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Many of these modi�cations are algorithmic improvements that would be bene�cial on archi-tectures other than those considered in this report. Other more Cray-speci�c enhancements,such as selective inlining of BLAS, will be mentioned briey for completeness. An interest-ing but otherwise irrelevant empirical result on the optimal blocksize for block factorizationalgorithms is included in an appendix.The metric for much of this optimization work was the output generated by the timingprograms distributed with the LAPACK test package [4]. These programs show the per-formance of standard LAPACK routines against that of the equivalent EISPACK routines,inviting comparison. We observed initially that some of the EISPACK routines were fasterthan the LAPACK routines that were supposed to replace them. We also found instancesin which the Cray Scienti�c Library version of EISPACK was faster than the public do-main version of EISPACK, and worked to identify those optimizations and transfer themto LAPACK.In x 2, we describe the computing environment and identify the di�erent libraries com-pared in this report. In x 3 and x 4 we review all the local modi�cations to LAPACK libraryroutines. Changes to the algorithm or loop structure are called out in separate subsections;changes that involved only inlining are collected at the end. We conclude with followupremarks in x 5.2 Preliminaries2.1 Compute environmentOur compute environment consisted of a CRAY T94, a parallel-vector processing (PVP)computing system with four processors, a shared memory space of 128 MWords, and IEEEoating-point arithmetic. The cycle time is 2.222 nsec (450 MHz), and the vector oating-point units can retire four operations per clock, giving a peak rate of approximately 1800Mops per processor. Although the CRAY T94 is a parallel processor, most of the algo-rithms we evaluated are serial, so most of our results are for a single processor.2.2 LibrariesWe will compare the performance of our enhanced version of LAPACK to the public domainversion, as well as to LINPACK[7] and EISPACK[16], which are earlier collections of Fortran77 subroutines for solving linear systems, eigenvalue problems, and singular value problems.The following conventions will be used in referring to the di�erent libraries:libsci is the name of the Cray Scienti�c Library where the modi�cations described herehave been implementedLAPACK in this report refers to the public domain source code for LAPACK 2.0, availablefrom netlib at http://www.netlib.org.LINPACK refers to the public domain source code for LINPACK.EISPACK refers to the modi�ed source code for EISPACK supplied with the LAPACKtiming routines. Further details on the modi�cations to EISPACK are given below.2



libsci EISPACK is a unique hybrid of an early version of EISPACK with Cray libraryenhancements and the algorithmic changes from the 1983 update to EISPACK. Al-though this software is being phased out of libsci, we include it for comparison in afew cases where it is still the fastest alternative.The naming convention for LAPACK routines in the Cray Scienti�c Library uses aleading `S' in the routine name to indicate a subroutine operating on 64-bit real dataand a leading `C' for 64-bit complex data. On many other systems, 64-bit data is doubleprecision, and the equivalent precision library routines would have a leading `D' or `Z' intheir name. For example, the subroutine to compute an LU factorization of a 64-bit REALarray is named SGETRF in the Cray Scienti�c Library but DGETRF in SGI's CompLib.All comparisons in this report are for subroutines operating on full precision (64-bit real orcomplex) data.2.3 Modi�cations to EISPACKOne di�culty in comparing LAPACK to EISPACK is that there are many test problemsin the LAPACK timing suite for which EISPACK does not converge or converges withless accuracy than LAPACK. To remedy this, the LAPACK designers provided a modi�edversion of EISPACK with the LAPACK timing suite in which the convergence criteria werechanged to be more like LAPACK. Speci�c changes include� The maximum number of iterations allowed for convergence was increased from 30 to40 in IMTQL1 and IMTQL2.� The test for determining if o�diagonal elements are small enough for the matrix tobe split was relaxed in BISECT and TRIDIB. In EISPACK, the criterion was to splitthe matrix if jE(i)j � " (jD(i)j+ jD(i� 1)j) :This condition implies that jE(i)j � 2"max(jD(i)j ; jD(i� 1)j), so if both D(i) andD(i � 1) are less than UNFL=2", where UNFL is the underow threshhold, then E(i)must be zero to split. In LAPACK, the criterion is to split the matrix ifjE(i)j2 < "2 jD(i)j jD(i� 1)j+ SAFMIN;where SAFMIN is the smallest representable number in the oating point model (the\safe minimum"). Thus jE(i)j may be greater than " jD(i)j if it is su�ciently smallerthan " jD(i� 1)j, and the matrix will always split if jE(i)j< pUNFL, regardless of thevalues of D.� Global matrix information was added to the splitting criterion for determining ifo�diagonal elements are small enough in COMQR, COMQR2, HQR, and HQR2. Forinstance, when looking for a single small subdiagonal element in HQR, the test wasjH(i; i� 1)j � "Swhere S = jH(i� 1; i� 1)j+ jH(i; i)j, or S = kHk if this value is zero. This test waschanged to jH(i; i� 1)j � max("S; r)3



where r = max(SAFMIN; "kHk). This allows the matrix to split if H(i; i� 1) is smalleither in an absolute sense or relative to the norm of the matrix H , even if it isnot small relative to its immediate diagonal neighbors. Previously, global matrixinformation was incorporated only if H(i� 1; i� 1) and H(i; i) were zero.� The absolute test for small o�diagonal elements in TQLRAT was replaced with arelative test. Instead of checking for values of E2(i) < "2, where E2(i) = E(i)2, thenew test checks for pE2(i) < " (jD(i)j+ jD(i+ 1)j).It is debatable whether or not EISPACK with all these changes is really EISPACK anymore, but this is the methodology that has been established for comparing LAPACK toEISPACK.2.4 Test Matrix TypesSome of the eigenvalue routines studied in this report have di�erent performance character-istics for di�erent types of matrices. This is because their rate of convergence depends onthe separation of adjacent eigenvalues and on whether or not there are repeated eigenvaluesin the solution. In the timing results of x 4, we report the matrix type along with the timingdata. The enumeration of matrix types follows that used in the LAPACK timing program,which is described in further detail in the Installation Guide for LAPACK [4]. If no type isindicated, matrices of type 1 were used.3 Modi�cations to LAPACK, I: Linear System SolvingThe modi�cations we have made to subroutines in the LAPACK library are extensive andso we have divided them into two groups. The �rst group, described in this section, consistsof improvements to the software for solving linear systems of equations and least squaresproblems. The second group, described in x 4, consists of improvements to the software forsolving eigenvalue and singular value problems. Because of the modular design of LAPACK,there is some overlap between the two groups.3.1 Linear System Solve Routines (xxxTRS)Solving a linear system with multiple right-hand sides is a naturally parallel operationbecause each right-hand side can be solved independently. However, since vectorized codecan run about 10 times faster than scalar code on a single Cray processor, it is often betterto try to vectorize �rst. In keeping with their BLAS-�rst strategy, the LAPACK solveroutines always vectorize across right-hand sides, leaving any opportunities for parallelismto the underlying BLAS. This approach may be acceptable if the number of right-hand sidesis large relative to the number of processors, but it is ine�cient for the small numbers ofright-hand sides that are often found in applications.Our strategy for redesigning the solve routines was to move the parallelism to the out-ermost loop. The standard solve routine xxxTRS was renamed xxxTS2@, and special casecode for one right-hand side was added to xxxTS2@. Then a new routine xxxTRS waswritten to call xxxTS2@ in a parallel loop. The stride for the parallel loop, called NB byanalogy with the block factorization routines where NB is the block size, is determined by acall to a new auxiliary routine ILATRS@, which returns NB = 1 if the number of right-hand4



sides is too small to vectorize, and NB > 1 to have each processor solve for NB right-handsides at a time.The structure of SSYTRS with the new design is as follows:IF( NRHS.EQ.1 ) THENNB = 1ELSENB = MAX( 1, ILATRS@( 1, 'SSYTRS', UPLO, N, NRHS, -1, -1 ) )END IF* IF( NB.GE.NRHS ) THENCALL SSYTS2@( IUPLO, N, NRHS, A, LDA, IPIV, B, LDB )ELSECMIC$ CNCALLDO 10 J = 1, NRHS, NBJB = MIN( NRHS-J+1, NB )CALL SSYTS2@( IUPLO, N, JB, A, LDA, IPIV, B( 1, J ), LDB )10 CONTINUEEND IFNote that we avoid the call to ILATRS@ when NRHS = 1 to minimize overhead in thiscommon case. Also, the �rst character argument has been converted to an integer inSSYTS2@, for historical reasons not relevant to this report.If only one processor is available, then ILATRS@ returns NB = 1 if it is more e�cient tosolve for each right-hand side separately, and NRHS if it is more e�cient to solve for themall at once, vectorizing across right-hand sides. This is yet another tunable parameter forLAPACK implementors, but it is straightforward to determine. All that is needed is tocreate two tables, one where NB is set to 1 and one where NB is set to NRHS, and observe thecrossover point on a single processor at which the vectorizing code wins out over solving foreach right-hand side individually. For Cray PVP systems, the crossover point is typicallyaround 8 right-hand sides, although �ner tuning was used in the library.If multiple processors are available, then an environment-speci�c decision must be madeabout the setting of NB. Cray PVP systems utilize a dynamic, demand-driven schedulingmechanism for assigning processors to processes. In a typical batch environment, users mayspecify a maximum number of processors for their jobs via the environment variable NCPUS,but the actual number of processors assigned may vary from 1 to NCPUS during execution,depending on the system load and the number of processors kept busy by the user's job.To make the best use of the available resources under these circumstances, a dynamic load-balancing algorithm such as Guided Self-Scheduling [15] is often employed. However, ifthe system load is light, such as during dedicated time, the user may be able to expect allNCPUS processors to be available. Then static load balancing can be used to keep all theprocessors busy and minimize the execution time. The Cray Scienti�c Library reads theenvironment variable MP DEDICATED to choose between its batch (MP DEDICATED = 0) anddedicated (MP DEDICATED = 1) scheduling strategies.3.1.1 Non-dedicated strategyIn a multi-processing batch environment, the goal is to use multiple processors withoutdegrading the single-processor e�ciency too much. Then, if the worst case occurs and onlyone processor is attached to the user's job at run time, the execution time will be onlyslightly worse than if the user had just set NCPUS = 1. These are fuzzy guidelines, so the5



