
An Asynchronous Parallel Supernodal Algorithm forSparse Gaussian EliminationJames W. Demmel� John R. Gilberty Xiaoye S. LizFebruary 27, 1997AbstractAlthough Gaussian elimination with partial pivoting is a robust algorithm to solve unsym-metric sparse linear systems of equations, it is di�cult to implement e�ciently on parallelmachines, because of its dynamic and somewhat unpredictable way of generating work and in-termediate results at run time. In this paper, we present an e�cient parallel algorithm thatovercomes this di�culty. The high performance of our algorithm is achieved through (1) using agraph reduction technique and a supernode-panel computational kernel for high single processorutilization, and (2) scheduling two types of parallel tasks for a high level of concurrency. Onesuch task is factoring the independent panels on the disjoint subtrees in the column eliminationtree of A. Another task is updating a panel by previously computed supernodes. A schedulerassigns tasks to free processors dynamically and facilitates the smooth transition between thetwo types of parallel tasks. No global synchronization is used in the algorithm. The algorithmis well suited for shared memory machines (SMP) with a modest number of processors. Wedemonstrate 4{7 fold speedups on a range of 8 processor SMPs, and more on larger SMPs. Onerealistic problem arising from a 3-D ow calculation achieves factorization rates of 1.0, 2.5, 0.8and 0.8 Gigaops, on the 12 processor Power Challenge, 8 processor Cray C90, 16 processorCray J90, and 8 processor AlphaServer 8400, respectively.1 IntroductionIn earlier work with Eisenstat and Liu, we described a publically released sequential softwarelibrary, SuperLU, to solve unsymmetric sparse linear systems using Gaussian elimination withpartial pivoting [5]. This left-looking, blocked algorithm includes symmetric structural reductionfor fast symbolic factorization, and supernode-panel updates to achieve better data reuse in cacheand oating-point registers.�Computer Science Division, University of California, Berkeley, CA 94720 (demmel@cs.berkeley.edu). The researchof Demmel and Li was supported in part by NSF grant ASC{9313958, DOE grant DE{FG03{94ER25219, UTSubcontract No. ORA4466 from ARPA Contract No. DAAL03{91{C0047, DOE grant DE{FG03{94ER25206, andNSF Infrastructure grants CDA{8722788 and CDA{9401156.yXerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304 (gilbert@parc.xerox.com). Theresearch of this author was supported in part by the Institute for Mathematics and Its Applications at the University ofMinnesota and in part by DARPA Contract No. DABT63-95-C0087. Copyright c 1994-1997 by Xerox Corporation.All rights reserved.zNational Energy Research Scienti�c Computing (NERSC) Center, Lawrence Berkeley National Lab, 1 CyclotronRd, Berkeley, CA 94720 (xiaoye@nersc.gov). This work was supported in part by the Director, O�ce of Compu-tational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S.Department of Energy under contract number 76SF00098.1

In this paper we study an e�cient parallel algorithm based on SuperLU. The primary objectiveof this work is to achieve good e�ciency on shared memory systems with a modest number ofprocessors (for example, between 10 and 20). In addition to measuring the e�ciency of our parallelalgorithm on these machines, we also study a theoretical upper bound on performance of thisalgorithm. The e�ciency of the algorithm has been demonstrated on several shared memory parallelmachines. When compared to the best sequential runtime of SuperLU, the parallel algorithmtypically achieved 4 to 7 speedups on 8 processors platforms, for large sparse matrices.The rest of the paper is organized as follows. In Section 2 we review the sequential SuperLUalgorithm. Section 3 presents the sources and the characteristics of the test matrices. Section 4presents the parallel machines used in our study. In Section 5 we describe several design choiceswe have made in parallelization, including how to �nd parallelism, how to de�ne individual tasksand memory management for supernodes. Section 6 sketches the high-level parallel schedulingalgorithm. In Section 7, we present the parallel performance achieved with the test matrices on anumber of platforms. Both time and space e�ciency will be illustrated. We also quantify the sourcesof the overhead in parallelization, and give a thorough analysis of their impact on performance. Inthe end of this section we establish a PRAM (Parallel Random-Access Machine) model to predictan upper bound on speedups attainable by the proposed algorithm. Finally, Section 8 drawsconclusions and suggests future research.2 Overview of sequential algorithm in SuperLUFigure 1 sketches the supernode-panel factorization algorithm used in SuperLU. A supernode isde�ned to be a range (r: s) of columns of L with the triangular block just below the diagonal beingfull, and with the same row structure below this block. We store a supernode as a rectangularblock, including the triangle of U in rows and columns r through s, see Figure 2. This allows usto address each supernode as a two-dimensional array in calls to BLAS routines [6, 7], and soget high performance. To increase the average size of supernodes (and hence performance), wemerge groups of consecutive columns (usually no more than 4 columns) at the fringe of the columnelimination tree (Section 5.1) into relaxed supernode regardless of their row structures. A panel isa block of w consecutive columns in the matrix which are updated simultaneously by a supernodeusing calls to the BLAS. The row structures of the columns in a panel may not be correlated inany fashion, and the boundaries between panels may be di�erent from those between supernodes.Each panel factorization, outer loop i n Figure 1, consists of three distinct steps: (1) the symbolicfactorization to determine the nonzero structure, (2) the numerical updates by supernodes, and(3) the factorization of each column in the panel. The pivot selection, detection of the supernodeboundary, and symmetric structure reduction (to reduce the cost of later symbolic factorizationsteps) are all performed in the inner factorization step. Both panel and column symbolic steps usedepth-�rst search (DFS). A further re�nement, a two-dimensional supernode partitioning (de�nedby the blocking parameters t and b in Figure 2), enhances performance for large matrices andmachines with small caches. A more detailed description of SuperLU is in the paper [5].We conducted extensive performance evaluation for SuperLU on several recent superscalar ar-chitectures. For large sparse matrices, SuperLU achieves up to 40% of the peak oating-pointperformance on both IBM RS/6000-590 and MIPS R8000. It achieves nearly 25% peak on theDEC Alpha 21164. More details can be found in [24].2

for column j = 1 to n step w doF (:; j : j + w � 1) = A(:; j : j + w � 1);(1) Predict the nonzero structure of panel F (:; j : j + w � 1):Determine which supernodes will update any of F (: ; j: j+ w � 1);(2) Update panel F (:; j : j + w � 1) using previous supernodes:for each updating supernode (r: s) < j in topological order do� Triangular solve:U(r : s; j : j + w � 1) = L(r : s; r : s)nF (r : s; j : j + w � 1);� Matrix update:F (s + 1 : n; j : j + w� 1) = F (s + 1 : n; j : j + w � 1)�L(s+ 1 : n; r : s) � U(r : s; j : j + w � 1);end for (r : s);(3) Inner factorization for each column in the panel:for column jj = j to jj + w � 1 do� Supernode-column update for column F (j : n; jj);� Row pivoting for column F (jj : n; jj);� Determine whether jj belongs to the same supernode as jj � 1;� Symmetric structure pruning;end for jj;end for j; Figure 1: The supernode-panel factorization algorithm.
W

t

t

b

b

r s

j j+w-1

U

L

JJ

JJ

Lj:n J

PanelSupernodeFigure 2: Illustration of a supernode-panel update. J = 1: j � 1.3

3 Test matricesTo evaluate our algorithms, we have collected matrices from various sources, with their character-istics summarized in Table 1.Some of the matrices are from the Harwell-Boeing collection [8]. Many of the larger matricesare from the ftp site maintained by Tim Davis of the University of Florida.1 Those matrices are asfollows. Memplus is a circuit simulation matrix from Steve Hamm of Motorola. Rdist1 is a reac-tive distillation problem in chemical process separation calculations, provided by Stephen Zitney atCray Research, Inc. Shyy161 is derived from a direct, fully-coupled method for solving the Navier-Stokes equations for viscous ow calculations, provided by Wei Shyy of the University of Florida.Goodwin is a �nite element matrix in a nonlinear solver for a uid mechanics problem, providedby Ralph Goodwin of the University of Illinois at Urbana-Champaign. Venkat01, Inaccura andRaefsky3/4 were provided by Horst Simon then of NASA and currently at NERSC. Venkat01comes from an implicit 2-D Euler solver for an unstructured grid in a ow simulation. Raefsky3is from a uid structure interaction turbulence problem. Raefsky4 is from a buckling problemfor a container model. Af23560 is from solving an unsymmetric eigenvalue problem, provided byZhaojun Bai of the University of Kentucky. Ex11 is from a 3-D steady ow calculation in theSPARSKIT collection maintained by Youcef Saad at the University of Minnesota. Wang3 is fromsolving a coupled nonlinear PDE system in a 3-D (30�30�30 uniform mesh) semiconductor devicesimulation, as provided by Song Wang of the University of New South Wales, Sydney. Vavasis3 isan unsymmetric augmented matrix for a 2-D PDE with highly varying coe�cients [31]. Dense1000is a dense 1000� 1000 random matrix.This paper does not address the performance of column preordering for sparsity. We simplyuse the existing ordering algorithms provided by Matlab [17]. For all matrices except 1, 15 and21, the columns were permuted by Matlab's minimum degree ordering of ATA, also known as\column minimum degree" ordering. However, this ordering produces a tremendous amount of �llfor matrices 1, 15 and 21, because it only attempts to minimize the upper bound on the actual �lland the upper bounds are too loose in these cases. We found that when these three matrices weresymmetrically permuted by Matlab's symmetric minimum degree ordering on A+AT , the amountof �ll is much smaller than using column minimum degree ordering. The last column in Table 1shows the number of nonzeros in matrix F when using these column preorderings.The matrices are sorted in increasing order of flops=nnz(F), the ratio of the number of oating-point operations to the number of nonzeros nnz(F). This \�gure of merit" gives the maximumpotential data reuse, as described in [5]. Thus, we expect our performance to increase with increas-ing flops=nnz(F).4 Shared memory multiprocessor systems used for testingWe evaluated the parallel algorithm on several commercially popular machines, including theSun SPARCcenter 2000 [30], SGI Power Challenge [29], DEC AlphaServer 8400 [11], and CrayC90/J90 [32, 33]. Table 2 summarizes the con�gurations and several key parameters of the �veparallel systems. In the column \Bus Bandwidth" we report the e�ective or sustainable bandwidthto main memory. In \Read Latency" we report the minimum amount of time it takes a processorto fetch a piece of data from main memory into a register in response to a load instruction.The last column in the table shows the programming model used to enable multiprocessing.All the systems provide lightweight multithreading or multitasking libraries. Synchronization and1URL: http://www.cis.u.edu/�davis. 4

Matrix s n nnz(A) nnz(A)n nnz(F) #ops/nnz(F)1 Memplus .983 17758 99147 5.6 140388 12.52 Gemat11 .002 4929 33185 6.7 93370 16.33 Rdist1 .062 4134 9408 2.3 338624 38.14 Orani678 .073 2529 90158 35.6 280788 53.35 Mcfe .709 765 24382 31.8 69053 59.96 Lnsp3937 .869 3937 25407 6.5 427600 91.17 Lns 3937 .869 3937 25407 6.5 449346 99.78 Sherman5 .780 3312 20793 6.3 249199 101.39 Jpwh 991 .947 991 6027 6.1 140746 127.710 Sherman3 1.000 5005 20033 4.0 433376 139.811 Orsreg 1 1.000 2205 14133 6.4 402478 148.612 Saylr4 1.000 3564 22316 6.3 654908 160.013 Shyy161 .769 76480 329762 4.3 7634810 205.814 Goodwin .642 7320 324772 44.4 3109585 213.915 Venkat01 1.000 62424 1717792 27.5 12987004 247.916 Inaccura 1.000 16146 1015156 62.9 9941478 414.317 Af23560 .947 23560 460598 19.6 13986992 454.918 Dense1000 1.000 1000 1000000 1000 1000000 666.219 Raefsky3 1.000 21200 1488768 70.2 17544134 690.720 Ex11 1.000 16614 1096948 66.0 26207974 1023.121 Wang3 1.000 26064 177168 6.8 13287108 1095.522 Raefsky4 1.000 19779 1316789 66.6 26678597 1172.623 Vavasis3 .001 41092 1683902 41.0 49192880 1813.5Table 1: Characteristics of the test matrices. Structural symmetry s is de�ned to be the fractionof the nonzeros matched by nonzeros in symmetric locations. None of the matrices are numericallysymmetric. nnz(A) is the number of nonzeros in A. F = L + U � I is the �lled matrix, and I isan identity matrix.
5

