
A PARALLEL ALGORITHM FOR MESH SMOOTHINGLORI FREITAG�, MARK JONESy , AND PAUL PLASSMANNzAbstract. Maintaining good mesh quality during the generation and re�nement of unstructured meshes in�nite-element applications is an important aspect in obtaining accurate discretizations and well-conditioned linearsystems. In this article, we present a mesh-smoothing algorithm based on nonsmooth optimization techniques and ascalable implementation of this algorithm. We prove that the parallel algorithm has a provably fast runtime boundand executes correctly for a PRAM computational model. We extend the PRAM algorithm to distributed memorycomputers and report results for two- and three-dimensional simplicial meshes that demonstrate the e�ciency andscalability of this approach for a number of di�erent test cases. We also examine the e�ect of di�erent architectures onthe parallel algorithm and present results for the IBM SP supercomputer and an ATM-connected network of SPARCUltras.Key words. Parallel Computing, Mesh Smoothing, Unstructured Meshes, Parallel Algorithms, Finite Elements1. Introduction. Unstructured meshes have proven to be an essential tool in the numericalsolution of large-scale scienti�c and engineering applications on complex computational domains. Aproblem with such meshes is that the shape of the elements in the mesh can vary signi�cantly, andthis variation can a�ect the accuracy of the numerical solution. For example, for two-dimensionaltriangulations classical �nite element theory has shown that if the element angles approach thelimits of 0o and 180o, the discretization error or the condition number of the element matrices canbe adversely a�ected [3, 12].Such poorly shaped elements are frequently produced by automatic mesh generation tools, par-ticularly near domain boundaries. In addition, adaptive re�nement techniques used during thesolution of a problem tend to produce more highly distorted elements than were contained in theinitial mesh, particularly when the adaptation occurs along curved boundaries [18].To obtain high-quality meshes, often one must repair or improve the meshes before or during thesolution process. This improvement should be based on an element quality measure appropriate forthe particular problem being solved. Two mesh improvement techniques that have proven successfulon sequential computers are face (edge) swapping and mesh smoothing [2, 6, 7, 8, 15, 16, 22]. How-ever, sequential mesh optimization methods are not appropriate for applications using distributed-memory computers because (1) the mesh is usually distributed across the processors, (2) the meshmay not �t within the memory available to a single processor, and (3) a parallel algorithm cansigni�cantly reduce runtime compared with a sequential version. For such applications, parallelalgorithms for mesh improvement techniques are required, and in this paper we present an e�cientand robust parallel algorithm for mesh smoothing.We have organized the paper as follows. In Section 2, we brie
y review various local meshsmoothing techniques, including Laplacian smoothing and a number of optimization-based ap-proaches. The parallel algorithm and theoretical results for correct execution and the parallelruntime bound are discussed in Section 3. In Section 4, we present numerical results obtainedon the IBM SP and an ATM-connected network of SPARC Ultras that demonstrate the scalabilityof our algorithm.2. Local Mesh-Smoothing Algorithms. Mesh-smoothing algorithms strive to improve themesh quality by adjusting the vertex locations without changing the mesh topology. Local smoothingalgorithms adjust the position of a single grid point in the mesh by using only the information at�Assistant Computer Scientist, Mathematics and Computer Science Division, Argonne National Laboratory, Ar-gonne, IL.yAssistant Professor, Computer Science Department, The University of Tennessee at Knoxville, Knoxville, TN.zComputer Scientist, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL.1

incident vertices rather than global information in the mesh. A typical vertex, v, and its adjacentset, adj(v), are shown in Figure 2.1. The vertices in the adjacent set are shown as solid circles in the�gure. As the vertex v is moved, only the quality of the elements incident on v, shown as shadedtriangles in the �gure, are changed. Vertices not adjacent to v, shown as un�lled circles, and thequality of elements that contain these vertices are not a�ected by a change in the location of v. Oneor more sweeps through the mesh can be performed to improve the overall mesh quality. Thus, it iscritical that each individual adjustment be inexpensive to compute.
vFig. 2.1. A vertex v and the elements whose quality is a�ected by a change in its position. The neighbors of vare shown as solid circles. Only the quality of the shaded elements is a�ected by changing the position of vertex v.To be more speci�c, we can represent any local smoothing technique as a function, smooth(),that given the location xv of a vertex v, and its neighbors' locations, xadj(v), returns a new location,x̂v, for v.1 Thus, the sequential form of any local mesh smoothing algorithm is given by the simpleloop in Figure 2.2, where V is the set of vertices in the mesh to be smoothed. The positions ofChoose an ordering V1; :::; VnFor i = 1; :::; n dox̂v = smooth(xv , xadj(v))EnddoFig. 2.2. The local smoothing algorithm for sequential implementationthe vertices after a sweep is not unique and is determined by the ordering in which the verticesare smoothed. This aspect of local mesh smoothing techniques will be discussed in more detail inSection 2.4.The action of the function smooth is determined by the particular local algorithm chosen, andin this section we brie
y review several previously proposed techniques.2.1. Laplacian Smoothing. Perhaps the most commonly used local mesh-smoothing tech-nique is Laplacian smoothing [9, 20]. This approach replaces the position of a vertex v by theaverage of its neighbors' positions. The method is computationally inexpensive, but it does notguarantee improvement in element quality. In fact, the method can produce an invalid mesh con-taining elements that are inverted or have negative volume. An example showing how Laplacian1The smoothing function might require information in addition to neighbor vertex position. For example, fornonisotropic problems the function may require the derivatives of an approximate solution at v and adj(v), or otherspeci�c information about the elements that contain these vertices. However, this information is still local and canbe included within this framework.

