
Java Access to Numerical Libraries
Henri Casanova � Jack Dongarra� y David M. Doolin�May 31, 1997AbstractIt is a common and somewhat erroneous belief that Java will always be \too slow" for scienti�ccomputing. Two projects underway at the University of Tennessee are addressing the question of scienti�ccomputing via Java: NetSolve and f2j. The approaches taken by these two projects are radically di�erent.NetSolve allows users to access pre-installed computational resources, such as hardware and software,distributed across the network. Using these resources, the user can easily perform scienti�c computingtasks without having any computing resource installed on his or her computer. NetSolve features aGraphical User Interface written in Java as well as a Java Application Programming Interface. The f2j(Fortran to Java) project will provide the numerical subroutines translated from their Fortran sourceinto class �les suitable for use by Java programmers. This makes it possible for a Java applicationor applet to use established legacy numerical code that was originally written in Fortran. This articledescribes the research issues involved in these two projects and their current limitations. We also explainshow, although using two di�erent paradigms and addressing somewhat di�erent classes of users andapplications, NetSolve and f2j achieve a common goal: to provide e�cient, reliable and portable accessto standard numerical libraries via Java. KeywordsJava, bytecode, Assembly, Jasmin, Scienti�c Computing, Numerical LibrariesComputational Servers, Internet-computing, Compilers, Software Repositories

�Department of Computer Science, University of Tennessee, TN 37996yMathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831

1 IntroductionThe Java language has become very successful since its formal introduction in 1995. The language itself isvery attractive: it is object oriented and standard class libraries provide very natural interfaces to featuressuch as multi-threading, Internet communication and protocols, graphical components, Graphical User In-terface (GUI) design facilities, customizable security restrictions, etc. More than the language itself, Java'spopularity may be attributed in part by its ability to be executed as applets running within Web browsers.Java source code is compiled into hardware independent bytecode, which is then interpreted by a Java VirtualMachine (JVM). A JVM can be embedded in a Web Browser and, with the appropriate security restric-tions, execute bytecode programs called class �les that are accessible from the World Wide Web. JVMs arebeing provided by an increasing number of software developers, sometimes as a standard feature of theiroperating systems. It is possible to run Java applications on these architectures as executable programs. Toincrease the performance of Java, just-in-time (JIT) and native code compilers have also been developed.JIT compilers translate Java byte code to native code at run time. Native code compilers produce machinespeci�c executables from Java source code. The increase in execution speed is balanced in each case by acorresponding decrease in platform independence.Faced with the increasing acceptance of Java as a viable programming language and the fact that it canbe used for multi-threaded Internet-based distributed applications, it is natural to consider using Java forscienti�c computing. Scienti�c computing applications are generally written using pre-existing libraries thataddress di�erent �elds of computational science (linear algebra, optimization, curve �tting, etc.). It would, ofcourse, be possible to hand-write directly, in Java, the numerical class libraries needed by Java programmers,but, considering the number of numerical libraries available, the number of functions in each of these librariesand the number of years that were invested in their development, rewriting and testing all this software inJava would be a formidable task.Several solutions can be found to avoid such a rewrite while still providing Java programs with accessto the numerical algorithms already implemented in Fortran. Two projects currently being developed atthe University of Tennessee. One approach is to allow Java applications or applets to access computationalservers that can directly use pre-installed Fortran libraries. Such a scheme is enabled by the NetSolve projectwhich is the object of section 2. As detailed in that section, NetSolve provides in fact much more than justthis computational server paradigm, and Java is only one of the ways to access the NetSolve resources. Theother approach is to translate the Fortran source code of the libraries of interest into Java class �les. Thef2j project is a �rst attempt at such translation and is described in section 3.2 Access to numerical software via NetSolve2.1 RationaleScienti�c computing has been a major part of both research centers and industry for many years. As such,it has been the object of many investigations which have led to the development of numerous softwareproducts. These products can be classi�ed into di�erent categories. Some numerical tools, like MATLAB [1]or Mathematica [2], have enjoyed great success. These tools generally provide an interactive interface as wellas the possibility of writing scripts to perform computation.Another class of products falls under the category of numerical libraries. Numerical libraries are lessconvenient than interactive tools, since the user generally is required to write a C or Fortran program.Nevertheless, they o�er the advantages of execution speed and exibility. A very large number of suchlibraries exists and they cover diverse �elds of computational science. Moreover, unlike interactive tools,numerical libraries are often freely available (e.g., LAPACK).A third class of tools comprises runtime packages whose goal is to help the user perform some speci�c typeof built-in, scienti�c computation. Like numerical libraries, such packages are usually freely available. Oneexample is NEOS [3], which is focused on linear programming and optimization.2