Bus Read Memory ProgrammingMachine Processor CPUs Bandwidth Latency Size ModelSun SPARCcenter 2000 SuperSPARC 4 500 MB/s 1200 ns 196 MB Solaris threadSGI Power Challenge MIPS R8000 16 1.2 GB/s 252 ns 2 GB Parallel CDEC AlphaServer 8400 Alpha 21164 8 1.6 GB/s 260 ns 4 GB pthreadCray PVP C90 8 245.8 GB/s 96 ns 640 MB microtaskingCray PVP J90 16 51.2 GB/s 330 ns 640 MB microtaskingTable 2: Characteristics of the parallel machines used in our study.Clock On-chip External #Flops/ Peak DGEMM DGEMVMHz Cache Cache 1 cycle Mops Mops MopsMIPS R8000 90 16 KB 4 MB 4 360 340 210Alpha 21164 300 8 KB-L1 4 MB 2 600 350 13596 KB-L2SuperSPARC 50 16 KB 1 MB 1 50 45� {C90 240 { { 4 960 900 890J90 100 { { 2 200 190 167Table 3: Some characteristics of the processors used in the parallel systems.context switching of the threads are accomplished rapidly at the user level, without enteringthe OS kernel. For P processors, we usually create P (logical) threads for the scheduling loopSlave worker() (Figure 10). Scheduling these threads on available physical processors is done bythe operating system or runtime library. Thread migration between processors is usually invisibleto us. The program is easily portable to multiple platforms. The source codes on di�erent machinesdi�er only in thread spawning and locking primitives.Table 3 summarizes the characteristics of the individual processors in the parallel machines,including the clock speed, the cache size, the peak Mop rate, and the DGEMM and DGEMVpeak Mop rate. Most DGEMM and DGEMV Mop rates were measured using vendor-suppliedBLAS libraries. When the vendors do not provide a BLAS library, we report the results fromPHiPAC [4], with an asterisk (�) beside such a number. For some machines, PHiPAC is often fasterthan the vendor-supplied DGEMM.5 Parallel strategiesIn this section, we present crucial design choices we have made to parallelize SuperLU, such as,how we shall exploit both coarse and �ne levels of parallelism, how we shall de�ne the individualtasks, and how we shall deal with the issue of dynamic memory growth.In order to make the parallel algorithm e�cient, we need to make non-trivial modi�cations toserial SuperLU. All these changes are summarized in Table 4 and discussed in the subsections below.These show that the parallel algorithm is not a straightforward parallelization of the serial one, andillustrate the program complications arising from parallelization. In the performance evaluation,we will time various parts of the algorithms. The time notation to be used is listed in Table 5.6

Construct Parallel algorithmpanel restricted so it does not contain branchings in the etree (Section 5.2)supernode restricted to be a fundamental supernode in the etree (Section 5.3)supernode storage use either static or dynamic upper bound (Section 5.3)pruning & DFS use both G(LT) and pruned G(LT) to avoid locking (Section 5.4)Table 4: The di�erences of the parallel algorithm from serial SuperLU.Notation MeaningTs SuperLU best serial timeT 0s SuperLU serial time with smaller blocking tuned for parallel codeT1 execution time of the parallel code on one processorTP parallel execution time on P processorsTI total idle time of all processorsTable 5: The di�erences of the parallel algorithm from serial SuperLU.5.1 ParallelismWe exploit two sources of parallelism in the sparse LU factorization. The coarse level parallelismcomes from the sparsity of the matrix, and is exposed to us by the column elimination tree (orcolumn etree for short) of A. The vertices of this tree are the integers 1 through n, representingthe columns of A. The column etree of A is the (symmetric) elimination tree of ATA providedthere is no cancellation in computing ATA. More speci�cally, if Lc denotes the Cholesky factor ofATA, then the parent of vertex j is the row index i of the �rst nonzero entry below the diagonalof column Lc(:; j). The column etree can be computed from A in time almost linear in the numberof nonzeros of A by a variation of an algorithm of Liu [25].Theorem 1 (Column Elimination Tree) [18] Let A be a square, nonsingular, possibly unsym-metric matrix, and let PA = LU be any factorization of A with pivoting by row interchanges. LetT be the column elimination tree of A.1. If vertex i is an ancestor of vertex j in T , then i � j.2. If lij 6= 0, then vertex i is an ancestor of vertex j in T .3. If uij 6= 0, then vertex j is an ancestor of vertex i in T .4. Suppose in addition that A is strong Hall (that is, it cannot be permuted to a nontrivial blocktriangular form). If vertex j is the parent of vertex i in T , then there is some choice of valuesfor the nonzeros of A that makes uij 6= 0 when the factorization PA = LU is computed withpartial pivoting.Since column i updates column j in LU factorization if and only if uij 6= 0, part 3 of Theorem 1implies that the columns in di�erent subtrees do not update one another. Furthermore, the columnsin independent subtrees can be computed without referring to any common memory, because thecolumns they depend on have completely disjoint row indices [19, Theorem 3.2]. It has been shownin a series of studies [13, 14, 18, 19] that the column etree gives the information about all potentialdependencies. 7

In general we cannot predict the nonzero structure of U precisely before the factorization,because the pivoting choice and hence the exact nonzero structure depend on numerical values.The column etree can overestimate the true column dependencies. An example isA = 0BBB@ 1 �� 2 �� 3 �� 4 1CCCA ;in which the Cholesky factorLc ofATA is symbolically full, so the column etree is a single chain. Butif the numerical values are such that row 4 is selected as the pivot row at the �rst step of elimination,column 1 will update neither column 2 nor column 3. Despite the possible overestimate, part 4 ofTheorem 1 says that if A is strong Hall, this dependency is the strongest information obtainablefrom the structure of A alone.Having studied the parallelism arising from di�erent subtrees, we now turn our attention tothe dependent columns, that is, the columns having ancestor-descendant relations. When theelimination process proceeds to a stage where there are more processors than independent subtrees,we need to make sure all processors work cooperatively on dependent columns. Thus the secondlevel of parallelism comes from pipelining the computations of the dependent columns.Consider a simple situation with only two processors. Processor 1 gets a task Task 1 containingcolumn j, processor 2 gets another task Task 2 containing column k, and node j is a descendant ofnode k in the etree. The (potential) dependency says only that Task 2 cannot �nish its executionbefore Task 1 �nishes. However, processor 2 can start Task 2 right away with the computations notinvolving column j; this includes performing the symbolic structure prediction and accumulatingthe numeric updates using the �nished columns that are descendants in the etree. After processor2 has �nished the other part of the computation, it has to wait for Task 1 to �nish. (If Task 1 isalready �nished at this moment, processor 2 does not waste any time waiting.) Then processor 2will predict the new �lls and perform numeric updates that may result from the �nished columnsin Task 1. In this way, both processors do useful work concurrently while still preserving theprecedence constraint. Note that we assume the updates can be done in any order. This could givedi�erent (indeed, nondeterministic) numerical results from run to run.2Although this pipelining mechanism is complicated to implement, it is essential to achieve higherconcurrency. This is because, in most problems, a large percentage of the computation occurs atupper levels of the etree, where there are fewer branches than processors. An extreme example is adense matrix, the etree of which is a single chain. In this case, the parallel SuperLU \reduces to"a pipelined column-oriented dense LU algorithm.5.2 Panel tasksAs studied in [5], the introduction of supernodes and panels makes the computational kernels highlye�cient. To retain the serial algorithm's ability to reuse data in cache and registers, we treat thefactorization of one panel as a unit task to be scheduled; it computes the part of U and the part ofL for all columns within this panel. Choosing a panel as scheduling unit a�ords the best granularityon the SMPs we targeted, and requires only modest changes to the serial code [5]. The alternative,2In order to guarantee determinism, we must statically assign the tasks to processors. The performance cost wepay for determinism may be load imbalance and reduced parallelism. We are considering adding a debugging optionto the software that guarantees determinism. 8

(a) (b) (c)Figure 3: Panel de�nition. (a) a relaxed supernode at the bottom of the column etree; (b) consec-utive columns from part of one branch of the etree; (c) consecutive columns from more than onebranch of the etree.blocking the matrix by rows and columns [22, 28], introduces too much synchronization overheadto make it worthwhile on SMPs with modest parallelism.A panel task consists of two distinct subtasks. The �rst corresponds to the outer factorization,which accumulates the updates from the descendant supernodes. The second subtask is to performthe panel's inner factorization. We exploit parallelism within the �rst subtask, but not the second.Since the parallel algorithm uses the column etree as the main scheduling tool, it is worthstudying the relationship between the panels and the structure of the column etree. We assumethat the columns of the matrix are ordered according to a postorder on the column etree. We expecta postorder on the column etree to bring together unsymmetric supernodes, just as a postorderon the symmetric etree brings together symmetric supernodes. Pictorially, panels can be classi�edinto three types, depending on where they are located in the etree, as illustrated in Figure 3.In the pipelining algorithm, panels of type (c) complicates the record-keeping if a processorowning this panel needs to wait for, and later perform, the updates from the busy panels downthe etree. To simplify this, we imposed two restrictions. We �rst restricted the de�nition of panelsso that type (c) panels do not occur. We will let a panel stop before a node (column) that hasmore then one child in the etree. That is, every branching node necessarily starts a new panel.Secondly, we make sure that all busy descendant panels always form one path in the etree. So theprocessor waiting for these busy panels can simply walk up the path in the etree starting from themost distant busy descendant.By this restricted de�nition of panels, there will be more panels of smaller sizes. The questionarises whether this will hurt performance. We studied the distribution of oating-point operationson di�erent panel sizes for all of our test matrices, and observed that usually more than 95% of theoating-point operations are performed in the panels of largest size, and these panels tend to occurat a few topmost levels of the etree. Thus, panels of small sizes normally do not represent muchcomputation. On uniprocessors, we see almost identical performance using the earlier and the newde�nitions of panels. Therefore, we believe that this restriction on panels simpli�es and acceleratesthe parallel scheduling algorithm with little performance loss on individual processors.5.3 Supernode storage using nonzero column counts in QR factorizationIt is important to store the columns of a supernode consecutively in memory, so that we can callBLAS routines directly in-place without paying the cost of copying the columns into contiguousmemory. Although this contiguity is easy to achieve in a sequential code, it poses problems in theparallel algorithm. 9

P1

P2 P3
1

2

3

4

5

6

7

8

Parallel execution:

Processor P1 finishes panel {3, 4} first;

Processor P2 finishes panel {1, 2} second;

Supernode

Panel

Processor P3 finishes panel {5, 6} third.