smoothing can lead to an invalid mesh is shown in Figure 2.3.
xv

xvFig. 2.3. A set of elements for which Laplacian smoothing of the center vertex v results in an invalid triangu-lation. The shaded square marks the average of the positions of the vertices adjacent to v.A variant of Laplacian smoothing that guarantees a valid or improved mesh allows the vertex vto move only if (1) the local submesh still contains valid elements or (2) some measure of mesh qualityis improved. We note that evaluating these rules signi�cantly increases the cost of the Laplaciansmoothing technique [10].2.2. Optimization-based Smoothing. Optimization-based smoothing techniques o�er analternative to Laplacian smoothing that can be inexpensive, can guarantee valid elements in the�nal mesh, and are e�ective for a wide variety of mesh quality measures. Several such techniqueshave been proposed recently, and we brie
y review those methods now. The methods di�er primarilyin the optimization procedure used or the quantity that is optimized.Bank [4] describes a smoothing procedure for two-dimensional triangular meshes that uses theelement shape quality measure given by q(t) = 4p3AP3i=1 l2i ;where A is the area of the triangular element and li is the length of edge i. The maximum value forq(t) corresponds to an equilateral triangle. Each local submesh is improved by using a line searchprocedure. The search direction is determined by the line connecting the current position of v to theposition that results in the worst element becoming equilateral. The line search terminates whenat least one other element's shape quality value equals that of the improving element. One variantof this technique attempts to directly compute the new location by using the two worst elements inthe local submesh. In this case the line search procedure is used only in the cases for which the newposition results in a third element, di�erent from the original two worst elements, with the smallestshape measure.Shephard and Georges describe a similar approach for tetrahedral meshes [23]. The shapefunction for each element incident on v is computed by using the formulaq(t) = � V 4�P4i=1A2i�3 ;where V is the volume of the element and Ai is the area of face i. The parameter � is chosenso that q(t) has a maximum of one corresponding to an equilateral tetrahedron. A line searchsimilar to that done by Bank is performed, where the search direction is determined by the lineconnecting the current position of v to the position that improves the worst element in the localsubmesh to equilateral. The line search subproblem is done by using the Golden Section procedureand terminates when the worst element is improved beyond a speci�ed limit.Freitag et al. [10, 11] propose a method for two- and three-dimensional meshes based on thesteepest descent optimization technique for nonsmooth functions. The goal of the optimization

approach is to determine the position that maximizes the composite function�(x) = min1�i�l fi(x);(2.1)where the functions fi are based on various measures of mesh quality such as max/min angles and/orelement aspect ratios and l is the number of functions de�ned on the local submesh. For example, intwo-dimensional triangular meshes, maximizing the minimum angle of a local submesh containingm elements would require l = 3m � 2 function evaluations. For most quality measures of interest,the functions are continuous and di�erentiable. If the derivatives of the composite function �(x) arediscontinuous, the discontinuity occurs when there is a change in the set of functions that obtain theminimum value. The search direction at each step is computed by solving a quadratic programmingproblem that gives the direction of steepest descent from all possible convex linear combinations ofthe gradients in the active set. The line search subproblem is solved by predicting the points atwhich the set of active functions will change based on the �rst-order Taylor series approximationsof the fi(x).Amenta et al. show that the optimization techniques used in [10, 11] are equivalent to thegeneralized linear programming technique and has an expected linear solution time [1]. The convexlevel set criterion for solution uniqueness of generalized linear programs can be applied to thesesmoothing techniques, and they determine the convexity of the level sets for a number of standardmesh quality measures in both two and three dimensions.All the techniques mentioned previously optimize the mesh according to element geometry.Bank and Smith [5] propose two smoothing techniques to minimize the error for �nite elementsolutions computed with triangular elements with linear basis functions. Both methods use a dampedNewton's method to minimize (1) interpolation error or (2) a posteriori error estimates for an ellipticpartial di�erential equation. The quantity minimized in these cases requires the computation ofapproximate second derivatives for the solution on each element as well as the shape function q(t)for triangular elements mentioned previously.2.3. Combined Laplacian and Optimization-based Smoothing. Both Shephard andGeorges [23] and Freitag and Ollivier-Gooch [10] present experimental results that demonstratethe e�ectiveness of combining a variant of Laplacian smoothing with their respective optimization-based procedures. The variant of Laplacian smoothing used by Shephard and Georges allows thevertex to move to the centroid of the incident vertices only if the worst element maintains a shapemeasure q(t) above a �xed limit. Otherwise, the line connecting the centroid and the initial positionis bisected, and the bisection point is used as the target position. Freitag and Ollivier-Gooch acceptthe Laplacian step whenever the local submesh is improved. In both cases, the Laplacian smoothingstep is followed by optimization-based smoothing for only the worst elements. Experiments in [10]showed that using optimization-based smoothing when the minimum angle (dihedral angle in 3D)was less than 30 degrees in two dimensions and 15 degrees in three dimensions signi�cantly improvethe meshes at a small computational cost. These results also showed that more than three sweepsof the mesh o�er minimal improvements for the meshes tested.2.4. Nonuniqueness of Smoothed Vertex Location. As mentioned earlier, the locations ofthe vertices in the mesh after a pass of smoothing are not unique but are determined by the orderingin which the vertices are smoothed. An example of this nonuniqueness is shown in Figure 2.4 for asimple two-dimensional mesh. The original mesh is shown on the left, where v and q are the verticesto be smoothed and the position of each vertex is given. In the top series of meshes, the vertex qis relocated by using optimization-based smoothing as described in [11] followed by adjustment ofthe vertex v as shown by the highlighted submeshes in the middle and rightmost meshes. In thebottom series of meshes, the vertices are smoothed in reversed order, and the resulting �nal meshesare considerably di�erent. For each of these �nal meshes, the resulting minimum, maximum, and

average angles for the two orderings are presented in Table 2.1. The higher-quality mesh is obtainedby moving the vertex q before moving the vertex v.
q

v

v

q

v v’

v’
q

v’

