A PARALLEL ALGORITHM FOR MESH SMOOTHING

LORI FREITAG*, MARK JONES!, AND PAUL PLASSMANN#

Abstract. Maintaining good mesh quality during the generation and refinement of unstructured meshes in
finite-element applications is an important aspect in obtaining accurate discretizations and well-conditioned linear
systems. In this article, we present a mesh-smoothing algorithm based on nonsmooth optimization techniques and a
scalable implementation of this algorithm. We prove that the parallel algorithm has a provably fast runtime bound
and executes correctly for a PRAM computational model. We extend the PRAM algorithm to distributed memory
computers and report results for two- and three-dimensional simplicial meshes that demonstrate the efficiency and
scalability of this approach for a number of different test cases. We also examine the effect of different architectures on
the parallel algorithm and present results for the IBM SP supercomputer and an ATM-connected network of SPARC
Ultras.

Key words. Parallel Computing, Mesh Smoothing, Unstructured Meshes, Parallel Algorithms, Finite Elements

1. Introduction. Unstructured meshes have proven to be an essential tool in the numerical
solution of large-scale scientific and engineering applications on complex computational domains. A
problem with such meshes is that the shape of the elements in the mesh can vary significantly, and
this variation can affect the accuracy of the numerical solution. For example, for two-dimensional
triangulations classical finite element theory has shown that if the element angles approach the
limits of 0° and 180°, the discretization error or the condition number of the element matrices can
be adversely affected [3, 12].

Such poorly shaped elements are frequently produced by automatic mesh generation tools, par-
ticularly near domain boundaries. In addition, adaptive refinement techniques used during the
solution of a problem tend to produce more highly distorted elements than were contained in the
initial mesh, particularly when the adaptation occurs along curved boundaries [18§].

To obtain high-quality meshes, often one must repair or improve the meshes before or during the
solution process. This improvement should be based on an element quality measure appropriate for
the particular problem being solved. Two mesh improvement techniques that have proven successful
on sequential computers are face (edge) swapping and mesh smoothing [2, 6, 7, 8, 15, 16, 22]. How-
ever, sequential mesh optimization methods are not appropriate for applications using distributed-
memory computers because (1) the mesh is usually distributed across the processors, (2) the mesh
may not fit within the memory available to a single processor, and (3) a parallel algorithm can
significantly reduce runtime compared with a sequential version. For such applications, parallel
algorithms for mesh improvement techniques are required, and in this paper we present an efficient
and robust parallel algorithm for mesh smoothing.

We have organized the paper as follows. In Section 2, we briefly review various local mesh
smoothing techniques; including Laplacian smoothing and a number of optimization-based ap-
proaches. The parallel algorithm and theoretical results for correct execution and the parallel
runtime bound are discussed in Section 3. In Section 4, we present numerical results obtained
on the IBM SP and an ATM-connected network of SPARC Ultras that demonstrate the scalability
of our algorithm.

2. Local Mesh-Smoothing Algorithms. Mesh-smoothing algorithms strive to improve the
mesh quality by adjusting the vertex locations without changing the mesh topology. Local smoothing
algorithms adjust the position of a single grid point in the mesh by using only the information at

*Assistant Computer Scientist, Mathematics and Computer Science Division, Argonne National Laboratory, Ar-
gonne, IL.

t Assistant Professor, Computer Science Department, The University of Tennessee at Knoxville, Knoxville, TN.

{Computer Scientist, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL.

1

incident vertices rather than global information in the mesh. A typical vertex, v, and its adjacent
set, adj(v), are shown in Figure 2.1. The vertices in the adjacent set are shown as solid circles in the
figure. As the vertex v is moved, only the quality of the elements incident on v, shown as shaded
triangles in the figure, are changed. Vertices not adjacent to v, shown as unfilled circles, and the
quality of elements that contain these vertices are not affected by a change in the location of v. One
or more sweeps through the mesh can be performed to improve the overall mesh quality. Thus, it is
critical that each individual adjustment be inexpensive to compute.

Fic. 2.1. A vertez v and the elements whose quality 1s affected by a change in its position. The neighbors of v
are shown as solid circles. Only the quality of the shaded elements 1s affected by changing the position of vertex v.

To be more specific, we can represent any local smoothing technique as a function, smooth(),
that given the location x, of a vertex v, and its neighbors’ locations, X44j(v), returns a new location,
%, , for v.! Thus, the sequential form of any local mesh smoothing algorithm is given by the simple
loop in Figure 2.2, where V is the set of vertices in the mesh to be smoothed. The positions of

Choose an ordering Vi,..., V,
Fori=1,..,ndo
Xy = smooth(Xy, Xadj(v))

Enddo

Fi1c. 2.2. The local smoothing algorithm for sequential implementation

the vertices after a sweep is not unique and is determined by the ordering in which the vertices
are smoothed. This aspect of local mesh smoothing techniques will be discussed in more detail in
Section 2.4.

The action of the function smooth is determined by the particular local algorithm chosen, and
in this section we briefly review several previously proposed techniques.

2.1. Laplacian Smoothing. Perhaps the most commonly used local mesh-smoothing tech-
nique is Laplacian smoothing [9, 20]. This approach replaces the position of a vertex v by the
average of its neighbors’ positions. The method is computationally inexpensive, but it does not
guarantee improvement in element quality. In fact, the method can produce an invalid mesh con-
taining elements that are inverted or have negative volume. An example showing how Laplacian

1The smoothing function might require information in addition to neighbor vertex position. For example, for
nonisotropic problems the function may require the derivatives of an approximate solution at v and adj(v), or other
specific information about the elements that contain these vertices. However, this information is still local and can
be included within this framework.

smoothing can lead to an invalid mesh is shown in Figure 2.3.

Fic. 2.3. A set of elements for which Laplacian smoothing of the center vertex v results in an invalid triangu-
lation. The shaded square marks the average of the positions of the vertices adjacent to v.