Figure 4: A snapshot of parallel execution.Consider the scenario of parallel execution depicted in Figure 4. According to the order ofthe �nishing times speci�ed in the �gure, the panel consisting of columns f3,4g will be stored inmemory �rst, followed by panel f1,2g, and then followed by panel f5,6g. The supernode f3,4,5,6gis thus separated by the panel f1,2g in memory. The major di�culty comes from the fact that thesupernodal structure emerges dynamically as the factorization proceeds, so we cannot staticallycalculate the amount of storage required by each supernode. Another di�culty is that panels andsupernodes can overlap in several di�erent ways.One immediate solution would be not to allow any supernode to cross the boundary of a panel.In other words, the leading column of a panel would always be treated as the beginning of a newsupernode. Thus a panel could possibly be subdivided into more than one supernode, but not viceversa. In such circumstances, the columns of a supernode would always be contiguous in memorybecause they would be assigned to a single processor by the scheduler. Each processor would simplystore a (partial) ongoing supernode in its local temporary store, and copy the whole supernode intothe global data structure as soon as it was �nished.This restriction on supernodes would mean that the maximum size of supernodes would bebounded by the panel size. As discussed in Section 7.5 (also [24]), for best per-processor e�ciencyand parallelism, we would like to have large supernodes but relatively small panels. These conictingdemands make it hard to �nd one good size for both supernodes and panels. We conductedan experiment with this scheme for the sequential algorithm. Figure 5 shows the uniprocessorperformance loss for various panel sizes (i.e., maximum sizes of supernodes). For large matrices,say matrices 12 { 21, the smaller panels and supernodes result in more performance loss. Forexample, when w = 16, the slowdown can be as large as 20% to 68%. Even for large panel sizes,such as w = 48, the slowdown is still between 5% and 20%. However, in the parallel algorithm,such large panels give rise to too large a task granularity and severely limit the level of concurrency.We therefore feel that this simple solution is not satisfactory. Instead, we seek a solution that doesnot impose any restriction on the relation between panels and supernodes, and that allows us tovary the size of panels and supernodes independently in order to better trade o� concurrency andsingle-processor e�ciency. 10

1 3 5 7 9 11 13 15 17 19 21 23
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

w = 16

w = 32

w = 48

Matrix

R
un

ni
ng

 ti
m

e
/ S

up
er

LU
 ti

m
e

Figure 5: The sequential runtime penalty for requiring that a leading column of a panel also startsa new supernode. The times are measured on the RS/6000-590.Our second and preferred solution is to preallocate space that is an upper bound on the actualstorage needed by each supernode in the L factor, irrespective of the numerical pivoting choice.Then there will always be space to store supernode columns as they are computed. We nowdescribe how we preallocate enough (but not too much) space.After Gaussian elimination with partial pivoting, we can write A = P1L1P2L2 � � �Pn�1Ln�1 U ,where Pi is an elementary permutation matrix representing the row interchange at step i, and Liis a unit lower triangular matrix with its i-th column containing the multipliers at step i. We nowde�ne L as the unit lower triangular matrix whose i-th column is the i-th column of Li, such thatL � I = Pi(Li � I).3 We shall make use of the following structure containment property in ourstorage scheme. Here we only quote the result without proof.Theorem 2 [13, 15] Consider the QR factorization A = QR using Householder transformations.Let H be the symbolic Householder matrix consisting of the sequence of Householder vectors usedto represent the factored form of Q. In other words, we assume no entries of H or R are zerobecause of numerical cancellation. If A is a nonsingular matrix with nonzero diagonal, and Land U are the triangular factors of A represented as above, then Struct(L) � Struct(H), andStruct(U) � Struct(R).In what follows, we describe how this upper bound can facilitate our storage management forthe L supernodes. First, we need a notion of fundamental supernode, which was introduced byAshcraft and Grimes [3] for symmetric matrices. In a fundamental supernode, every column exceptthe last (numbered highest) is an only child in the elimination tree. Liu et al. [26] gave several3This L is di�erent from the L̂ in PA = L̂U . Both L and L̂ contain the same nonzero values, but in di�erentpositions. In this section, L is used as a data structure for storing L̂.11

r s

Supernode in L

Supernode in H

Figure 6: Bound the L supernode storage using the supernodes in H .reasons why fundamental supernodes are appropriate, one of which is that the set of fundamentalsupernodes is the same regardless of the particular etree postordering. For consistency, we nowalso impose this restriction on the supernodes in L and H , respectively. For convenience, let SLdenote the fundamental supernodes in the L factor, and SH denote the fundamental supernodes inthe symbolic Householder matrix H . We shall omit the word \fundamental" when it is clear.Our code breaks the L supernode at the boundary of an H supernode, forcing the L supernodeto be contained in the H supernode. In fact, if we use fundamental L supernodes and ignorenumerical cancellation (which we must do anyway for symmetric pruning), we can show that an Lsupernode is always contained in an H supernode [20].Our objective is to allocate storage based on number of nonzeros in SH , so that this storage issu�ciently large to hold SL. Figure 6 illustrates the idea of using SH as a bound. Two supernodesin SL from di�erent branches of the etree will go to their corresponding memory locations of theenclosing supernodes in SH . Even if an H supernode breaks into multiple L supernodes, those Lsupernodes will all lie on one path in the column etree. Thus an L supernode from a di�erentsubtree cannot interrupt the storage for a supernode as in Figure 4. Since the panels (and hencethe supernodes) within an H supernode are �nished in order of increasing column numbers, thecolumns of each SL supernode are contiguous in the storage of the SH supernode.To determine the storage for SH , we need an e�cient algorithm to compute the column countsnnz(H�j) for H . We also need to identify the �rst vertex of each supernode in SH . Then thenumber of nonzeros in each supernode is simply the product of the column count of the �rst vertexand the number of columns in the supernode.Finding the �rst vertex and computing the column count can be done using a variant of theQR-column-count algorithm by Gilbert et al. [20]. The modi�ed QR-column-count algorithm takesStruct(A) and the postordered T as inputs, and computes nnz(H�j) and SH . The complexityof the algorithm is O(m �(m;n)), where m = nnz(A) and �(m;n) is the slowly-growing inverseof Ackermann's function coming from disjoint set union operations. In practice, it is as fast ascomputing the column etree T [24, Table 5.2]. In both the etree and QR-column-count algorithms,the disjoint set union operations are implemented using path halving and no union by rank (see [21]for details.)One remaining issue yet to be addressed is what we should do if the static storage given byan upper bound structure is much too generous than actually needed. We developed a dynamicprediction scheme as a fallback for this situation. In this scheme, we still use the supernodepartition SH . Unlike the static scheme, which uses the column counts nnz(H�j), we dynamically12

Matrix Static Dynamic1 Memplus .04 .682 Gemat11 .85 .903 Rdist1 .72 .734 Orani678 .56 .905 Mcfe .73 .896 Lnsp3937 .84 .927 Lns 3937 .86 .948 Sherman5 .92 .969 Jpwh 991 .88 .9410 Sherman3 .89 .9111 Orsreg 1 .90 .9212 Saylr4 .89 .9213 Shyy161 .91 .9214 Goodwin .95 .9815 Venkat01 .11 .7416 Inaccura .96 .9917 Af23560 .95 .9718 Dense1000 1.00 1.0019 Raefsky3 .99 .9920 Ex11 .99 1.0021 Wang3 .14 .8922 Raefsky4 .99 .9923 Vavasis3 .95 .98Table 6: Supernode storage utilization, using static and dynamic upper bounds. The numbertabulated is the ratio of the number of nonzeros in supernodes of L to that in the prediction H .compute the column count for the �rst column of each supernode in SH as follows. When aprocessor obtains a panel that includes the �rst column of some supernode H(:; r : s) in SH , theprocessor invokes a search procedure on the directed graph G(L(:; 1 : r � 1)T), using the nonzerosin A(:; r : s), to determine the union of the row structures in the submatrix (r : n; r : s). We usethe notation D(r : n; r : s) to denote this structure. It is true thatStruct((L̂+ U)(r : n; r : s)) � Struct(D(r : n; r : s)) � Struct(H(r : n; r : s)) : (1)The search procedure is analogous to (but simpler than) the panel symbolic step (Figure 1, step(1)); now we only want to determine the count for the column D(r : n; r), without the nonzerostructure or the topological order of the updates. Then we use the product of nnz(D(r : n; r)) ands � r + 1 to allocate storage for the L supernodes within columns r through s. Since nnz(L(r :n; r)) � nnz(D(r : n; r)) � nnz(H(r : n; r)), the dynamic storage bound so obtained is usuallytighter than the static bound.The storage utilizations for the supernodes in SL are tabulated in Table 6. The utilization iscalculated as the ratio of the actual number of nonzeros in the supernodes of L to the number ofnonzeros in the supernodes of H . When collecting this data, the maximum supernode size t wasset to 64. For most matrices, the storage utilizations using the static bound by H are quite high;they are often greater than 70% and are over 85% for 14 out of the 21 problems. However, in13

the static scheme, the storage utilizations for matrices 1, 15 and 21 are only 4%, 11% and 14%,respectively. The dynamic scheme overcomes those low utilizations. For the three matrices above,the utilizations in the dynamic scheme are 68%, 74% and 89%. These percentage utilizations arequite satisfactory. For other problems, the dynamic approaches also result in higher utilizations.The runtime overhead associated with the dynamic scheme is usually between 2% and 15% onthe single processor RS/6000-590. From these experiments, we conclude that the static schemeusing H often gives a tight enough storage bound for SL. For some problems, such as matrices15 and 21, the dynamic scheme must be employed to achieve better storage utilization. Then theprogram will su�er from a certain amount of slowdown. Our code tries the static scheme �rst andswitches to the dynamic scheme only if the static scheme requests more space than is available.5.4 Nonblocking pruning and depth-�rst searchThe idea of symmetric pruning [9, 10] is to use a graph G0 with fewer edges than the graph G ofLT to represent the structure of L. Traversing G0 gives the same reachable set as traversing G, butis less expensive. As shown in [10], this technique signi�cantly reduces the symbolic factorizationtime.In the sequential algorithm, in addition to the adjacency structure for G, there is anotheradjacency structure to represent the reduced graph G0. For each supernode, since the row indicesare the same among the columns, we only store the row indices of the �rst column of G and therow indices of the last column of G0. (If we use only one adjacency list for each supernode, sincepivoting may have reordered the rows so that the pruned and unpruned rows are intermingled inthe original row order, it is then necessary to reorder all of L and A to account for it.)Figure 7 illustrates the storage layout for the adjacency lists of G and G0 of a sample matrix.Array Lsub[*] stores the row subscripts. G ptr[*] points to the beginning of each supernode inarray Lsub[*]. G' ptr[*] points to the pruned location of each supernode in array Lsub[*]. UsingG ptr and G' ptr together can locate the adjacency list for each supernode in G0. This matrixhas four supernodes: f1,2g, f3g, f4,5,6g, and f7,8,9,10g. The adjacency lists for G and G0 areinterleaved by supernodes in the global memory Lsub[*]. The storage for the adjacency structureof G0 is reclaimed at the end of the factorization.The pruning procedure works on the adjacency lists for G0. Each adjacency list of a supernode(actually only the last column in the supernode) is pruned at the position of the �rst symmetricnonzero pair in the factored matrix F , as indicated by the small \�" in the �gure. Both panel DFSand column DFS traverse the adjacency structure of G0, as given by G' ptr[*] in Figure 7.In the parallel algorithm, contention occurs when one processor is performing DFS using G0'sadjacency list of column j (a READ operation), while another processor is pruning the structure ofcolumn j, because pruning will reorder the row indices in the list (a MODIFY operation). Thereare two possible solutions to avoid this contention. The �rst solution is to associate one mutuallyexclusive (mutex) lock with each adjacency list of G0. A processor acquires the lock before it prunesthe list and releases the lock thereafter. Similarly, a processor uses the lock when performing DFSon the list. Although the critical section for pruning can be very short, the critical section forDFS may be very long, because the list must be locked until the entire depth-�rst search startingfrom all nodes in the list is completed. During this period, all the other processors attempting toprune the list or to traverse the list will be blocked. Therefore this approach may incur too muchoverhead, and the bene�t of pruning may be completely o�set by the cost of locking.We now describe a better algorithm that is free from locking. We will use both graphs G0 and Gto facilitate the depth-�rst search. Recall that each adjacency list is pruned only once throughout14