scheduling strategy used for the LAPACK solve routines is heuristic. Using the observationthat the single-processor solve routines have nearly reached their asymptotic speed whenNRHS = VLEN (the length of the vector registers), we divide the number of right-hand sidesinto m = dNRHS=VLENe pieces, each of size NB = dNRHS=me. For example, if NRHS = 200 andVLEN = 128, we divide the number of right-hand sides into m = d200=128e = 2 pieces, eachhaving NB = 100 right-hand sides, regardless of the number of available processors. If morethan two processors are attached to the job at run time, we count on the system to reclaimthe processors left idle.For instance, the solve routine SSYTRS with N = 512 runs at 1256 Mops whenNRHS = 200, at 1226 Mops when NRHS = 100, and at 953 Mops when NRHS = 50. If thesystem had 4 processors, we would still use only 2, and each would solve 100 right-hand sidesat a rate of of 1226 Mops, for a possible speedup of 2 � (1226=1256) = 1:96. If the systemwere so busy that we only ever got one processor, we would still run at 1�(1226=1256) = 0:98times the single-processor rate. Note that we could have tried to divide the right-hand sidesinto four pieces for a potential speedup of 4 � (953=1256) = 3:04, but in the worst case wewould run at only 1�(953=1256) = 0:76 times the single-processor rate. Since we are unlikelyto get the total number of processors on a busy system, the conservative cutting strategyis preferred.3.1.2 Dedicated strategyIn a multi-processing dedicated environment, the goal is to minimize the wall-clock time ofthe one running process by using all available resources without regard to single-processore�ciency. The simple-minded strategy employed in this case is to give each of the p pro-cessors NRHS=p right-hand sides to solve. If NRHS is large relative to p, this splitting givesa good load balance. However, the speedup will be less than p because a single processorcan solve for NRHS right-hand sides at a higher rate of speed than it can solve for NRHS=pright-hand sides.For example, the solve routine SSYTRS with N = 512 and NRHS = 10 runs at about 354Mops on a single processor of the CRAY T94 using code that vectorizes across right-handsides. When NRHS = 5, the solve runs at about 258 Mops using code that does not vectorizeacross right-hand sides. If two processors equally share the work, the speedup (ignoring anymultiprocessing overhead) would be (10=354)=(5=258) = 1:46. The cumulative CPU timewill go up using the parallel method, but we assume that, in a dedicated environment, weonly care about wall-clock time.3.1.3 Sample performance improvementsThe dedicated and non-dedicated cutting strategies are the same if NCPUS = 1, so we willillustrate the improvements in the single-processor case. Table 1 compares the performanceof SSYTRS from LAPACK with the new design in libsci. The factors of 3{8 times improve-ment for one right-hand side were the obvious motivation for this work. Particular problemsizes may still bene�t from some �ner tuning; for example, it appears from this table thatN = 750 should use non-vectorizing code for NRHS = 8, while the current code does notincrease the cuto� from 7 to 8 right-hand sides until N = 768.6



Values of NVersion NRHS 50 100 250 500 750 1000LAPACK SSYTRS 1 14 23 36 42 45 472 27 45 68 81 87 904 53 84 126 149 157 1648 101 160 232 276 294 30432 284 443 636 724 766 771100 467 727 1008 1128 1185 1138libsci SSYTRS 1 35 64 142 247 336 4092 34 64 140 245 334 4064 54 87 130 247 335 4098 102 163 242 286 306 41032 287 450 657 757 791 815100 494 773 1077 1207 1204 1297Table 1: Speed in megaops for SSYTRS, CRAY T94, 1 processor3.2 Tridiagonal SolversThe case NRHS = 1 is especially important in tridiagonal solvers, for which operationson the right-hand side constitute a major portion of the work. The LAPACK routines westudied were the factorization routines xGTTRF and xPTTRF, the solve routines xGTTRSand xPTTRS, and the driver routines xGTSV and xPTSV. Unlike other LAPACK driverroutines, xGTSV contains special case code for NRHS = 1 that combines the factor andsolve, similar to the LINPACK routines xGTSL and xPTSL. Using the LAPACK timingprogram to measure our progress, we set out to make the LAPACK tridiagonal solvers atleast as fast as their LINPACK equivalents, starting from a point at which LAPACK wasup to two times slower.3.2.1 Tridiagonal factorizationsIn SGTTRF, the LU factorization routine for a real general tridiagonal matrix, a rowinterchange is done at the ith step if the subdiagonal element DL(i) is greater than thediagonal element D(i). The LAPACK implementation uses two tests to select the pivot:IF( DL( I ).EQ.ZERO ) THEN...ELSE IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN...ELSE...END IFThis order of tests favors a diagonal matrix �rst, then a matrix which does not require rowinterchange, and last a matrix which does require row interchanges. We reordered the testsas follows:IF ( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THENIF( D( I ).NE.ZERO ) THEN...END IF 7



ELSE...END IFThe new arrangement requires more comparisons for a diagonal matrix, but fewer compar-isons in the more typical case when an interchange must be done.Several other optimizations provided further improvement to SGTTRF:� The �ll-in vector DU2 was initialized to zero before entering the main loop.� The last loop iteration (i = N) was moved outside the main loop.� The setting of INFO in the case of a zero diagonal in U was postponed until after themain loop. This is possible because the LU factorization continues past a zero pivot.Table 2 shows the total e�ect of these changes on one processor of a CRAY T94.The Cholesky factorization SPTTRF was more di�cult to improve upon because it is sosimple. The inner loop in the LAPACK implementation contained only 5 instructions, oneof them an IF test which checks for a zero diagonal. Unlike in the general factorization, thepresence of a zero diagonal element in the Cholesky factorization is a fatal error condition,so this test could not be moved outside the loop. Unrolling the inner loop by four providedsome bene�t, as shown in Table 2. Values of NVersion 25 50 100 200 400LAPACK SGTTRF 13 23 45 88 176libsci SGTTRF 10 18 33 63 124LAPACK SPTTRF 8 14 27 52 102libsci SPTTRF 7 12 22 42 82Table 2: Time in microseconds for tridiagonal factorizations, CRAY T94, 1 processor3.2.2 Tridiagonal solvesThe solve routines SGTTRS and SPTTRS were redesigned as described in section 3.1, andadditional optimizations were directed at the case NRHS = 1. Within the auxiliary routineSGTTS2@, the code to solve Lx = b was simpli�ed for the special case NRHS = 1 fromDO 10 I = 1, N - 1IF( IPIV( I ).EQ.I ) THENB( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )ELSETEMP = B( I, J )B( I, J ) = B( I+1, J )B( I+1, J ) = TEMP - DL( I )*B( I, J )END IF10 CONTINUEto DO 10 I = 1, N - 1IP = IPIV( I )TEMP = B( I+1-IP+I, J ) - DL( I )*B( IP, J )B( I, J ) = B( IP, J )B( I+1, J ) = TEMP10 CONTINUE 8