A variant of Laplacian smoothing that guarantees a valid or improved mesh allows the vertex v
to move only if (1) the local submesh still contains valid elements or (2) some measure of mesh quality
is improved. We note that evaluating these rules significantly increases the cost of the Laplacian
smoothing technique [10].

2.2. Optimization-based Smoothing. Optimization-based smoothing techniques offer an
alternative to Laplacian smoothing that can be inexpensive, can guarantee valid elements in the
final mesh, and are effective for a wide variety of mesh quality measures. Several such techniques
have been proposed recently, and we briefly review those methods now. The methods differ primarily
in the optimization procedure used or the quantity that is optimized.

Bank [4] describes a smoothing procedure for two-dimensional triangular meshes that uses the
element shape quality measure given by

434
Z?:l 122 ’

where A is the area of the triangular element and [; 1s the length of edge . The maximum value for
q(t) corresponds to an equilateral triangle. Each local submesh is improved by using a line search
procedure. The search direction is determined by the line connecting the current position of v to the

q(t) =

position that results in the worst element becoming equilateral. The line search terminates when
at least one other element’s shape quality value equals that of the improving element. One variant
of this technique attempts to directly compute the new location by using the two worst elements in
the local submesh. In this case the line search procedure is used only in the cases for which the new
position results in a third element, different from the original two worst elements, with the smallest
shape measure.

Shephard and Georges describe a similar approach for tetrahedral meshes [23]. The shape
function for each element incident on v is computed by using the formula

V4
(T, 42)

where V' is the volume of the element and A; is the area of face i. The parameter x 1s chosen

q(t) = &

so that ¢(¢) has a maximum of one corresponding to an equilateral tetrahedron. A line search
similar to that done by Bank is performed, where the search direction is determined by the line
connecting the current position of v to the position that improves the worst element in the local
submesh to equilateral. The line search subproblem is done by using the Golden Section procedure
and terminates when the worst element is improved beyond a specified limit.

Freitag et al. [10, 11] propose a method for two- and three-dimensional meshes based on the
steepest descent optimization technique for nonsmooth functions. The goal of the optimization

approach is to determine the position that maximizes the composite function

(2.1) o(x) = min fi(x),

where the functions f; are based on various measures of mesh quality such as max/min angles and/or
element aspect ratios and [is the number of functions defined on the local submesh. For example, in
two-dimensional triangular meshes, maximizing the minimum angle of a local submesh containing
m elements would require [= 3m — 2 function evaluations. For most quality measures of interest,
the functions are continuous and differentiable. If the derivatives of the composite function ¢(x) are
discontinuous, the discontinuity occurs when there is a change in the set of functions that obtain the
minimum value. The search direction at each step is computed by solving a quadratic programming
problem that gives the direction of steepest descent from all possible convex linear combinations of
the gradients in the active set. The line search subproblem is solved by predicting the points at
which the set of active functions will change based on the first-order Taylor series approximations
of the fi(x).

Amenta et al. show that the optimization techniques used in [10, 11] are equivalent to the
generalized linear programming technique and has an expected linear solution time [1]. The convex
level set criterion for solution uniqueness of generalized linear programs can be applied to these
smoothing techniques, and they determine the convexity of the level sets for a number of standard
mesh quality measures in both two and three dimensions.

All the techniques mentioned previously optimize the mesh according to element geometry.
Bank and Smith [5] propose two smoothing techniques to minimize the error for finite element
solutions computed with triangular elements with linear basis functions. Both methods use a damped
Newton’s method to minimize (1) interpolation error or (2) a posteriori error estimates for an elliptic
partial differential equation. The quantity minimized in these cases requires the computation of
approximate second derivatives for the solution on each element as well as the shape function ¢(?)
for triangular elements mentioned previously.

2.3. Combined Laplacian and Optimization-based Smoothing. Both Shephard and
Georges [23] and Freitag and Ollivier-Gooch [10] present experimental results that demonstrate
the effectiveness of combining a variant of Laplacian smoothing with their respective optimization-
based procedures. The variant of Laplacian smoothing used by Shephard and Georges allows the
vertex to move to the centroid of the incident vertices only if the worst element maintains a shape
measure ¢(t) above a fixed limit. Otherwise, the line connecting the centroid and the initial position
is bisected, and the bisection point is used as the target position. Freitag and Ollivier-Gooch accept
the Laplacian step whenever the local submesh is improved. In both cases, the Laplacian smoothing
step is followed by optimization-based smoothing for only the worst elements. Experiments in [10]
showed that using optimization-based smoothing when the minimum angle (dihedral angle in 3D)
was less than 30 degrees in two dimensions and 15 degrees in three dimensions significantly improve
the meshes at a small computational cost. These results also showed that more than three sweeps
of the mesh offer minimal improvements for the meshes tested.

2.4. Nonuniqueness of Smoothed Vertex Location. As mentioned earlier, the locations of
the vertices in the mesh after a pass of smoothing are not unique but are determined by the ordering
in which the vertices are smoothed. An example of this nonuniqueness is shown in Figure 2.4 for a
simple two-dimensional mesh. The original mesh is shown on the left, where v and ¢ are the vertices
to be smoothed and the position of each vertex is given. In the top series of meshes, the vertex ¢
is relocated by using optimization-based smoothing as described in [11] followed by adjustment of
the vertex v as shown by the highlighted submeshes in the middle and rightmost meshes. In the
bottom series of meshes, the vertices are smoothed in reversed order, and the resulting final meshes
are considerably different. For each of these final meshes, the resulting minimum, maximum, and

average angles for the two orderings are presented in Table 2.1. The higher-quality mesh is obtained
by moving the vertex ¢ before moving the vertex v.

(

\

N\

Fi1G. 2.4. The order in which vertices are smoothed can significantly affect the final mesh quality. These series
of meshes show the intermediate and final meshes when the vertex q is smoothed followed by the vertez v (top) and
vice versa (bottom).

