
Implementation in ScaLAPACK of Divide-and-Conquer Algorithms forBanded and Tridiagonal Linear SystemsA. ClearyDepartment of Computer ScienceUniversity of TennesseeJ. DongarraDepartment of Computer ScienceUniversity of TennesseeMathematical Sciences SectionOak Ridge National LaboratoryAbstractDescribed here are the design and implementation of a family of algorithms for a variety of classesof narrowly banded linear systems. The classes of matrices include symmetric and positive de�-nite, nonsymmetric but diagonally dominant, and general nonsymmetric; and, all these types areaddressed for both general band and tridiagonal matrices. The family of algorithms captures thegeneral
avor of existing divide-and-conquer algorithms for banded matrices in that they have threedistinct phases, the �rst and last of which are completely parallel, and the second of which is the par-allel bottleneck. The algorithms have been modi�ed so that they have the desirable property that theyare the same mathematically as existing factorizations (Cholesky, Gaussian elimination) of suitablyreordered matrices. This approach represents a departure in the nonsymmetric case from existingmethods, but has the practical bene�ts of a smaller and more easily handled reduced system. Allcodes implement a block odd-even reduction for the reduced system that allows the algorithm to scalefar better than existing codes that use variants of sequential solution methods for the reduced system.A cross section of results is displayed that supports the predicted performance results for the algo-rithms. Comparison with existing dense-type methods shows that for areas of the problem parameterspace with low bandwidth and/or high number of processors, the family of algorithms described hereis superior.1 IntroductionWe are concerned in this work with the solution of banded linear systems of equationsAx = b:The matrix A is n� n. In general, x and b are n� nrhs matrices, but it is su�cient to considernrhs = 1 for explanation of the algorithms. Here, nrhs is the number of right-hand sides in thesystem of equations.The matrix A is banded, with lower bandwidth �l and upper bandwidth �u. This has the followingmeaning:If i � j, then i� j > �l) Ai;j � 0; if i � j, then j � i > �u) Ai;j � 0.Thus, the matrix entries are identically zero outside of a certain distance from the main diagonal.We are concerned here with narrowly banded matrices, that is, n � �l; n � �u. Note that while,1

in general, entries within the band may also be numerically zero, it is assumed in the code that allentries within the band are nonzero. As a special case of narrowly banded matrices, we are alsoconcerned with tridiagonal matrices, speci�cally, �l = �u = 1.Three classes of matrix are of interest: general nonsymmetric, symmetric and positive de�nite,and nonsymmetric with conditions that allow for stable computations without pivoting, such asdiagonal dominance. In this article we focus on the last two cases and indicate how the family ofalgorithms we present can apply to other classes of matrix. The �rst class, general nonsymmetric,is the subject of a forthcoming report.This article concentrates on issues related to the inclusion in ScaLAPACK [CDPW93, BCC+97]of library-quality implementations of the algorithms discussed here. ScaLAPACK is a public-domainportable software library that provides broad functionality in linear algebra mathematical softwareto a wide variety of distributed-memory parallel systems. Details on retrieving the codes discussedhere, as well as the rest of the ScaLAPACK package, are given at the end of this article.Algorithms for factoring a single banded matrix A fall into two distinct classes.� Dense-type: Fine-grained parallelism such as is exploited in dense matrix algorithms is used.The banded structure is used to reduce operation counts but not to provide parallelism.� Divide and Conquer: Medium/large-grained parallelism resulting from the structure ofbanded matrices is used to divide the matrix into large chunks that, for the most part, can bedealt with independently.The key parameter for choosing between the two classes of algorithms is the bandwidth. Par-allelism of the dense methods depends on the bandwidth in the exact same way that parallelismin dense matrix algorithms depends on the matrix size. For small bandwidths, dense methods arevery ine�cient. Reordering methods are the opposite: the smaller the bandwidth, the greater thepotential level of parallelism. However, reordering methods have an automatic penalty that reducesthe spectrum over which they are the methods of choice: because of �ll-in, they incur an operationcount penalty of approximately four compared with sequential algorithms. They are therefore lim-ited to an e�ciency of no greater than 25%. Nonetheless, these algorithms scale well and must beincluded in a parallel library.Many studies of parallel computing reported in the literature [Wri91, AG95, GGJT96, BCD+94,Joh87, LS84] address either the general banded problem or special cases such as the tridiagonalproblem. Wright [Wri91] presented an ambitious attempt at incorporating pivoting, both row andcolumn, throughout the entire calculation. His single-width separator algorithm without pivotingis similar to the work described here. However, Wright targeted relatively small parallel systemsand, in particular, used a sequential method for the reduced system. Arbenz and Gander [AG95]present experimental results demonstrating that sequential solution of the reduced system seriouslyimpacts scalability. They discuss the basic divide-and-conquer algorithms used here, but do notgive the level of detail on implementation that we present. Gustavson et al. [GGJT96] tackle thewide-banded case with a systolic approach that involves an initial remapping of the data. Cleary[BCD+94] presents an in-place wide-banded algorithm that is much closer to the ScaLAPACK-styleof algorithm [CDPW93], utilizing �ne-grained parallelism within BLAS-3 for parallel performance.
2