A similar trick was used when solving LTx = b for NRHS = 1. Within the auxiliary routineSPTTS2@, the solve with the bidiagonal matrix L was replaced by a call to the libsci routineFOLR (�rst order linear recurrence), as had been done in the libsci version of LINPACK'sSPTSL.3.2.3 Tridiagonal driver routinesThe LAPACK implementation of the simple driver routines SGTSV and CGTSV solvean augmented system instead of just calling the factor and solve routines separately. Weextended this idea to SPTSV and CPTSV, and added further optimizations to the NRHS = 1case similar to those already described for SGTTRF/SGTTRS and SPTTRF/SPTTRS.Table 3 compares the times in microseconds on one processor of a CRAY T94 for solving atridiagonal system with one right-hand side using the libsci, LAPACK, and correspondinglibsci LINPACK subroutines. The libsci LAPACK routines are now faster than LINPACKin all cases except SPTSL, which outperforms SPTSV by not checking for zeroes on thediagonal during the factorization. Values of nVersion 25 50 100 200 400libsci SGTSV 16 28 52 102 201LAPACK SGTSV 24 48 91 181 361libsci SGTSL 18 36 67 131 264libsci SPTSV 10 17 30 56 99LAPACK SPTSV 14 23 42 79 156libsci SPTSL 8 14 26 48 85libsci CGTSV 33 64 126 249 499LAPACK CGTSV 41 84 162 335 676libsci CGTSL 42 80 164 321 642libsci CPTSV 17 30 56 108 212LAPACK CPTSV 23 39 71 135 265libsci CPTSL 23 44 88 175 348Table 3: Times in microseconds for tridiagonal solvers, CRAY T94, 1 processor3.3 Sum of Squares (xLASSQ)An important but often overlooked contribution of LAPACK is its extensive collection ofauxiliary routines, some of which are general enough to be candidates for BLAS extensions.A noteworthy example is SLASSQ, which computes a scaled sum of squares, returning twoconstants SCL and SUMSQ such that(SCL)2SUMSQ = x12 + x22 + : : :+ xn2 + s2q;where s is the initial value of SCL and q is the initial value of SUMSQ. The values s and qallow SLASSQ to be used to compute a single sum of squares for a series of vectors, as isrequired to compute the Frobenius norm of a matrix.SLASSQ could be used to implement the Level 1 BLAS routine SNRM2 by means ofthe following Fortran code: 9



SCL = 0.0SUMSQ = 0.0CALL SLASSQ( N, X, INCX, SCL, SUMSQ )SNRM2 = SCL*SQRT( SUMSQ )The scaling factor SCL is the key to the safe implementation of SLASSQ; without it, thesum of squares would overow if the magnitude of any element of x were greater than thesquare root of overow, or it would underow to zero if the magnitude of each element of xwere less than the square root of underow.The public domain version of SLASSQ computes the scaled sum of squares by rescalingevery time it �nds a value in the vector whose absolute value is greater than the currentvalue of SCL. If x is an increasing vector, it rescales with every xi. The following Fortranfragment is equivalent to the public domain algorithm when INCX = 1:DO I = 1, NIF( X( I ).NE.0. ) THENABSX = ABS( X( I ) )IF( SCL.LT.ABSX ) THENSUMSQ = 1.0 + SUMSQ*( SCL/ABSX )**2SCL = ABSXELSESUMSQ = SUMSQ + ( ABSX/SCL )**2END IFEND IFEND DOThis algorithm prevents underow or overow in SUMSQ by guaranteeing that it is never lessthan one or greater than N . However, it is a textbook example of ine�cient code! The IFtests inhibit vectorization, and the divides are slow on RISC processors, guaranteeing poorperformance on almost any architecture. 1Our implementation of SLASSQ is a two-pass algorithm which expands the permissiblerange of SUMSQ in order to avoid scaling in most cases. In the �rst pass, we compute themaximum absolute value in the vector, SMAX. If SMAX is less than 1=N times the squareroot of overow, but greater than the square root of underow, scaling is not necessary,and the second pass consists of an unscaled sum of squares, returning SCL = 1:0 andSUMSQ = x12 + x22 + : : :+ xn2. Otherwise SCL is reset to SMAX and the sum of squares iscomputed as SUMSQ = (x1=SCL)2 + (x2=SCL)2 + : : :+ (xn=SCL)2. Because it avoids scalingunless it needs to, our scaled sum of squares does not produce the same values of SCL andSUMSQ as SLASSQ, so the subroutine has been renamed SLASSQ@ in the Cray Scienti�cLibrary. An abbreviated listing of the libsci implementation of SLASSQ@ is shown inFigure 1. The thresholds for scaling have been set for 64-bit IEEE arithmetic in thisversion.Table 4 compares the performance of LAPACK's SLASSQ and libsci's SLASSQ@ on arandom vector, an increasing vector, and a zero vector. SLASSQ rescales the sum of squaresof the random vector many times and the sum of squares of the increasing vector N times,but does not need to rescale the zero vector. SLASSQ@ does not scale any of the threesums, and in fact does not even do the sum of the zero vector because the maximum valueis zero. At larger sizes, the libsci routine is 50 times faster than LAPACK on the CRAYT94.1The same observation applies to the current netlib version of SNRM2.10



SUBROUTINE SLASSQ@( N, X, INCX, SCL, SUMSQ )INTEGER INCX, NREAL SCL, SUMSQREAL X( * )INTEGER I, IX, IX2REAL CUTHI, CUTLO, HITEST, SMAX, SQMAXINTRINSIC ABS, MAX, REALDATA CUTLO / 1.00104154759155046E-146 /DATA CUTHI / 9.48075190810917589E+153 /IF( N.LE.0 ) RETURNHITEST = CUTHI / REAL( N+1 )IF( SUMSQ.EQ.0.0 ) SCL = 1.0IF( INCX.EQ.1 ) THEN** Pass through once to find the maximum value in X.* SMAX = ABS( X( 1 ) )DO 10 I = 2, NSMAX = MAX( SMAX, ABS( X( I ) ) )10 CONTINUESQMAX = MAX( SUMSQ, SMAX )* IF( SCL.EQ.1.0 .AND. SQMAX.GT.CUTLO .AND. SQMAX.LT.HITEST )$ THEN** If SCL = 1.0 and max(SUMSQ,abs(X(i))) is greater than* CUTLO and less than HITEST, no scaling should be needed.* DO 20 I = 1, NSUMSQ = SUMSQ + X( I )**220 CONTINUEELSE IF( SMAX.GT.0.0 ) THEN** Scale by SMAX if SCL = 1.0, otherwise scale by* MAX( SMAX, SCL ).* IF( SCL.EQ.1.0 .OR. SCL.LT.SMAX ) THENSUMSQ = ( SUMSQ*( SCL / SMAX ) )*( SCL / SMAX )SCL = SMAXEND IF** Add the sum of squares of values of X scaled by SCL.* DO 30 I = 1, NSUMSQ = SUMSQ + ( X( I ) / SCL )**230 CONTINUEEND IFELSE... {general case of INCX is similar}END IFRETURNEND Figure 1: Two-pass implementation of SLASSQ11



Random Vector Vector [1; :::;N ] Zero VectorN LAPACK libsci LAPACK libsci LAPACK libsci128 41 6 44 6 17 5256 78 7 85 7 31 5512 153 8 166 8 60 61024 302 10 329 10 116 82048 601 14 657 14 228 114096 1197 23 1308 24 452 16Table 4: Time in microseconds for SLASSQ, CRAY T94, 1 processor3.4 Generating Givens and Householder TransformationsPerhaps the most fundamental of the LAPACK auxiliary routines are the subroutines tocompute and apply elementary Givens and Householder transformations. These subroutinesare used in the factorization and reduction routines SGEQRF, SGEHRD, SSYTRD, andSGEBRD, the orthogonal transformation routines SORGQR, SORMQR, and others, theeigenvalue routines SSTEQR, SHSEQR, SBDSQR, and in many other places as well. Ourevaluation of these kernels turned up several places in which the design could be simpli�edand the performance improved. While the performance improvements may seem small, theyare signi�cant because inlining these routines is an e�ective technique for optimizing otherparts of LAPACK.3.4.1 Generating a Givens rotation (SLARTG)A Givens rotation is a rank-2 correction to the identity of the form 2G(i; k; �) = 26666666666666666666664
1 .. . 1 c s1 . . . 1�s c 1 .. . 1

37777777777777777777775where c = cos(�) and s = sin(�) for some angle �. Premultiplication of a vector x byG(i; k; �) amounts to a clockwise rotation of � radians in the (i; k) coordinate plane. Ify = G(i; k; �)x, the vector y can be described byy(j) = 8><>: cx(i) + sx(k); j = i�sx(i) + cx(k); j = kx(j); j <> i; k2This discussion borrows from Golub and Van Loan [11], but corrects the notation to match that ofWilkinson [17] and of LAPACK. 12