Users wanting to solve a numerical problem are thus confronted with a dilemma. They can purchase acommercial product and take the risk that it might not be suitable for future use on di�erent kinds ofproblems, or they can try to locate and download free libraries and write programs in terms of speci�cfunctions or subroutines. NetSolve addresses this second situation, where the user is confronted with manydi�culties.The �rst task the user must undertake is to look for the appropriate library or set of libraries he or she needsfor their own computational problem. Usually, such libraries can be found in software repositories. One well-known repository, for example, is Netlib [4], which is maintained through the collaborative e�ort of severalinstitutions and universities. Software repositories present some intrinsic di�culties for the inexperienceduser: (i) they are generally very large and (ii) contain very di�erent types of libraries. Once located, theappropriate library must be downloaded and installed. Depending on the nature of the software, this stepmight be nontrivial, especially for a user having no experience with this kind of task. However, the biggeststep still remains; learning how to use the library itself, that is, how to write a program in terms of its librarycomponents. Such a task can be formidable and time-consuming (even without regard for the debuggingphase). Moreover, the user may want to write the program or script in a language that is di�erent from thelanguage the numerical library has been written in. Even inter-language interoperability is possible, the usermust learn the techniques that are often non-portable and require experience.These considerations motivated the establishment of the NetSolve project. NetSolve is a client-serverapplication designed to solve computational science problems over a network. A number of di�erent interfaceshave been developed for the NetSolve software so that users of C, Fortran, MATLAB, Java or the Web caneasily use the NetSolve system. The underlying computational software can be any scienti�c package, therebyensuring good performance results. Moreover, NetSolve uses a load-balancing strategy to improve the use ofthe computational resources available. The following section gives an overview of the NetSolve system.2.2 Overview of the NetSolve project2.2.1 ArchitectureThe structure of the NetSolve system organization is depicted in Figure 1. To solve the challenges highlightedabove, NetSolve provides the user with a pool of computational resources. These resources are in factcomputational servers that provide run-time access to arbitrarily speci�ed numerical libraries. The user canuse one of the di�erent NetSolve client interfaces to send requests to these servers. The user requests, how-ever, are not sent directly to the computational resources, but are instead processed by another componentof the system: a NetSolve agent. The agent decides which computational server should handle the userrequest and assigns the request to that server.The di�erent hosts that participate in the NetSolve protocol may be located anywhere on the Internet. Infact, they may be administered by di�erent institutions. NetSolve does not assume any centralized controlover the di�erent hosts in the system. On the contrary, each process (computational server or agent) isan independent entity: it can be stopped/restarted safely at anytime without putting the integrity of thesystem in jeopardy. Furthermore, a NetSolve system can contain several instances of the NetSolve agent.Suppose, for example, the set of computational resources spans several local area networks and that users oneach of these networks want to use NetSolve to perform scienti�c computations. It is then possible to starta NetSolve agent on each network, so that user requests always go to the \closest" agent to be processed.Di�erent instances of the NetSolve agent can then have di�erent views of the set of computational resources,reecting the fact that certain clients are closer to certain computational resources.The speci�cation of the computational servers and how they interact with the underlying numerical librariesis detailed in [5] where it is explained that computational servers are created with the help of a Java applet.Currently, computational servers interfacing with the following numerical libraries have been successfullycreated: FitPack [6], ItPack [7], MinPack [8], FFTPACK [9], LAPACK [10], BLAS [11, 12, 13], and QMR [14].
3