TaBLE 2.1
Minimum, mazimum, and average angles for the the mesh shown in Figure 2.4 for a single pass of optimization-
based smoothing with two different orderings of vertices

| Ordering | Min. Angle | Max. Angle | Avg. Angle |

Original Mesh 1.736° 159.829° 19.005°
v then ¢ 10.445° 146.429° 23.801°
q then v 19.038° 134.764° 25.534°

In general, vertices incident on poor-quality elements are the most likely to significantly change
location during the smoothing process. These large changes can adversely affect the quality of
neighboring submeshes, but the effects can be mitigated by subsequent adjustment of the neighboring
vertices. Therefore, an ordering of vertices that would tend to be more effective than a random
ordering would be to smooth the vertices incident on the elements with the lowest quality first.

3. A Parallel Mesh-Smoothing Algorithm. In this section we present a framework for the
correct parallel implementation for any of the local mesh-smoothing algorithms presented in the
preceding section. The parallel smoothing algorithm is formulated within the context of the graph
of the mesh which we define as follows. Let V' = {v;]¢ = 1,...,n} be the set of vertices in the mesh
and T'= {t4]a = 1, ..., m} be the set of mesh elements, either triangles or tetrahedra. Let G = (V, E)
be the graph associated with the mesh, where E = {e; ; = (vi, vj)|vi, v; € to}.

We first consider the problem of coordinating information about the mesh between processors to
ensure that the mesh remains valid during smoothing. An invalid mesh can be created by smoothing
two adjacent vertices simultaneously on different processors. Consider the triangulation shown in the
first mesh in Figure 3.1 in which the vertices ¢ and v are to be smoothed and are owned by different

processors. The new locations of the vertices after simultaneously being smoothed are indicated in
the following mesh by v’ and ¢’. These positions are determined assuming the locations of ¢ and v
are fixed to those given in the first mesh. The shaded region in the second mesh shows the inverted
triangle that was created by the new locations v’ and ¢'.

We define correct execution of the parallel algorithm as follows. Let the quality of an initial,
valid mesh Ty be qg. The parallel algorithm has executed correctly if the smoothed mesh, 77, is
valid and the quality ¢; is greater than or equal to ¢;. Note that we do not require that the quality
of a mesh smoothed in parallel equal the quality of the same mesh smoothed in serial, because a
different vertex ordering may be used.

PLi P2

Fic. 3.1. An example of an invalid mesh created when adjacent vertices on different processors are smoothed
stmultanecously. The inverted triangle 1s indicated in the shaded region.

Because elements not incident on v are not affected by a change in location of vertex v, we can
ensure the correct execution of the parallel algorithm by preventing two vertices that are adjacent
in the mesh, but on different processors, from being simultaneously smoothed. We define an inde-
pendent set of vertices to be a subset of the mesh vertices, I, such that v; € I = v; ¢ adj(I). The
approach for the parallel smoothing algorithm is to (1) select an independent set of mesh vertices,
(2) smooth these vertices in parallel; and (3) notify their neighbors of their new position so that
the procedure can be repeated with a new independent set. This approach avoids synchronization
problems between processors. We first formulate the algorithm using a Parallel Random Access
Machine (PRAM) computational model for which we can prove algorithm correctness and give a
parallel runtime bound. We then formulate a practical variant for distributed memory architectures.

3.1. The PRAM Computational Model. For the PRAM computational model, we assume
that processors communicate through a common shared memory. The essential aspect of the PRAM
model used in our analysis is that a processor can access data computed on another processor and
stored in shared memory in constant time.

Using this model, we assume that we have as many processors as we have vertices to be smoothed
and that vertex v; 1s assigned to processor p;. The parallel algorithm that gives the correct imple-
mentation of mesh smoothing is given in Figure 3.2.

The minimum number of steps required for correct execution of the parallel PRAM algorithm
is given by Lemma 1.

LEMMA 1 The number of steps required to guarantee correct execution of the smoothing algo-
rithm is at least |oopt|, where o,p is the coloring of G = (V, E) such that |oopt| is minimal among
all colorings of G.

Proof. In the parallel smoothing algorithm, a set of vertices, I, is smoothed at each time step.
If for any two vertices in I, v; and vy, e;; exists, then two neighboring vertices will be smoothed

k=20
Let Sy be the initial set of vertices marked for smoothing
While S, # 0

Choose an independent set [from Sy

For each v € I do

Xy = $mMooth(Xy, Xagi(v))

Enddo

Sp+1 = Sp\I

k=k+1
Endwhile

Fic. 3.2. The PRAM parallel smoothing algorithm.

simultaneously; as shown earlier, this may result in an invalid mesh or a mesh with lesser quality
than that of the initial mesh. Guaranteeing correct execution requires that I be an independent set.

The algorithm requires that a disjoint sequence of such independent sets, I, Is, ..., I, be found
such that the U;I; = V; thus the parallel smoothing algorithm requires m steps. Such a sequence
of independent sets is an m-coloring of . By definition, m must be at least |gop|. O

Determining this optimal coloring for a general graph is known to be an NP-hard problem [13],
but effective heuristics for efficiently choosing the independent sets in parallel have been developed
and implemented. We now describe two such heuristic approaches: (1) a vertex coloring method,
and (2) a randomization scheme. The coloring method assumes that we have a coloring of the
vertices, o, that is not necessarily optimal, but is a labeling such that o(v) # o(u) if v € adj(v).
Clearly, vertices of the same color constitute an independent set and can be used for this purpose
in the parallel algorithm. If the maximum degree of the graph is A, then the number of colors
found by these coloring heuristics 1s bounded above by A + 1. The second approach is based on
the assignment of a distinct random number, p(v), to each vertex. At each step in the algorithm,
we choose an independent set I from S according to the rule given in [17] based on [21]: v € T if
p(v) > p(u) for u € adj(v) and u € S.