2 Divide-and-Conquer AlgorithmsIn this article, we are concerned only with divide-and-conquer methods that are appropriate for nar-rowly banded matrices. The family of divide-and-conquer algorithms used in ScaLAPACK performthe following algebraic steps. Here, P is an n� n permutation matrix (speci�ed in Section 3) thatreorders A to allow exploitation of parallelism.First, Ax = b is multiplied on the left by P to produce the equationPA(P�1P)x = Pb:The reordered matrix PAP�1 is factored via Gaussian elimination as (if A is symmetric and positivede�nite, Cholesky decomposition is used and U = LT)PAP�1 = LU:Substituting this factorization and the following de�nitions,x0 = Px; b0 = Pb;we are left with the system LUx0 = b0:This is solved in the traditional fashion by using triangular solutions:Lz = b0; Ux0 = z:The �nal step is recovery of x from x0: x = P�1x0:3 The Symmetric Positive De�nite CaseDongarra and Johnsson [DJ87] showed that their divide-and-conquer algorithm, when applied cor-rectly to a symmetric positive de�nite matrix, can take advantage of symmetry throughout, includingthe solution of the reduced system. In fact, the reduced system is itself symmetric positive de�nite.This fact can be explained easily in terms of sparse matrix theory: the algorithm is equivalent toapplying a symmetric permutation to the original matrix and performing Cholesky factorization onthe reordered matrix. This follows from the fact that the matrix PAP T resulting from a symmetricpermutation P applied to a symmetric positive de�nite matrix A is also symmetric positive de�niteand thus has a unique Cholesky factorization L. The reordering is applied to the right-hand sidesas well, and the solution must be permuted back to the original ordering to give the �nal solution.The key point is that, mathematically, the whole process can be analyzed and described in terms ofthe Cholesky factorization of a specially structured sparse matrix.We take this approach in the sequel. Figure 1 pictorially illustrates the user matrix upon input,assuming the user chooses to input the matrix in lower triangular form (analogous to banded routinesin LAPACK [ABB+95], we provide the option of entering the matrix in either lower or upper form).Each processor stores a contiguous set of columns of the matrix, denoted by the thicker lines in the�gure. We partition each processor's matrix into blocks, as shown. The sizes of the Ai are givenrespectively by Oi. The matrices Bi; Ci; Di are all � � �. Note that the last processor has only Ai.The speci�c reordering can be described as follows:� Number the equations in the Ai �rst, keeping the same relative order of these equations.3

A

B

C

D

1

1

1

1

A

B

C

D

2

2
2

2

A

B

C

D

A

3

3

3

3

4Figure 1: Divide-and-conquer partitioning of lower triangular portion of a symmetric matrix� Number the equations in the Ci next, again keeping the same relative order of these equations.This results in the lower triangular matrix shown in Figure 2. We stress that we do not physicallyreorder the matrix but, rather, base our block operations on this mathematical reordering.The Cholesky factorization of the matrix in Figure 2 can be computed largely with sequentialblock operations, as can the solution of a linear system with these factors. The resultant mathemat-ical Cholesky factorization is illustrated in Figure 3. Communication between processors is neededonly for a small portion of the total computation.Figure 3 illustrates the major weakness of divide-and-conquer algorithms for banded matrices:�ll-in. The blocks Gi and Hi represent �ll-in that approximately doubles the number of nonzerosin the Cholesky factorization when compared with the factor produced by the sequential algorithmapplied to the original matrix. While �ll-in itself is not very expensive, the operation count of thefactorization is approximately four times that of the sequential algorithm. This can be seen in blockterms (which we give in more detail later): the factorization of the Ai sum to N�2+O(N�), whichis the same as the sequential operation count in the higher-order term. However, forming the Gi hasan operation count of 2N�2 + O(N�), and using the Gi to modify the Ci sums to N�2 + O(N�)(the other block operations are of order less than N�2). Summing these terms gives the factor offour degradation.The computational process is generally regarded as occurring in three phases:Phase 1 : Formation of the reduced system. Each processor does computations independently (forthe most part) with local parts and then combines to form the Schur complement system4