NetSolve Client NetSolve Agent

Request

ChoiceReply

Resource
NetSolve

NetSolve Pool of Resources

Figure 1: The NetSolve System2.2.2 Load BalancingThe primary role of the agent in the NetSolve system is to perform load balancing among the di�erentcomputational resources. NetSolve is inherently a multi-request system. Several users can share computa-tional resources by contacting the same agent or di�erent agents managing the same pool of resources. Infact, even a single user can send multiple asynchronous requests at once, as explained in the description ofthe user interfaces. For each server, the agent uses information contained in the user request (e.g., type ofcomputation, size of the problem), static information about the server (speed of the host, numerical serveravailable, etc.), and predictions about the workload of the server's host and the distance to the server'shost over the network. These di�erent pieces of information are then combined to obtain an estimate of thetime required to process the user request on each computational server (including network time and CPUtime). For each client incoming request, the NetSolve agent sorts the appropriate computational servers bythe estimated times, and is then able to process the request accordingly. More details on the way the agentperforms this load balancing can be found in [15].2.2.3 Fault ToleranceAs previously mentioned, the hosts in the NetSolve system can be located anywhere on the Internet andcan therefore be administered by di�erent institutions. For this reason, NetSolve does not try to impose anycontrol on the di�erent resources. This distributed computation approach is very exible, but it requiresthat NetSolve implement fault tolerance mechanisms. Indeed, any resource can become unreachable at anymoment, perhaps because of a network failure, a host failure, or simply because a system administratorreboots a host.The NetSolve system ensures that a user request will be completed unless every single resource has failed.When a client sends a request to a NetSolve agent, it receives a sorted list of computational servers totry. When one of these servers has been successfully contacted, the numerical computation is started. Ifthe contacted server fails during the computation, then another server is contacted and the computationis restarted. This whole process is transparent to the user. If all the servers have failed, then the user is4

noti�ed that the computation can not be performed at that time. The server-list strategy represents a �rststep towards fault tolerance and will be improved in future versions of the software.2.2.4 Multiple User InterfacesAn important goal of the NetSolve design is to provide several interfaces for a wide range of target users.Presently, NetSolve provides C, Fortran, MATLAB and Java Application Programming interfaces (APIs).We also deemed that NetSolve needed a graphical interface and this interface has been written in Java aswell. The two Java interfaces are described at the end of this section.Another concern is to keep the interface as simple a possible. For example, the MATLAB interface containsonly 2 functions : netsolve() and netsolve nb(). The �rst function allows the user to send blocking requeststo NetSolve whereas the second one sends non-blocking requests. In fact, every interface provides non-blockingcalls to NetSolve. When several non-blocking requests are sent to a NetSolve agent, they are dispatchedbetween the available computational resources according to the load balancing schemes implemented bythe agent. With minimal e�ort, the NetSolve user can achieve a degree of parallelism. Complete detailsregarding the various interfaces as well as examples can be found in [16].2.3 Java interface to NetSolve2.3.1 Graphical interfaceFor NetSolve to be accepted by many users, it must provide several distinct ways to access computationalresources, mainly di�erent user interfaces. Before the development of the Java graphical interface, the onlyinterfaces that were available were MATLAB, C, and Fortran, leaving the MATLAB interface as the onlyhigh-level and interactive way of calling NetSolve. However, MATLAB is not freely distributed and manyusers may not have it installed on their workstations. We needed a freely available interactive interfaceso that users not familiar with scienti�c computing could still use NetSolve for their �rst steps in the�eld. Furthermore, Java allowed us to e�ortlessly design a graphical interface making NetSolve even morestraightforward for �rst-time users, even though an experienced user is more likely to use the Fortran orMATLAB interface if available.NetSolve's interactive Java interface is entirely graphical. A window displaying available computationalmethods is presented to the user, who can point and click to solve the numerical problem of interest. Theuser then supplies input by way of �les, URLs, or interactively using the keyboard. Computation is handledas usual by a computational server chosen by the NetSolve agent and the result is returned to the user. Theresults can be viewed and saved if necessary.NetSolve's graphical interface is multi-threaded, using Java's built-in thread facilities. Each computationis assigned to a separate thread. Every request sent by the Java interface to the NetSolve computationalresource is represented by an independent window. By opening several windows concurrently, the user cansend multiple requests simultaneously. Each request will be handled by di�erent computational servers,thanks to the agent's load balancing strategy. This is very similar to the non-blocking calls to NetSolve fromC, Fortran, MATLAB or Java programs.The pool of NetSolve resources can be a heterogeneous set of hosts, i.e., two hosts can have di�erentinternal data representations. To support heterogeneous environments, the agents, servers, and C, Fortranand MATLAB interfaces use the XDR protocol [17]. As part of NetSolve, we developed a simple Java XDR-encoder, enabling our interface to communicate with any server on any platform. The Java interface maythen contact servers which expect XDR-encoded data.One of the features of Java is that the Java virtual machine can enforce a strict security scheme. Typically,the virtual machine embedded in a Web-browser does not allow local �le access, network connection exceptto the Web server that served the applet. Presently, the Java interface to NetSolve cannot be used asan applet within a Web browser because of these security restrictions. Indeed, our interface is supposed tocontact many di�erent servers scattered on the Internet and therefore perform multiple network connections.5