The coloring approach yields a running time bound independent of the size of the graph being
smoothed; however, the efficient parallel computation of this coloring requires the use of the random-
ized algorithm [17]. Therefore, the coloring approach is cost effective only if it is used enough times
to amortize the initial expense of computing the coloring or is maintained for some other purpose.
Because we typically use a small number of smoothing passes, the randomized approach is used in
the experimental results presented in the next section. In addition, the randomized approach is more
memory efficient because the color of each vertex, o(v), must be stored, whereas the random num-
bers, p(v), can be computed when needed. For practical implementation, we use a pseudo-random
number generator to determine p(v) based solely on the global number of the vertex.

To evaluate the parallel runtime of the PRAM computational model, we assume that the mesh
has been generated for the finite element or finite volume solution of a physical model. The graph
of these meshes is local, and the edges connect vertices that are physically close to each other. In
general, the maximum degree of any vertex in such a mesh is bounded independent of the size of
the system. Given the local nature of the graph, and the assumption that each vertex is assigned
a unique independent random number p(v), we have that the expected number of independent sets
generated by the while loop in Figure 3.2 is bounded by

(3.1) EO(logn/log logn),

where n is the number of vertices in the system. This bound is a consequence of Corollary 3.5 in [17].
The maximum time required to smooth a vertex, ¢,,4, is also bounded because ¢4, = O(degree(v)),

and we have the following expected runtime bound.

LEMMA 2 The algorithm in Figure 3.2 has an expected runtime under the PRAM computational
model of EO(%{%—SD) X tmar, wWhere 8y is the number of vertices initially marked for smoothing.

Proof. Under the assumptions of the PRAM computational model, the running time of the
parallel smoothing algorithm is proportional to the number of synchronized steps multiplied by the
maximum time required to smooth a local submesh at step k. The upper bound on this time is
given by the maximum time #,,4, to smooth any local submesh. For this algorithm, the number of
synchronization steps is equal to the number of independent sets chosen, and from (3.1) the expected

number of these is EO(ﬁ%)' o

3.2. Practical Implementation on Distributed Memory Computers. For practical im-
plementation on a distributed memory computer, we assume that the number of vertices is far greater
than the number of processors, and we modify the PRAM algorithm accordingly. We assume that
vertices are partitioned into disjoint subsets V; and distributed across the processors so that proces-
sor j owns V;. Based on the partitioning of V, the elements of the mesh are also distributed to the
processors of the parallel computer.

Given that each processor owns a set of vertices rather than just one, as was the case in the
PRAM model, we choose the independent sets according to a slightly different rule from that used in
Figure 3.2. The independent set I from & is chosen according to the rule: v; € I if for each incident
vertex v;, we have that v; € S, vj,v; €V}, or p(v;) > p(v;). This modified rule allows two vertices
that are owned by the same processor to be smoothed in the same step.

Because the vertex locations are distributed across many processors that do not share a common
memory, we must add a communication step to the algorithm given in Figure 3.2. This communica-
tion is asynchronous, requiring no global synchronization.? After each independent set is smoothed,
we communicate the new vertex locations to processors containing vertices in adj(I) before smooth-
ing the next independent set of vertices. We now show that this additional step ensures that the
practical algorithm avoids the synchronization problems mentioned at the beginning of the section
and that incident vertex information is correct at each step in the algorithm.

LEMMA 3 Vertex information s correctly updated during the execution of the parallel smoothing
algorithm.

Proof. The proof is by induction. We assume that the initial incident vertex location is correct
and that the incident vertex location is correct following step & — 1. If the position of vertex v; is
adjusted at step k, by the properties of the independent set none of its incident vertices v; are being
adjusted. Thus, following step k& of the parallel smoothing algorithm the incident vertices can be
notified of the repositioning of vertex v; and given the new location. O

We note that finding 7 requires no processor communication because each processor stores
incident vertex information. Communication of the random numbers is not necessary if the seed given
the pseudo-random number generator to determine p(v;) is based solely on the global numbering i.
Thus, the only communication required in the practical algorithm is the notification of new vertex
positions to processors containing nonlocal incident vertices and the global reduction required to
check whether S is empty.

4. Experimental Results. To illustrate the performance of the parallel smoothing algorithm
in both two and three dimensions, we consider two finite-element applications: (1) a scalar Poisson
problem with a Gaussian point charge source on a circular domain (PCHARGE), and (2) a linear
elasticity problem (ELASTIC). The upper right quadrant of the domain for the two-dimensional
elasticity problem is shown in Figure 4.1. The three-dimensional test cases are both solved on a
regularly shaped, six-sided solid. The meshes for these problems are generated from a coarse mesh

2(lobal synchronization is expensive on practical distributed memory architectures

by adaptive refinement, where elements are refined by Rivara’s bisection algorithm. The refinement
indicator function is based on local energy norm estimates. The parallel adaptive refinement algo-
rithm and the test problems are described in more detail in [19]. The meshes are partitioned by
using the unbalanced recursive bisection (URB) algorithm, which strives to minimize the number of
processor neighbors and ensure that vertices are equally distributed [19].

For each case we compare two different smoothing approaches: one using the optimization-
based smoothing approach (Optimization-based) and one using a combined Laplacian/optimization
technique (Combined) [10]. For the combined approach, we use Laplacian smoothing as a first step
and accept the new grid point position whenever the quality of the incident elements is improved.
If the quality of the incident elements exceeds a user-defined threshold (30° in 2D and 15° in 3D
[10]), the algorithm terminates; otherwise, optimization-based smoothing is performed in an attempt
to further improve the mesh. The quality measure used in all cases is to maximize the minimum
sine of the angles (dihedral angles in 3D) which eliminates extremal angles near 0° and 180°. Of
the measures considered in [10] (max/min angle and max/min cosine), this measure produced the
highest quality meshes at about the same computational cost. For all test cases considered in this
paper, we perform two smoothing sweeps over the mesh grid points. Vertices are maintained in a
queue and are processed in order.