(1,-.5)

(0,0)

(0,1) (1,1)

(.9,.9)

(.05,.1)

q’q’

q’Fig. 2.4. The order in which vertices are smoothed can signi�cantly a�ect the �nal mesh quality. These seriesof meshes show the intermediate and �nal meshes when the vertex q is smoothed followed by the vertex v (top) andvice versa (bottom). Table 2.1Minimum, maximum, and average angles for the the mesh shown in Figure 2.4 for a single pass of optimization-based smoothing with two di�erent orderings of verticesOrdering Min. Angle Max. Angle Avg. AngleOriginal Mesh 1:736o 159:829o 19:005ov then q 10:445o 146:429o 23:801oq then v 19:038o 134:764o 25:534oIn general, vertices incident on poor-quality elements are the most likely to signi�cantly changelocation during the smoothing process. These large changes can adversely a�ect the quality ofneighboring submeshes, but the e�ects can be mitigated by subsequent adjustment of the neighboringvertices. Therefore, an ordering of vertices that would tend to be more e�ective than a randomordering would be to smooth the vertices incident on the elements with the lowest quality �rst.3. A Parallel Mesh-Smoothing Algorithm. In this section we present a framework for thecorrect parallel implementation for any of the local mesh-smoothing algorithms presented in thepreceding section. The parallel smoothing algorithm is formulated within the context of the graphof the mesh which we de�ne as follows. Let V = fviji = 1; :::; ng be the set of vertices in the meshand T = ftaja = 1; :::;mg be the set of mesh elements, either triangles or tetrahedra. Let G = (V;E)be the graph associated with the mesh, where E = fei;j = (vi; vj)jvi; vj 2 tag.We �rst consider the problem of coordinating information about the mesh between processors toensure that the mesh remains valid during smoothing. An invalid mesh can be created by smoothingtwo adjacent vertices simultaneously on di�erent processors. Consider the triangulation shown in the�rst mesh in Figure 3.1 in which the vertices q and v are to be smoothed and are owned by di�erent

processors. The new locations of the vertices after simultaneously being smoothed are indicated inthe following mesh by v0 and q0. These positions are determined assuming the locations of q and vare �xed to those given in the �rst mesh. The shaded region in the second mesh shows the invertedtriangle that was created by the new locations v0 and q0.We de�ne correct execution of the parallel algorithm as follows. Let the quality of an initial,valid mesh T0 be q0. The parallel algorithm has executed correctly if the smoothed mesh, T1, isvalid and the quality q1 is greater than or equal to q0. Note that we do not require that the qualityof a mesh smoothed in parallel equal the quality of the same mesh smoothed in serial, because adi�erent vertex ordering may be used.
v’

q’

P2P1

q

v

P2P1

Fig. 3.1. An example of an invalid mesh created when adjacent vertices on di�erent processors are smoothedsimultaneously. The inverted triangle is indicated in the shaded region.Because elements not incident on v are not a�ected by a change in location of vertex v, we canensure the correct execution of the parallel algorithm by preventing two vertices that are adjacentin the mesh, but on di�erent processors, from being simultaneously smoothed. We de�ne an inde-pendent set of vertices to be a subset of the mesh vertices, I, such that vi 2 I) vi 62 adj(I). Theapproach for the parallel smoothing algorithm is to (1) select an independent set of mesh vertices,(2) smooth these vertices in parallel, and (3) notify their neighbors of their new position so thatthe procedure can be repeated with a new independent set. This approach avoids synchronizationproblems between processors. We �rst formulate the algorithm using a Parallel Random AccessMachine (PRAM) computational model for which we can prove algorithm correctness and give aparallel runtime bound. We then formulate a practical variant for distributed memory architectures.3.1. The PRAM Computational Model. For the PRAM computational model, we assumethat processors communicate through a common shared memory. The essential aspect of the PRAMmodel used in our analysis is that a processor can access data computed on another processor andstored in shared memory in constant time.Using this model, we assume that we have as many processors as we have vertices to be smoothedand that vertex vi is assigned to processor pi. The parallel algorithm that gives the correct imple-mentation of mesh smoothing is given in Figure 3.2.The minimum number of steps required for correct execution of the parallel PRAM algorithmis given by Lemma 1.Lemma 1 The number of steps required to guarantee correct execution of the smoothing algo-rithm is at least j�optj, where �opt is the coloring of G = (V;E) such that j�optj is minimal amongall colorings of G.Proof. In the parallel smoothing algorithm, a set of vertices, I, is smoothed at each time step.If for any two vertices in I, vj and vk, ejk exists, then two neighboring vertices will be smoothed