It is possible to work around applet security restrictions by setting up an appropriate daemon on the Webservers, but this would not be a viable solution in the long term, considering the mass of data that wouldtransit through the Web server. However, the interface is fully functional as an application, running on asystem which has a Java virtual machine, or distributed with a Java Runtime Environment. Consideringthe increased interest in Java, most systems already have an implementation of the Java Development Kit(JDK) that includes the Java virtual machine and the javac compiler. Our interface should therefore beusable on virtually any platform and future versions of Web-browsers allowing security levels to be set bythe user are likely to make the applet approach feasible.2.3.2 NetSolve's Java APIThe �rst graphical interface to NetSolve was written in TK/TCL [18]. When Java became available, wedecided that it would be a much better choice to write a graphical interface for the reasons described inthe preceding section. By the time the �rst version of the Java GUI was completed, Java had evolvedto be accepted as an important language by itself, not just a tool for running programs (applets) withinWeb-browsers. The need for a Java API to NetSolve then seemed clear, since NetSolve already providedC, Fortran and MATLAB interfaces. Fortunately, most of the internals of the GUI could be re-used toimplement a Java API. In fact, due to the unexpected success of Java during the development of NetSolve,we were lead to do some reverse engineering: extracting the internals of an existing software for distributionas a stand-alone class library. The API is still under development and has motivated some code restructuringwithin the GUI. It will match the other APIs to NetSolve as closely as possible.There are however some di�culties that are inherent to Java. For instance, Java does not support callingsequences to a same function with a variable number of arguments. Also, as explained in section 3, Javapasses primitive types by value which does not allow a calling sequence entirely compatible with the un-derlying Fortran numerical libraries in the NetSolve computational servers. These di�culties are, however,surmountable, and an attractive API will be presented for providing users with an ability to write portablescienti�c computation applications and applets. The user developed programs will be reliable because theNetSolve computational servers use established and widely accepted numerical libraries. They will also bee�cient because of NetSolve's agent-based design, allowing the user to achieve parallelism with virtually noadditional programming e�ort.2.4 Future DevelopmentsNetSolve is still a relatively young, rapidly developing project which is bound to greatly improve in thenear future. The Java GUI and API to NetSolve will reect these improvements when appropriate, evolvingto provide the user with attractive new features. The most interesting improvements will most likely takeplace within the Java GUI since the API should stay as simple as possible. The GUI on the other handcan integrate new modules on demand. For instance, it would be very feasible to add data visualizationmodules to the Java GUI so that the user can be presented with the results of his or her computations inan attractive graphical display. Another possible extension would be to develop some kind of MATLAB-like scripting language with which the user could describe a whole numerical algorithm using the NetSolveservices. In fact, better than a scripting language, would be a graphical interface describing a numericalalgorithm as a task-graph and where each node would be an invocation to a NetSolve service. We havealready started developing a prototype of such a graphical interface in Java that could be integrated in theNetSolve Java GUI. This prototype could eventually �t in an even broader framework where the nodes ofthe graph are not limited to a NetSolve service but perhaps describe a more general task, like a user's Javaprogram. Following this thread of ideas and new developments in the Java world, it appears that users mightwant to call numerical software directly from their applications or applets, instead of using NetSolve. Thismight indeed be a good choice for users concerned with security and who do not want their data to travel overthe Internet, or users whose applications do not require a large computational power, or for users who haveaccess to hardware computational resources and plan to use some kind of native Java compiler, to ensure6