0BBBBBBBBBBBBBBBB@ 1 � � �� 2 � � � �3 � �4 � � �� 5 � � �� � � � � 6 � � �7 � �� � � � � � � 8 � �� � � � � 9 �� � � � 10
1CCCCCCCCCCCCCCCCA =) 0BBBBBBBBBBBBBBBB@ 12 3 45� � 6 7� � � 8� 9� 10

1CCCCCCCCCCCCCCCCAFactors F = L+ U � I Reduced supernodal G0
2

3 6 8 10

1 3

2

Lsub

G_ptr

1 2 6 8 2 6 8

adjacency list for G

G’_ptr

adjacency list for G’

3 6 8 10

3

4

4 5 6 8 9 7 8 9 10

5,6 7 8, 9, 10

10

106

6 8 9Figure 7: Storage layout for the adjacency structures of G and G0.the factorization. We will associate with each list a status bit indicating whether it is pruned ornot. Once a list is pruned, all the subsequent traversals on the list involve only READ operations,and hence do not require locking. If the search procedure reaches a list of G0 that has not yet beenpruned, we will direct the search procedure to traverse the list of the corresponding column in G,rather than G0. So, when the search algorithm reaches column j, it does the following:if column j has been pruned thencontinue search from nodes in the G0-list of column j;else continue search from nodes in the G-list of column j;endifThis scheme prevents us from using one minor working-storage optimization from the sequentialalgorithm: sequential SuperLU uses separate G and G0 lists for supernodes with two or morecolumns, but overlaps the lists for singleton supernodes. The parallel code must use both lists forevery supernode.Since G0 is generally a subgraph of G, the depth-�rst searches in the parallel code may traversemore edges than those in the sequential code. This is because in the parallel algorithm, a supernodemay be pruned later than in the sequential algorithm. However, because of the e�ectiveness ofsymmetric reduction, very often the search still uses the pruned list in G0. So it is likely that thetime spent in the occasional extra search in the G-lists is much less than that when using the lockingmechanism. Figure 8 shows the relative size of the reduced supernodal graphH , and Figure 9 showsthe fraction of searches that use the G0-lists. The numbers in both �gures are collected on a singleprocessor Alpha 21164. 15

1 3 5 7 9 11 13 15 17 19 21 23
0

0.2

0.4

0.6

0.8

1

Matrix

#
 e

d
g

e
s

in
 H

 /
 #

 e
d

g
e

s
in

 G

Figure 8: Number of edges in G0 versus num-ber of edges in G. 1 3 5 7 9 11 13 15 17 19 21 23
0

20

40

60

80

100

Matrix

P
e

rc
e

n
t

D
F

S
 in

 H
−

lis
t

Figure 9: Percent of the depth-�rst search inadjacency lists in G0.6 The asynchronous scheduling algorithmHaving described the parallel strategies, we are now in a position to describe the parallel fac-torization algorithm. Several methods have been proposed to perform sparse Cholesky factoriza-tion [12, 23, 27] and sparse LU factorization [2, 16, 19] on shared memory machines. A commonpractice is to organize the program as a self-scheduling loop, interacting with a global pool of tasksthat are ready to be executed. Each processor repeatedly takes a task from the pool, executes it,and puts new ready task(s) in the pool. This pool-of-tasks approach has the merit of balancingwork load automatically even for tasks with large variance in granularity. There is no notion of own-ership of tasks or submatrices by processors { the assignment of tasks to processors is completelydynamic, depending on the execution speed of the individual processors. Our scheduling algorithmemploys this model as well. This is in contrast to some implementations of sparse Cholesky, whichcan schedule work to processors carefully and cheaply ahead of time [22]. The dynamic nature ofpartial pivoting prevents us from doing this.Our scheduling approach used some techniques from the parallel column-oriented algorithmdeveloped by Gilbert [19]. Figure 10 sketches the top level scheduling loop. Each processor executesthis loop until its termination criterion is met, that is, until all panels have been factorized.The parallel algorithm maintains a central priority queue of tasks (panels), that are ready to beexecuted by any free processor. The content of this task queue can be accessed and altered by anyprocessor. At any moment during the elimination, a panel is tagged with a certain state, such asREADY, BUSY, or DONE. Every processor repeatedly asks the scheduler (at line 4) for a panel taskin the queue. The Scheduler() routine implements a priority-based scheduling policy describedbelow. The input argument oldpanel denotes the panel that was just �nished by this processor.The output argument newpanel is a newly selected panel to be factorized by this processor. Theselection preference is as follows:(1) The scheduler �rst checks whether all the children of oldpanel's parent panel, say parent, areDONE. If so, parent now becomes a new leaf and is immediately assigned to newpanel on thesame processor.(2) If parent still has un�nished children, the scheduler next attempts to take from the queue a16

Slave worker()1. newpanel = NULL;2. while (there are more panels) do3. oldpanel := newpanel;4. Scheduler(oldpanel; newpanel; queue);5. if (newpanel is a relaxed supernode) then6. relaxed supernode factor(newpanel);7. else8. panel symbolic factor(newpanel);9. � Determine which supernodes will update panel newpanel;10. � Skip all BUSY panels/supernodes;11. panel numeric factor(newpanel);12. � Accumulate updates from the DONE supernodes, updating newpanel;13. � Wait for the BUSY supernodes to become DONE, then predictnew �lls and accumulate more updates to newpanel;14. inner factorization(newpanel); /* independent from other processors */15. � Supernode-column update within the panel;16. � Row pivoting;17. � Detect supernode boundary;18. � Symmetric structure pruning;19. end if;20. end while;Figure 10: The parallel scheduling loop to be executed on each processor.
17

panel which can be computed without pipelining, that is, a leaf panel.(3) If no more leaf panels exist, the scheduler will take a panel that has some BUSY descendantpanels currently being worked by other processors. Then the new panel must be computedby this processor in a pipelined fashion.One might argue that (1) and (2) should be reversed in priority. Choosing to eliminate the imme-diately available parent �rst is primarily concerned with locality of reference. Since a just-�nishedpanel is likely to update its parent or other ancestors in the etree, it is advantageous to scheduleits parent and other ancestors on the same processor.To implement the above priority scheme, the task queue is initialized with the leaf panels, thatis, the relaxed supernodes, which are marked as READY. Later on, Scheduler() may add morepanels at the tail of the queue. This happens when all the children of newpanel's parent, parent,are BUSY; parent is then enqueued and is marked as eligible for pipelining. By rule (1), some panelin the middle of the queue may be taken when all its children are DONE. This may happen evenbefore all the initial leaf panels are �nished. All the intermediate leaf panels are taken in this way.By rules (2) and (3), Scheduler() removes tasks from the head of the queue.It is worth noting that the executions of di�erent processors are completely asynchronous. Thereis no global barrier; the only synchronization occurs at line 13 in Figure 10, where a processor stallswhen it waits for some BUSY updating supernode to �nish. As soon as this BUSY supernodeis �nished, all the processors waiting on this supernode are awakened to proceed. This type ofsynchronization is commonly referred to as event noti�cation. Since the newly �nished supernodemay produce new �lls to the waiting panels, the symbolic mechanism is needed to discover andaccommodate these new �lls.7 Parallel performanceWe now evaluate the performance of the algorithm. The organization of this section is as follows.Section 7.1 summarizes the observed speedups on various platforms. The speedup is compared tothat of serial SuperLU. Section 7.2 quanti�es parallel overhead and their impact on performance.Section 7.3 gives the statistics of load balance. Section 7.4 studies the space e�ciency of thealgorithm.7.1 Speedup summaryFigures 11 through 15 report the speedups of the parallel algorithm on the �ve platforms, withnumber of threads \P" varied. Because of memory limits we could not test all problems on theSPARCcenter 2000. The speedup is measured against the best sequential runtime achieved bySuperLU on a single processor of each parallel machine.In each �gure, the bottom curve labeled \P = 1" illustrates the overhead in the parallel codewhen compared to the serial SuperLU, using the same blocking parameters. The structure ofthe parallel code, when run on a single processor, does not di�er much from sequential SuperLU,except that a global task queue and various locks are involved. The extra work in the parallelcode is purely integer arithmetic. In order to achieve a higher degree of concurrency, the panel size(w) and maximum size of a supernode (maxsup) for \P > 1" are set smaller than those used for\P = 1".44Both w and maxsup denote the size in number of columns.18

1 2 3 4 5 6 7 8 9 10 11 12 13 15 18
0

0.5

1

1.5

2

2.5

3

3.5

4

Matrix

S
p

e
e

d
u

p
 o

ve
r

S
u

p
e

rL
U P=1

P=2

P=4

Figure 11: Speedup on a 4-CPU Sun SPARCcenter 2000.We also tabulate these speedup �gures in the Appendix (Tables 13 through 17), where the lasttwo columns in each table show the factorization time and Megaop rate, respectively, correspond-ing to the largest number of processors used.7.2 Impact of overhead on parallel e�ciencyThe parallel algorithm experiences some overhead, which mainly comes from three sources: thereduced per-processor e�ciency due to smaller granularity of unit tasks, accessing critical sectionsvia locks, and orchestrating the dependent tasks via event noti�cation. The purpose of this sectionis to understand how much time is spent in each part of the algorithm and explain the speedupswe saw in Section 7.1.7.2.1 Decreased per-processor performance due to smaller blockingThe �rst overhead is due to the necessity to reduce the blocking parameters in order to achievemore concurrency. Recall that two blocking parameters a�ect performance: panel size (w) andmaximum size of a supernode (maxsup). For better per-processor performance, we prefer largervalues. On the other hand, the large granularity of unit tasks limits the degree of concurrency.On the Cray J90, this trade-o� is not so important, because w = 1 is good for the sequentialalgorithm. We therefore also use w = 1 in the parallel algorithm. When varying the value ofmaxsup, we �nd that performance is quite robust in the range between 16 and 64.On the Power Challenge and AlphaServer 8400, we observe more dramatic di�erences withvaried blockings. Figure 16 and 17 illustrate this loss of e�ciency for several large problemson single processors of the two machines. In this experiment, the parallel code is run on singleprocessors with two di�erent settings of w and maxsup. Figure 16 shows, on a single processorPower Challenge, the ratio of the runtime with the best blocking for 1 CPU (w = 24; maxsup = 64)19

1 3 5 7 9 11 13 15 17 19 21 23
0

1

2

3

4

5

6

7

8

Matrix

S
p

e
e

d
u

p
 o

ve
r

S
u

p
e

rL
U

P=1
P=4
P=8
P=12

Figure 12: Speedup on a 12-CPU SGI Power Challenge.
1 3 5 7 9 11 13 15 17 19 21 23

0

1

2

3

4

5

6

7

8

Matrix

S
p

e
e

d
u

p
 o

ve
r

S
u

p
e

rL
U

P=1

P=4

P=8

Figure 13: Speedup on a 8-CPU DEC AlphaServer 8400.20

1 3 5 7 9 11 13 15 17 19 21
0

1

2

3

4

5

6

7

Matrix

S
p

e
e

d
u

p
 o

ve
r

S
u

p
e

rL
U

P=1

P=4

P=8

Figure 14: Speedup on a 8-CPU Cray C90.
1 3 5 7 9 11 13 15 17 19 21

0

2

4

6

8

10

12

14

Matrix

S
p

e
e

d
u

p
 o

ve
r

S
u

p
e

rL
U

P=1

P=4

P=8

P=16

Figure 15: Speedup on a 16-CPU Cray J90.21

13 14 15 16 17 18 19 20 21 22 23
0

0.2

0.4

0.6

0.8

1

Matrix

F
ra

ct
io

n
 o

f
b

e
st

 1
−

C
P

U
 p

e
rf

o
rm

a
n

ce

Figure 16: TsT 0s for serial SuperLU on 1-CPUPower Challenge. 13 14 15 16 17 18 19 20 21 22 23
0