k = 0Let S0 be the initial set of vertices marked for smoothingWhile Sk 6= ;Choose an independent set I from SkFor each v 2 I dox̂v = smooth(xv;xadj(v))EnddoSk+1 = SknIk = k + 1Endwhile Fig. 3.2. The PRAM parallel smoothing algorithm.simultaneously; as shown earlier, this may result in an invalid mesh or a mesh with lesser qualitythan that of the initial mesh. Guaranteeing correct execution requires that I be an independent set.The algorithm requires that a disjoint sequence of such independent sets, I1; I2; :::; Im, be foundsuch that the [jIj = V ; thus the parallel smoothing algorithm requires m steps. Such a sequenceof independent sets is an m-coloring of G. By de�nition, m must be at least j�optj.Determining this optimal coloring for a general graph is known to be an NP-hard problem [13],but e�ective heuristics for e�ciently choosing the independent sets in parallel have been developedand implemented. We now describe two such heuristic approaches: (1) a vertex coloring method,and (2) a randomization scheme. The coloring method assumes that we have a coloring of thevertices, �, that is not necessarily optimal, but is a labeling such that �(v) 6= �(u) if u 2 adj(v).Clearly, vertices of the same color constitute an independent set and can be used for this purposein the parallel algorithm. If the maximum degree of the graph is �, then the number of colorsfound by these coloring heuristics is bounded above by � + 1. The second approach is based onthe assignment of a distinct random number, �(v), to each vertex. At each step in the algorithm,we choose an independent set I from S according to the rule given in [17] based on [21]: v 2 I if�(v) > �(u) for u 2 adj(v) and u 2 S.The coloring approach yields a running time bound independent of the size of the graph beingsmoothed; however, the e�cient parallel computation of this coloring requires the use of the random-ized algorithm [17]. Therefore, the coloring approach is cost e�ective only if it is used enough timesto amortize the initial expense of computing the coloring or is maintained for some other purpose.Because we typically use a small number of smoothing passes, the randomized approach is used inthe experimental results presented in the next section. In addition, the randomized approach is morememory e�cient because the color of each vertex, �(v), must be stored, whereas the random num-bers, �(v), can be computed when needed. For practical implementation, we use a pseudo-randomnumber generator to determine �(v) based solely on the global number of the vertex.To evaluate the parallel runtime of the PRAM computational model, we assume that the meshhas been generated for the �nite element or �nite volume solution of a physical model. The graphof these meshes is local, and the edges connect vertices that are physically close to each other. Ingeneral, the maximum degree of any vertex in such a mesh is bounded independent of the size ofthe system. Given the local nature of the graph, and the assumption that each vertex is assigneda unique independent random number �(v), we have that the expected number of independent setsgenerated by the while loop in Figure 3.2 is bounded byEO(logn=log logn);(3.1)where n is the number of vertices in the system. This bound is a consequence of Corollary 3.5 in [17].The maximumtime required to smooth a vertex, tmax, is also bounded because tmax = O(degree(v)),

and we have the following expected runtime bound.Lemma 2 The algorithm in Figure 3.2 has an expected runtime under the PRAM computationalmodel of EO(logS0log logS0) � tmax, where S0 is the number of vertices initially marked for smoothing.Proof. Under the assumptions of the PRAM computational model, the running time of theparallel smoothing algorithm is proportional to the number of synchronized steps multiplied by themaximum time required to smooth a local submesh at step k. The upper bound on this time isgiven by the maximum time tmax to smooth any local submesh. For this algorithm, the number ofsynchronization steps is equal to the number of independent sets chosen, and from (3.1) the expectednumber of these is EO(logS0loglogS0).3.2. Practical Implementation on Distributed Memory Computers. For practical im-plementation on a distributed memory computer, we assume that the number of vertices is far greaterthan the number of processors, and we modify the PRAM algorithm accordingly. We assume thatvertices are partitioned into disjoint subsets Vj and distributed across the processors so that proces-sor j owns Vj . Based on the partitioning of V , the elements of the mesh are also distributed to theprocessors of the parallel computer.Given that each processor owns a set of vertices rather than just one, as was the case in thePRAM model, we choose the independent sets according to a slightly di�erent rule from that used inFigure 3.2. The independent set I from S is chosen according to the rule: vi 2 I if for each incidentvertex vj , we have that vj 62 S, vj; vi 2 Vp, or �(vi) > �(vj). This modi�ed rule allows two verticesthat are owned by the same processor to be smoothed in the same step.Because the vertex locations are distributed across many processors that do not share a commonmemory, we must add a communication step to the algorithm given in Figure 3.2. This communica-tion is asynchronous, requiring no global synchronization.2 After each independent set is smoothed,we communicate the new vertex locations to processors containing vertices in adj(I) before smooth-ing the next independent set of vertices. We now show that this additional step ensures that thepractical algorithm avoids the synchronization problems mentioned at the beginning of the sectionand that incident vertex information is correct at each step in the algorithm.Lemma 3 Vertex information is correctly updated during the execution of the parallel smoothingalgorithm.Proof. The proof is by induction. We assume that the initial incident vertex location is correctand that the incident vertex location is correct following step k � 1. If the position of vertex vi isadjusted at step k, by the properties of the independent set none of its incident vertices vj are beingadjusted. Thus, following step k of the parallel smoothing algorithm the incident vertices can benoti�ed of the repositioning of vertex vi and given the new location.We note that �nding I requires no processor communication because each processor storesincident vertex information. Communicationof the random numbers is not necessary if the seed giventhe pseudo-random number generator to determine �(vi) is based solely on the global numbering i.Thus, the only communication required in the practical algorithm is the noti�cation of new vertexpositions to processors containing nonlocal incident vertices and the global reduction required tocheck whether Sk is empty.4. Experimental Results. To illustrate the performance of the parallel smoothing algorithmin both two and three dimensions, we consider two �nite-element applications: (1) a scalar Poissonproblem with a Gaussian point charge source on a circular domain (PCHARGE), and (2) a linearelasticity problem (ELASTIC). The upper right quadrant of the domain for the two-dimensionalelasticity problem is shown in Figure 4.1. The three-dimensional test cases are both solved on aregularly shaped, six-sided solid. The meshes for these problems are generated from a coarse mesh2Global synchronization is expensive on practical distributed memory architectures