To illustrate the qualitative effect of mesh smoothing, we present in Figure 4.1 results for the
optimization-based approach described in [11] for the two-dimensional elasticity problem. The mesh
on the left shows the initial mesh after a series of refinement steps. The global minimum angle in
this mesh is 11.3° and the average minimum element angle is 35.7°. The initial edges from the coarse
mesh are still clearly evident after many levels of refinement. By contrast, the mesh on the right
was obtained by smoothing the grid point locations after each refinement step. The bisection lines
are no longer evident and the elements in the mesh are less distorted. The global minimum angle
in this mesh is 21.7° and the average minimum element angle is 41.1°.

)

% A

KZINA

% NN

N 715

1{432“?%%“?5555%%‘1
QXK N KA XA KDOIAD
KNSR X RIS IR
DS el A A R Sl 7
ZHAKFAKIN KARPOAZS <05 ‘Wm;v‘:‘FAA‘
ST A AL RIS
I e e

NN NAAARAAA
SN AR AOL
RPN AKYNNAN NN AN
R KN NANA NN
\ NNAAANANANA

e, AN
PRIV AR AN AR

ORI AR AR AY
N <'ZEEVAEVQEVAEV{EVA'A

NN

NARNARAAA

INAANNAALA
N

VAVARARARY |

Fic. 4.1. Typical smoothing results for the optimization-based approach on the two-dimensional elasticity prob-
lem. The mesh on the left shows refinement without smoothing, and the mesh on the right shows the results of
interleaving smoothing with refinement.

The experiments described in this section are designed to examine the scalability of the parallel

smoothing algorithm. Therefore, for each problem we have adjusted the element error tolerances
so that the number of vertices per processor remains roughly constant as the number of processors
is varied. To show the scalability of both the two- and three-dimensional algorithms, we ran all
four test cases on 1-64 processors of an IBM SP system with SP3 thin nodes and a TB3 switch.
To examine the effect of different architectures on the algorithm, we also ran the two-dimensional
test cases on a network of 12 SPARC Ultras connected via an ATM network. Message passing
was accomplished by using the MPICH implementation of MPI, in particular, the p4 device on the
SPARC Ultra ATM network and the MPL device on the IBM SP [14].

TaBLE 4.1
Smoothing results for the 2D problems for the IBM SP

Optimization-based Combined
Max. Max. Vix Max. Vix
Number | Number Total Smooth Smoothed Smooth | Smoothed
of Local Number Time per Time per
Procs. Vitx Vitx (sec) Second (sec) Second
PCHARGE2D
1 10335 10335 7.73 1336.9 2.49 4150
2 10151 20301 8.08 1256.3 2.58 3934
4 10371 41481 8.26 1255.5 2.87 3614
8 10100 80783 7.72 1308.2 2.78 3633
16 10598 169553 9.13 1160.8 3.28 3231
32 10167 325214 10.2 996.7 4.44 2290
48 10384 498379 12.5 830.7 5.71 1818
64 10845 693861 11.58 936.5 5.51 1968
ELASTIC2D
1 4206 4206 2.84 1480 1.25 2962
2 4656 9310 3.10 1501 1.48 3145
4 4236 16942 2.66 1592 1.15 3683
8 4482 35850 2.67 1678 1.24 3614
16 4759 76118 3.51 1356 1.18 4033
32 4504 144067 2.98 1511 1.21 3722
48 4198 201392 4.10 1023 1.60 2623
64 4256 272125 3.46 1230 1.44 2955

In Table 4.1 we give the experimental results for both the optimization-based and the combined
smoothing techniques for the two-dimensional test cases on the IBM SP. For each of the different
numbers of processors used, we show the maximum number of vertices assigned to a processor and
the total number of vertices in the final mesh. The maximum smoothing time is the longest time
taken by a processor to perform two smoothing passes through all the mesh vertices. The vertices
smoothed per second is the average rate per processor that vertices are smoothed; if the smoothing
algorithm scaled perfectly, these numbers would remain constant.

As expected, the combined approach obtains a much higher average rate of smoothing for both
applications because the more computationally expensive optimization procedure is performed for
only a subset of the mesh vertices. The average smoothing rates of the two applications are different
because the amount of work required to smooth the two meshes is different. For the point charge
problem, the average vertex smoothing rate slowly decreases as the number of processors increases for
both smoothing techniques. For the elasticity problem, the quality of the meshes varies significantly
as the number of processors change, resulting in a nonmonotonic change in the smoothing rate for the
combined approach. For example, on one processor 16.5 percent of the vertices require optimization-
based smoothing, whereas on four processor only 10 percent require optimization-based smoothing.

The number of vertices assigned to each processor is roughly equal, thereby implying that the
variation in the smoothing rate is due to primarily to two factors: (1) an increasingly unbalanced load
caused by the varying computational cost required to smooth each local submesh; and (2) increased
communication costs and implementation overhead associated with the parallel smoothing algorithm.
Let 7; be the time required to compute the new locations of the vertices owned by processor P;, and
let O; be the time associated with communication costs and implementation overhead on processor
P;. The time 7; should be thought of as the time required to smooth the vertices once the local
subproblems have been constructed and does not include any overhead associated with determining
the adjacency set of the vertex. To quantify these effects on the average smoothing rate, we define
the following:

o Work Load Imbalance Ratio—the maximum time required to compute the new locations of
the vertices on a processor divided by the average time:

_ Max; 7;

e Ffficiency—the maximum amount of time required to compute the new locations of the
vertices on a processor divided by the maximum time including overhead costs:

g MaxiZi g,

Max; (7; + O;)

We note that the implementation overhead costs (J; include such computations as setting up
the adjacency information for the local submeshes and determining independent sets. Thus,
even for the sequential case, there is overhead associated with global computations, and
the efficiency should be thought of as a percentage of the time solving the local smoothing
problems. Therefore, a good parallel implementation will have nearly constant efficiency,
indicating that little additional overhead is associated with parallelism.

