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AbstractComputer simulations are used in landscape ecology to simulate the e�ects of hu-man land-use decisions on the environment. Such decisions are inuenced by bothecological and socioeconomic factors which can be represented by spatially explicitmultidisciplinary data. The Land-Use Change Analysis System (or LUCAS) wasdeveloped to study the e�ects of land-use on landscape structure in such areasas the Little Tennessee River Basin in western North Carolina and the OlympicPeninsula of Washington state. These e�ects include land-cover change and specieshabitat suitability. Using a geographic information system (GIS) to store, displayand analyze map layers derived from remotely sensed images, census and ownershipmaps, topological maps, and output from econometric models, a parallel/distributedversion of LUCAS (pLUCAS) was developed for simulations on a network of work-stations. Targeting distributed computational environments reects the resourcesavailable to most land-use planners, forestry personnel, and wildlife managers. Aperformance evaluation of two pLUCAS distributed models on an ATM-based net-work of 12 SUN Ultra-2 workstations is presented. Particular emphasis is given tothe range of speed improvements (relative to serial runs on a single SUN Ultra-2workstation) that can be obtained using the PVM or MPI message-passing envi-ronments.Keywords: ATM-based network of workstations, distributed computingenvironment, ecological and socioeconomic factors, land-cover change simulation,MPI, parallel implementations, PVM.
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1 IntroductionHumans can have a direct inuence on changes in the natural environment.One approach toward a better understanding of the the e�ects of human land-use decisions on the environment is to consider both ecological and socioeco-nomic factors. Such a multidisciplinary approach was taken by the Man andthe Biosphere (MAB) project [2], whose goal was to analyze the environmentalconsequences of alternative land-use management scenarios in two di�erent ge-ographic regions: the Little Tennessee River Basin (LTRB) in North Carolinaand the Olympic Peninsula in Washington State.The MAB approach involved the integration of disciplines such as ecology, eco-nomics, sociology, and computer science to evaluate the impacts of land-use.This integration also required that data from the various disciplines share acompatible representation. Such forms include tabular and spatial databases,results of mathematical models, spatial models and expert opinions [2,7]. Ageographic information system or GIS, such as the Geographic Resources Anal-ysis Support System (GRASS) [12], can be used to easily store and manipulatethe spatially explicit representation of this data. The Land-Use Change Analy-sis System (LUCAS) is a prototype computer application speci�cally designedto integrate the multidisciplinary data stored in GRASS and to simulate theland-use policies prescribed by the integration model.1.1 Sample Scenario and ValidationIn LUCAS, scenarios describe prescribed land-use policies to be simulated.As an example, suppose that a natural resource manager in the LTRB wouldlike to determine the impact of not logging any trees for 50 years on thehabitat of the Wood Thrush (Hylocichla mustelina). The scenario is formallyde�ned to use the historical transition probabilities based on existing maplayers from 1975, 1980 and 1986 along with the restriction that once a gridcell of land is forested, it will remain forested. For example, the land managermay run LUCAS with 10 replicates for 10 time steps each to simulate thechange over 50 years. The manager can examine the graphical statistics plottedon the screen or more carefully analyze the statistics saved to a SAS [8] �le.Other scenarios with di�erent constraints can be investigated and their resultscompared. In this way, the investigator can better understand the e�ects ofpotential land-use decisions.To validate the LUCAS model, historical data are compared against the sim-ulated data [2,7]. Starting with the oldest existing map, the period of time upto the year for which the newest map exists must be simulated. The degree2