A

B
D

1
T1

1

A

B
D2

T2

2

A

B
D3

T3

3

A
4

C

C

C

1

2

3Figure 2: Matrix after divide-and-conquer reorderingcorresponding to the parts already factored. The Schur complement is often called the reducedsystem.Phase 2 : The reduced system is solved, and the answers are communicated back to all of the processors.Phase 3 : The solutions from Phase 2 are applied in a backsolution process.3.1 Phase 1We concentrate now on the local computations in Phase 1. For illustration we will look at the ithprocessor. Note that the �rst and last processors do not have to perform all of these steps.The �rst step is a communication step: Di is sent to processor i+1. This is a small communicationand is completely overlapped with the subsequent computation steps.At this point, the portions of the matrix are stored locally, as illustrated by Figure 4. In this�gure, we view the local computations as a frontal computation. Hence, in this case, we take Oifactorization steps and apply them to the remaining submatrix of size 2�. This submatrix is thensubsequently used in Phase 2 to form the reduced system. Mathematically, this is exactly what thelocal operations equate to. The frontal calculations have speci�c and unique structure dictated bythe way in which the frontal matrix was derived, but this remains a frontal calculation. The \divide"in the algorithm's name is a result of the fact that the reordering allows each of the fronts so de�nedto be independent. Only the 2� update equations at the end of each front need be coordinated withother processors.It is relatively easy to derive a block Cholesky formulation, as well as a partial factorization as5

L

L

L

L

1

2

3

4

B’
D’

1
1
T G H

B’
D’2

T2

22

G H

B’
D’3

T3

33

G H4 4

L(C)1

F’2 L(C)

F’3 L(C)3

2Figure 3: Cholesky factor of reordered divide-and-conquer matrixis required in this case, by merely equating the blocks of the original matrix with the correspondingblocks of the product of the desired Cholesky factors and then solving for the blocks of the Choleskyfactors. We will not reproduce this derivation here. Ultimately, the local frontal calculations willresult in the matrix illustrated in Figure 5. In this �gure, Ai is of size Oi � Oi, and Gi is of size� �Oi. All other blocks are of size � � �, including Di and Hi; which are actually subblocks of Gi.We now illustrate the sequence of steps necessary to arrive at this state.
0

0
0

A
2

C
2

B2

D
1
TFigure 4: Local matrix on processor 2 after initial communication of DiBecause the reordering allows the Cholesky factorization to begin simultaneously with each ofthe Ai, the �rst computational step in processor i is the factorizationAi = LiLiT :This is easily done via a single call to the LAPACK [ABB+95] routine DPBTRF. The matrix resultingafter this step is illustrated in Figure 6. We allow the factors to overwrite the storage for Ai.6

L
2

G H
E

B’ F
C’

2 2
2

2 2
2

1
D’

T

Figure 5: Local storage after completion of Phase 1
0

0
0

L

B
C

2

2
2

D1
TFigure 6: Local matrix on processor 2 after factorization of LiThe factors just computed are used to complete the factorization of the Bi by solvingLiB0iT = BiT :The matrix Bi is transposed and copied into the workspace, since the transpose is needed in thenext step. Once the matrix is in the workspace, the BLAS [DDHH84] subroutine DTRTRS is used tocompute B0iT , which is copied back into the space held by Bi. Mathematically, the local matrix isgiven by Figure 7.