by adaptive re�nement, where elements are re�ned by Rivara's bisection algorithm. The re�nementindicator function is based on local energy norm estimates. The parallel adaptive re�nement algo-rithm and the test problems are described in more detail in [19]. The meshes are partitioned byusing the unbalanced recursive bisection (URB) algorithm, which strives to minimize the number ofprocessor neighbors and ensure that vertices are equally distributed [19].For each case we compare two di�erent smoothing approaches: one using the optimization-based smoothing approach (Optimization-based) and one using a combined Laplacian/optimizationtechnique (Combined) [10]. For the combined approach, we use Laplacian smoothing as a �rst stepand accept the new grid point position whenever the quality of the incident elements is improved.If the quality of the incident elements exceeds a user-de�ned threshold (30o in 2D and 15o in 3D[10]), the algorithm terminates; otherwise, optimization-based smoothing is performed in an attemptto further improve the mesh. The quality measure used in all cases is to maximize the minimumsine of the angles (dihedral angles in 3D) which eliminates extremal angles near 0o and 180o. Ofthe measures considered in [10] (max/min angle and max/min cosine), this measure produced thehighest quality meshes at about the same computational cost. For all test cases considered in thispaper, we perform two smoothing sweeps over the mesh grid points. Vertices are maintained in aqueue and are processed in order.To illustrate the qualitative e�ect of mesh smoothing, we present in Figure 4.1 results for theoptimization-based approach described in [11] for the two-dimensional elasticity problem. The meshon the left shows the initial mesh after a series of re�nement steps. The global minimum angle inthis mesh is 11:3o and the average minimumelement angle is 35:7o. The initial edges from the coarsemesh are still clearly evident after many levels of re�nement. By contrast, the mesh on the rightwas obtained by smoothing the grid point locations after each re�nement step. The bisection linesare no longer evident and the elements in the mesh are less distorted. The global minimum anglein this mesh is 21:7o and the average minimum element angle is 41:1o.
Fig. 4.1. Typical smoothing results for the optimization-based approach on the two-dimensional elasticity prob-lem. The mesh on the left shows re�nement without smoothing, and the mesh on the right shows the results ofinterleaving smoothing with re�nement.The experiments described in this section are designed to examine the scalability of the parallel

smoothing algorithm. Therefore, for each problem we have adjusted the element error tolerancesso that the number of vertices per processor remains roughly constant as the number of processorsis varied. To show the scalability of both the two- and three-dimensional algorithms, we ran allfour test cases on 1{64 processors of an IBM SP system with SP3 thin nodes and a TB3 switch.To examine the e�ect of di�erent architectures on the algorithm, we also ran the two-dimensionaltest cases on a network of 12 SPARC Ultras connected via an ATM network. Message passingwas accomplished by using the MPICH implementation of MPI, in particular, the p4 device on theSPARC Ultra ATM network and the MPL device on the IBM SP [14].Table 4.1Smoothing results for the 2D problems for the IBM SPOptimization-based CombinedMax. Max. Vtx Max. VtxNumber Number Total Smooth Smoothed Smooth Smoothedof Local Number Time per Time perProcs. Vtx Vtx (sec) Second (sec) SecondPCHARGE2D1 10335 10335 7.73 1336.9 2.49 41502 10151 20301 8.08 1256.3 2.58 39344 10371 41481 8.26 1255.5 2.87 36148 10100 80783 7.72 1308.2 2.78 363316 10598 169553 9.13 1160.8 3.28 323132 10167 325214 10.2 996.7 4.44 229048 10384 498379 12.5 830.7 5.71 181864 10845 693861 11.58 936.5 5.51 1968ELASTIC2D1 4206 4206 2.84 1480 1.25 29622 4656 9310 3.10 1501 1.48 31454 4236 16942 2.66 1592 1.15 36838 4482 35850 2.67 1678 1.24 361416 4759 76118 3.51 1356 1.18 403332 4504 144067 2.98 1511 1.21 372248 4198 201392 4.10 1023 1.60 262364 4256 272125 3.46 1230 1.44 2955In Table 4.1 we give the experimental results for both the optimization-based and the combinedsmoothing techniques for the two-dimensional test cases on the IBM SP. For each of the di�erentnumbers of processors used, we show the maximum number of vertices assigned to a processor andthe total number of vertices in the �nal mesh. The maximum smoothing time is the longest timetaken by a processor to perform two smoothing passes through all the mesh vertices. The verticessmoothed per second is the average rate per processor that vertices are smoothed; if the smoothingalgorithm scaled perfectly, these numbers would remain constant.As expected, the combined approach obtains a much higher average rate of smoothing for bothapplications because the more computationally expensive optimization procedure is performed foronly a subset of the mesh vertices. The average smoothing rates of the two applications are di�erentbecause the amount of work required to smooth the two meshes is di�erent. For the point chargeproblem, the average vertex smoothing rate slowly decreases as the number of processors increases forboth smoothing techniques. For the elasticity problem, the quality of the meshes varies signi�cantlyas the number of processors change, resulting in a nonmonotonic change in the smoothing rate for thecombined approach. For example, on one processor 16.5 percent of the vertices require optimization-based smoothing, whereas on four processor only 10 percent require optimization-based smoothing.