to which the statistics for the simulated and historical land cover layers agreedetermines the accuracy of the model for this period.1.2 LUCAS/pLUCAS DevelopmentThe initial LUCAS prototype was implemented as an object-oriented C++application to promote modularity. This modularity facilitates the addition offuture software which might address the needs of di�erent types of users. Fu-ture expansions of LUCAS are discussed in [2] and [7] while Section 2 describes(in brief detail) the modular implementation of the initial LUCAS prototypefollowed by the more recent parallel and distributed versions in Section 3. Thecreation of a distributed version [6] of LUCAS, Parallel LUCAS (pLUCAS),was motivated by the computational needs of real-time processing and exten-sions to larger regions. The �rst design of pLUCAS [6] utilized the ParallelVirtual Machine (PVM) [5] message-passing environment, and the (current)follow-up implementations are based on MPI [9]. The performance of bothPVM and MPI implementations when tested on an ATM-connected networkof workstations will be discussed in Section 4.
2 LUCAS DesignAs discussed in [2,7], LUCAS provides a stochastic model for the future as-sessment of landscape change using historical maps of land cover. The initialdesign's modularity provides great exibility for future modi�cations requiredby diverse users.2.1 Stochastic ModelingThe econometric model used in LUCAS is a dynamic, stochastic model primar-ily based on one random variable, namely land cover, and deals explicitly withtime-variable interaction. The stochastic simulations enabled by LUCAS em-ploy the statistical sampling of multiple replicates, i.e., repeated simulationsof the same model. The statistical output produced by LUCAS is composedof SAS-compatible [8] data which can be imported by any generic graphingtool/software. Figure 1 outlines the modular model used to develop the LU-CAS prototype. Each module of the LUCAS model is briey described in thefollowing sections (see [2] for more details).3
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Fig. 1. Relationship among LUCAS modules2.2 Socioeconomic Model Module and TPMSeveral discrete and continuous ecological and sociological variables were usedempirically in calculating the probability of change in land cover: land-covertype (vegetation), slope, aspect, elevation, land ownership, population density,distance to nearest road, distance to nearest economic market center (town),and the age of trees. For an analysis of the inuence of these economic andenvironmental factors on landscape change see [11]. Each variable correspondsto a spatially explicit map layer stored in the GIS. A vector of all of these valuesfor a given grid cell is called the landscape condition label [3,4]. An examplelandscape condition label (LCL) [7] is shown in Table 1.Each element of the LCL ~x = (x1; x2; : : : ; x8)T is used to determine the prob-ability of change using the multinomial logit equation [14,13,2]Pr(i! j) = exp(�i;j + ~zT ~�j)1 + nXk 6=i exp(�i;k + ~zT ~�k) ; (1)
where n is the number of cover types, ~z is a 5 � 1 column vector composed4



Table 1Example Landscape Condition Label in the Hoh Watershed on the Olympic Penin-sulà x` De�nition Attribute1 2 Public Lands Land ownership2 75 75 years old Tree age (Olympic Peninsula only)3 1 Coniferous Land cover (vegetation)4 20 20� incline Slope5 1 True Steep slope (> 17� incline; Olympics only)6 1500 1500 meters Elevation7 1000 1000 meters Distance along roads to nearest market center8 21 1890 meters Distance to nearest road9 2 0.002 people/acre Population density (LTRB only)of elements x4; : : : ; x8 of the LCL ~x in Table 1, ~�j = (�1;j; �2;j; : : : ; �5;j)T isa vector of logit coe�cients, �i;j is a scalar intercept, and Pr(i ! j) is theprobability of coniferous land cover remaining the same (i = x3 = 1 = j)at time t + 1 or changing to another cover class (i.e., j = 2; 3; 4). The landownership (x1) determines which table of logit coe�cients should be used andthe tree age (x2), used only for coniferous forest cover types, determines ifthe trees have aged su�ciently to be harvested, i.e., change to another covertype. The null-transition or probability of no land cover change is de�ned byEquation 2.Pr(i! i) = 11 + nXk 6=i exp(�i;k + ~zT ~�k) ; (2)
where the symbols have the same meaning as in Equation (1). Example vec-tors of coe�cients for the Hoh and LTRB Watersheds are available in [2] and[7]. Such coe�cients and associated intercept values have been calculated em-pirically by Wear et al. [14] from existing historical data stored in the GRASSdatabase. The table of all probabilities generated by applying Equation (1)to all cover types is called the transition probability matrix (TPM), an ex-ample of which can be found in Table 2. If the TPM in Table 2 were used,for example, a random number from the closed interval [0; 1] less than 0.8725would signify that the land cover would remain coniferous. For a discussion oflogistic regression and a basis for Equation (1) see [10].5