0

0
0

L

B’
C

2

2
2

D1
T

Figure 7: Local matrix on processor 2 after modi�cation of BiThe matrix B0iT is used to modify Ci according toC 0i = Ci �B0iB0iT :Only the lower half of Ci is to be modi�ed (because of symmetry). The BLAS do not specify routinesfor multiplying two triangular matrices, so the choice is to either write a new BLAS-like routine or7

use a BLAS routine designed for a dense-by-triangular matrix multiplication. We chose the latterroute to maintain full dependence on the BLAS, although this uses more operations than necessary.However, the assumption that � << N and the fact that these matrices are � � � make the impactof the extra operations negligible.Figure 8 shows the state after this computation.
0

0
0

L

C’
B’

D

2

2
2

1
TFigure 8: Local matrix on processor 2 after modi�cation of CiOnly at this point do the processors need to execute the receive operation for Di�1 transmittedfrom the previous processor. This is received into auxiliary space because the entire matrix Girepresents �ll-in and cannot overwrite the original matrix. Since subsequent operations operatewith GTi , Di�1 is actually stored in GTi . This �ll-in is often referred to as the spike in this algorithm.The calculation of GTi is accomplished asLiGiT = Di(some liberty has been taken with the sizes of matrices in this expression, but it easy to interpretproperly), by using the LAPACK routine DTBTRS. We note that in terms of operation count, thisstep is the most costly, and thus its serial e�ciency is key to the e�ciency of the entire algorithm.Figure 9 shows the state after this computation.

0

0

L

G H

B’
C’

2

2 2

2
2

D’1
TFigure 9: Local matrix on processor 2 after calculation of the spike �ll-in GiThe matrix Ei represents the contribution from processor i to the diagonal block of the reducedsystem stored on processor i�1, that is, C 0i�1. It is calculated by the BLAS routine DSYRK accordingto the formula Ei = GiGiT :Figure 10 shows the state after this computation.8

0

L

G H
E

B’
C’

2

2 2

2
2

2D’
1

T

Figure 10: Local matrix on processor 2 using the spike �ll-in Gi to calculate EiThe local computation phase is completed by computing Fi, using B0i and the last � columns ofGi, which we label as Hi. The BLAS routine DTRMM accomplishes this task, although it requires theuse of a data copy because of the way it is de�ned. However, this data copy comes for free becauseFi is also �ll-in and thus must be stored in work storage and cannot be calculated in-place. Thecomputation is Fi = B0iHiT :However, for ease of use in the subsequent reduced system factorization, we actually compute andstore the transpose, FiT = HiB0iT :3.2 Phase 2Phase 2 consists of the forming and factorization of the Schur complement matrix. Each processorcontributes three blocks of size � � � to this system: Ei; Fi; C 0i. Each C 0i is added to Ei+1 to formthe diagonal blocks of the matrix, and the Fi form the o�-diagonal blocks. The resultant system isblock tridiagonal, with P � 1 blocks.Several methods for factoring the reduced system have been proposed and implemented in thepast. For small P or small �, an e�cient algorithm is to perform an all-to-all broadcast of eachprocessor's portion of the reduced system, leaving the entire reduced system on each processor[GGJT96]. Each processor then solves this system locally. The advantage of this scheme is thatthere is only one communication step, albeit an expensive one whose cost grows quickly with P .The disadvantage is that since each processor is performing redundant computation, the algorithmis essentially serial and will not scale.An algorithm with similar performance characteristics involves gathering the reduced systemon a single processor, solving it sequentially, and broadcasting the results. Again, the principaldisadvantage is the lack of scalability due to the sequential solution. Arbenz and Gander [AG95]show that the best time for this algorithm occurs at P = 20, which is a disaster for scalability.Theoretically and practically they show the need for a parallel reduced system algorithm, which iswhat we have implemented for ScaLAPACK.We use a block formulation of odd-even (or cyclic) reduction. This algorithm has log2 P stages.At each stage, the odd-numbered blocks are used to \eliminate" the even-numbered blocks, withthe process decreasing the number of blocks left by a factor of two at each stage. Similar to Phase1, symmetry is maintained throughout, since the actual mathematical calculation is a Cholesky9