For these quantities, a value of Z = 1.0 implies that the processors are perfectly balanced, and a

value of & = 100% implies that no overhead costs are associated with the sequential or parallel

algorithm.

The work load imbalance ratios and parallel efficiencies corresponding to the test cases in Table
4.1 are given in Table 4.2. As the number of processors increases, the work load stays roughly
balanced for 1-8 processors and then becomes increasingly unbalanced. This is especially true for
the combined approach where the work load imbalance ratio increases to 1.7 on 64 processors for both
test cases. The larger imbalance associated with the combined approach results from the fact that
some processors are required to do more optimization-based smoothing than others. The parallel
efficiency calculation takes this imbalance into account, and the efficiencies for the optimization-based
and combined approaches, £o and &£¢, remain roughly constant with respect to P. We conclude
that the parallel algorithms scale well despite the increasing imbalance in work load. In general,
the efficiency of the optimization-based approach is higher than that of the combined approach
because the higher computational cost of each smoothing step better amortizes the overhead costs.
The numbers are not monotonic because of the varying meshes and corresponding work loads for
different numbers of processors.

Performance of the parallel smoothing algorithm could be improved by repartitioning the mesh
to account for the imbalance in the work load. However, this approach is not practical in most
applications for which smoothing is only a small portion of the overall solution process. It would not
be computationally efficient to repartition the mesh just for mesh smoothing. The efficiency results
show that the parallel algorithm is performing well even though the partitioning is determined for
other aspects of the solution process.

TABLE 4.2
Work load tmbalance and parallel efficiency of the parallel smoothing algorithm for the two-dimensional test

cases on the IBM SP

Optimization-based Combined
Number | Max. Max. Max. Max.
of Total | Smooth | Zo | £0% | Total | Smooth | Z¢ | %
Procs. Time Time Time Time
PCHARGE2D
1 7.73 7.33 — 94.8 2.49 2.0 — 81.1
2 8.08 7.65 1.1 94.7 2.58 2.1 1.1 81.3
4 8.26 7.8 1.1 94.4 2.87 2.4 1.2 83.6
8 7.72 7.3 1.1 94.5 2.78 2.3 1.1 82.7
16 9.13 8.6 1.2 94.2 3.28 2.5 1.2 76.2
32 10.2 9.8 1.3 96.0 4.44 3.9 1.6 87.8
48 12.5 12 1.4 96.0 5.71 5.0 1.7 87.5
64 11.6 11 1.4 94.9 5.51 4.8 1.7 87.1
ELASTIC2D
1 2.84 2.69 — 94.7 1.42 1.25 — 88.0
2 3.10 2.9 1.0 93.5 1.48 1.3 1.0 87.8
4 2.66 2.5 1.0 93.9 1.15 .94 1.0 81.7
8 2.67 2.4 1.0 89.8 1.24 .98 1.2 79.0
16 3.51 3.2 1.2 91.1 1.18 .94 1.3 79.6
32 2.98 2.6 1.1 87.2 1.21 .96 1.3 79.3
48 4.10 3.7 1.5 90.2 1.60 1.4 1.8 87.5
64 3.46 3.2 1.4 92.4 1.44 1.2 1.7 83.3

In Table 4.3, we give the number of vertices and average vertex smoothing rates for both smooth-
ing techniques applied to the three-dimensional application problems. The cost of smoothing in
three-dimensions is roughly ten times the two-dimensional cost. This increase in cost results from
a roughly fivefold increase in the number of function evaluations required for each vertex due to
the higher vertex degree. In addition, each function evaluation is approximately twice as expensive
in 3D as in 2D. The same trends that are evident in the two-dimensional test cases are apparent
in the three-dimensional test cases. In particular, the combined approach is roughly two to three
times faster than the optimization-based approach. The average smoothing rates slowly decrease as
a function of the number of processors. The work load imbalance and efficiency results are given
in Table 4.4. Again we see that the combined approach tends to produce a more imbalanced load
as the number of processors increases and that the optimization-based smoothing approach is more
efficient than the combined approach because of the higher computational cost. For optimization-
based smoothing the efficiency is a slowly decreasing function of the number of processors for all the
test cases considered here. In contrast, the efficiency results for the combined approach are slightly
more variable because of differing ratios of optimization-based smoothing to Laplacian smoothing.
The roughly constant efficiencies demonstrate that the algorithm scales well despite the imbalance
in the work load.

In Figure 4.2, we graphically summarize the results for the two- and three-dimensional test cases
on the IBM SP and show the average rate of vertices smoothed and the efficiency for each test set
and smoothing technique.

We now show that the parallel algorithm achieves roughly the same results whether run in paral-
lel or sequentially for the two-dimensional elasticity problem. In Table 4.5 we show test case results
for a single mesh containing 76118 vertices and an initial minimum angle of 5.90° on 1-32 proces-
sors. Both smoothing techniques improved the minimum angle to roughly 13°. The column labeled

TABLE 4.3
Smoothing results for the 3D problems for the IBM SP

Optimization-based Combined
Max. Max. Vix Max. Vix
Number | Number Total Smooth Smoothed Smooth | Smoothed
of Local Number Time per Time per
Procs. Vitx Vitx (sec) Second (sec) Second

PCHARGE3D
1 5889 5889 36.01 163.5 13.28 443.4
2 5953 11905 39.61 150.2 15.83 376.1
4 5935 23701 42.05 141.1 18.65 318.2
8 6433 51369 52.91 121.5 21.48 299.5
16 5564 88864 47.20 117.8 20.17 275.8
32 6442 205625 59.10 109.0 25.15 256.1
48 6377 305414 72.81 87.58 25.32 251.9
64 6367 406454 79.48 80.11 26.02 244.7

ELASTIC3D
1 4472 4472 25.46 175.6 11.63 384.0
2 4032 8056 23.98 168.1 10.93 368.9
4 4863 19403 32.65 148.9 14.48 335.8
8 4821 38497 35.25 136.7 15.42 312.6
16 4152 66191 32.42 128.0 13.72 302.6
32 4104 130994 36.68 111.9 17.34 236.8
48 4121 196332 36.26 113.6 17.16 240.1
64 4431 282251 39.54 112.1 18.41 240.7

Time/Call gives the maximum average time to smooth each local submesh across the processors.
This time is constant for both techniques on 1-8 processors. The numbers slightly increase on 16 and
32 processors because of an increase in work on one of the processors. This work increase is clearly
reflected for the combined approach by the maximum percentage of cells that require optimization
on a processor. This percentage increases from approximately 10 percent on 1-8 processors to 14.21
and 20.79 percent on 16 and 32 processors, respectively.