We can force y(k) to be zero by choosing � to be the angle described by the vector[x(i); x(k)]T in the (i; k) plane, which leads to the formulaec = x(i)px(i)2 + x(k)2 ; s = x(k)px(i)2 + x(k)2This is the particular form of plane rotation computed by the BLAS routine SROTG andthe LAPACK auxiliary routine SLARTG.Since a Givens rotation only modi�es two elements of a vector, its action can be describedby the 2-by-2 linear transformation" c s�s c # " ab # = " r0 #The algorithm used to compute c and s, given a and b, can be described as follows:if b = 0c = 1;s = 0else if jaj > jbj� = b=a;c = 1=p1 + �2;s = � � celse � = a=b;s = 1=p1 + �2;c = � � sendendThis is approximately the algorithm used in SLARTG, except that a = 0 is treated as aspecial case, and r is computed in addition to c and s.The LAPACK 2.0 version of SLARTG takes the additional precaution of testing themagnitudes of a and b before dividing, and rescaling them if necessary to avoid dividingby a denormalized number. Since Cray arithmetic, including Cray IEEE arithmetic onCRAY T90 and CRAY T3D/T3E systems, does not support denormalized numbers, wediscarded these additional tests. Figure 2 does a side-by-side comparison of the LAPACKand libsci versions of SLARTG. Besides looking more like the mathematical algorithm, thelibsci version is about 15% faster. We have found that additional speed can be gained bywriting this totally scalar algorithm in C. However, the standalone performance of SLARTGis less important than having a straightforward design that lends itself to inlining.3.4.2 Generating a Householder reection (SLARFG)A Householder reection is a matrix of the formH = I � �vvT13



where v is a vector and � = 2=(vTv) is a scalar3. The LAPACK auxiliary routine SLARFGgenerates a real elementary reector H that reduces a real scalar � and a real vector x oflength n� 1 to a real scalar �: H  �x ! =  �0 !In order that the n-element Householder vector v may be stored in the (n � 1)-elementvector x, the �rst element of v is constrained to be 1. Also, the sign of the vector is chosencarefully to avoid cancellation error that would a�ect the orthogonality of the computed H[11]. The algorithm for computing � , v(2 : n) (overwriting x), and � can be described asfollows: if kxk = 0� = 0;� = �else  = sign(�) �p�2 + kxk2;� = � + ;� = �=;x = x=�;� = �endAs always, the 2-norms of x and of [�; x]T must be computed carefully to avoid underowand overow. In LAPACK, kxk is computed by SNRM2 and p�2 + kxk2 is computed bythe LAPACK auxiliary routine SLAPY2, which is careful about scaling intermediate results.But then, apparently concerned that SNRM2 might be implemented without scaling, theLAPACK version adds a test to see if jj is at least a factor of � away from underow.If jj is less than this threshold, x is rescaled away from underow and the 2-norms arerecomputed. 4In libsci, SLASSQ@ is used to compute kxk instead of SNRM2. The use of a scaled sumof squares guarantees the accuracy of kxk, so there is no need ever to rescale x. The libsciversion of SLARFG is shown alongside the LAPACK version in Figure 3. The two versionsare approximately the same speed except in the case where kxk is small enough to triggerrescaling; then the libsci version is about two times faster.3.4.3 Vectors of Givens rotationsIt is worth mentioning that LAPACK also contains subroutines to generate and applyvectors of Givens rotations (xLARGV and xLARTV). These are used in the reduction of asymmetric band matrix to condensed form, because if the band is narrow enough, a singleGivens rotation does not a�ect the entire matrix, and it may be more e�cient to applymany at once. For consistency, the same algorithm used in xLARTG should also be foundin xLARGV. This is true of the libsci implementation, but it was not true of LAPACK 2.0.3Lehoucq [14] describes the algorithm used in the complex case. Our comments and modi�cations toSLARFG also apply to CLARFG.4There is no test in LAPACK's SLARFG to see if jj is within � of overow, because if jj were notcomputed with scaling, it would have blown up already!14



LAPACK SLARTGSUBROUTINE SLARTG( F, G, CS, SN, R )REAL CS, F, G, R, SNLOGICAL FIRSTINTEGER COUNT, IREAL EPS, F1, G1, SAFMIN, SAFMN2,$ SAFMX2, SCALEREAL SLAMCHEXTERNAL SLAMCHSAVE FIRST, SAFMX2, SAFMIN, SAFMN2DATA FIRST / .TRUE. /IF( FIRST ) THENFIRST = .FALSE.SAFMIN = SLAMCH('S')EPS = SLAMCH('E')SAFMN2 = SLAMCH('B')**INT(LOG(SAFMIN/$ EPS)/LOG(SLAMCH('B'))/2.0)SAFMX2 = 1.0 / SAFMN2END IFIF( G.EQ.0.0 ) THENCS = 1.0SN = 0.0R = FELSE IF( F.EQ.0.0 ) THENCS = 0.0SN = 1.0R = GELSEF1 = FG1 = GSCALE = MAX( ABS(F1), ABS(G1) )IF( SCALE.GE.SAFMX2 ) THENCOUNT = 010 CONTINUECOUNT = COUNT + 1F1 = F1*SAFMN2G1 = G1*SAFMN2SCALE = MAX( ABS(F1), ABS(G1) )IF( SCALE.GE.SAFMX2 )$ GO TO 10R = SQRT( F1**2+G1**2 )CS = F1 / RSN = G1 / RDO 20 I = 1, COUNTR = R*SAFMX220 CONTINUEELSE IF( SCALE.LE.SAFMN2 ) THENCOUNT = 030 CONTINUECOUNT = COUNT + 1F1 = F1*SAFMX2G1 = G1*SAFMX2SCALE = MAX( ABS(F1), ABS(G1) )IF( SCALE.LE.SAFMN2 )$ GO TO 30

libsci SLARTGSUBROUTINE SLARTG( F, G, CS, SN, R )REAL CS, F, G, R, SNREAL T, TTIF( G.EQ.0.0 ) THENCS = 1.0SN = 0.0R = FELSE IF( F.EQ.0.0 ) THENCS = 0.0SN = 1.0R = GELSE IF( ABS(F).GT.ABS(G) ) THENT = G / FTT = SQRT( 1.0+T*T )CS = 1.0 / TTSN = T*CSR = F*TTELSET = F / GTT = SQRT( 1.0+T*T )SN = 1.0 / TTCS = T*SNR = G*TTEND IFRETURNEND LAPACK SLARTG, cont.R = SQRT( F1**2+G1**2 )CS = F1 / RSN = G1 / RDO 40 I = 1, COUNTR = R*SAFMN240 CONTINUEELSER = SQRT( F1**2+G1**2 )CS = F1 / RSN = G1 / REND IFIF( ABS(F).GT.ABS(G) .AND.$ CS.LT.0.0 ) THENCS = -CSSN = -SNR = -REND IFEND IFRETURNENDFigure 2: Comparison of LAPACK and libsci implementations of SLARTG15



LAPACK SLARFGSUBROUTINE SLARFG (N,ALPHA,X,INCX,TAU)INTEGER INCX, NREAL ALPHA, TAUREAL X( * )INTEGER J, KNTREAL BETA, RSAFMN, SAFMIN, XNORMREAL SLAMCH, SLAPY2, SNRM2EXTERNAL SLAMCH, SLAPY2, SNRM2EXTERNAL SSCALIF( N.LE.1 ) THENTAU = 0.0RETURNEND IFXNORM = SNRM2( N-1, X, INCX )IF( XNORM.EQ.0.0 ) THENTAU = 0.0ELSEBETA = -SIGN( SLAPY2(ALPHA,XNORM),$ ALPHA)SAFMIN = SLAMCH('S') / SLAMCH('E')IF( ABS( BETA ).LT.SAFMIN ) THEN** XNORM, BETA may be inaccurate;* scale X and recompute them* RSAFMN = 1.0 / SAFMINKNT = 010 CONTINUEKNT = KNT + 1CALL SSCAL( N-1, RSAFMN, X, INCX )BETA = BETA*RSAFMNALPHA = ALPHA*RSAFMNIF( ABS(BETA).LT.SAFMIN ) GO TO 10** Now SAFMIN <= BETA <= 1* XNORM = SNRM2( N-1, X, INCX )BETA = -SIGN( SLAPY2(ALPHA,XNORM),$ ALPHA)TAU = ( BETA-ALPHA ) / BETACALL SSCAL(N-1, 1.0/(ALPHA-BETA),$ X, INCX)** If ALPHA is subnormal, it may lose* relative accuracy* ALPHA = BETADO 20 J = 1, KNTALPHA = ALPHA*SAFMIN20 CONTINUE

libsci SLARFGSUBROUTINE SLARFG (N,ALPHA,X,INCX,TAU)INTEGER INCX, NREAL ALPHA, TAUREAL X( * )REAL SCL, SUMSQ, XA, XB, XNREAL SLAPY2EXTERNAL SLAPY2EXTERNAL SLASSQ@, SSCAL** Quick return* TAU = 0.0IF( N.LE.1 ) RETURN** Compute the 2-norm of x* SCL = 1.0SUMSQ = 0.0CALL SLASSQ@(N-1, X, INCX, SCL, SUMSQ)XN = SCL*SQRT( SUMSQ )** Compute the reflection if || x || > 0.* IF( XN.GT.0.0 ) THENXA = SIGN( SLAPY2(ALPHA,XN), ALPHA )XB = ALPHA + XATAU = XB / XACALL SSCAL( N-1, 1.0 / XB, X, INCX )ALPHA = -XAEND IFRETURNEND LAPACK SLARFG, cont.ELSETAU = ( BETA-ALPHA ) / BETACALL SSCAL(N-1, 1.0/(ALPHA-BETA),$ X, INCX)ALPHA = BETAEND IFEND IFRETURNENDFigure 3: Comparison of LAPACK and libsci implementations of SLARFG16