Table 2Example Transition Probability Matrix based on the example multinomial logitcoe�cients. From Coniferous Changing to Probability1! 1 Coniferous 0.87251! 2 Deciduous/Mixed 0.11861! 3 Grassy/Brushy 1:886 � 10�31! 4 Unvegetated 6:989 � 10�32.3 Landscape Change ModuleThe Landscape Change Module in Figure 1 is the heart of the LUCAS soft-ware. On input, this module accepts the multinomial logit coe�cients gen-erated in Socioeconomic Model Module, implements the actual landscapechange, and produces new land cover maps and statistics as output. The �rststep in designing LUCAS was to develop the method to simulate one timestep, a �ve year period, of landscape change over multiple replicates.Two types of transitions are simulated by LUCAS: grid cell (or pixel-based)and patch-based. The determination of the pixel-based landscape transitionsis relatively trivial because each grid cell changes independently. The tran-sition probabilities from the initial cover type to all other cover types arecalculated using Equation (1) and the value of the landscape condition labelof a grid cell. A pseudorandom number is then drawn from a uniform distri-bution between 0 and 1. This number, in turn, determines the new land covertype for this grid cell via the calculated probabilities. Patch-based transitionsare considerably more di�cult because of the task of patch identi�cation. Apatch (or cluster) is a group of contiguous grid cells with identical landscapecondition labels. Although patch identi�cation was not used in this researche�ort, algorithms for determining both the number and structure of patches(clusters) is available [2].2.3.1 StatisticsOnce the map of new land cover has been generated, the ecologist or landmanager can use the results to determine the impact of the policy de�ned inthe Socioeconomic Model Module. As stated in Section 2.1, statistics are theonly true metric for analyzing a stochastic simulation. They also provide aconvenient method for understanding the impact of the particular land man-agement policy or scenario. The statistics in Table 3 are collected by LUCASfor each time step. 6



Table 3Statistics collected by LUCAS StatisticProportion of landscape in each cover typePixel Area (ha) of landscape in each cover typeStatistics Edge:area ratio for each cover typeAmount of edge (km) for each pair of cover typesTotal edge (km) in the whole landscapeNumber of patchesMean patch sizePatch Standard deviation of patch sizeStatistics Size of largest patchCumulative frequency distribution of number of patches by sizeMean patch shape (normalized shape index) 12.4 Impacts ModuleThe land cover maps produced by the Landscape Change Module (see Sec-tion 2.3) are analyzed by the Impacts Module. This module may eventuallydetermine the e�ect the changed landscape has on species, habitats, waterquality, or other environmental impacts. Currently LUCAS is designed to per-form only species' habitat suitability analyses [2,7]. Although an extensivelist of species and habitat identi�cation algorithms for each of the watershedscurrently simulated are available, this module was not used in the results pre-sented in Section 4. The usual output from this particular module is a binarymap; either a grid cell is suitable for a species or it is not. The statistics inTable 3 are again collected for each impact map.3 pLUCAS Implementations Using PVM and MPIThe parallel and distributed implementation of LUCAS (pLUCAS) is based onthe same functional design of the serial prototype described in Section 2. Themotivation for pLUCAS was to manage the multiple independent replicatesrequired (for accuracy purposes) in the stochastic simulation of land-coverchange. As most end users of LUCAS would not be expected to have multi-processor computing systems available, software that could exploit a networkof workstations was considered more desirable.Parallelization is used so that each processor performs one complete simulation1This is the corrected patch perimeter/area metric: (0:282�perimeter=parea) [1].7