Finally, we show that that the parallel smoothing algorithm is scalable for the two-dimensional
application problems on a switched ATM-connected network of SPARC Ultras. In Table 4.6 we show
the number of vertices and average smoothing rates for 1-12 processors. The average rate results are
more sporadic for the ATM network than they were for the IBM SP, but the same general trends are
evident. In particular, the parallel smoothing algorithm effectively handles the higher the message
startup latencies and lower bandwidth on the ATM network and delivers scalable performance.

5. Conclusions. In this paper we have presented a parallel algorithm for a class of local mesh
smoothing techniques. Numerical experiments were performed for two of the algorithms mentioned
in Section 2, and the parallel framework presented here is suitable for use with all of those techniques.
Theoretical results show that the parallel algorithm has a provably fast parallel runtime bound under
a PRAM computational model. We presented a variant of the PRAM algorithm implemented on
distributed memory computers, and proved its correctness. Numerical experiments were performed
for an optimization-based smoothing technique and a combined Laplacian /optimization-based tech-
nique on two very different distributed memory architectures. These results showed that the parallel
smoothing algorithm scales very well despite the variance in processor work load associated with
smoothing their individual submeshes.

TABLE 4.4
Work load imbalance ratios and efficiency the optimization-based and combined smoothing techniques for the
three-dimensional test cases on the IBM SP

Optimization-based Combined
Number Max. Max. Max. Max.
of Total | Smooth | Zo | £6% | Total | Smooth | Z¢ | Ec%
Processors | Time Time Time Time
PCHARGE3D
1 36.01 33.7 — 93.5 13.28 10.6 — 79.8
2 39.61 37 1.0 93.4 15.83 13 1.1 82.1
4 42.05 38 1.1 90.3 18.65 16 1.3 | 85.7
8 52.91 47 1.1 88.8 21.48 17 1.1 79.1
16 47.20 41 1.1 86.7 20.17 16 1.2 | 79.3
32 59.10 52 1.1 88.0 25.15 20 1.3 | 79.5
48 72.81 69 1.5 94.7 25.32 20 1.3 | 78.8
64 79.48 75 1.6 94.3 26.02 20 1.3 | 76.3
ELASTIC3D
1 25.46 23.9 — 93.8 11.63 9.82 — 84.4
2 23.98 22 1.2 91.7 10.93 9.1 1.1 83.2
4 32.65 30 1.1 91.8 14.48 11 1.1 75.9
8 35.25 30 1.0 85.1 15.42 12 1.2 | 77.8
16 32.42 28 1.1 86.3 13.72 11 1.3 | 80.1
32 36.68 30 1.1 81.7 17.34 14 1.6 | 80.7
48 36.26 30 1.1 82.7 17.16 13 1.5 | 75.8
64 39.54 34 1.1 86.0 18.41 13 1.5 | 70.6
TABLE 4.5

Mesh quality and smoothing information for the parallel algorithms on the IBM SP

Optimization Combined
Number Pre- Post- | Time/ | Post- | Time/ Max.
of Min Min Call Min Call Percent
Processors | Angle | Angle (ms) Angle (ms) | Optimized
ELASTIC2D
1 5.90° 13.24° .28 13.11° .10 9.89
2 5.90° 13.24° .28 13.11° .10 10.06
4 5.90° 13.24° .28 13.11° .10 10.13
8 5.90° 13.24° .28 13.11° .10 10.63
16 5.90° 13.24° .30 13.12° 12 14.21
32 5.90° 13.24° .32 13.51° 14 20.79

Acknowledgments. The work of the first and third authors is supported by the Mathematical,
Information, and Computational Sciences Division subprogram of the Office of Computational and
Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38. The work of
the second author is supported by National Science Foundation grants ASC-9501583, CDA-9529459,
and ASC-9411394.

REFERENCES

[1] N. AMmENTA, M. BERN, AND D. EPPSTEIN, Optimal point placement for mesh smoothing, in 8th ACM-SIAM
Symp. on Discrete Algorithms, New Orleans, to appear.
[2] E. AMEzZUA, M. V. HOrRMAZA, A. HERNANDEZ, AND M. B. G. AJURIA, A method of the improvement of 3D solid

5000

4000

3000

2000

Vertices Smoothed/Second

1000

500

400

300

200

Vertices Smoothed/Second

IBM SP (2D) IBM SP (2D)

100 T T T T T T T

o———o Pcharge (O) -

N - -
=——=a Elastic (O) e
r oo Pcharge (C) 80 [-~ — B

+—— Elastic (C)
e———o Pcharge (O)

s——a Elastic (O)
L il 60 - © © Pcharge (C) 4

>
e +—— Elastic (C)
(<2
k)
&
L 4 40 L 4
20 - 4
I I I I I I I 0 I I I I I I I
0 8 16 24 32 40 48 56 64 o) 8 16 24 32 40 48 56 64
Number of Processors Number of Processors
IBM SP (3D) IBM SP (3D)
o———o Pcharge (O)
F =——=a Elastic (O) B
> < Pcharge (C)
+—— Elastic (C)
L i > 60 e———o Pcharge (O)
S =——a Elastic (O)
——3 g > < Pcharge (C)
F 4 W g0 L +—— Elastic (C)
20 - 4
I I I I I I I 0 I I I I I I I
0 8 16 24 32 40 48 56 64 o) 8 16 24 32 40 48 56 64
Number of Processors Number of Processors