4 Modi�cations to LAPACK, II: Eigensystem Solving4.1 Balancing and Back Transformation (xGEBAL and xGEBAK)In the nonsymmetric eigenvalue problem, balancing (row or column scaling) is sometimesused to narrow the spectrum and improve convergence. The e�ect of this scaling on aneigenvalue � and eigenvector x of a nonsymmetric matrix A is that the equationAx = �xbecomes DAD�1Dx = �Dxfor a nonsingular scaling matrixD. The scaled matrixB = DAD�1 has the same eigenvaluesas A, and an eigenvector y of B is related to an eigenvector x of A by the equation Dx =y. The subroutine to compute the scaled matrix B is called BALANC in EISPACK andSGEBAL in LAPACK, and the subroutine to do the back-transformation, that is, solve forx in the equation Dx = y, is called BALBAK in EISPACK or SGEBAK in LAPACK.Balancing in the style of EISPACK proceeds by computing the row sum r and thecolumn sum c (excluding the diagonal element) of each row/column pair in turn. When ris less than c (similarly, c is less than r) by more than a scaling constant s, then D(i; i) isinitialized to s. Multiplying the row by s and the column by 1=s changes r to r � s and cto c=s, narrowing the gap between r and c by a factor of s2. Since r � s < c and c=s > r,scaling always brings the sums closer together. This process is repeated until r is within afactor s of c. In EISPACK, s = 2, guaranteeing full accuracy in the scaled matrix, whileLAPACK uses s = 10. Scaling by a factor that is not a power of the base introduces a smallrelative error, but if balancing is used as a preprocessing step for another algorithm, theerror should not be signi�cant. The larger scaling factor in LAPACK brings r and c intoagreement faster than EISPACK if they are many orders of magnitude apart.The libsci version of SGEBAL, while equivalent to EISPACK except for the size of thescaling factor, has been modi�ed into a more structured programming style. We comparethe balancing portion of this subroutine to the LAPACK 2.0 version in Figure 4. The DOWHILE loops in the libsci version compute the scaling constant for a particular row andcolumn using two multiplies for each factor of SCL { one to update the scaling factor andone to reduce the larger of the row or column sum. By contrast, the LAPACK version usesa combination of six multiplies and divides to keep track of the 1-norm of the row, the maxnorm of the row, the 1-norm of the column, the max norm of the column, and both thecumulative row scaling factor and the cumulative column scaling factor. We are mysti�edby this redundant work and could not construct an example for which it is needed.Table 5 compares the performance of the balancing routines from EISPACK, LAPACK,and libsci for three di�erent matrix types:1. Random matrix (does not require scaling)2. Matrix with row sums greater than column sums (superdiagonal is set to 1:� 10100)3. Matrix with column sums greater than row sums (subdiagonal is set to 1:� 10100)Matrices of types 2 and 3 are pathological cases designed to exercise the scaling code, andthe lower operation count of the libsci version is evident here. However, libsci's SGEBALis also three times faster than LAPACK for larger sizes when no scaling is done.17



LAPACK SGEBAL140 CONTINUENOCONV = .FALSE.DO 200 I = K, LC = 0.0R = 0.0DO 150 J = K, LIF( J.EQ.I ) GO TO 150C = C + ABS( A( J, I ) )R = R + ABS( A( I, J ) )150 CONTINUEICA = ISAMAX( L, A(1,I), 1 )CA = ABS( A(ICA,I) )IRA = ISAMAX( N-K+1, A(I,K), LDA )RA = ABS( A(I,IRA+K-1) )IF(C.EQ.0.0 .OR. R.EQ.0.0) GO TO 200G = R / SCLFACF = ONES = C + R160 IF(C.GE.G .OR. MAX(F,C,CA).GE.SFMAX2$ .OR. MIN(R,G,RA).LE.SFMIN2) GO TO 170F = F*SCLFACC = C*SCLFACCA = CA*SCLFACR = R / SCLFACG = G / SCLFACRA = RA / SCLFACGO TO 160170 CONTINUEG = C / SCLFAC180 IF(G.LT.R .OR. MAX(R,RA).GE.SFMAX2.OR.$ MIN(F,C,G,CA).LE.SFMIN2 ) GO TO 190F = F / SCLFACC = C / SCLFACG = G / SCLFACCA = CA / SCLFACR = R*SCLFACRA = RA*SCLFACGO TO 180190 CONTINUEIF( (C+R).GE.0.95*S ) GO TO 200IF( F.LT.ONE.AND.SCALE(I).LT.ONE )$ THEN IF( F*SCALE(I).LE.SFMIN1 )$ GO TO 200END IFIF( F.GT.ONE.AND.SCALE(I).GT.ONE )$ THEN IF( SCALE(I).GE.SFMAX1/F )$ GO TO 200END IFG = ONE / FSCALE( I ) = SCALE( I )*FNOCONV = .TRUE.CALL SSCAL( N-K+1, G, A(I,K),LDA )CALL SSCAL( L, F, A(1,I), 1 )200 CONTINUEIF( NOCONV ) GO TO 140

libsci SGEBAL110 CONTINUENOCONV = .FALSE.DO 120 I = ILO, IHIF = ABS( A(I,I) )C = SASUM(IHI-ILO+1, A(ILO,I), 1)-FR = SASUM(IHI-ILO+1, A(I,ILO), LDA)-F** No need to scale if |A(I,I)|* dominates the row or column.* IF(C.EQ.0.0 .OR. R.EQ.0.0) GO TO 120IF( C.LE.R ) THEN** If C <= R, compute a scaling* constant G for the row.* F = R*SCLG = ONEDO WHILE( C.LT.F )F = F*SCL2G = G*SCLEND DOF = ONE / GELSE** If C > R, compute a scaling* constant F for the column.* G = C*SCLF = ONEDO WHILE( R.LT.G )G = G*SCL2F = F*SCLEND DOG = ONE / FEND IF** Balance if C+R is reduced by 5%.* IF( (C*F+R*G).LT.0.95*(C+R) ) THENSCALE( I ) = SCALE( I )*FNOCONV = .TRUE.CALL SSCAL(IHI, F, A(1,I), 1)CALL SSCAL(N-ILO+1, G, A(I,ILO), LDA)END IF120 CONTINUE** Compute the scaling factors again* if any were changed.* IF( NOCONV ) GO TO 110Figure 4: Balancing portion of LAPACK and libsci versions of SGEBAL18



matrix libsci LAPACK libsciN type BALANC SGEBAL SGEBAL128 1 0.59 1.29 0.82128 2 24.57 18.63 8.52128 3 28.91 21.06 8.62256 1 1.42 3.35 1.89256 2 55.34 49.02 20.70256 3 70.44 55.33 20.83384 1 2.55 6.19 3.21384 2 104.03 91.62 37.07384 3 127.04 104.49 37.82512 1 3.69 10.10 4.51512 2 142.21 146.25 52.64512 3 179.58 165.64 53.20640 1 4.74 14.61 5.94640 2 185.91 212.43 68.84640 3 237.36 242.02 69.62768 1 5.93 19.90 7.40768 2 247.19 292.47 87.99768 3 303.75 335.71 88.65896 1 7.42 26.20 9.22896 2 294.20 392.24 112.03896 3 365.91 439.11 106.881024 1 8.65 33.32 10.591024 2 377.36 492.85 129.681024 3 435.20 529.03 127.80Table 5: Time in milliseconds for balancing routines, CRAY T94, 1 processorModi�cations were also made to SGEBAK to inline SSWAP and SSCAL. These simplechanges made the libsci version of SGEBAK about two times faster than LAPACK andabout 20% faster than EISPACK's BALBAK.4.2 Eigenvalues of a symmetric matrix (SSTEQR)SSTEQR computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonalmatrix using the implicit shift QL or QR method. The closest routines in EISPACK areIMTQL1 (eigenvalues only) and IMTQL2 (eigenvalues and eigenvectors), but EISPACKutilizes only the QL variant. The symmetric QL/QR algorithm is an iterative technique thatdiagonalizes a tridiagonal matrix by repeated application of orthogonal transformations. Inthe inner loop of a QL or QR iteration step, a Givens rotation is generated and applied tothe tridiagonal matrix. This rotation creates a bulge { a �ll element outside the tridiagonalstructure { which must be eliminated by applying several more rotations to chase the bulgeup or down the matrix.The LAPACK 2.0 version of SSTEQR generates the Givens rotations by calling theLAPACK auxiliary routine SLARTG in its two innermost loops. These calls are obviouscandidates for inlining because the granularity of SLARTG is quite small. Our previouswork to simplify the design of this kernel pays bene�ts here. We inlined SLARTG, and19