0.2

0.4

0.6

0.8

1

Matrix

F
ra

ct
io

n
 o

f
b

e
st

 1
−

C
P

U
 p

e
rf

o
rm

a
n

ce

Figure 17: TsT 0s for serial SuperLU on 1-CPU Al-phaServer 8400.to the runtime with the best blocking for 12 CPUs (w = 12; maxsup = 48). Figure 17 shows theanalogous ratio for the 8-CPU AlphaServer 8400. On the Power Challenge, the blocking used forbest parallel performance achieves only 81% uniprocessor e�ciency for matrices 17 and 19. Thecorresponding lowest number on the AlphaServer 8400 is 86% for matrix 22.7.2.2 Accessing critical sectionsSeveral places in the program must be protected by mutual exclusion. In Table 7, we roughlycount the number of times the program acquires and relinquishes various locks. Note that the totalnumber of lockings performed is independent of the number of processors. Since we want to allowdi�erent processors to enter di�erent critical sections simultaneously, we use �ve mutex variablesto guard the �ve critical regions.To see how much cost is associated with locking, in Table 8 we measured the time it takes toacquire and relinquish a lock on several platforms, with di�erent numbers of threads P . The �gurein the parenthesis is the number of clock cycles. In this small benchmark code, the critical sectionis simply one statement, to increment a counter. The locking and unlocking are placed around thisstatement. The measurement is done in a tight loop with many iterations. When there is morethan one thread, the time increases slightly, but not linearly in the number of threads.The uniprocessor slowdown is partly due to the overhead incurred by using these locks, whenthere are no other processors competing for the locks. By multiplying the time for a singlelock/unlock in Table 8 by the number of the lockings performed in Table 7, we can estimatethe locking overhead. As a concrete example, let us consider a medium size matrix 13, on a sin-gle processor Cray J90. Since the sequential code performance is 26 Mops, each lock/unlock isequivalent to roughly 69 oating-point operations. When the factorization is performed with panelsize w = 1, the total number of lock acquisitions is 237004, which, when multiplied by 2.67 mi-croseconds, results in about 0.64 seconds. This is less than 3% of the entire factorization time(24.85 seconds). We observe that this percentage is typical for large matrices (also the bottomcurve in Figure 18). The locking overhead also varies with machines. For example, it is higher onthe Cray J90 than on the Power Challenge or the AlphaServer 8400.22

Critical section Countscall Scheduler() number of panels (approx.)�allocate storage for row indices of L (Lsub) number of supernodesallocate storage for L supernodes (SL) number of supernodesallocate storage for a column of U (Usub/Uval) number of columnsincrement supernode number nsuper number of supernodesTable 7: Number of lockings performed.* Here we assume that Scheduler() returns a new panel upon each call.Machine P = 1 P = 4 P=8SPARCcenter 2000 1.63 (82) 4.34 (217) 4.36 (218)Power Challenge 1.13 (102) 1.98 (179) 2.02 (182)AlphaServer 8400 0.98 (294) 2.26 (678) 2.71 (814)Cray C90 1.34 (323) 1.09 (261) 1.40 (336)Cray J90 2.67 (267) 4.17 (417) 4.42 (442)Table 8: Time in microseconds (cycles) to perform a single lock and unlock.7.2.3 Coordinating dependent tasksThe third source of overhead is due to insu�cient parallelism in the pipelined executions of thedependent panels. Dependent panels are those that have an ancestor-descendant relation in thecolumn etree. When a processor factoring a panel needs an update from a BUSY descendant panel,this processor simply spins, waiting for that panel to �nish, as shown at line 13 in the schedulingloop of Figure 10. During the spin wait the processor does nothing useful. The total amount ofspin wait time observed is signi�cant in some cases, especially with larger numbers of processors.For example, for matrix 16, on the 12-CPU Power Challenge, about 40% of the parallel runtime isspent spinning. The corresponding number for the dense matrix is about 58%. The dense matrixis the worst one, because the factorization of all panels must be carried out in pipelined fashion.Figure 18 depicts the locking overhead (Section 7.2.2) and the spinning due to dependencieson the 8-CPU Cray J90. The locking overhead also includes the possible contention from the 8processors. In this �gure, we also plot the ine�ciency (i.e., 1� e�ciency) of the parallel algorithm.For most matrices, the spinning overhead due to dependencies is much higher than the overheadfrom lock acquisition.7.2.4 Putting all overheads togetherIn this subsection we evaluate the e�ect of the combined overheads on the parallel e�ciency. Insummary, the overheads includeOverhead (1): reduced uniprocessor performance due to smaller blockingOverhead (2): accessing critical sectionsOverhead (3): idle time (from spin wait in the panel pipeline and in the top-level scheduling loop)Overhead (1) only a�ects uniprocessor performance. Overhead (2) decreases both uniprocessorperformance of the parallel code and parallel performance. Compared with the serial execution,the parallel execution experiences more contention for locks. But Table 8 and Figure 18 indicatethat runtime does not increase signi�cantly because of contention. Therefore, we may model (2)23

1 3 5 7 9 11 13 15 17 19 21
0

10

20

30

40

50

60

70

80

90

100

(1 − Efficiency)

Spin wait

Lock acquisition overhead

Matrix

P
e

rc
e

n
t
o

ve
rh

e
a

d

Figure 18: Parallel overhead in percent on an 8-CPU Cray J90.as only adding overhead to the uniprocessor execution. Overhead (3) exists only in the parallelcomputations.We now analyze the relations of the various times de�ned in Table 5. All the times are measuredindependently. In particular, TI is obtained by timing two kinds of idle periods on each processorand summing over all processors: one is the spin wait in the panel update pipeline, and the other iswhen a processor calls Scheduler() (line 4 in Figure 10) and fails to get a panel from the scheduler.We found that, for the test matrices and the numbers of processors being considered, failure fromthe scheduler rarely occurs. So most of the idle time is due to pipeline waiting. The followingrelation holds for the parallel runtime:5 P TP � T1 + TI : (2)We now compute the observed e�ciency (Eactual) as follows:Eactual = TsP TP : (3)Since TP , T1, and TI are obtained from di�erent runs of the program, the left-hand side and theright-hand side of Equation (2) may not match well. For the purpose of checking, we also computethe following quantity: Echeck = TsT1 + TI : (4)The closeness of Echeck to Eactual indicates the accuracy of the timings, see Tables 9 and 10.In order to understand the impact of the overheads discussed in previous subsections on theparallel e�ciency, we introduce two parameters �1 and �p, which are calculated based on Ts, T1,5In the absence of errors in the individual time measurement, equality should hold.24

E�ciency OverheadMatrix Eactual Eest �1 �p Echeck B13 Shyy161 .47 .63 .17 .23 .59 .6614 Goodwin .80 .79 .12 .10 .79 .9715 Venkat01 .12 .17 .32 .74 .13 .9916 Inaccura .46 .48 .10 .46 .47 .9717 Af23560 .53 .57 .13 .34 .55 .9318 Dense1000 .25 .30 .07 .67 .26 .9919 Raefsky3 .53 .58 .07 .37 .56 .9620 Ex11 .64 .73 .05 .23 .70 .9821 Wang3 .19 .22 .23 .71 .19 .9922 Raefsky4 .51 .55 .02 .43 .53 .97Table 9: E�ciencies and overheads on a 16-CPU Cray J90.TP , and TI as follows: �1 = T1 � TsT1 = 1� TsT1 : (5)�p = TIP TP : (6)Both �1 and �p are in the range [0; 1); �1 measures the overhead that degrades the uniprocessorperformance, while �p measures the overhead in the parallel execution. The smaller �1 and �2 are,the more e�cient is the parallel algorithm. Since(1� �1) � (1� �p) = TsT1 � P TP � TIP TP � TsT1 � T1P TP = Eactual ;we can use Eest = (1� �1) � (1� �p) : (7)as an estimate for the actual e�ciency.In Tables 9 and 10, we report Eactual, Eest, �1, �p and Echeck obtained on the two parallelmachines.Cray J90In the �rst two columns of Table 9, we compare the estimated e�ciency Eest in Equation (7) withthe actually observed e�ciency Eactual in Equation (3). The estimated and observed e�cienciesare very close. Their di�erences are mostly within 5%, except for matrices 13 and 20 which have15% and 9% di�erence, respectively. For these two matrices, Eactual and Echeck di�er signi�cantly,indicating that some overhead is not reected in T1 or TI .As mentioned in Section 7.2.1, the uniprocessor performance on the J90 does not degrade muchwith smaller maxsup, that is, Overhead (1) does not exist (T 0s = Ts). Therefore, TsT1 can be fromthe bottom curve in Figure 15. We gathered the statistics for �p and B on 16 processors, as shownin Table 9. For most problems, the pipeline spin waiting, as measured by �p, is the primary causeof ine�ciency. This is particularly evident for matrices 15, 18 and 21, for which 74%, 67% and71% of the time processors are idle, respectively. This explains the low speedups achieved for thesematrices. 25

E�ciency OverheadMatrix Eactual Eest �1 �p Echeck B13 Shyy161 .42 .58 .27 .20 .54 .7014 Goodwin .49 .61 .18 .25 .57 .8715 Venkat01 .17 .27 .38 .56 .20 .9116 Inaccura .42 .47 .21 .40 .45 .8817 Af23560 .56 .59 .26 .20 .58 .9318 Dense1000 .35 .34 .18 .58 .35 .9219 Raefsky3 .58 .63 .25 .16 .62 .9520 Ex11 .64 .74 .18 .09 .73 .9821 Wang3 .34 .38 .19 .52 .36 .9322 Raefsky4 .54 .65 .23 .15 .63 .9523 Vavasis3 .56 .71 .14 .17 .68 .97Table 10: E�ciencies and overheads on a 12-CPU Power Challenge.Power ChallengeOn a cache-based machine, the uniprocessor performance loss of the parallel code is a combi-nation of performing lockings and less e�cient cache utilization. Therefore, TsT1 equals the productof the numbers from the bottom curve in Figure 12 (T 0sT1) and the numbers from Figure 16 (TsT 0s).Compared to the J90, we observe that �1 is much larger, because the cache plays an importantrole on the Power Challenge. In fact, for matrices 13, 17, 19, 20 and 22, uniprocessor performanceloss is more severe than the parallel overhead, �p.Again, for matrices 15, 18 and 21, the spin wait time is the major bottleneck; the processorsare idle more than 50% of the time. We found that Eest and Eactual did not match as well asthey did on the J90. For matrices 13, 14, and 23, the gaps are 16%, 12%, and 15%, respectively.The corresponding gaps between Echeck and Eactual are large as well. This again indicates someoverhead not accounted for in T1 or TI . We need further study to fully understand why this is.7.3 Load balanceAs mentioned earlier, our dynamic scheduling approach can automatically balance the workload.One way to measure the load balance is as follows. Let fi denote the number of oating-pointoperations performed on processor i, and P denote the number of processors. We de�ne the loadbalance B as B = Pi(fi)P maxi(fi) : (8)In words, B equals the average work load divided by the maximum work load. It is readily seen that0 < B � 1, and higher B indicates better load balance. If load imbalance is the sole overhead in aparallel program, the parallel execution time is simply the execution time of the slowest processor,whose work load is highest.We should note that the load balance measured by Equation (8) is an accurate measure of workdistribution only under the condition that each oating-point operation takes the same amountof time. This is not the case in practice, but the large values of B shown in the last columns ofTables 9 and 10 still show that good load balance was achieved in terms of op counts. Matrix 13is an exception. 26