The number of vertices assigned to each processor is roughly equal, thereby implying that thevariation in the smoothing rate is due to primarily to two factors: (1) an increasingly unbalanced loadcaused by the varying computational cost required to smooth each local submesh; and (2) increasedcommunication costs and implementationoverhead associated with the parallel smoothing algorithm.Let Ti be the time required to compute the new locations of the vertices owned by processor Pi, andlet Oi be the time associated with communication costs and implementation overhead on processorPi. The time Ti should be thought of as the time required to smooth the vertices once the localsubproblems have been constructed and does not include any overhead associated with determiningthe adjacency set of the vertex. To quantify these e�ects on the average smoothing rate, we de�nethe following:� Work Load Imbalance Ratio{the maximum time required to compute the new locations ofthe vertices on a processor divided by the average time:I = Maxi TiPPi=1 Ti=P :� E�ciency{the maximum amount of time required to compute the new locations of thevertices on a processor divided by the maximum time including overhead costs:E = Maxi TiMaxi (Ti + Oi) � 100:We note that the implementation overhead costs Oi include such computations as setting upthe adjacency information for the local submeshes and determining independent sets. Thus,even for the sequential case, there is overhead associated with global computations, andthe e�ciency should be thought of as a percentage of the time solving the local smoothingproblems. Therefore, a good parallel implementation will have nearly constant e�ciency,indicating that little additional overhead is associated with parallelism.For these quantities, a value of I = 1:0 implies that the processors are perfectly balanced, and avalue of E = 100% implies that no overhead costs are associated with the sequential or parallelalgorithm.The work load imbalance ratios and parallel e�ciencies corresponding to the test cases in Table4.1 are given in Table 4.2. As the number of processors increases, the work load stays roughlybalanced for 1{8 processors and then becomes increasingly unbalanced. This is especially true forthe combined approach where the work load imbalance ratio increases to 1.7 on 64 processors for bothtest cases. The larger imbalance associated with the combined approach results from the fact thatsome processors are required to do more optimization-based smoothing than others. The parallele�ciency calculation takes this imbalance into account, and the e�ciencies for the optimization-basedand combined approaches, EO and EC , remain roughly constant with respect to P . We concludethat the parallel algorithms scale well despite the increasing imbalance in work load. In general,the e�ciency of the optimization-based approach is higher than that of the combined approachbecause the higher computational cost of each smoothing step better amortizes the overhead costs.The numbers are not monotonic because of the varying meshes and corresponding work loads fordi�erent numbers of processors.Performance of the parallel smoothing algorithm could be improved by repartitioning the meshto account for the imbalance in the work load. However, this approach is not practical in mostapplications for which smoothing is only a small portion of the overall solution process. It would notbe computationally e�cient to repartition the mesh just for mesh smoothing. The e�ciency resultsshow that the parallel algorithm is performing well even though the partitioning is determined forother aspects of the solution process.

Table 4.2Work load imbalance and parallel e�ciency of the parallel smoothing algorithm for the two-dimensional testcases on the IBM SP Optimization-based CombinedNumber Max. Max. Max. Max.of Total Smooth IO EO% Total Smooth IC EC%Procs. Time Time Time TimePCHARGE2D1 7.73 7.33 | 94.8 2.49 2.0 | 81.12 8.08 7.65 1.1 94.7 2.58 2.1 1.1 81.34 8.26 7.8 1.1 94.4 2.87 2.4 1.2 83.68 7.72 7.3 1.1 94.5 2.78 2.3 1.1 82.716 9.13 8.6 1.2 94.2 3.28 2.5 1.2 76.232 10.2 9.8 1.3 96.0 4.44 3.9 1.6 87.848 12.5 12 1.4 96.0 5.71 5.0 1.7 87.564 11.6 11 1.4 94.9 5.51 4.8 1.7 87.1ELASTIC2D1 2.84 2.69 | 94.7 1.42 1.25 | 88.02 3.10 2.9 1.0 93.5 1.48 1.3 1.0 87.84 2.66 2.5 1.0 93.9 1.15 .94 1.0 81.78 2.67 2.4 1.0 89.8 1.24 .98 1.2 79.016 3.51 3.2 1.2 91.1 1.18 .94 1.3 79.632 2.98 2.6 1.1 87.2 1.21 .96 1.3 79.348 4.10 3.7 1.5 90.2 1.60 1.4 1.8 87.564 3.46 3.2 1.4 92.4 1.44 1.2 1.7 83.3In Table 4.3, we give the number of vertices and average vertex smoothing rates for both smooth-ing techniques applied to the three-dimensional application problems. The cost of smoothing inthree-dimensions is roughly ten times the two-dimensional cost. This increase in cost results froma roughly �vefold increase in the number of function evaluations required for each vertex due tothe higher vertex degree. In addition, each function evaluation is approximately twice as expensivein 3D as in 2D. The same trends that are evident in the two-dimensional test cases are apparentin the three-dimensional test cases. In particular, the combined approach is roughly two to threetimes faster than the optimization-based approach. The average smoothing rates slowly decrease asa function of the number of processors. The work load imbalance and e�ciency results are givenin Table 4.4. Again we see that the combined approach tends to produce a more imbalanced loadas the number of processors increases and that the optimization-based smoothing approach is moree�cient than the combined approach because of the higher computational cost. For optimization-based smoothing the e�ciency is a slowly decreasing function of the number of processors for all thetest cases considered here. In contrast, the e�ciency results for the combined approach are slightlymore variable because of di�ering ratios of optimization-based smoothing to Laplacian smoothing.The roughly constant e�ciencies demonstrate that the algorithm scales well despite the imbalancein the work load.In Figure 4.2, we graphically summarize the results for the two- and three-dimensional test caseson the IBM SP and show the average rate of vertices smoothed and the e�ciency for each test setand smoothing technique.We now show that the parallel algorithm achieves roughly the same results whether run in paral-lel or sequentially for the two-dimensional elasticity problem. In Table 4.5 we show test case resultsfor a single mesh containing 76118 vertices and an initial minimum angle of 5.90o on 1{32 proces-sors. Both smoothing techniques improved the minimum angle to roughly 13o. The column labeled