factorization of a symmetric permutation of the blocks of the reduced system. In this case, theblocks are ordered so that the even-numbered blocks in Step 1 are ordered �rst, the even-numberedblocks in Step 2 are numbered second, and so on. Such a reordering results in an elimination treeof minimal height over all reorderings ([Cle89]).The implementation of this algorithm requires that additional space for �ll-in be allocated, sincethe odd-even reordering creates �ll-in in the reduced system (although this is of a much lower orderthan the �ll-in created in Phase 1).3.3 Phase 3Phase 3 exists only in the solution of a linear system, whereas up to now we have discussed onlythe factorization. When one is solving a linear system, the operations are performed in Phase 1 andPhase 2 to the right-hand sides that mirror the factorization steps. We do not list these in detail.At the end of Phase 2 of solving a linear system, each processor contains portions of the solutionto the reduced system. Each processor then distributes 2� elements of this solution to neighboringprocessors to begin Phase 3. These partial solutions are easily backsubstituted into the locally storedfactors in a completely local computation stage to �nish the solution process. For brevity, we willnot detail the steps in the triangular solution process. Su�ce it to say that they have a similar butsimpler structure than the factorization process. Block operations in LAPACK and the BLAS areused for the various operations. Multiple right-hand sides are as easily handled in this context as asingle right-hand side, and thus our code addresses this more general case.3.3.1 Experimental ResultsResults from a typical parallel system are included in Figure 11. This �gure shows computationalspeeds from running the code on the IBM SP2 parallel supercomputer located at the Cornell TheoryCenter, although results from other systems are qualitatively similar. The problem size has beenscaled with the number of processors so that the submatrix stored on each processor is constant;that is, the bandwidth is �xed, but n scales as P . Two curves are given in this �gure: one is thereciprocal of time and is the computational rate relative to the sequential operation count, while theother is the computational rate relative to the divide-and-conquer operation count.The results �t very well with the predicted times when considering the details of the algorithm.The time for P = 1 re
ects the speed of the underlying LAPACK banded factorization routinemodulo minor additions for the parallel setup. The times for P = 2 and P = 4 show increases,re
ecting the penalty of the �ll-in, which causes an operation count of approximately four timesthat of the sequential algorithm. The actual mega
op rating shows an almost linear increase, with adeviation when going from P = 1 to P = 2 and P = 4 caused by the introduction of communication.For P > 4, both graphs show almost linear performance. A closer look at the actual times showsthat the time can easily be divided into two components: Phase 1 and the reduced system. Thetime for Phase 1 stays constant, since the work is essentially the same. The time for the reducedsystem increases gradually as logP , and this slight increase causes the deviation from linearity inthe performance graph.
10

10
0

10
1

10
2

10
1

10
2

10
3

Number of processors

ex
ec

ut
io

n
sp

ee
d

(M
flo

p/
s)

Scaled Execution Speed for Banded Scalapack Solver on IBM SP/2

actual Mflop/s

Mflop/s relative

to opcount for

serial algorithm

Work per processor: N=1024, bandwidth=64

Figure 11: Scaled problem results for symmetric divide-and-conquer algorithm on IBM SP24 The Unsymmetric but Stable CaseAn important class of banded matrices comprises those that are unsymmetric but that have nu-merical properties such that Gaussian elimination without pivoting is stable. Diagonally dominantmatrices are the prototypical example in this class. ScaLAPACK provides special code to solve theseunsymmetric matrices. This is an addition to the LAPACK standard, and as such, an extensionto the subroutine naming scheme has been adopted. In addition to the two standard classes ofbanded matrices, PB for positive de�nite banded and GB for general banded, the letters DB indi-cate matrices and routines for handling them that are stable without interchanging (the mnemonicis Diagonally-dominant-like Banded).The literature has several divide-and-conquer algorithms for unsymmetric matrices (see, for ex-ample, that of Lawrie and Sameh [LS84]). However, the majority of these have an unsymmetricaspect that has two practical drawbacks: it results in unnecessarily large and complicated reducedsystems, and it complicates reusing the algorithmic structure of the symmetric positive de�nitecodes.Our approach is to have our algorithm mirror the symmetric code as much as possible by treatingthe transpose of the upper triangle of the matrix and factor in the same fashion as the lower triangle.This approach gives our algorithm a characteristic that the algorithm of Lawrie and Sameh (as wellas others) does not: it is equivalent to performing Gaussian elimination on a suitably reorderedmatrix. Thus, we can recapture established properties of Gaussian elimination for implementationand analysis. For instance, if a symmetric positive de�nite matrix is input into the unsymmetriccode, the Cholesky factors from the symmetric positive de�nite algorithm are reproduced (modulodiagonal scaling) by our unsymmetric code. Algorithms such as Lawrie and Sameh's do not share11