LU storage Fraction of LU storageMatrix (MB) P = 1 P = 81 Memplus 16.27 .23 1.512 Gemat11 1.15 .89 5.923 Rdist1 3.70 .23 1.544 Orani678 4.77 .11 .735 Mcfe 0.88 .18 1.266 Lnsp3937 4.93 .16 1.107 Lns 3937 7.04 .12 .778 Sherman5 2.75 .25 1.669 Jpwh 991 1.58 .13 .8810 Sherman3 4.68 .22 1.4711 Orsreg 1 4.23 .11 .7212 Saylr4 6.98 .10 .7013 Shyy161 80.01 .19 1.3114 Goodwin 34.25 .04 .3015 Venkat01 566.09 .02 .1516 Inaccura 106.06 .03 .2117 Af23560 145.02 .03 .2218 Dense1000 9.90 .02 .1419 Raefsky3 183.65 .02 .1620 Ex11 277.59 .01 .0821 Wang3 459.14 .01 .0722 Raefsky4 271.28 .02 .1023 Vavasis3 521.75 .02 .11Table 11: Working storage requirement as compared with the storage needed for L and U . Theblocking parameter settings are: w = 8, t = 100, and b = 200.7.4 Working storage requirementThe parallel algorithm may require more working storage than the sequential one. Multiplethreads share heap storage, static storage, and code, all residing in main memory. Each thread,upon execution, is allocated a private stack and has its own register set. Our program does not usemany stack variables, so the stack size for each thread need not be very large. All working storageis allocated via malloc() from the heap. The working storage consists of two parts, where one partis shared among all threads, and another part is local to each thread. The shared working storageis mainly used to facilitate the central scheduling activity and memory management. It includes:� one integer array of size p used as the task queue, where p is the total number of panels;� one bit vector of size n to mark whether a column is busy;� four integer arrays of size n to record the status of each panel;� one integer array of size n to record a column's most distant busy column down the etreeduring pipelining;� three integer arrays of size n to implement storage layout for supernodes (Section 5.3).The local working storage used by each thread is very similar to that used by sequential SuperLU,that is, all that is necessary to factorize one single panel. It includes:27

� eight integer arrays of size n to perform the panel and column depth-�rst search;� one n-by-w integer array to keep track of the position of the �rst nonzero of each supernodalsegment in U ;� one n-by-w integer array to temporarily store the row subscripts of the nonzeros �lled in thepanel;� one n-by-w real array used as the SPA.� one scratch space of size (t+ b)� w to help BLAS calls. See Figure 1 for the de�nition of t,b and w.This amount of local storage should be multiplied by P , where P is the number of threads created.Thus the working storage grows a�nely with respect to P , and this algorithm, albeit e�cient, ishard to scale up from a memory point of view.To put this in perspective, Table 11 compares the working storage requirement with the actualLU storage. The last two columns report the amount of working storage as a fraction of the totalLU storage in Megabytes, for 1 and 8 threads, respectively. It is clear that for P = 8, the workingstorage requirement can be comparable to the LU storage for small problems. For large problems,working storage is typically 10% to 20% of the LU storage. Matrix 13 is exceptionally bad: it isa matrix of medium size for which the required working storage is more than LU storage. Sincewe would not use multiple processors on the small problems anyway, the overall working storagerequirement is quite small.7.5 A PRAM model to predict optimal speedupGiven a matrix with a �xed column ordering, we want to establish a performance model to estimatethe maximum speedup attainable by our algorithm, and indeed to determine the limitations ofalgorithms based on partitioning a matrix by columns, and using a column as a scheduling unit.Because of various precedence constraints in the algorithm, some parts of the work must be�nished before other parts can start. Thus, the completion time of the parallel algorithm is con-strained by the amount of work that must be done serially, i.e., the critical path. Our objectivehere is to give a lower bound on parallel completion time.In the model we make the following simplifying assumptions: (1) The work only includesoating-point operations, and each oating-point operation takes one unit of time. (2) Thereis an in�nite number of processors. Whenever a task is ready, there will be a free processor toexecute this task immediately. (3) Accessing memory and communication are free. (4) We ignorevarious overheads associated with the actual implementation of the scheduling algorithm and thesynchronizations. This model gives an optimistic estimate; therefore, we can use it to prove upperbounds on the performance of the parallel algorithm on a real machine.The left-looking LU factorization algorithm can be modeled by a data structure called a directedacyclic graph (DAG), in which edges are directed from groups of the etree vertices representingsupernodes to groups of the etree vertices representing panels. (Panels and supernodes can overlapin arbitrary fashion.) Each node in the DAG corresponds to the computation of a panel. An edgedirected from s to p corresponds to an update of panel p by supernode s. The edges also repre-sent precedence relations between the updating supernodes and the destination panels. Figure 19illustrates such a DAG for a 10-by-10 matrix.In presenting our model, we employ the following notation:28

0BBBBBBBBBBBBBBBB@ 1 �� 2 � �3 � �4 � �� � �� � 6 �7 � �� � � � 9� 10
1CCCCCCCCCCCCCCCCA =) 0BBBBBBBBBBBBBBBB@ 1 �� 2 � �3 � �4 � �� 5 � �� � 6 �7 � �� � � � 8 � �� � � � � 9 �� � � � 10

1CCCCCCCCCCCCCCCCAOriginal A Factors F = L+ U � I
Update from supernode to panel

(panel size is 2)

Supernodes {1, 2}, {3}, {4, 5, 6}, {7, 8, 9, 10}

Panels {1, 2}, {3}, {4, 5}, {6}, {7, 8}, {9, 10}

Tmod(9, 6)

10

9

8

7

3

4

5

6

1

2

Tmod(7, 3)

Tmod(3, 2)

Tmod(7, 6)

Figure 19: An example of computational DAG to model the factorization.
29

pd1 d2 dk

���
���
���
���

������

���
���
���
���

���
���
���
���
���
���
���
���
�
�
�

�
�
�

�
�
�

�
�
�

���
���
���
���

Tdiv(p)

d1 dk

d2

Tmod(p, d1)

Tmod(p, d2)
Tmod(p, dk)Figure 20: Tasks associated with panel p.� Tmod(p; d) := the task of updating panel p by a descendant supernode d� Tdiv(p) := the task of performing the inner factorization of panel p� tmod(p; d) := time taken by task Tmod(p; d)� tdiv(p) := time taken by task Tdiv(p)� EST (p) := earliest possible starting time of Tdiv(p)� EFT (p) := earliest possible �nishing time of Tdiv(p)All times are expressed in units of oating-point operations. It is clear that for any panel p thefollowing relation holds: EFT (p) = EST (p) + tdiv(p).According to our scheduling algorithm, each panel task is assigned to a single processor. Apanel task for panel p consists of the following two types of subtasks:Tpanel(p) := fTmod(p; d) j d 2 Dg [fTdiv(p)g ;where D is the set of descendant supernodes that update the destination panel p. Figure 20 showsthe part of the DAG associated with a particular panel p.Each Tmod and Tdiv is the indivisible task, and is carried out sequentially on one processor.Clearly, Tdiv cannot start until all the Tmod's have �nished. By looking at the precedence relationsof these two types of tasks, we can determine the runtime of Tpanel(p) on processor P . We willtry to schedule these tasks as early as possible, in order to derive the minimum parallel executiontime.We �rst look at the tasks associated with one particular panel p, as shown in Figure 20. Supposethere are k descendant supernodes to update panel p, and that all the times fEFT (d); d 2 Dghave been computed. We schedule the tasks fTmod(p; d); d 2 Dg to processor P in the order ofTmod(p; 1); : : : ; Tmod(p; k), such that:EFT (1) � EFT (2) � : : : � EFT (k) :Here, EFT (i) is the �nishing time of the last column of supernode i, because a supernode i cannotupdate any ancestor panel before its last column is completed. We call this scheduling policySched-A. Then we can compute EST (p) and EFT (p) as follows.1. Run the following recurrence to get the completion times of the Tmod's:30

t = 0;for i = 1 to kt = max f t; EFT (i) g+ tmod(i);endfor;2. Set EST (p) = t and EFT (p) = t+ tdiv(p) .Now we will give an informal argument for the optimality of the parallel runtime resulting fromSched-A.Theorem 3 For panel p, scheduling the Tmod's by Sched-A gives the shortest completion time.Proof: Processor P requires at least Pki=1 tmod(p; i) units of time to �nish all the updates topanel p. Now suppose another scheduling strategy Sched-B starts with a task Tmod(p; i); i 6= 1. Dueto the precedence constraint, Tmod(p; i) cannot start until after time EFT (i) (� EFT (1)). Thatmeans processor P will be idle during the period of LAG := EFT (i)�EFT (1). Thus the amountof time to �nish all the Tmod s will be at least LAG+Pki=1 tmod(p; i).On the other hand, in Sched-A, at least some Tmod(p; j); j < i have been scheduled in the timeperiod LAG. Hence the amount of work left after time EFT (i) is less than the work left whenusing Sched-B. Sched-A will give shorter �nishing time than Sched-B. 2We are now ready to simulate parallel computation for the whole factorization. To beginwith, the EST s of the leaf panels in the column etree are initialized to zero. Various times canbe computed successively from the bottom of the etree to the top. By applying the argumentabove inductively to all the panels in the DAG, with leaf panels as the basis, we can show thatEFT (root panel) gives the minimum execution time. The (predicted) optimal speedup can thenbe computed by Predicted speedup = Total opsEFT (root panel) :There are several points worth noting in this model. First, because of numerical pivoting, wedo not know the computational DAG in advance of the factorization; rather, the DAG is builtincrementally as the factorization proceeds. Also, the oating-point operations associated withall the tasks are calculated on the y. So this model gives an a posteriori estimate. Secondly,for each panel computation, the scheduling method of Sched-A requires sorting the EFT 's of allthe descendant supernodes that will update this panel. The cost associated with this sortingis prohibitively high, and so this method cannot be used to schedule panel updates in practice.Nevertheless, this gives us an upper bound on the theoretically attainable speedup.In our algorithm, two parameters control task granularity: The panel size w determines theamount of work in a Tdiv task, and both w and the maximum supernode size maxsup determinethe amount of work in a Tmod task. Any large supernode of size exceeding maxsup (such as in adense matrix) is divided into smaller ones so that they �t in cache.Table 12 reports the predicted speedups when varying w and maxsup. For a �xed value ofmaxsup, the simulated speedups decrease with increasing w. For sequential SuperLU we �ndempirically that the best choice for w is between 8 and 16, depending on matrices and architectures.In the parallel setting, a smaller w, say between 4 and 8, seems to give the best overall performance.This embodies an interesting trade-o� between available concurrency and per-processor e�ciency.We now compare the results when �xing w but varying maxsup. In relatively sparser matrices,such as matrices 1 { 10, the actual sizes of supernodes may be much smaller than maxsup. The31