Table 4.3Smoothing results for the 3D problems for the IBM SPOptimization-based CombinedMax. Max. Vtx Max. VtxNumber Number Total Smooth Smoothed Smooth Smoothedof Local Number Time per Time perProcs. Vtx Vtx (sec) Second (sec) SecondPCHARGE3D1 5889 5889 36.01 163.5 13.28 443.42 5953 11905 39.61 150.2 15.83 376.14 5935 23701 42.05 141.1 18.65 318.28 6433 51369 52.91 121.5 21.48 299.516 5564 88864 47.20 117.8 20.17 275.832 6442 205625 59.10 109.0 25.15 256.148 6377 305414 72.81 87.58 25.32 251.964 6367 406454 79.48 80.11 26.02 244.7ELASTIC3D1 4472 4472 25.46 175.6 11.63 384.02 4032 8056 23.98 168.1 10.93 368.94 4863 19403 32.65 148.9 14.48 335.88 4821 38497 35.25 136.7 15.42 312.616 4152 66191 32.42 128.0 13.72 302.632 4104 130994 36.68 111.9 17.34 236.848 4121 196332 36.26 113.6 17.16 240.164 4431 282251 39.54 112.1 18.41 240.7Time/Call gives the maximum average time to smooth each local submesh across the processors.This time is constant for both techniques on 1{8 processors. The numbers slightly increase on 16 and32 processors because of an increase in work on one of the processors. This work increase is clearlyre
ected for the combined approach by the maximum percentage of cells that require optimizationon a processor. This percentage increases from approximately 10 percent on 1{8 processors to 14.21and 20.79 percent on 16 and 32 processors, respectively.Finally, we show that that the parallel smoothing algorithm is scalable for the two-dimensionalapplication problems on a switched ATM-connected network of SPARC Ultras. In Table 4.6 we showthe number of vertices and average smoothing rates for 1{12 processors. The average rate results aremore sporadic for the ATM network than they were for the IBM SP, but the same general trends areevident. In particular, the parallel smoothing algorithm e�ectively handles the higher the messagestartup latencies and lower bandwidth on the ATM network and delivers scalable performance.5. Conclusions. In this paper we have presented a parallel algorithm for a class of local meshsmoothing techniques. Numerical experiments were performed for two of the algorithms mentionedin Section 2, and the parallel framework presented here is suitable for use with all of those techniques.Theoretical results show that the parallel algorithm has a provably fast parallel runtime bound undera PRAM computational model. We presented a variant of the PRAM algorithm implemented ondistributed memory computers, and proved its correctness. Numerical experiments were performedfor an optimization-based smoothing technique and a combined Laplacian/optimization-based tech-nique on two very di�erent distributed memory architectures. These results showed that the parallelsmoothing algorithm scales very well despite the variance in processor work load associated withsmoothing their individual submeshes.

Table 4.4Work load imbalance ratios and e�ciency the optimization-based and combined smoothing techniques for thethree-dimensional test cases on the IBM SPOptimization-based CombinedNumber Max. Max. Max. Max.of Total Smooth IO EO% Total Smooth IC EC%Processors Time Time Time TimePCHARGE3D1 36.01 33.7 | 93.5 13.28 10.6 | 79.82 39.61 37 1.0 93.4 15.83 13 1.1 82.14 42.05 38 1.1 90.3 18.65 16 1.3 85.78 52.91 47 1.1 88.8 21.48 17 1.1 79.116 47.20 41 1.1 86.7 20.17 16 1.2 79.332 59.10 52 1.1 88.0 25.15 20 1.3 79.548 72.81 69 1.5 94.7 25.32 20 1.3 78.864 79.48 75 1.6 94.3 26.02 20 1.3 76.3ELASTIC3D1 25.46 23.9 | 93.8 11.63 9.82 | 84.42 23.98 22 1.2 91.7 10.93 9.1 1.1 83.24 32.65 30 1.1 91.8 14.48 11 1.1 75.98 35.25 30 1.0 85.1 15.42 12 1.2 77.816 32.42 28 1.1 86.3 13.72 11 1.3 80.132 36.68 30 1.1 81.7 17.34 14 1.6 80.748 36.26 30 1.1 82.7 17.16 13 1.5 75.864 39.54 34 1.1 86.0 18.41 13 1.5 70.6Table 4.5Mesh quality and smoothing information for the parallel algorithms on the IBM SPOptimization CombinedNumber Pre- Post- Time/ Post- Time/ Max.of Min Min Call Min Call PercentProcessors Angle Angle (ms) Angle (ms) OptimizedELASTIC2D1 5.90o 13.24o .28 13.11o .10 9.892 5.90o 13.24o .28 13.11o .10 10.064 5.90o 13.24o .28 13.11o .10 10.138 5.90o 13.24o .28 13.11o .10 10.6316 5.90o 13.24o .30 13.12o .12 14.2132 5.90o 13.24o .32 13.51o .14 20.79Acknowledgments. The work of the �rst and third authors is supported by the Mathematical,Information, and Computational Sciences Division subprogram of the O�ce of Computational andTechnology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38. The work ofthe second author is supported by National Science Foundation grants ASC-9501583, CDA-9529459,and ASC-9411394. REFERENCES[1] N. Amenta, M. Bern, and D. Eppstein, Optimal point placement for mesh smoothing, in 8th ACM-SIAMSymp. on Discrete Algorithms, New Orleans, to appear.[2] E. Amezua, M. V. Hormaza, A. Hernandez, and M. B. G. Ajuria, A method of the improvement of 3D solid

0 8 16 24 32 40 48 56 64
Number of Processors

0

1000

2000

3000

4000

5000

V
er

tic
es

 S
m

oo
th

ed
/S

ec
on

d
IBM SP (2D)

Pcharge (O)
Elastic (O)
Pcharge (C)
Elastic (C)

0 8 16 24 32 40 48 56 64
Number of Processors

0

20

40

60

80

100

E
ffi

ci
en

cy

IBM SP (2D)