(replicate) of LUCAS exclusive of any other processor or process. The statisticscalculated from each replicate are stored locally to disk (on each processor)until all replications are completed. At that time, the statistics are assembledon the main node and stored for later use. In the performance tests presentedin Section 4, 10 replicates of 20 timesteps each are performed for 4 di�erentscenarios on the Hoh Watershed of the Olympic Peninsula. Along with these40 tasks (4 scenarios � 10 replications) is a task for the initialization of anyfuture impact modules that could be used (see Section 2.4) so that a total of41 independent tasks are scheduled.The initial version of pLUCAS was implemented using PVM [6] and has nowbeen modi�ed to use the MPI message-passing software library [9]. All versionsemulate the basic host/worker model (described below) with some di�erencesinherent to PVM and MPI. All pLUCAS runs using PVM and MPI were testedon a network of twelve Sun Microsystems Ultra 2 workstations, each contain-ing two 167-Mhz UltraSPARC-1 processors under the Solaris 2.5.1 operatingsystem. Each workstation had 256-Mbytes of memory and two 2.1-Gbyte in-ternal disks. Peak performance of one UltraSPARC-1 processor is about 126Mops (millions of oating-point operations per second). The workstationswere connected by both a 10 Mbps Ethernet interface and 155 Mbps ATMsbus adapter so that performance results (recorded in elapsed wall-clock time)could be obtained with two di�erent network latencies.3.1 PVM VersionThe PVM (version 3.3.10) implementation of pLUCAS allows the host processto assign tasks to worker processors by spawning a worker process onto aspeci�c machine. The host maintains a queue of tasks to be scheduled, taskscompleted, and available workers (machines). After all tasks are completed,the host spawns new processes on all machines to send data accumulated fromtheir previous tasks back to the machine owning the host process. The hostprocess collects the data, assembles it, and writes the results to �les storedon a machine external to the ATM-connected network. The host processor isallowed to spawn a worker process to itself. Thus, the host machine will haveone host and one worker process assigned to it. All other machines will haveonly one worker process at a time.3.2 MPI VersionsTo incorporate MPI (version 1.0.13) into the pLUCAS software, major coderevisions were necessary due to the lack of process spawning with MPI. A tra-ditional host/worker model was implemented using a top-level if-then-else8



construct to select the appropriate set of instructions for each process type. Alltasks/duties assigned to the workers and the �nal accumulation of statisticsfrom all processes (see Section 3.1) are accomplished via message-passing.Two di�erent versions of MPI have been developed. The �rst method does notallow a worker process to coexist on the same machine as the host process.Therefore, a 4-machine network has only 3 worker processes as shown in Figure2(a). This setup is referred to as MPI(1) in all subsequent tables and graphsand is de�ned as k processors on k machines. The second MPI version is abetter emulation of the PVM approach (see Section 3.1) which allows for 1worker process to be assigned to the host process machine. Therefore, a 4-machine network would have one host process and 4 worker processes. Thismethod is referred to as MPI(2) on all subsequent tables and graphs andde�ned as k processes on k-1 machines (see Figure 2(b)).
1  HOST

1 WORKER 1 WORKER 1 WORKER

4 PROCESSES ON 4 MACHINES

(a) MPI(1): k processes on k machines

1 WORKER 1 WORKER 1 WORKER

1  HOST

1 WORKER

5 PROCESSES ON 4 MACHINES

(b) MPI(2): k processes on k-1 machinesFig. 2. Two MPI-based implementations of the distributed pLUCAS model.9