further optimized the inlined code by reordering the tests so that the nonzero cases of Fand G are evaluated sooner, as follows:IF( ABS(F).GT.ABS(G) .AND. G.NE.0.0 ) THEN...ELSE IF( ABS(G).GE.ABS(F) .AND. F.NE.0.0 ) THEN...ELSE IF( G.EQ.0.0 ) THEN...ELSE IF( F.EQ.0.0 ) THEN...END IFThis order of tests is preferred for the tridiagonal matrices that arise in the symmetricQL/QR algorithm, because if one of the o�diagonal elements were zero we would havedetected it already.When eigenvectors are also requested of SSTEQR, the bulge-chasing code of the QL/QRiteration step is followed by a call to SLASR to apply the sequence of rotations to the or-thogonal matrix of eigenvectors. Inlining calls to SLASR further improved the performancein this case. We also split the code into two parts, one that computes eigenvalues only andone that computes both eigenvalues and eigenvectors, thereby removing the test to see ifeach rotation needed to be saved.The sum of these changes improved the performance of SSTEQR so that it is comparableto that of libsci's IMTQL1 in the eigenvalue only case. When eigenvalues and eigenvectorsare requested, libsci's SSTEQR outperforms libsci's IMTQL2 for N > 100, and is fasterthan the LAPACK 2.0 version for all matrix types and problem sizes. Results are shownin Table 6. We note that the unmodi�ed IMTQL1/IMTQL2 routines from libsci did notconverge for all matrix types.Matrix Eigenvalues only Eigenvalues and EigenvectorsRoutine Type 50 100 200 300 400 50 100 200 300 400libsci SSTEQR 1 2.2 8.3 30 64 111 4.0 18.1 95 269 5772 1.7 6.3 23 46 86 3.1 13.7 74 199 4573 1.9 6.2 24 55 88 3.5 13.2 74 227 4564 1.1 3.1 11 21 38 1.9 6.5 34 86 197LAPACK SSTEQR 1 3.0 11.1 39 84 145 7.9 30.6 130 331 6832 2.3 8.7 32 64 119 5.8 22.6 102 245 5363 2.6 8.4 32 73 118 6.6 22.0 101 281 5364 1.5 4.2 15 29 52 3.9 11.5 48 110 234EISPACK IMTQL1/2 1 5.5 21.3 81 170 301 7.2 31.0 156 410 8712 3.1 11.1 44 94 156 4.3 17.4 98 266 5663 4.5 14.8 58 136 221 6.0 22.3 117 338 6604 2.3 7.3 26 51 92 3.0 10.4 50 124 276libsci IMTQL1/2 1 2.0 7.7 29 61 109 3.8 17.7 105 304 6822 1.5 5.4 NA NA NA 2.8 12.1 NA NA NA3 1.6 5.6 22 53 87 3.1 12.8 82 255 5264 1.0 3.0 NA NA NA 1.8 6.3 NA NA NATable 6: Time in milliseconds for SSTEQR equivalents, CRAY T94, 1 processor20



4.3 SSTERFSSTERF computes all eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or QR algorithm. The LAPACK 2.0 version of this subroutine was10{20% slower than its EISPACK equivalent, TQLRAT, on the CRAY T94. We achieveda slight performance improvement by peeling o� the �rst loop iteration to avoid an IF testin the inner loop. Faced with a construct like this:DO I = M - 1, L, -1...IF( I.NE.M-1 )$ E( I+1 ) = S*R...END DOwe replaced it with special case code for the I = M � 1 loop iteration, followed by a loopfrom M � 2 down to L. Although the improvement in absolute terms was small, thesechanges eliminated much of the performance di�erence between LAPACK and EISPACK,as can be seen in Table 7. Matrix Matrix size NRoutine Type 50 100 200 300 400libsci SSTERF 1 1.5 5.4 19.0 40.0 69.32 0.8 2.8 10.3 21.0 39.23 1.2 3.8 14.2 32.5 52.54 0.7 1.9 6.3 12.2 22.0LAPACK SSTERF 1 1.6 5.7 20.0 42.2 72.72 0.9 3.1 11.3 23.0 42.83 1.4 4.2 15.5 35.5 57.44 0.8 2.2 7.0 13.5 24.1EISPACK TQLRAT 1 1.4 4.9 17.7 36.2 63.72 0.8 2.9 10.5 21.6 38.23 1.2 3.7 13.5 32.6 53.24 0.7 2.2 6.9 13.5 24.3Table 7: Time in milliseconds for PWK algorithms, Cray T94, 1 processor4.4 SSTEINSSTEIN computes the eigenvectors of a real symmetric tridiagonal matrix T correspondingto speci�ed eigenvalues, using inverse iteration. The basic outline of inverse iteration is1. Choose a starting vector y with kyk2 = 1.2. Solve the tridiagonal system (T � �j)z = y.3. If the reorthogonalization criterion is satis�ed, orthogonalize the iterate z with respectto those previously computed eigenvectors corresponding to computed eigenvaluesclose to �j .4. If the stopping criterion is not satis�ed, set y = x and repeat from Step 2.21



5. Accept z=kzk2 as the computed eigenvector.Each of the �rst four steps was modi�ed in LAPACK from its EISPACK equivalent,TINVIT, generally with good reason. However, we found the LAPACK 2.0 version ofSSTEIN to be as much as six times slower than TINVIT, the biggest performance di�er-ence of any LAPACK routine.The motivation for many of the algorithmic changes in SSTEIN compared to TINVITwas the work of Jessup [12]. Two of these, changing the stopping criterion and performinga �xed number of iterations for all eigenvectors, instead of a �xed number of iterations foreach eigenvector, have already been discussed in x 2.3, and our timing comparisons havebeen adjusted for them (by modifying TINVIT). Other enhancements suggested by Jessupto improve the accuracy of inverse iteration were:� Use a random starting vector for each eigenvalue, instead of a scaled vector of 1's.� Perform an extra iteration after convergence, speci�cally to improve the accuracy ofcomputed eigenvectors that satisfy the convergence criterion after only one iteration.Additionally, SSTEIN includes yet another extra iteration after convergence and implicitrow scaling in the solution of (T � �j)z = y. These last two features are computationallyexpensive, so we focused most of our attention on them.We quickly abandoned the second of the two extra iterations after convergence. Theextra iterations account for most of the performance degradation between TINVIT andSSTEIN in the case of well-separated eigenvalues, and while the case had been made forone extra iteration, there was scant evidence to justify a second. In the cases we examined,the only e�ect appeared to be to change the sign of the already computed eigenvector. TheLAPACK functionality tests all passed with only one extra iteration.SSTEIN calls two auxiliary routines to solve the shifted tridiagonal system: SLAGTFto compute an LU factorization of (T � �j) and SLAGTS to solve the factored systemwith one right-hand side. Our �rst observation was that, before calling SLAGTF, SSTEINmakes three calls to SCOPY to initialize data for the call. These copies could be performedmore e�ciently inside the auxiliary routine, so we replaced SLAGTF with a new interfacehaving separate input and output vectors. By reusing the original data for the tridiagonalmatrix and making use of its symmetry, we eliminated the equivalent of two vector copies.We also removed the computation of a tolerance, which was not used, and the test for azero subdiagonal element, which was unnecessary, and placed the case K = N-1 outside themain loop to cut the number of IF statements. The much-streamlined result retains all thefunctionality of the original.LAPACK's SSTEIN calls SLAGTS with an argument specifying that if overow wouldotherwise occur, the diagonal elements of U are to be perturbed. This is more rigorousthan EISPACK, which only perturbs zero diagonal elements of U . We separated the L-solve and the U -solve and optimized the L-solve by unrolling, as had already been donefor the tridiagonal solvers. For the U -solve, we noted that the straightforward U -solve asin TINVIT was much simpler than the code with perturbations of small diagonal elementsand could be used for part of the solve, until the �rst perturbation were required. Also,the solves are part of an iterative method in which the number of iterations is at least two.Recalling previous work with scaled triangular solvers in the context of iterative re�nement[2], we computed a growth factor for the U -solve to �nd the largest trailing submatrixof U that does not require any perturbations. This allowed us to replace a single call to22



SLAGTS with an unperturbed solve using part of U , a series of updates, and a robust solvewith only the portion of U that may require perturbations. We also simpli�ed the test forsmall diagonal elements in the perturbed U -solve, fromAK = A( K )PERT = SIGN( TOL, AK )40 CONTINUEABSAK = ABS( AK )IF( ABSAK.LT.ONE ) THENIF( ABSAK.LT.SFMIN ) THENIF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK ) THENAK = AK + PERTPERT = 2*PERTGO TO 40ELSETEMP = TEMP*BIGNUMAK = AK*BIGNUMEND IFELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THENAK = AK + PERTPERT = 2*PERTGO TO 40END IFEND IFY( K ) = TEMP / AKto AK = A( K )IF( MAX( ABS( TEMP )*SFMIN,SFMIN ).GT.ABS( AK ) ) THENPERT = SIGN( TOL, AK )50 CONTINUEAK = AK + PERTPERT = 2*PERTIF( ABS( TEMP )*SFMIN.GT.ABS( AK ) )$ GO TO 50END IFY( K ) = TEMP / AKFinally, we noted that in the Gram-Schmidt reorthogonalization step, it is possibleto replace a loop of calls to SDOT and SAXPY with two calls to SGEMV. This is acomputationally-intensive portion of SSTEIN when there are repeated eigenvalues, and theintroduction of Level 2 BLAS dramatically improved the performance of this case. Theoriginal code wasIF( ABS( XJ-XJM ).GT.ORTOL )$ GPIND = JIF( GPIND.NE.J ) THENDO 80 I = GPIND, J - 1CTR = -SDOT( BLKSIZ, WORK( INDRV1+1 ), 1, Z( B1, I ), 1 )CALL SAXPY( BLKSIZ, CTR, Z( B1, I ), 1, WORK( INDRV1+1 ), 1 )80 CONTINUEEND IFand this was replaced withIF( J.GT.J1 ) THENIF( ABS( XJ-XJM ).GT.ORTOL ) THEN23