acceptable performance levels. The following section describes a new project, just started at the Universityof Tennessee, that will allow such users to include calls to numerical libraries in their Java programs.3 Direct Java access to numerical software3.1 MotivationReal programmers program in Fortran, and can do so in any language. |Ian Graham, 1994 [19]Following the development of NetSolve, the f2j project, recently started at the University of Tennessee,will provide APIs for direct access to numerical libraries from Java programs. f2j is a formal compiler thattranslates programs written using a subset of Fortran 77 into a form that may be compiled or assembled intoJava class �les. The �rst priority for f2j is to translate the BLAS [11, 12, 13] and LAPACK [10] numericallibraries from their Fortran 77 source code to Java class �les. The subset of Fortran 77 translated by f2jmatches the Fortran source used by BLAS and LAPACK. These libraries are established, reliable and widelyaccepted linear algebra packages, and are therefore a reasonable �rst testbed for our translator. Many otherlibraries of interest are expected to use a very similar subset of Fortran 77.The primary motivation for this project is to provide the reliability and dependability of the LAPACKnumerical linear algebra subroutines as class �les available for use in the Java Virtual Machine (JVM).Targeting the JVM provides access to legacy code for distributed computation via the World Wide Web.Similar previous e�orts such as f2c [20], have proven to be very popular and widely used. The BLAS andLAPACK class �les will be provided as a service of the Netlib repository. f2j also provides a base for a moreambitious e�ort translating a larger subset of Fortran, and perhaps eventually any Fortran source into Javaclass �les.Popular opinion seems to hold the somewhat erroneous view that Java is \too slow" for numerical pro-gramming. However, there are presently many small to intermediate scale problems where speed is not anissue. For instance, physical quantities such as permeability, stress and strain are commonly represented byellipsoids [21, 22], a graphical representation of an underlying tensor. The tensor is mathematically repre-sented by an SPD matrix. Ellipsoid axes are computed from the root inverse of the tensor's eigenvalues,directed along the tensor's eigenvectors. A LAPACK eigenproblem subroutine such as SSYTRD, availableas a Java class �le, provides a portable solution with known reliability. Since future execution speeds of Javawill increase as just-in-time (JIT) and native code compilers are developed, the scale of feasible numericalprogramming will increase as well.3.2 ImplementationSeveral freely available Fortran compiler fronts ends, such as g77 and f2c, were examined to base the f2jon. None of these �t the needs of the project su�ciently well, and the following quotation helped providemotivation to start a clean implementation from scratch:The program f2c is a horror, based on ancient code and hacked unmercifully. Users are onlysupposed to look at its C output, not at its appalling inner workings. |Stuart Feldman [20]Due to the context sensitive nature of the Fortran language, the lexer was hand written (in C), as recom-mended in [23, 24]:It should be noted that tokenizing Fortran is such an irregular task that it is frequently easier towrite an ad hoc lexical analyzer for Fortran in a conventional programming language than it isto use an automatic lexical analyzer generator. |Alfred Aho, 1988 [23]This allowed expression of the Fortran grammar as LR(1), su�cient to use the parser generator Bison, ayacc work-alike distributed by the Free Software Foundation. Bison generates a an ANSI C parser, which is7