this property. Our approach also has the desirable practical consequence that code structure can bereused, allowing us to maintain the code for both cases in the same �le, using source preprocessingtechniques. We elaborate on this feature later.We now give the algorithm in more detail. Figure 12 pictorially illustrates the user matrix of sizen, lower bandwidth �l, and upper bandwidth �u, upon input. Consistent with the symmetric case,each processor stores a contiguous set of columns of the matrix, demarcated by the thicker lines inthe �gure. We partition each processor's matrix into blocks, as shown. The sizes of the Ai are givenrespectively by Oi. The sizes of the smaller matrices re
ect the fact that two di�erent bandwidthsmust be taken into account. A key algorithmic choice is that the separator matrices Ci are of size�m, where �m = max(�l; �u). This choice induces sizes for the matrices Bi; Di of �m � �m. Notethat the last processor has only Ap.
A

BU

DU
C

DL

BL

1

1
1

1
1

1

A

BU
BL

C
DU

DL

2

2
2

2
2

2

A

BU
BL

C
DU

DL

3

3
3

3
3

3

A4Figure 12: Divide-and-conquer partitioning of an unsymmetric matrixThe matrix is reordered by using the same algorithm as is used in the symmetric case, with �mplaying the role of � for the unsymmetric case. The resulting matrix is given in Figure 13. Thematrix is then factored in the same stages as in the symmetric case, suitably adjusted.4.1 Phase 1As in the symmetric case, we concentrate on computations local to a processor, and for illustrationwe follow processor 2. After a preliminary communication stage in which DLi is sent to processori + 1, each processor's storage is illustrated in Figure 15. The local computations are viewed asa frontal computation, with Oi factorization steps being taken and then applied to the remainingsubmatrix of size 2�m. This remaining part of the front is used in the formulation and solution ofthe reduced system. Ultimately, the local frontal calculations will result in the matrix labeled by12

A

BL
DU

BU

DL

1

1
1

1

1

A

BL
DU

BU

DL

2

2

2

2
2

A

BL
DU

BU

DL

3

3

3

3
3

A4

C

C

C

1

2

3Figure 13: Matrix after divide-and-conquer reorderingFigure 14. We now illustrate the sequence of steps necessary to arrive at this state.
U

DL

GU

BU

L

FUEGL
DU

BL FL
C

i

i

i

i

i

i

i
i

ii

i

iFigure 14: Factored local matrixEach processor performs an LU factorization of Ai in parallel with the other processors. The fac-torizations are done without pivoting. Since LAPACK does not currently provide this functionality,we have submitted a routine with this functionality for future inclusion.The major di�erence between our parallel algorithm and that of Lawrie and Sameh occurs atthis point. Laurie and Sameh's algorithm applies both Li�1 and Ui�1 (via triangular solution withL and U) to A from the left side. As we mentioned earlier, this is an asymmetric process, and itis this that causes the complicated structure of the reduced system. The ScaLAPACK algorithmapplies Li�1 from the left, as is done in the symmetric code; however, we apply Ui�1 from the right,in contrast to the algorithm of Lawrie and Sameh, as well as most others, though this is not the �rstpaper to discuss the idea, see e.g. citeArbGan95.Note that this has the desired e�ect on the Ai: once Li�1 has been applied, since Ai = LiUi,Li�1Ai = Li�1LiUi = Ui;13

and thus multiplying by Ui�1 on either side reduces the main blocks to the identity.Computationally, Li�1 is applied from the left by solving the following systems:LiBU 0i = BUi;LiGU i = DLi:Analogously, Ui�1 is applied from the right by solvingUiBL0iT = BLiT ;UiGLiT = DUiT :At this point, the factors stored on each processor have been computed. They now must be usedto form the reduced system. The local matrix after these steps is illustrated in Figure 15.
0

0

0

DL

GU

BU

i

i

i

C i

U

L

GL

BL

DU

i

i

i
i

iFigure 15: Local matrix on processor 2 after initial communication of DLiThe matrices B(L;U)0iT are used to modify Ci according toC 0i = Ci �BL0iBU 0i;where all matrices in the formula are interpreted as being �m��m (the code uses the minimal sizespossible which are smaller in the general case in which �l 6= �u).Each processor i computes a modi�cation to Ci�1 viaEi = GLiGUi:Here, Ei is either �m � �l if �m = �u, or �u � �m otherwise.Finally, the two o�-diagonal blocks FLi and FUi are computed:FLiT = HUiTBL0i;FUi = HLiBU 0iT :The matrices FLi and FUi are of size �l � �l and �u � �u, respectively.4.2 Phase 2Phase 2 is the forming and factorization of the reduced system. Like the symmetric case, the reducedsystem is block tridiagonal and of size P � 1 blocks. The diagonal blocks have the same bandwidth14

