchmarks. Technical Report 43, Rechenzentrum der Universitaet
Mannheim, April ,1995,

Vipin Kumar et al.. Introduction to Parallel Computing: Design and analysis of
parallel algorithms. Benjamin/Cummings, 1994.

R.W. Hockney. The Science of Computer Benchmarking. SIAM, Philadelphia,
1996.

Jurgen Brehm and Patrick H. Worley and Manish Madhukar. Performance Mod-
eling for SPMD Message-Passing Programs. Technical Report TM-13254, Oak
Ridge National Laboratory, June 1996

This article was processed using the INTEX macro package with LLNCS style