4 Performance Results for pLUCASIn order to test the speed and scalability of the pLUCAS implementationsdescribed above, several experiments were conducted on the network of SunUltra 2 workstations described in Section 3. These experiments involved 3runs each with 1, 2, 4, 8, and 12 workstations to compute 10 replicates of20 time steps for each of the four historical, pixel-based scenarios of the HohWatershed on the Olympic Peninsula shown in Table 4. Figure 3 illustrates oneof the Hoh land-cover maps obtained before and after a 100-year simulation(using Scenario 1 from Table 4).Results reported for a single Sun Ultra 2 workstation reect the use of the serialLUCAS implementation (i.e., no message-passing overhead). The elapsed wall-clock times recorded for the experiments reported in this section are providedin Tables 5 and 6 in the Appendix. These wall-clock times do not include theinstallation of GIS data (done only once before any experiments were run) ona local disk of each machine on the ATM-connected network.Table 4Scenarios of land-cover change for Hoh Watershed according to historical transitionprobabilities Ownership TypeScenario Public Private1 1986{1991 1986{19912 1986{1991 1975{19863 1975{1986 1986{19914 1975{1986 1975{19864.1 PVM Versus MPIFor both PVM and MPI, the ATM (155 Mbps) network was slightly faster thanthe Ethernet (10 Mbps) network, but the di�erence was not signi�cant (seeFigures 4 and 5). The fact that the only message-passing in pLUCAS occursbetween the host and the workers (none between workers) might account forthe small improvement of ATM over Ethernet. PVM had the best performanceover either method of MPI with MPI(2) performing most similar to PVM.However, as more machines are added to the network, MPI(2) began losingits advantage over MPI(1) (see Figure 6).Serial time for LUCAS on a single machine was 28.27 minutes. With 12 ma-chines, the PVM implementation completed in 3.61 minutes yielding a speedupof 7.83. For the same number of machines, MPI(1) �nished in 3.86 minutes fol-lowed by MPI(2) in 3.87 minutes with speedups of 7.32 and 7.30, respectively.10



(a) Before simulation of Scenario 1

(b) After simulation of Scenario 1
Conifer

Deciduous/mixed

Grassy/brushy

Unvegetated

Water

Snow, ice, clouds, surfFig. 3. Hoh Watershed maps before and after a 100-year simulation11