as A, and the o�-diagonal blocks are of size �m��m and have nonzero structure determined by thetwo bandwidths.An odd-even block algorithm with the exact same structure as that in the symmetric code is used,although the code is modi�ed to take into account the asymmetry. Each processor has one diagonalblock and two o�-diagonal blocks, as well as a contribution to the previous processor's diagonalblock. Extreme care must be taken in the code, however, to operate on blocks of the correct size,since reordering and the mismatched bandwidths create blocks of di�erent sizes and orientations.4.3 Phase 3Phase 3 has the exact same structure as in the symmetric case, where again the code has been mod-i�ed to re
ect the unsymmetric matrix and the slightly varying blocksizes. Pieces of the solution arecommunicated in the reverse of the factorization structure, and then a purely local backsubstitution�nishes the solution process.4.4 Experimental ResultsFigure 16 presents results for this code on the IBM SP/2, similar to the result for the symmetricpositive de�nite code shown in Figure 11. As predicted based on the fact that both codes use thesame basic algorithm, the results for the nonsymmetric code have the same qualitative behavior asthose for the symmetric code. Actual computing rates are higher for the nonsymmetric code becausethe underlying sequential kernels run faster for nonsymmetric matrices than for symmetric matrices.The dropo� in performance as the number of processors is slightly worse for the nonsymmetric case,partially because the on-processor computing speed is higher since that increases the communicationto computation ratio, and partially because the communication in the reduced system phase isdoubled.5 Tridiagonal MatricesTridiagonal matrices form a very important practical subset of banded matrices, since many appli-cations involve tridiagonal matrices. At the simplest, banded codes may be used to solve tridiagonalmatrices by setting �l = �u = 1, but this approach is ine�cient because subroutines are called inthe banded codes to perform operations that in the tridiagonal case are a single operation. A betterapproach is to use the same algorithms we have described for banded matrices, but to specialize thecode implementation to tridiagonal matrices. An easily maintainable way to do this is via sourcepreprocessing that replaces the block operations in the banded code with the appropriate operationsfor tridiagonal matrices, leaving the algorithmic sections of the code unchanged. This is the strategywe have used in ScaLAPACK.As mentioned earlier, for very small bandwidths, the reduced system is solved relatively e�cientlyby a sequential-type algorithm, since such an algorithm trades o� parallelism in the computation forfewer communication startups, and the computation is almost trivial for small bandwidths. Thus,an option for implementation is to keep the bulk of the algorithm the same as for banded matrices,but to solve the reduced system on a single processor. For a number of processors below a cuto�number that is dependent on many performance factors, the sequential algorithm will outperform theparallel algorithm. However, to ensure scalability, a parallel algorithm must be used for a systemwith more processors than this cuto�. While dynamically choosing a reduced system algorithm15

10
0

10
1

10
1

10
2

10
3

Number of processors

ex
ec

ut
io

n
sp

ee
d

(M
flo

p/
s)

Scaled Execution Speed for Nonsymmetric Banded Scalapack Solver on IBM SP/2

actual Mflop/s

Mflop/s relative

to opcount for

serial algorithm

Work per processor: N=1024, bwl,bwu=64

Figure 16: Scaled problem results for diagonally dominant divide-and-conquer algorithm on IBMSP2based on various parameters is possible, we have opted to retain the parallel algorithm to guaranteescalability for large systems.6 Development and Maintenance Using Source Preprocess-ingAlthough the di�erent combinations of matrix bands, matrix types, precisions (four precisions aresupported in ScaLAPACK), and parameters (such as the UPLO parameter in the symmetric positivede�nite codes and the TRANS parameter in the triangular solve codes) lead to a large quantity ofindividual subroutines, the development above shows that mathematically they are very similar. Wehave used this similarity to manage the development of all of these combinations in as uniform away as possible using source preprocessing techniques. Using a macro substitution package similarto the C preprocessor, we maintain the bulk of the computational code in two meta-source �les,one for factorization and another for triangular system solution. Each of these is in turn dividedinto two sub�les, one for Phase 1 and a second for the reduced system, or Phase 2. This strategygreatly facilitates maintenance, in the sense that if an algorithmic improvement or a bug �x is madeto one code, it is simultaneously made to all of them. The meta-source �le developed this way isonly fractionally larger than the individual source �les created from it.
16