maxsup = 32 maxsup = 64Matrix w = 4 w = 8 w = 16 w = 4 w = 8 w = 16 height=n1 Memplus 4.8 3.6 2.8 2.9 2.5 2.1 0.952 Gemat11 7.3 5.3 4.1 6.4 4.9 3.6 0.063 Rdist1 4.6 3.2 2.1 4.6 3.2 2.1 0.994 Orani678 42.2 28.4 16.6 42.2 28.4 16.6 0.645 Mcfe 6.6 4.3 2.6 6.6 4.3 2.6 0.676 Lnsp3937 23.2 15.4 9.7 23.2 15.4 9.7 0.257 Lns 3937 24.1 15.8 9.6 22.9 15.3 9.6 0.278 Sherman5 15.8 11.4 7.5 14.0 10.7 7.2 0.209 Jpwh 991 13.4 9.7 6.4 11.3 8.3 6.0 0.4610 Sherman3 12.7 9.7 7.0 8.2 6.9 5.5 0.2011 Orsreg 1 14.4 11.0 7.5 9.2 7.8 5.9 0.3412 Saylr4 19.8 16.1 11.0 13.1 11.4 8.6 0.2913 Shyy161 47.9 36.2 24.1 28.1 23.8 18.1 0.0414 Goodwin 97.4 71.3 43.6 83.4 63.4 40.1 0.1915 Venkat01 22.0 20.2 17.0 14.3 14.2 13.1 0.7316 Inaccura 62.6 43.5 26.0 44.5 33.6 22.2 0.4517 Af23560 70.9 55.3 37.2 41.4 35.7 27.4 0.2018 Dense1000 33.1 23.7 18.4 18.2 14.9 12.7 1.0019 Raefsky3 140.2 110.6 80.8 80.4 69.6 56.5 0.2120 Ex11 106.7 83.5 58.2 61.6 53.2 41.7 0.3521 Wang3 57.6 43.4 29.4 34.3 28.9 22.1 0.9422 Raefsky4 99.1 77.1 52.0 56.3 48.5 37.3 0.3323 Vavasis3 176.5 133.9 90.7 106.2 89.5 68.2 0.18Table 12: Optimal speedup predicted by the model, and the column etree height.performance for such matrices are not so sensitive to maxsup. However, for larger and densermatrices, larger value of maxsup results in poorer speedup.Finally we note that the speedups for small matrices are very low, even with small values of wand maxsup. Fortunately, for large matrices such as 13 { 21, the predicted speedups are greaterthan 20 when w = 8 and maxsup = 32. These matrices perform more than one billion oating-point operations in the factorization. It is these matrices that require parallel processing power.The current column-oriented algorithm is well suited for most of the commercially popular SMPs,because the number of processors on these systems is usually below 20.The height of the column etree can also be used as a crude prediction of the parallel performance.The height of a node i is de�ned asheight(i) = (0; if i is a leaf node1 +maxf height(j) j j 2 child(i)g otherwiseThe height of the etree is the height of the root, which represents the longes path in the etree.The computation of all the nodes along this path must be performed in succession. Therefore,the length of the critical path constrains performance. The last column of Table 12 shows theheight of the etree over total numbers of nodes n in the etree. The larger height=n is, the largerthe fraction of panels will be factorized in pipelined manner, resulting in poor parallelism andmore synchronizations. For example, height=n for matrices 1, 3, 15 and 21 is rather large. Thisis consistent with the relatively lower predicted speedups. However, we must note that the etree32

height alone is not an accurate measure of parallelism. For example, both dense matrix (18) anda tridiagonal matrix have height=n = 1:00, but the former possesses much more concurrency thanthe later.The actual speedups achieved are much lower than the upper bounds predicted by the PRAMmodel (Figures 11 through 15). This is because the model does not capture the details of themachines and the implementation, such as cache behavior, synchronization, etc. However, we dosee a similar shape of speedup curves. For example, the model predicts that matrices 15 and 21have lower speedups compared with the other large matrices. In reality, these two matrices performworse than the others. The poor performance is primarily due to two factors: (1) The column etreeis tall, and contains substantial false dependencies. (2) The dynamic algorithm is needed to allocatememory for the supernodes (Section 5.3), because the static upper bound on the supernodes storageis too large for these two problems (Table 6).8 ConclusionsWe have designed and implemented a parallel algorithm for shared memory multiprocessors ofmodest size. The e�ciency of the algorithm has been demonstrated on several parallel machines.Figure 21 shows the speedups on 8 processors of three parallel machines. Figures 22 through 25summarize the factorization rate in Megaops for six large matrices, with increasing number ofprocessors. We believe these large problems are the primary candidates to be solved on parallelmachines. In fact, the largest one in our test suite takes a little more than 0.5 GBytes memory,far less than most parallel machines o�er. Our algorithm is expected to work well for even largerproblems.For a realistic problem arising from a 3-D ow calculation (matrix 20), on the 12-CPU PowerChallenge, the 8-CPU Cray C90, the 16-CPU J90, and the 8-CPU AlphaServer 8400, our parallelalgorithm achieves 23%, 33%, 25%, and 17% peak oating-point performance. The respective Moprates are 1002, 2583, 831 and 781. These are the fastest results for the unsymmetric LU factorizationon these powerful high-performance machines. Previous results showed much lower factorizationrates because the machines used were relatively slow and the computational kernel in the earlierparallel algorithms was based on Level 1 BLAS. The closest work is the parallel symmetric patternmultifrontal factorization by Amestoy and Du� [1], also on shared memory machines. However,that approach may result in too many nonzeros and so be ine�cient for unsymmetric pattern sparsematrices.Another contribution was to provide detailed performance analysis and modeling for the under-lying algorithm. In particular, we identi�ed the three main factors limiting parallel performance:(1) contention for accessing critical sections, (2) processors sitting idle due to pipeline waiting, and(3) the need to sacri�ce some per-processor e�ciency in order to gain more concurrency. Which fac-tor plays the most signi�cant role depends on the relative performance of integer and oating-pointarithmetic in the underlying architecture.We have developed a theoretical model to analyze our parallel algorithm and predict the opti-mally attainable speedup. When comparing the theoretical prediction (Table 12) with the actualspeedups (Figure 21), we �nd that there exists a discrepancy between the two. This is becauseour hypothetical machine and the optimal scheduling used in the model do not capture all thedetails of a real machine with real scheduling. Nevertheless, we do see a similar behavior in thepredicted and actual speedups. That is, for the matrices predicted lower speedups, such as 11, 15,18 and 21, the actual speedups are also lower. The model is a useful tool to help identify the inher-ently sequential problems with bad column orderings. The model also suggests that the panel-wise33

11 12 13 14 15 16 17 18 19 20 21 22
1

2

3

4

5

6

7

8

Power Challenge
Cray J90
AlphaServer 8400

Matrix

S
pe

ed
up

Figure 21: Speedups on 8 processors of the Power Challenge, the AlphaServer 8400 and the CrayJ90.parallel algorithm, although e�cient on small scale SMPs, cannot e�ectively utilize more than 50processors.We plan to expand this research in several directions. We will study a more scalable algorithmfor larger parallel machines. This algorithm is likely to partition the matrix by both rows andcolumns, and schedule blocks of submatrices onto processors. This will potentially increase par-allelism, and reduce the panel update pipeline waiting time. In the framework of SuperLU, bothserial and parallel, we will investigate incomplete LU factorizations, which can be used as a classof preconditioners for unsymmetric sparse iterative solvers.9 AcknowledgementsEd Rothberg of Silicon Graphics not only provided us access to the SGI Power Challenge, butalso helped improve performance of our algorithm. We thank Esmond Ng of Oak Ridge NationalLab for correspondences on the issues of nonzero structure prediction, which helped design thememory management scheme discussed in Section 5.3. We thank Kathy Yelick for suggestions onthe presentation of the performance analysis section. We thank Osni Marques and Peter Tang forsuggestions on improving the presentation of the material.References[1] P. R. Amestoy and I.S. Du�. MUPS: a parallel package for solving sparse unsymmetric setsof linear equations. Technical report, CERFACS, Toulouse, France, 1994.34

1 4 8 12
0

100

200

300

400

500

600

700

800

900

1000

Processors

M
fl
o

p
s

shyy161
goodwin
inaccura
af23560
ex11
raefsky4

Figure 22: Mop rate on a SGI Power Chal-lenge. 1 2 4 8
0

100

200

300

400

500

600

700

800

900

1000

Processors

M
fl
o

p
s

shyy161
goodwin
inaccura
af23560
ex11
raefsky4

Figure 23: Mop rate on a DEC Al-phaServer 8400.
1 2 4 8

0

500

1000

1500

2000

2500

3000

Processors

M
fl
o

p
s

shyy161
goodwin
inaccura
af23560
ex11
raefsky4

Figure 24: Mop rate on a Cray C90. 1 4 8 16
0

100

200

300

400

500

600

700

800

900

1000

Processors

M
fl
o

p
s

shyy161
goodwin
inaccura
af23560
ex11
raefsky4

Figure 25: Mop rate on a Cray J90.35

[2] Patrick R. Amestoy. Factorization of large unsymmetric sparse matrices based on a multi-frontal approach in a multiprocessor environment. Technical Report TH/PA/91/2, CERFACS,Toulouse, France, February 1991. Ph.D thesis.[3] C. Ashcraft and R. Grimes. The inuence of relaxed supernode partitions on the multifrontalmethod. ACM Trans. Mathematical Software, 15:291{309, 1989.[4] J. Bilmes, K. Asanovic, J. Demmel, D. Lam, and C.-W. Chin. Optimizing matrix multiplyusing PHiPAC: a portable, high-performance, ANSI C coding methodology. Computer ScienceDept. Technical Report CS-96-326, University of Tennessee, Knoxville, May 1996. (LAPACKWorking Note #111).[5] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W.H.Liu. A supernodal approach to sparse partial pivoting. Technical Report UCB//CSD-95-883, Computer Science Division, U.C. Berkeley, July 1995. (Xerox PARC report CSL-95-03,LAPACK Working Note #103).[6] J. Dongarra, J. Du Croz, S. Hammarling, and Richard J. Hanson. An Extended Set of FOR-TRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft., 14(1):1{17, March 1988.[7] J. Dongarra, J. Du Croz, Du� I., and S. Hammarling. A Set of Level 3 Basic Linear AlgebraSubprograms. ACM Trans. Math. Soft., 16:1{17, 1990.[8] I. S. Du�, R. Grimes, and J. Lewis. Sparse matrix test problems. ACM Trans. MathematicalSoftware, 15:1{14, 1989.[9] S. C. Eisenstat and J. W. H. Liu. Exploiting structural symmetry in sparse unsymmetricsymbolic factorization. SIAM J. Matrix Analysis and Applications, 13:202{211, 1992.[10] S. C. Eisenstat and J. W. H. Liu. Exploiting structural symmetry in a sparse partial pivotingcode. SIAM J. Scienti�c and Statistical Computing, 14:253{257, 1993.[11] David M. Fenwick, Denis J. Foley, William B. Gist, Stephen R. VanDoren, and Daniel Wissel.The AlphaServer 8000 series: High-end server platform development. Digital Technical Journal,7(1):43{65, 1995.[12] Alan George, Michael T. Heath, Joseph Liu, and Esmond Ng. Solution of sparse positivede�nitive systems on a shared-memory multiprocessor. International Journal of Parallel Pro-gramming, 15(4):309{325, 1986.[13] Alan George, Joseph Liu, and Esmond Ng. A data structure for sparse QR and LU factoriza-tions. SIAM J. Sci. Stat. Comput., 9:100{121, 1988.[14] Alan George and Esmond Ng. An implementation of Gaussian elimination with partial pivotingfor sparse systems. SIAM J. Sci. Stat. Comput., 6(2):390{409, 1985.[15] Alan George and Esmond Ng. Symbolic factorization for sparse Gaussian elimination withpartial pivoting. SIAM J. Sci. Stat. Comput., 8(6):877{898, 1987.[16] Alan George and Esmond Ng. Parallel sparse Gaussian elimination with partial pivoting.Annals of Operation Research, 22:219{240, 1990.36