With a 4-node machine, MPI(2) out-performed MPI(1) with speedups of 3.29and 2.68, respectively. For an 8-node machine, MPI(2) yielded a speedup of5.54, but MPI(1) maintained a speedup of 5.47. Finally, increasing the machineto 12 nodes resulted in MPI(1) and MPI(2) showing similar performances withMPI(1) actually being slightly faster than MPI(2).4.2 MPI(1) Versus MPI(2)The faster deteriorating performance of MPI(2) compared to that of MPI(1)can be attributed to process contention. Recall that for the MPI(1) scheme,the host process is scheduled on a dedicated processor and does not competewith any worker process. As more machines are included in the network, moremessage-passing demands are required of the host. In the MPI(2) scheme, thehost machine has a host process as well as a worker process competing forthe same port 2 for message-passing. As the number of messages increase withadded machines, the network contention becomes aggravated for MPI(2).In order to validate the network contention su�ered by MPI(2), the idletime or wait-time for message-passing was measured on a 12-node machine.The elapsed wall-clock time for waiting was measured using the functionMPI WTime() which returns the actual wall-clock time in seconds. Twocalls to MPI WTime() were made (before and after each blocking send andreceive). The time returned from the �rst call is subtracted from the secondcall to yield the elapsed time of the message-passing function. The wait-timesof the message-passing routines were summed for an entire run on each pro-cessor. The accumulated wait-time incurred is divided by the number of tasksassigned to that particular processor to determine the average wait-time pertask on each processor (workstation). In some circumstances, not all proces-sors performed the exact same number of tasks within a complete experiment.These averages were determined from 6 runs of both MPI(1) and MPI(2). Therange of wait-times as well as the mean are illustrated in Figure 7 and listedin Table 6 of the Appendix.For both MPI(1) and MPI(2), processor 3 contained the host process, and inthe case of MPI(2), processor 3 contained both the host and a worker process.Although the wait-time of processor 3 for MPI(2) was not signi�cantly high,the wait-times for MPI(2) across all 12 processors was much higher than thoseobtained with MPI(1) inferring a more congested network for MPI(2). Addingmore processors yielded greater wait-times, and hence the time improvementsfor the MPI(2) quickly deteriorated.2Although each Sun Ultra 2 workstation had two 167-Mhz UltraSPARC-1 proces-sors, contention for the single ATM port degraded message-passing latencies whenmore than 1 PVM or MPI process was scheduled on a given machine.12
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5 Conclusions and Future WorkThe Land-Use Change Analysis System (LUCAS) is a valuable problem solv-ing environment for modeling landscape changes. pLUCAS o�ers a distributedsolution to computational demands of stochastic simulation on a network ofworkstations. No signi�cant di�erences were observed in the performance ofATM versus Ethernet with the PVM and MPI implementations of pLUCAS.Although the PVM implementation did produce faster execution times forall numbers of machines on the network, the MPI(2) implementation didperform equally well. As the network size grew, the network congestion suf-fered by MPI(2) o�set the potential speedup gain with more machines. Thehost/worker distributed model used in MPI(1) was certainly less sensitive toaggravated network congestion since the host process did not share machineresources with any worker process.Future software development of the pLUCAS prototype includes the portingof the MPI implementations to a recently acquired IBM SP-2 multiprocessorsystem (having 40 computational nodes), and a more thorough investigation ofhow two or more processes scheduled on one of the Sun Ultra 2 workstations(having two physical processors) can better time-share a single ATM port.Future modeling work with LUCAS and pLUCAS includes the integration ofmultidisciplinary data from several forestry growth and production models(funded by the Environmental Impacts Program of the USDA Forest Service).References[1] W. L. Baker and Y. Cai. The r.le programs for multiscale analysis of landscapestructure using the GRASS geographical information system. LandscapeEcology, 7(4):291{302, 1992.[2] M. W. Berry, R. O. Flamm, B. C. Hazen, and R. L. MacIntyre. Lucas: A Systemfor Modeling Land-Use Change. IEEE Computational Science and Engineering,3(1):24{35, June 1996.[3] R. O. Flamm and M. G. Turner. Alternative model formulations for a stochasticsimulation of landscape change. Landscape Ecology, 9(1):37{46, 1994.[4] R. O. Flamm and M. G. Turner. GIS applications perspective: Multidisciplinarymodeling and GIS for landscape management. In V. Alaric Sample, editor,Forest Ecosystem Management at the Landscape Level: The Role of RemoteSensing and Integrated GIS in Resource Management Planning, Analysis andDecision Making, pages 201{212. Island Press, Washington, D.C., 1994.[5] A. Geist et al. PVM: Parallel Virtual Machine A User's Guide and Tutorialfor Networked Parallel Computing. MIT Press, Cambridge, MA, 1994.17
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AppendixTable 5Wall-clock times (in minutes) and speedups for all three pLUCAS implementationsusing Ethernet- and ATM-connected networks.(a) Wall-clock times in minutesPVM MPI(1) MPI(2)Machines Ethernet ATM Ethernet ATM Ethernet ATM4 7.96 7.90 10.80 10.56 8.75 8.608 4.52 4.45 5.44 5.17 5.15 5.1012 3.64 3.61 4.24 3.86 3.93 3.87(b) SpeedupsPVM MPI(1) MPI(2)Machines Ethernet ATM Ethernet ATM Ethernet ATM4 3.55 3.58 2.62 2.68 3.23 3.298 6.25 6.35 5.20 5.47 5.49 5.5412 7.77 7.83 6.67 7.32 7.19 7.30
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Table 6Wait-time per task per machine for MPI(1,2) on each machine using an ATM-connected network. (a) MPI(1)nprocs 1 2 3 (H) 4 5 6 7 8 9 10 11 12min 0.23 0.46 0.21 0.67 0.79 0.28 1.10 1.37 2.05 1.43 1.43 0.51mean 0.47 0.75 0.21 0.92 1.07 0.65 1.52 2.07 2.72 2.84 3.74 0.57max 0.72 1.46 0.21 1.72 1.93 1.73 2.26 2.81 3.75 3.38 5.12 0.68(b) MPI(2)nprocs 1 2 3 (H) 3 (W) 4 5 6 7 8 9 10 11 12min 0.36 0.37 0.24 0.35 0.27 1.11 0.37 2.06 3.18 3.94 4.38 0.88 4.43mean 0.91 1.02 0.30 0.66 1.68 2.20 0.52 3.99 4.50 5.21 5.84 1.40 5.99max 1.66 2.11 0.36 1.27 3.98 4.01 0.91 6.27 6.48 7.09 7.73 2.17 8.65
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