7 SummaryRelease 1.2 of ScaLAPACK included the �rst codes in ScaLAPACK that address banded linearsystems: the symmetric positive de�nite codes. Release 1.3 in November 1996 included three morecategories of software: the diagonally dominant unsymmetric banded codes, and the tridiagonalcodes for both symmetric positive de�nite matrices and diagonally dominant unsymmetric matrices.All of this software has been discussed in this article.In the near future we will release code based on new algorithms from the same family of algorithmsdiscussed here for the di�cult problem of general nonsymmetric matrices, incorporating partialpivoting at all stages of the factorization and maintaining a parallel reduced system solution. Afollowup to this article will detail the new algorithm and its implementation.This article has shown the family of algorithms used to solve these systems in considerable detail,giving not only the mathematical algorithm but also the implementational details. Performancecharacteristics were predicted based on the general structure of the algorithm family, and thesepredictions were con�rmed by experimental results.These codes add considerable capability to the already comprehensive ScaLAPACK packageand �ll the largest remaining hole in the functionality of the package compared to LAPACK, thecommunity standard sequential linear algebra package. We anticipate that these codes, like the restof the ScaLAPACK package, will be adopted in parallel application codes. They have already beenincluded in commercially available software libraries such as IBM's PESSL and NAG's NumericalPVM Library.To retrieve the software described in this document, point your web browser at a netlib repositorysite and follow the links to ScaLAPACK. For instance,http://www.netlib.org/scalapack/index.html8 AcknowledgmentsThe authors thank R. Clint Whaley, L. Susan Blackford, and Antoine Petitet for helpful discussionsand support with various aspects of the software development.References[ABB+95] E. Anderson, Z. Bai, C. H. Bischof, J. Demmel, J. J. Dongarra, J. Du Croz, A. Green-baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. C. Sorensen. LAPACKUsers' Guide. SIAM, 2nd edition, 1995. (Also available in Japanese, published byMaruzen, Tokyo, translated by Dr Oguni).[AG95] P. Arbenz and W. Gander. A survey of direct parallel algorithms for banded linearsystems. Technical report, Swiss Federal Institute of Technology, Zurich, Swizterland,1995.[BCC+97] S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra,S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley. Scalapack:A linear algebra library for message-passing computers. In Proceedings of 1997 SIAMConference on Parallel Processing, May 1997.17

[BCD+94] R. Brent, A. Cleary, M. Dow, M. Hegland, J. Jenkinson, Z. Leyk, M. Nakanishi, M. Os-borne, P. Price, S. Roberts, and D. Singleton. Implementation and performance of scal-able scienti�c library subroutines on Fujitsu's VPP500 parallel-vector supercomputer.In Proceedings of the 1994 Scalable High Performance Computing Conference, 1994.[CDPW93] J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK: A scalable linear algebralibrary for distributed memory concurrent computers. Technical Report 53, LAPACKWorking Note, 1993.[Cle89] A. Cleary. Algorithms for Solving Narrowly Banded Linear Systems on Parallel Comput-ers by Direct Methods. PhD thesis, The University of Virginia, Department of AppliedMathematics, 1989.[DDHH84] J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson. A proposal for an extendedset of Fortran basic linear algebra subprograms. Technical Memo 41, Mathematics andComputer Science Division, Argonne National Laboratory, December 1984.[DJ87] J. Dongarra and L. Johnsson. Solving banded systems on a parallel processor. ParallelComputing, 5:219{246, 1987.[GGJT96] A. Gupta, F. Gustavson, M. Joshi, and S. Toledo. The design, implementation, andevaluation of a banded linear solver for distributed-memory parallel computers. ResearchReport RC 20481, IBM, june 1996.[Joh87] L. Johnsson. Solving tridiagonal systems on ensemble architectures. SIAM J. Sci.Statist. Comput., 8:354{392, 1987.[LS84] D. Lawrie and A. Sameh. The computation and communication complexity of a parallelbanded system solver. ACM Trans. Math. Softw., 10:185{195, 1984.[Wri91] S. Wright. Parallel algorithms for banded linear systems. SIAM J. Sci. Stat. Comput.,12(4):824{843, 1991.

18