Pcharge (O)
Elastic (O)
Pcharge (C)
Elastic (C)

0 8 16 24 32 40 48 56 64
Number of Processors

0

100

200

300

400

500

V
er

tic
es

 S
m

oo
th

ed
/S

ec
on

d

IBM SP (3D)

Pcharge (O)
Elastic (O)
Pcharge (C)
Elastic (C)

0 8 16 24 32 40 48 56 64
Number of Processors

0

20

40

60

80

100

E
ffi

ci
en

cy

IBM SP (3D)

Pcharge (O)
Elastic (O)
Pcharge (C)
Elastic (C)Fig. 4.2. Plots comparing the average smoothing rates and e�ciency of the test problems in both two and threedimensions as a function of the number of processors for the combined approach (C) and the optimization-basedapproach (O) the IBM SP�nite-element meshes, Advances in Engineering Software, 22 (1995), pp. 45{53.[3] I. Babuska and A. Aziz, On the angle condition in the �nite element method, SIAM Journal on NumericalAnalysis, 13 (1976), pp. 214{226.[4] R. Bank, PLTMG: A Software Package for Solving Ellipitc Parital Di�erential Equations, Users' Guide 7.0,vol. 15 of Frontiers in Applied Mathematics, SIAM, Philadelphia, 1994.[5] R. E. Bank and R. K. Smith, Mesh smoothing using a posteriori error estimates, SIAM Journal on NumericalAnalysis, 34 (1997), pp. 979{997.[6] S. Canann, M. Stephenson, and T. Blacker, Optismoothing: An optimization-driven approach to meshsmoothing, Finite Elements in Analysis and Design, 13 (1993), pp. 185{190.[7] E. B. de l'Isle and P.-L. George, Optimization of tetrahedral meshes, in Modeling, Mesh Generation, andAdaptive Numerical Methods for Partial Di�erential Equations, I. Babushka, W. D. Henshaw, J. E. Oliger,J. E. Flaherty, J. E. Hopcroft, and T. Tezduyar, eds., Springer-Verlag, 1995, pp. 97{127.[8] H. Edelsbrunner and N. Shah, Incremental topological
ipping works for regular triangulations, in Proceedingsof the 8th ACM Symposium on Computational Geometry, 1992, pp. 43{52.[9] D. A. Field, Laplacian smoothing and Delaunay triangulations, Communications and Applied Numerical Meth-ods, 4 (1988), pp. 709{712.[10] L. Freitag and C. Ollivier-Gooch, A comparison of tetrahedral mesh improvement techniques, in Proceedingsof the Fifth International Meshing Roundtable, Sandia National Laboratories, 1996, pp. 87{100.[11] L. A. Freitag, M. T. Jones, and P. E. Plassmann, An e�cient parallel algorithm for mesh smoothing, inProceedings of the Fourth International Meshing Roundtable, Sandia National Laboratories, 1995, pp. 47{58.[12] I. Fried, Condition of �nite element matrices generated from nonuniform meshes, AIAA Journal, 10 (1972),

Table 4.6Smoothing results for the 2D problems for the ATM connected SPARC UltrasOptimization-based CombinedMax. Max. Vtx Max. VtxNumber Number Total Smooth Smoothed Smooth Smoothedof Local Number Time per Time perProcs. Vtx Vtx (sec) Second (sec) SecondPCHARGE2D1 11024 11024 8.53 1291.7 4.13 2670.72 10983 21966 9.54 1151.5 4.60 2388.54 10444 41777 10.30 1013.7 8.77 1190.36 11029 66175 13.47 818.7 7.16 1541.18 10450 83597 12.48 837.3 8.16 1280.710 10181 101813 12.85 792.2 10.63 957.812 10154 121850 14.21 714.6 8.60 1180.3ELASTIC2D1 4246 4246 3.36 1265.3 1.78 2386.72 5726 11451 4.27 1340.2 2.24 2554.54 4070 16278 2.92 1393.5 1.40 2898.26 4600 27603 4.33 1062.1 2.38 1930.28 4258 34066 3.11 1367.9 1.47 2901.510 4467 44668 3.37 1326.9 1.67 2668.312 4815 57780 4.34 1110.2 1.93 2492.2pp. 219{221.[13] M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman, New York, 1979.[14] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message-PassingInterface, MIT Press, Cambridge, MA, 1994.[15] B. Joe, Three-dimensional triangulations from local transformations, SIAM Journal on Scienti�c and StatisticalComputing, 10 (1989), pp. 718{741.[16] , Construction of three-dimensional improved quality triangulations using local transformations, SIAMJournal on Scienti�c Computing, 16 (1995), pp. 1292{1307.[17] M. T. Jones and P. E. Plassmann, A parallel graph coloring heuristic, SIAM Journal on Scienti�c Computing,14 (1993), pp. 654{669.[18] , Adaptive re�nement of unstructured �nite-element meshes, Journal of Finite Elements in Analysis andDesign, 25 (1997), pp. 41{60.[19] , Parallel algorithms for adaptive mesh re�nement, SIAM Journal on Scienti�c Computing, 8 (1997),pp. 686{708.[20] S. H. Lo, A new mesh generation scheme for arbitrary planar domains, International Journal for NumericalMethods in Engineering, 21 (1985), pp. 1403{1426.[21] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM Journal on Computing,4 (1986), pp. 1036{1053.[22] V. N. Parthasarathy and S. Kodiyalam, A constrained optimization approach to �nite element mesh smooth-ing, Journal of Finite Elements in Analysis and Design, 9 (1991), pp. 309{320.[23] M. Shephard and M. Georges, Automatic three-dimensional mesh generation by the �nite octree technique,International Journal for Numerical Methods in Engineering, 32 (1991), pp. 709{749.