useful for platform indendence. There is no type checking if Java source code is chosen to be emitted. TheFortran source �le is assumed to be standard Fortran 77. Limited type checking is done during the typeconversion pass when assembler opcode is emitted. All code generation and type conversion procedures arewritten in C, portability and extensibility.The Fortran source code is parsed into an abstract syntax tree (AST) consisting of tagged union nodesimplementing the equivalent Java structures. Using an abstract syntax tree has several bene�ts, one ofwhich is that code restructuring can be easily performed. For instance, continuing loop iteration within aFortran do loop requires a goto/continue pair, in Java this is accomplished similar to C, with a continuestatement. Similarly, breaking a loop in Fortran 77 requires a goto/label pair, implemented as a breakstatement in Java. The AST allows easy lookup and connection between non-adjacent nodes for such coderestructuring. Another bene�t is that the AST may be passed by its root node to separate type-checking,code optimizing and code generation procedures.
Fortran
source

Java
source

JVM
Opcode

.class
file

javac

Java
assembler

(jasmin)

f2java

f2jas

.class
file

Figure 2: Translation strategies in the f2j projectAfter parsing a Fortran source �le, the AST is traversed recursively to emit either Java source code forcompilation or Java opcode suitable for assembly into class �le format. Targeting Java source and opcodeis more convenient than producing bytecode directly because: (i) internal documentation of BLAS andLAPACK subroutines exists in the form of comment headers and can be preserved exactly in the translatedform, and (ii) Java source and opcode are stored in readable ASCII text �les, much more convenient fortesting and debugging the translated routines. Targeting Java source is fairly straightforward, but due tomany control structures in the BLAS and LAPACK reference source being written with goto constructions,the amount of Java source code presently emitted is limited. Since code restructuring has been shelved forlater consideration, the remaining subroutines are emitted as opcode suitable for assembly using a publicdomain assembler, jasmin (Java Assembler Interface) [25]. JVM opcode has not yet been standardized bySun, but jasmin uses instructions identical to those speci�ed by Sun in their JVM documentation [26]. Thesame opcode is produced as output from Sun's javap program invoked to disassemble a Java class �le. Figure2 shows a diagram of the two translation schemes that are being experimented with in the f2j project.One of the more challenging aspects of the project is resolving di�erences between the calling structures inFortran and Java. Fortran passes all arguments by reference. Java passes objects by reference, but primitivessuch as integers, oats and doubles are passed by value. A Fortran subroutine that modi�es an integer for8

use in the calling program has no direct counterpart in Java. One possibility would be to create a classcontaining all of the arguments for a subroutine. While this technique would be more object oriented thanchanging lists of calling parameters, the complexity of writing a translator could be greatly increased.Java provides class wrappers for all primitive types, but value of the primitive is immutable within theobject wrapper. Since the JVM requires that all methods return a value or void, values cannot be left onthe JVM stack (each method implements its own stack). The solution being implemented is to simply wrapthe necessary values (e.g., the INFO variable used in many LAPACK routines for reporting error status) ina custom class consisting of a single static class variable. This also provides less overhead than instantiatingbuilt-in wrappers provided in the Java language speci�cation. A simple experiment showed that instantiatingan object of type Double requires 280 bytes in Java (javac version 1.1.1), but a simple wrapper such asclass DoubleWrapper {double d;}only requires 56 bytes. Both classes, Double and DoubleWrapper, inherit from class Object. The sizedi�erence reects methods implemented in Double that are lacking in DoubleWrapper. Another possibilityunder consideration is to pass primitives as single element arrays.Neither is it possible to pass references to subsections of arrays. Java will dereference indexed arrays andpass the value instead. This necessitates changing the calling parameters of the BLAS and LAPACK routinesto pass indices separately with every array. Method overloading would allow a default method invocationidentical to a LAPACK call that passed all arrays by their initial reference, but overloading for all possiblecases would increase the number of required methods by 2n, n the number of arrays.3.3 Future DevelopmentsAs the initial design is very much a proof of concept, the compiler is limited to the double precision BLASand LAPACK routines. Future work on the project might include providing better type checking, or pro-viding BLAS and LAPACK in the form of Java language source. Providing Java language source wouldrequire formal code restructuring to translate Fortran goto statements to equivalent Java control structures,as discussed in section 3.2. Since the present compiler produces assembler code directly, to handle gotostatements, it could be modi�ed to produce stack values suitable for complex arithmetic.Currently, implementing complex numbers and complex arithmetic would raise performance issues. Com-plex numbers are not speci�ed as primitives in Java, and while they could be easily implemented as objects,this would produce considerable overhead, as demonstrated above. A better idea would be to de�ne staticmethods to operate directly on a stack containing the appropriate arguments for complex number arithmetic.This solution still su�ers a performance penalty with each static method invocation. The best solution wouldof course be complex primitives speci�ed by Sun as part of the Java language, with associated JVM instruc-tions to provide complex arithmetic capability.Another extension of f2j could provide simple code optimization. Direct translation of the Fortran statementi = i + 1 to increment an index i results in the following JVM stack sequence:iload n ; Push n to stack.iconst_1 ; Push integer constant 1 to stack.iadd ; Integer add.istore n ; Store value on stack in n.where n is a variable local to the methods stack, and ; delimits comments. Optimizing this operation usingJVM instructions results iniinc n 1 ; Increment the value stored in n by 1.For large or highly iterative procedures, the savings in the size of byte code and execution speed should besigni�cant. 9