GPIND = JELSECALL SGEMV( 'Transpose', BLKSIZ, J-GPIND, ONE, Z( B1, GPIND ),$ LDZ, WORK( IX ), 1, ZERO, Z( B1, J ), 1 )CALL SGEMV( 'No transpose', BLKSIZ, J-GPIND, -ONE, Z( B1,$ GPIND ), LDZ, Z( B1, J ), 1, ONE, WORK( IX ), 1 )END IFEND IFWith these changes, libsci's SSTEIN is now faster than all previous versions in theclustered eigenvalue case (test matrix type 3), but is still up to 2.5 times slower than theoriginal TINVIT in the case of well-separated eigenvalues (test matrix type 1) due to thealgorithmic changes to improve accuracy. The improvements over the LAPACK 2.0 versionof SSTEIN can be seen from Table 8. Note that the amount of work performed varies widelybetween matrix types because of the iterative nature of this algorithm.Matrix Values of NRoutine type 50 100 200 300 400libsci SSTEIN 1 4.5 15.9 59.3 129. 226.2 5.6 20.9 85.5 206. 393.3 6.2 22.7 94.5 230. 443.4 5.8 20.7 86.8 204. 386.LAPACK SSTEIN 1 9.7 35.3 133. 293. 518.2 16.1 65.4 272. 654. 1220.3 18.7 77.4 331. 788. 1450.4 17.3 63.5 282. 657. 1170.EISPACK TINVIT 1 5.1 20.1 78.8 175. 309.2 5.8 23.9 99.9 234. 440.3 8.8 43.9 217. 522. 1050.4 6.1 23.6 101. 235. 433.libsci TINVIT 1 1.8 6.4 24.5 54. 94.2 3.7 15.6 67.2 169. 313.3 9.5 50.9 234. 597. 1120.4 4.1 15.2 67.2 168. 303.Table 8: Time in milliseconds for symmetric inverse iteration, CRAY T94, 1 processor4.5 SHSEQRSHSEQR computes the Schur factorization of a Hessenberg matrix by a multiple-shift QRalgorithm. The multishift scheme uses the k eigenvalues of the k-by-k trailing submatrix,which are computed using a double-shift QR algorithm as in EISPACK's HQR. The k-by-kshift creates a bulge of size k along the diagonal of the Hessenberg matrix. A series ofHouseholder reections are then generated and applied to chase the bulge down the matrix.The key computational components of the multishift algorithm are forming the blockHouseholder reections, applying the block Householder reections, and solving for the keigenvalues of the k-by-k shift matrix. Each of these components was optimized to bringthe performance of SHSEQR closer to that of HQR, particularly for small problem sizeswhere HQR was three times faster. 24



Much of the disparity between the performance of SHSEQR and HQR is due to themodularity of LAPACK, which adds overhead for small problem sizes. We removed someof this overhead by inlining SCOPY and SLARFG both in SHSEQR and in its auxiliaryroutine SLAHQR where they determine a reection matrix. Although we would have likedto remove it, we retained the auxiliary routine SLARFX from the LAPACK distribution,which is just like SLARF but includes hand-unrolled cases for m � 10 and n � 10 to avoidtwo calls to Level 2 BLAS with one dimension small. We also removed the test to see ifthe Z matrix should be updated in the double-shift QR loop of SLAHQR and provided twoseparate DO loops for the eigenvalue-only and eigenvalue/eigenvector cases.The results in Table 9 show that, while the LAPACK version of SHSEQR is always slowerthan HQR in the eigenvalue-only case, the libsci version is more competitive, ranging fromabout 15% slower to 15% faster for most matrices. The advantages of higher-level BLAS inLAPACK are more evident when the Schur form is also computed.Matrix Eigenvalues only Eigenvalues and Schur FormRoutine Type 50 100 200 300 400 50 100 200 300 400libsci SHSEQR 1 9.2 49 169 409 785 11.7 67 268 719 14803 11.6 42 181 404 784 14.9 58 289 711 14904 10.2 40 177 401 790 13.0 55 281 709 14906 9.1 38 156 361 719 11.6 51 246 630 1350LAPACK SHSEQR 1 26.3 80 250 558 1040 30.5 98 354 873 17403 25.4 74 254 573 1040 29.3 91 359 893 17404 28.1 74 254 547 1050 32.0 90 458 856 17606 25.3 68 227 512 913 28.9 83 322 797 1530EISPACK HQR/2 1 8.2 40 162 420 903 14.1 73 370 1050 23203 8.8 36 173 462 882 15.1 68 390 1120 22804 8.6 34 171 465 887 14.8 64 383 1120 22906 5.3 24 108 299 590 10.5 51 272 797 1620Table 9: Time in milliseconds for multishift QR, CRAY T94, 1 processor4.6 SHSEINSHSEIN applies inverse iteration to compute the eigenvectors of a nonsymmetric matrixthat has been reduced to Hessenberg form. Most of the work of SHSEIN is contained inthe auxiliary routine SLAEIN, which �nds a single right or left eigenvector correspondingto a particular eigenvalues of the real Hessenberg matrix H .One of the reasons SHSEIN is slower than its EISPACK equivalent INVIT is thatSLAEIN computes the 1-norm of the o�diagonal elements and checks for possible over-ow in the next step if this norm is too large. INVIT does not do this test, which wasalways false in our test cases. However, we were able to hide most of this extra work bycomputing the 1-norms \on the y" during the LU decomposition of the Hessenberg matrixH . Also in SLAEIN, we moved the test IF( RIGHTV ) THEN out of the loop that solvesUx = sv and provided separate code for the right and left eigenvector cases.Table 10 shows that libsci's SHSEIN is faster than LAPACK's SHSEIN for all sizes andEISPACK's INVIT for N > 50, but does not beat the performance of libsci's INVIT untilN > 300. 25



Values of NRoutine 50 100 200 300 400libsci SHSEIN 8.2 31.9 161. 390. 751.LAPACK SHSEIN 8.5 45.9 237. 599. 1160.EISPACK INVIT 6.8 52.0 273. 672. 1560.libsci INVIT 5.5 26.8 141. 345. 822.Table 10: Time in milliseconds for nonsymmetric inverse iteration, CRAY T94, 1 processor4.7 STGEVCSTGEVC computes some or all of the right and/or left eigenvectors of a pair of real matrices(S; P ), where S is a quasi-triangular matrix and P is upper triangular. Matrix pairs of thistype are produced by the generalized Schur factorization of a matrix pair (A;B):A = QSZT ; B = QPZTas computed by SGGHRD + SHGEQZ. The right eigenvector x and the left eigenvector yof (S; P ) corresponding to an eigenvalue � are de�ned bySx = �Px; yTS = �yTP:The eigenvalues are not input to this routine, but are computed directly from the diagonalblocks of S and P . If s = Sii is a 1-by-1 diagonal block of S and p = Pii, then � = s=p isa generalized eigenvalue of the matrix pair (S; P ). In the case of a 2-by-2 diagonal block ofS, s is one of a complex conjugate pair of eigenvalues.It is convenient to leave the eigenvalue in its quotient form and to express the generalizedeigenvalue problem as aSx = bPx or ayTS = byTP;where a is the eigenvalue p of P , possibly rescaled, and b is the eigenvalue s of S after scaling.In solving for the right generalized eigenvector x or the left generalized eigenvector y, wemust di�erentiate between the cases where b is real and b is complex. This is implementedin STGEVC by testing the ag ILCPLX, which is false for a real eigenvalue and true for acomplex eigenvalue, or by use of an outer loop from 1 to NW, where NW is either 1 or 2. Wefound that testing the size of NW at an outer level, interchanging the loop from 1 to NW withthe next innermost loop, and explicitly unrolling for the separate cases of NW = 1 and NW =2 improved the performance of both the left and right eigenvector cases.For example, the following code from the left eigenvector caseDO 120 JW = 1, NWDO 110 JA = 1, NASUMA(JA,JW) = ZEROSUMB(JA,JW) = ZERODO 100 JR = JE, J - 1SUMA(JA,JW) = SUMA(JA,JW) + A(JR,J+JA-1)*WORK((JW+1)*N+JR)SUMB(JA,JW) = SUMB(JA,JW) + B(JR,J+JA-1)*WORK((JW+1)*N+JR)100 CONTINUE110 CONTINUE120 CONTINUEDO 130 JA = 1, NAIF( ILCPLX ) THEN 26