F1G. 4.2. Plots comparing the average smoothing rates and efficiency of the test problems in both two and three
dimensions as a function of the number of processors for the combined approach (C) and the optimization-based

approach (O) the IBM SP

(3]

(12]

finite-element meshes, Advances in Engineering Software, 22 (1995), pp. 45-53.
I. BABUSKA AND A. Aziz, On the angle condition in the finite element method, SIAM Journal on Numerical
Analysis, 13 (1976), pp. 214-226.
R. BANK, PLTMG: A Software Package for Solving Ellipitc Parital Differential Equations, Users’ Guide 7.0,
vol. 15 of Frontiers in Applied Mathematics, SIAM, Philadelphia, 1994.
R. E. Bank aND R. K. SMITH, Mesh smoothing using a posteriori error estimates, SIAM Journal on Numerical
Analysis, 34 (1997), pp. 979-997.
S. CANANN, M. STEPHENSON, AND T. BLACKER, Optismoothing: An optimization-driven approach to mesh
smoothing, Finite Elements in Analysis and Design, 13 (1993), pp. 185-190.
. B. DE LU'ISLE AND P.-L.. GEORGE, Optimization of tetrahedral meshes, in Modeling, Mesh Generation, and
Adaptive Numerical Methods for Partial Differential Equations, I. Babushka, W. D. Henshaw, J. E. Oliger,
J. E. Flaherty, J. E. Hopcroft, and T. Tezduyar, eds., Springer-Verlag, 1995, pp. 97-127.
. EDELSBRUNNER AND N. SHAH, Incremental topological flipping works for regular triangulations, in Proceedings
of the 8 h ACM Symposium on Computational Geometry, 1992, pp. 43-52.
D. A. FiELD, Laplacian smoothing and Delaunay triangulations, Communications and Applied Numerical Meth-
ods, 4 (1988), pp. 709-712.
L. FREITAG AND C. OLLIVIER-GOOCH, A comparison of tetrahedral mesh improvement techniques, in Proceedings
of the Fifth International Meshing Roundtable, Sandia National Laboratories, 1996, pp. 87-100.
L. A. FrerTac, M. T. JonEs, AND P. E. PLASSMANN, An efficient parallel algorithm for mesh smoothing, in
Proceedings of the Fourth International Meshing Roundtable, Sandia National Laboratories, 1995, pp. 47—
58.
I. FrRIED, Condition of finite element matrices generated from nonuniform meshes, AIAA Journal, 10 (1972),

=

T

TABLE 4.6
Smoothing results for the 2D problems for the ATM connected SPARC Ultras

Optimization-based Combined
Max. Max. Vix Max. Vix
Number | Number Total Smooth Smoothed Smooth | Smoothed
of Local Number Time per Time per
Procs. Vitx Vitx (sec) Second (sec) Second
PCHARGE2D
1 11024 11024 8.53 1291.7 4.13 2670.7
2 10983 21966 9.54 1151.5 4.60 2388.5
4 10444 41777 10.30 1013.7 8.77 1190.3
6 11029 66175 13.47 818.7 7.16 1541.1
8 10450 83597 12.48 837.3 8.16 1280.7
10 10181 101813 12.85 792.2 10.63 957.8
12 10154 121850 14.21 714.6 8.60 1180.3
ELASTIC2D
1 4246 4246 3.36 1265.3 1.78 2386.7
2 5726 11451 4.27 1340.2 2.24 2554.5
4 4070 16278 2.92 1393.5 1.40 2898.2
6 4600 27603 4.33 1062.1 2.38 1930.2
8 4258 34066 3.11 1367.9 1.47 2901.5
10 4467 44668 3.37 1326.9 1.67 2668.3
12 4815 57780 4.34 1110.2 1.93 2492.2

pp. 219-221.

[13] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, W. H. Freeman, New York, 1979.

[14] W. Gropp, E. LUsk, AND A. SKJELLUM, Using MPI: Portable Parallel Programming with the Message-Passing
Interface, MIT Press, Cambridge, MA, 1994.

[15] B. JoE, Three-dimensional triangulations from local transformations, STAM Journal on Scientific and Statistical
Computing, 10 (1989), pp. 718-741.

, Construction of three-dimensional improved gquality triangulations wsing local transformations, SIAM
Journal on Scientific Computing, 16 (1995), pp. 1292-1307.

[17] M. T. JonEs AND P. E. PLASSMANN, A parallel graph coloring heuristic, STAM Journal on Scientific Computing,
14 (1993), pp. 654-669.

(16]

[18] , Adaptive refinement of unstructured finite-element meshes, Journal of Finite Elements in Analysis and
Design, 25 (1997), pp. 41-60.
[19] , Parallel algorithms for adaptive mesh refinement, SIAM Journal on Scientific Computing, 8 (1997),

pp. 686—708.

[20] S. H. Lo, A new mesh generation scheme for arbitrary planar domains, International Journal for Numerical
Methods in Engineering, 21 (1985), pp. 1403-1426.

[21] M. LuBy, A simple parallel algorithm for the mazimal independent set problem, SIAM Journal on Computing,
4 (1986), pp. 1036-1053.

[22] V. N. PARTHASARATHY AND S. KODIYALAM, A constrained optimization approach to finite element mesh smooth-
ing, Journal of Finite Elements in Analysis and Design, 9 (1991), pp. 309-320.

[23] M. SHEPHARD AND M. GEORGES, Automatic three-dimensional mesh generation by the finite octree techmique,
International Journal for Numerical Methods in Engineering, 32 (1991), pp. 709-749.