As well as providing numerical routines for Java programming, the Fortran to Java compiler f2j demon-strates the feasibility of compiling arbitrary languages to the JVM using the class �le format. Fortran toJava source translations may also be accomplished when control structures in Fortran match those in Java,or can be restructured to match. This e�ort certainly will not be the �rst such, indeed, a C++ to Javatranslator already exists, and work is underway on a Pascal to class �le translator (Mark de Boer, personalcommunication).4 ConclusionAs Java's popularity grows, it becomes more and more crucial to provide reliable ways to write Java programsthat perform scienti�c computation. There are basically two reasons why Java is often claimed to beinappropriate for scienti�c computing. The �rst reason is that Java is generally interpreted and is thereforeunable to run at machine speed. The second reason is that no standard numerical libraries have beentranslated yet to Java bytecode (or source for that matter). The �rst reason seems to be less and less ora concern as native compilers are being provided by software developers, so that Java can be used as anyother language to develop code on those platforms. Even the speed of applets can be raised to new levelswith JIT techniques. However, compiled Java source on those platforms is of course not portable anymoreas it is not targeting the JVM any more.Two projects underway at the University of Tennessee will provide e�cient, portable and reliable accessto scienti�c computing facilities using Java: NetSolve and f2j. Both projects achieve reliability by providingaccess to standard numerical libraries. NetSolve possesses a framework that allow easy integration of arbi-trary numerical libraries hosted on remote computational servers. f2j is for now limited to libraries usinga subset of Fortran 77. This subset is used by the BLAS and LAPACK libraries and is likely to be alsosu�cient for other standard numerical libraries or at least easily expendable. Portability is also achieved byboth NetSolve and f2j. NetSolve's Java API of course leads to portable code since it is at the Java sourcelevel. f2j takes in input Fortran source and ultimately generates portable Java class �les. Two ways ofgenerating this bytecode are under investigation: either compiling Java source or assembling JVM opcode.Going through Java source would be of course extremely interesting, but as explained in section 3, it willrequire code restructuring. Going through Java opcode is somewhat easier but is then bound to a JVMexecution. Finally, these two projects are also concerned with e�ciency. NetSolve insures e�ciency thanksto an agent-based design and computational servers that run optimized compiled Fortran numerical libraryfunctions. f2j depends on the e�ciency of the run-time environment in which the generated class �les areexecuted. Future work with f2j will minimize overhead by optimizing the emitted JVM opcode.The NetSolve and f2j are emerging developmental projects and are quite likely to undergo substantialmodi�cation and improvement as the involved research issues become better understood. Both projects aimat making Java-based scienti�c computing not only feasible but attractive for a broad class of applicationsand users.References[1] Inc. The Math Works. MATLAB Reference Guide. 1992.[2] S. Wolfram. The Mathematica Book, Third Edition. Wolfram Median, Inc. and Cambridge UniversityPress, 1996.[3] J. Czyzyk, M. Mesnier, and J. Mor�e. Neos : The Network-Enabled Optimization System. TechnicalReport MCS-P615-1096, Mathematics and Computer Science Division, Argonne National Laboratory,1996.[4] S. Browne, J. Dongarra, E. Grosse, and T. Rowan. The Netlib Mathematical Software Repository.D-Lib Magazine, sep 1995. Accessible at http://www.dlib.org/.10