SUM(JA,1) = -ACOEF*SUMA(JA,1) + BCOEFR*SUMB(JA,1) -$ BCOEFI*SUMB(JA,2)SUM(JA,2) = -ACOEF*SUMA(JA,2) + BCOEFR*SUMB(JA,2) +$ BCOEFI*SUMB(JA,1)ELSESUM(JA,1) = -ACOEF*SUMA(JA,1) + BCOEFR*SUMB(JA,1)END IF130 CONTINUEwas replaced withIF( ILCPLX ) THENDO 110 JA = 1, NASUMA(JA,1) = ZEROSUMA(JA,2) = ZEROSUMB(JA,1) = ZEROSUMB(JA,2) = ZERODO 100 JR = JE, J - 1SUMA(JA,1) = SUMA(JA,1) + A(JR,J+JA-1)*WORK(2*N+JR)SUMA(JA,2) = SUMA(JA,2) + A(JR,J+JA-1)*WORK(3*N+JR)SUMB(JA,1) = SUMB(JA,1) + B(JR,J+JA-1)*WORK(2*N+JR)SUMB(JA,2) = SUMB(JA,2) + B(JR,J+JA-1)*WORK(3*N+JR)100 CONTINUESUM(JA,1) = -ACOEF*SUMA(JA,1) + BCOEFR*SUMB(JA,1) -$ BCOEFI*SUMB(JA,2)SUM(JA,2) = -ACOEF*SUMA(JA,2) + BCOEFR*SUMB(JA,2) +$ BCOEFI*SUMB(JA,1)110 CONTINUEELSEDO 130 JA = 1, NASUMA(JA,1) = ZEROSUMB(JA,1) = ZERODO 120 JR = JE, J - 1SUMA(JA,1) = SUMA(JA,1) + A(JR,J+JA-1)*WORK(2*N+JR)SUMB(JA,1) = SUMB(JA,1) + B(JR,J+JA-1)*WORK(2*N+JR)120 CONTINUESUM(JA,1) = -ACOEF*SUMA(JA,1) + BCOEFR*SUMB(JA,1)130 CONTINUEEND IFThe e�ect of this change was dramatic in the left eigenvector case, improving the perfor-mance by a factor of three, as shown in Table 11.A further optimization in the back transformation step of the right eigenvector caseinvolved replacing two loop nests with a call to SGEMV from the Level 2 BLAS. Theoriginal code wasDO 410 JW = 0, NW - 1DO 380 JR = 1, NWORK((JW+4)*N+JR) = WORK((JW+2)*N+1)*VR(JR,1)380 CONTINUEDO 400 JC = 2, JEDO 390 JR = 1, NWORK((JW+4)*N+JR) = WORK((JW+4)*N+JR) +$ WORK((JW+2)*N+JC)*VR(JR,JC)390 CONTINUE400 CONTINUE410 CONTINUEDO 430 JW = 0, NW - 1 27



DO 420 JR = 1, NVR(JR,IEIG+JW) = WORK((JW+4)*N+JR)420 CONTINUE430 CONTINUEand this was replaced withIF( ILCPLX ) THENCALL SGEMV( 'N', N, JE, ONE, VR(1,1), LDVR,$ WORK(2*N+1), 1, ZERO, WORK(4*N+1), 1 )CALL SGEMV( 'N', N, JE, ONE, VR(1,1), LDVR,$ WORK(3*N+1), 1, ZERO, WORK(5*N+1), 1 )DO 420 JR = 1, NVR(JR,IEIG) = WORK(4*N+JR)VR(JR,IEIG+1) = WORK(5*N+JR)420 CONTINUEELSECALL SGEMV( 'N', N, JE, ONE, VR(1,1), LDVR,$ WORK(2*N+1), 1, ZERO, WORK(4*N+1), 1 )DO 430 JR = 1, NVR(JR,IEIG) = WORK(4*N+JR)430 CONTINUEEND IFLastly, SLALN2 was inlined for the real case but not for the complex case.Table 11 shows the performance of the libsci and LAPACK versions of STGEVC and theEISPACK equivalent QZVEC when all eigenvectors are computed and back-transformed.The factor of three improvement of libsci over LAPACK in the left eigenvector case hasalready been noted. In the right eigenvector case, which is the only case computed byEISPACK, the libsci version of STGEVC is comparable to QZVEC for small problems andfaster for larger values of N . Left eigenvectors Right eigenvectorsRoutine 50 100 200 300 400 50 100 200 300 400libsci STGEVC 5.6 23 94 223 420 4.0 16 67 160 306LAPACK STGEVC 8.8 42 216 613 1310 5.1 20 81 193 363EISPACK QZVEC 3.5 16 79 200 382Table 11: Time in milliseconds for STGEVC vs. QZVEC, CRAY T94, 1 processor4.8 Miscellaneous InliningMany other LAPACK computational routines saw performance improvements on the CRAYT94 from selective inlining of BLAS or LAPACK auxiliary routines. These include� SGEHD2: Inlined SLARF� SSYTD2: Inlined SLARFG� SGEBD2: Inlined SLARF, SLARFG� SGGHRD: Inlined SROT� STREVC: Inlined SAXPY, SDOT 28



� SBDSQR: Inlined SLASR� SHGEQZ: Inlined SLARTG, SROT, SLARFGPerformance improvements ranged from 2% for larger sizes of SGEHRD to 40% for SGGHRDand SHGEQZ.5 ConclusionSeveral of the performance improvements to LAPACK described in this report take advan-tage of Cray architectural and software features:� Cray multitasking software was used to reimplement the linear system solve routineswith higher-level parallelism and better single processor performance. The LAPACKdesigners had avoided the use of explicit parallelism because there was no portableway to express it.� The absence of denormalized numbers in Cray IEEE arithmetic (or, for that matter,in traditional Cray arithmetic) led to simpler designs for key kernel routines such asSLARTG and SLARFG.� Cray's advanced compiler technology { and relatively high subroutine overhead onnearly 2 Gop processors { combined to give a signi�cant advantage to inlining.Other optimizations in this report are algorithmic and would bene�t architectures otherthan Cray's:� Our two-pass algorithm for the sum of squares requires fewer operations and admitsbetter compiler optimization than rescaling at every step as in LAPACK.� Using two multiplies per scaling step of the balancing routine, as in EISPACK'sBALANC or libsci's SGEBAL, is naturally faster than the six operations in eachstep of the LAPACK 2.0 version.� Limiting the number of extra iterations in SSTEIN to one and avoiding unnecessaryscaling save time by reducing the amount of work to be done.� Introducing Level 2 BLAS calls in SSTEIN and STGEVC takes advantage of moree�cient library routines, correcting apparent oversights in the LAPACK design.� Changing the order of tests in the tridiagonal routines, combining the factor and solvein SPTSV and CPTSV for NRHS = 1, moving IF tests out of inner loops, and unrollingloops that only go from 1 to 2 are good programming practices even if their bene�ton other architectures is not as great.Many of these suggestions have been communicated to the LAPACK team and may alreadybe on their way to being implemented as LAPACK continues to evolve.29



A Setting Block SizesThe LAPACK developers left the tuning of block algorithms to the implementors via anauxiliary routine ILAENV. Many hours of dedicated Cray time were consumed in �ne-tuning the block size of the LAPACK routines, although in retrospect this was not a verye�ective use of resources. However, we did discover a simple formula for the optimal blocksize on one processor.It was empirically observed that the vector length VLEN is often a good choice of blocksize for su�ciently large problems on Cray vector machines. The vector length also �guresprominently in the cutting strategy used in the highly optimized Cray BLAS. In the BLAS,vector operations that are too long for the vector registers are subdivided into a minimalnumber of approximately equal parts. Equipartitioning is preferred because the vectorprocessors have multiple vector units which can operate in parallel, so load balancing is anissue even on a single processor.Carrying this rationale to a higher level, we can assist the BLAS in creating regularpartitions by choosing a block size that is tuned to the number of vector segments in oneof the matrix dimensions. The formula isNB = dn=dn=VLENee:In Fortran, this is coded asNTMP = ( N+VLEN-1 ) / VLENNB = ( N+NTMP-1 ) / NTMPFor example, if N = 300 and VLEN = 128, the problem must be divided into at least 3parts, so NB = 300=3 = 100. The formula increases the blocksize until at N = 384 we haveNB = 128. At N = 385 the blocksize resets to NB = 97 and begins increasing again untilit reaches 128 at N = 512. Table 12 illustrates the minor variations in speed of the libsciroutine SGETRF near the optimal blocksize of 100 at N = 300 and N = 400.NB N = 300 N = 40064 1176.5 1291.792 1177.2 1293.1100 1179.7 1294.7108 1179.4 1292.2128 1178.6 1291.7Table 12: Speed of SGETRF in megaopsUnfortunately, the choice of block size has resisted our attempts to �t into a formulaexcept in the single-processor case. However, empirical data suggests that deciding whetheror not to use blocking at all is the key point, and the performance varies only slightly amonga range of block sizes.References[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users'Guide. SIAM, Philadelphia, 1992. 30
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