[17] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in Matlab: Design and implemen-tation. SIAM J. Matrix Analysis and Applications, 13:333{356, 1992.[18] J. R. Gilbert and E. Ng. Predicting structure in nonsymmetric sparse matrix factorizations.In Alan George, John R. Gilbert, and Joseph W. H. Liu, editors, Graph Theory and SparseMatrix Computation. Springer-Verlag, 1993.[19] John R. Gilbert. An e�cient parallel sparse partial pivoting algorithm. Technical Report CMINo. 88/45052-1, Computer Science Department, University of Bergen, Norway, 8 1988.[20] John R. Gilbert, Esmond G. Ng, and Barry W. Peyton. Computing row and column countsfor sparse QR factorization. Talk presented at SIAM Symposium on Applied Linear Algebra,June 1994. Journal version in preparation.[21] John R. Gilbert, Esmond G. Ng, and Barry W. Peyton. An e�cient algorithm to compute rowand column counts for sparse Cholesky factorization. SIAM J. Matrix Anal. Appl., 15:1075{1091, 1994.[22] A. Gupta and V. Kumar. Optimally scalable parallel sparse Cholesky factorization. In Proceed-ings of the Seventh SIAM Conference on Parallel Proceesing for Scienti�c Computing, pages442{447. SIAM, 1995.[23] A. Gupta, E. Rothberg, E. Ng, and B. W. Peyton. Parallel sparse Cholesky factorizationalgorithms for shared-memory multiprocessor systems. In R. Vichnevetsky, D. Knight, andG. Richter, editors, Advances in Computer Methods for Partial Di�erential Equations{VII.IMACS, 1992.[24] Xiaoye S. Li. Sparse Gaussian elimination on high performance computers. Technical Re-port UCB//CSD-96-919, Computer Science Division, U.C. Berkeley, September 1996. Ph.Ddissertation.[25] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matrix Analysisand Applications, 11:134{172, 1990.[26] Joseph W.H. Liu, Esmond G. Ng, and Barry W. Peyton. On �nding supernodes for sparsematrix computations. SIAM J. Matrix Anal. Appl., 14(1):242{252, January 1993.[27] Esmond G. Ng and Barry W. Peyton. A supernodal Cholesky factorization algorithm forshared-memory multiprocessors. SIAM J. Sci. Comput., 14(4):761{769, July 1993.[28] Edward Rothberg. Performance of panel and block approaches to sparse Cholesky factorizationon the iPSC/860 and Paragon multicomputers. SIAM J. Scienti�c Computing, 17(3):699{713,May 1996.[29] SGI Power Challenge. Silicon Graphics, 1995. Technical Report.[30] SPARCcenter 2000 architecture and implementation. Sun Microsystems, Inc., November 1993.Technical White Paper.[31] S. A. Vavasis. Stable �nite elements for problems with wild coe�cients. Technical Report93{1364, Department of Computer Science, Cornell University, Ithaca, NY, 1993. To appearin SIAM J. Numerical Analysis. 37

[32] The Cray C90 series. http://www.cray.com/PUBLIC/product-info/C90/. Cray Research, Inc.[33] The Cray J90 series. http://www.cray.com/PUBLIC/product-info/J90/. Cray Research, Inc.

38

A Performance of the parallel algorithmA.1 On the Sun SPARCcenter 2000Matrix P = 1 P = 2 P = 4 Seconds Mops1 Memplus 0.44 0.82 0.74 2.35 12 Gemat11 0.77 1.25 1.51 0.47 33 Rdist1 0.86 1.92 1.82 1.71 84 Orani678 0.71 1.24 2.08 1.98 85 Mcfe 0.79 1.38 2.00 0.45 96 Lnsp3937 0.96 1.85 2.03 2.26 187 Lns3937 0.92 1.73 3.09 2.41 198 Sherman5 0.83 1.70 2.81 1.26 209 Jpwh991 0.77 1.56 2.77 0.84 2210 Sherman3 0.90 1.74 2.92 2.77 2211 Orsreg1 0.89 1.75 3.17 2.27 2712 Saylr4 0.88 1.76 3.10 4.17 2513 Shyy161 0.90 1.82 3.25 59.55 2615 Goodwin 0.92 1.86 3.61 20.50 3318 Dense1000 0.97 1.96 3.64 16.39 41Mean speedup 0.83 1.62 2.64Std deviation 0.13 0.32 0.83Table 13: Speedup, factorization time and Mop rate on a 4-CPU SPARCcenter 2000.

39

A.2 On the SGI Power ChallengeMatrix P = 1 P = 4 P = 8 P = 12 Seconds Mops1 Memplus 0.72 1.73 1.73 1.69 0.42 42 Gemat11 0.89 1.86 2.36 3.71 0.07 223 Rdist1 0.89 1.66 1.56 2.23 0.44 324 Orani678 0.68 1.72 2.40 2.56 0.45 335 Mcfe 0.68 1.92 2.09 3.29 0.07 596 Lnsp3937 0.97 3.00 3.65 3.86 0.35 1227 Lns3937 0.98 2.98 3.92 3.73 0.40 1178 Sherman5 0.86 2.29 3.09 3.09 0.23 1119 Jpwh991 0.83 2.40 3.43 5.33 0.09 20510 Sherman3 0.87 2.36 2.78 2.78 0.40 15711 Orsreg1 0.88 2.67 2.73 2.97 0.34 18012 Saylr4 0.90 2.81 3.48 4.58 0.38 28413 Shyy161 0.86 2.71 3.54 5.06 4.64 33214 Goodwin 0.89 3.45 5.17 5.90 1.56 43315 Venkat01 0.65 1.72 2.00 1.98 15.37 20916 Inaccura 0.85 2.77 4.14 5.00 9.53 43817 Af23560 0.91 2.98 5.10 6.70 8.87 72218 Dense1000 0.85 2.64 3.32 4.17 0.90 74019 Raefsky3 0.92 3.07 5.62 6.91 11.35 107020 Ex11 0.94 3.23 5.96 7.64 26.95 104621 Wang3 0.85 2.20 3.39 4.03 21.37 68122 Raefsky4 0.94 3.05 5.17 6.52 33.57 93623 Vavasis3 0.91 3.58 6.06 6.69 105.06 862Mean speedup 0.86 2.56 3.59 4.37Std deviation 0.09 0.59 1.36 1.73Table 14: Speedup, factorization time and Mop rate on a 12-CPU SGI Power Challenge.
40

A.3 On the DEC AlphaServer 8400Matrix P = 1 P = 2 P = 4 P = 6 P = 8 Seconds Mops1 Memplus 0.46 0.79 0.79 0.78 0.64 0.59 32 Gemat11 0.83 1.63 1.88 1.88 1.88 0.08 203 Rdist1 0.90 1.98 2.10 1.77 1.77 0.31 404 Orani678 0.83 1.29 2.00 2.33 2.42 0.26 575 Mcfe 0.72 1.80 3.00 2.17 2.17 0.06 666 Lnsp3937 0.93 1.94 3.19 3.68 3.68 0.25 1597 Lns3937 0.95 1.83 3.08 3.81 4.12 0.25 1878 Sherman5 0.91 1.89 2.89 2.94 2.94 0.17 1519 Jpwh991 0.92 1.89 3.00 3.30 3.00 0.11 17810 Sherman3 0.88 1.83 2.72 2.74 2.74 0.34 18011 Orsreg1 0.93 1.88 2.93 3.35 3.35 0.26 23112 Saylr4 0.91 1.98 3.20 3.78 4.08 0.38 27613 Shyy161 0.95 1.93 3.23 4.21 4.79 4.66 33414 Goodwin 0.99 1.98 3.68 5.39 6.33 1.49 45315 Venkat01 0.89 1.92 2.95 3.04 3.16 10.62 30316 Inaccura 0.99 1.83 3.08 4.15 5.02 10.94 38017 Af23560 0.95 1.98 3.72 5.03 5.77 11.58 55318 Dense1000 0.98 1.86 3.35 4.32 4.80 0.99 67519 Raefsky3 0.98 1.98 3.81 3.16 3.61 28.65 42220 Ex11 0.99 1.98 3.76 5.56 7.06 34.23 78121 Wang3 0.93 1.98 3.69 4.75 5.61 21.36 68222 Raefsky4 0.98 1.98 3.81 5.44 6.63 42.79 73423 Vavasis3 0.96 1.97 3.69 5.28 6.64 124.24 724Mean speedup 0.92 1.74 2.89 3.59 4.01Std deviation 0.13 0.28 0.81 1.31 1.77Table 15: Speedup, factorization time and Mop rate on an 8-CPU DEC AlphaServer 8400.
41

A.4 On the Cray C90Matrix P = 1 P = 2 P = 4 P = 6 P = 8 Seconds Mops1 Memplus 0.66 0.75 0.74 0.72 0.71 1.24 22 Gemat11 0.76 1.36 2.27 3.09 3.40 0.10 153 Rdist1 0.71 1.98 2.41 2.41 2.31 0.48 344 Orani678 0.72 1.24 2.22 2.91 3.20 0.41 375 Mcfe 0.69 1.25 1.82 2.00 2.00 0.10 436 Lnsp3937 0.78 1.51 2.77 2.84 4.41 0.27 1517 Lns3937 0.78 1.51 2.95 3.97 4.23 0.30 1568 Sherman5 0.77 1.49 2.90 3.59 4.07 0.15 1709 Jpwh991 0.78 1.52 2.50 3.18 2.92 0.12 16410 Sherman3 0.79 1.48 2.53 2.97 2.97 0.29 21411 Orsreg1 0.80 1.53 2.69 3.25 3.55 0.22 27812 Saylr4 0.83 1.58 3.05 3.85 3.97 0.33 31813 Shyy161 0.80 1.50 2.87 3.87 4.86 3.29 47714 Goodwin 0.84 1.65 3.31 4.83 6.59 0.99 68215 Venkat01 0.70 1.28 1.65 1.73 1.74 14.04 22916 Inaccura 0.86 1.70 3.19 4.38 5.21 5.18 80717 Af23560 0.84 1.63 3.22 4.56 4.89 6.24 103518 Dense1000 0.95 1.86 2.95 3.30 3.55 0.71 94319 Raefsky3 0.91 1.74 3.45 4.77 5.83 6.17 197720 Ex11 0.90 1.65 3.21 5.02 6.53 10.37 258321 Wang3 0.78 1.48 1.82 2.31 2.32 14.62 99622 Raefsky4 0.92 1.80 3.43 4.60 5.46 13.13 2399Mean speedup 0.80 1.53 2.63 3.42 3.85Std deviation 0.08 0.27 0.67 1.11 1.55Table 16: Speedup, factorization time and Mop rate on an 8-CPU Cray C90.

42

A.5 On the Cray J90Matrix P = 1 P = 4 P = 8 P = 12 P = 16 Seconds Mops1 Memplus 0.65 0.94 0.98 0.97 0.76 3.67 12 Gemat11 0.71 2.44 4.38 5.25 5.83 0.18 83 Rdist1 0.71 2.86 2.88 2.71 2.39 1.53 104 Orani678 0.71 2.07 3.11 3.82 3.85 1.13 135 Mcfe 0.77 2.21 2.70 2.70 2.52 0.29 156 Lnsp3937 0.75 2.87 4.91 6.21 6.39 0.66 627 Lns3937 0.79 2.75 4.63 5.41 5.41 0.83 588 Sherman5 0.80 2.91 4.64 5.07 5.32 0.41 639 Jpwh991 0.78 2.72 3.57 3.68 3.38 0.37 4910 Sherman3 0.80 2.63 3.49 3.42 3.31 0.96 6611 Orsreg1 0.83 2.83 3.88 4.22 4.16 0.70 8912 Saylr4 0.81 2.91 4.26 4.82 4.82 0.99 10813 Shyy161 0.83 2.92 5.30 6.94 7.47 8.06 19614 Goodwin 0.88 3.32 6.66 10.02 12.81 1.94 35415 Venkat01 0.68 1.84 1.96 1.98 1.90 47.34 6816 Inaccura 0.90 3.26 5.55 6.64 7.39 15.09 27717 Af23560 0.87 3.22 5.98 7.55 8.49 15.05 43118 Dense1000 0.93 2.84 3.79 3.92 3.91 2.61 25619 Raefsky3 0.93 3.38 6.20 7.69 8.43 19.03 64120 Ex11 0.95 3.56 6.53 9.47 10.17 32.48 83121 Wang3 0.77 2.53 3.21 3.14 3.06 50.42 28822 Raefsky4 0.98 3.54 5.87 7.36 8.12 43.54 723Mean speedup 0.81 2.75 4.29 5.13 5.45Std deviation 0.09 0.60 1.51 2.38 2.97Table 17: Speedup, factorization time and Mop rate on a 16-CPU Cray J90.

43