[5] H Casanova and J. Dongarra. The use of Java in the NetSolve project Computational Science Prob-lems. In Proc. of the 15th IMACS World Congress on Scienti�c Computation, Modelling and AppliedMathematics, Berlin. Department of Computer Science, University of Tennessee, Knoxville, 1997.[6] A. Cline. Scalar- and Planar-Valued Curve Fitting Using Splines Under Tension. Communications ofthe ACM, 17:218{220, 1974.[7] D. Young, D. Kincaid, J. Respess, and R. Grimes. Itpack2c: a FORTRAN package for solving largesparse linear systems by adaptive accelerated iterative methods. Technical report, University of Texasat Austin, Boeing Computer Services Company, 1996.[8] J. Mor�e, B. Garbow, and K. Hillstrom. Minpack : Documentation �le accessible at:"http://www.netlib.org/minpack/readme".[9] P. Swarztrauber. FftPack : Documentation �le accessible at:"ftp://ftp.ucar.edu/ftp/dsl/lib/�tpack/readme".[10] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide, Second Edition. SIAM,Philadelphia, PA, 1995.[11] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms for FortranUsage. ACM Transactions on Mathematical Software, 5:308{325, 1979.[12] J. Dongarra, J. Du Croz, S Hammarling, and R. Hanson. An Extended Set of Fortran Basic LinearAlgebra Subprograms. ACM Transactions on Mathematical Software, 14(1):1{32, 1988.[13] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A Set of Level 3 Basic Linear Algebra Subpro-grams. ACM Transactions on Mathematical Software, 16(1):1{17, 1990.[14] R.W. Freund and N.M. Nachtigal. QMR: A quasi-minimal residual method for non-Hermitian linearsystems. Numer. Math., 60:315{339, 1991.[15] H Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational Science Problems.In Proc. of Supercomputing'96, Pittsburgh. Department of Computer Science, University of Tennessee,Knoxville, 1996. to appear in The International Journal of Supercomputer Applications and High Per-formance Computing.[16] H. Casanova, J. Dongarra, and K. Seymour. Client User's Guide to Netsolve. Technical Report CS-96-343, Department of Computer Science, University of Tennessee, 1996.[17] Inc. Sun Microsystems. XDR: External Data Representation Standard. RFC 1014, Sun Microsystems,Inc., jun 1987.[18] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.[19] I. Graham. Object Oriented Methods. Addison-Wesley, Berkeley, CA, 2d edition, 1994.[20] S. I. Feldman, D. M. Gay, M. W. Maimone, and N. L. Schrye r. A Fortran-to-C converter. Computingscience technical report no. 149, AT&T Bell Laboratories, Murray Hill, NJ, 1995.[21] L. E. Malvern. Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cli�s,New Jersey, 1969.[22] J. C. S. Long, J. S. Remer, C. R. Wilson, and P. A. Witherspoon. Porous Media Equivalents forNetworks of Discontinuous fractures. WRR, 18:645{658, 1982.11

[23] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-WesleyPublishing Company, Reading, MA, 1988.[24] J. R. Levine. lex & yacc. O'Reilly and associates, Cambridge, MA, 2d edition, 1992.[25] J. Meyer and T. Downing. Java Virtual Machine. O'Reilly & Associates, Sebastopol, CA, 1997.[26] T. Lindholm and F. Yellin. The Java Virtual Machine Speci�cation. Addison-Wesley, Berkeley, CA,1997.

12

