
UNSTRUCTURED MESH COMPUTATIONS ON NETWORKS OFWORKSTATIONS�MARK T. JONES AND PAUL E. PLASSMANNyAbstract. Unstructured mesh technology can be used to create highly e�cient scienti�c andengineering application software. Networks of workstations (NOWs) are a cost-e�ective platform forthe timely solution of large problems in science and engineering. The performance of unstructuredmesh computations on NOWs is investigated in this paper. Several parallel unstructured meshalgorithms are informally shown to have computation and communication characteristics similar tothose of parallel sparse matrix-by-vector multiplication. These characteristics are discussed, and therequirements they place on an interconnection network are described. Experimental data are given tosummarize the communication parameters of four di�erent NOW con�gurations. Finally, extensiveempirical results are given to characterize the performance of unstructured mesh computations onthe four NOWs.Key words. Finite Elements, Networks of Workstations, Parallel Computing, Scalable Algo-rithms, Unstructured Meshes1. Introduction. Parallel computers such as the IBM SP2 and the Intel Paragonare extremely powerful tools; however, their cost is beyond the means of most smallto medium science and engineering groups. On the other hand, most groups do haveaccess to a network of workstations (NOW). A NOW can be very cost e�cient for thesolution of mid-sized problems that are too large for a single workstation yet do notrequire a parallel computer with hundreds of processors. A potential disadvantage,however, is that the latencies incurred during interprocessor communication on aNOW are typically much larger than those for a dedicated parallel computer. Forgood performance on a NOW, careful attention must be paid to the demands placedby the algorithm on the interconnection network.The use of unstructured mesh technology has been shown to reduce computationtime and memory requirements in many scienti�c applications, including computa-tional uid dynamics and structural analysis. An unstructured mesh has no regularconnections among the vertices in the mesh; in a structured mesh, excluding boundaryvertices, the local connection pattern of each vertex is identical. An example of eachtype of mesh is given in Figure 1.1. Programs for structured meshes tend to be easierto write; however, unstructured meshes can be constructed to conform to virtuallyany geometry and are, for many problems, much more e�cient in terms of memoryuse and CPU requirements.Even with the use of unstructured mesh technology, many scienti�c and engi-neering applications require meshes with millions of vertices, particularly for three-dimensional problems. Parallel computing reduces the wall-clock time necessary to� The �rst author received support from NSF grants ASC-9501583, CDA-9529459, and ASC-9411394. The second author was supported in part by the Mathematical, Information, and Com-putational Sciences Division subprogram of the O�ce of Computational and Technology Research,U.S. Department of Energy, under Contract W-31-109-Eng-38.yThe address of the �rst author is Computer Science Department, University of Tennessee,Knoxville, TN 37996. The address of the second author is Mathematics and Computer ScienceDivision, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439.1



Fig. 1.1. On the left a structured mesh with regular local vertex connection patterns, on theright an unstructured mesh without regular vertex connections or placementsolve such problems and provides access to the required memory. An integrated ap-proach to parallel algorithms and software for unstructured mesh computations, aswell as computational results from the 512-processor Intel DELTA, given in [8].In this paper we examine the performance of several aspects of unstructured meshcomputations on four di�erent NOW con�gurations. Further, we de�ne the charac-teristics of these computations that are salient to performance and then delineate therequirements of the interconnection networks that e�ectively support these computa-tions.The remainder of the paper is organized as follows. In Section 2 we give anoverview of the main computational tasks required in a parallel implementation ofunstructured mesh methods. In Section 3 we examine the communication charac-teristics of the NOWs used in our experiments. Based on these characteristics, inSection 4 we de�ne a problem class into which many parallel unstructured mesh al-gorithms fall, and we de�ne the requirements of parallel architectures to supportthe scalable performance of this algorithm class. Computational results are given inSection 5. Finally, we give conclusions and suggestions for future work in Section 6.2. Parallel Unstructured Mesh Computations. In Figure 2.1 we give thegeneral algorithm for a typical unstructured mesh application; the computationaltasks of interest in this paper are underlined. After each problem solution, areas of themesh determined to have high discretization error are re�ned to decrease the error; asequence of such meshes is shown in Figure 2.2. If the mesh has changed signi�cantly,it must be repartitioned across the processors. Note that the sparse linear systemsolution may be part of a more complex solution process (e.g., a nonlinear systemsolution, an optimization problem, or an eigenvalue problem); however, it is typicallythe most computationally intensive and the most di�cult part of the solution processto parallelize. In the following subsections, we will briey discuss several key aspectsof unstructured mesh applications.2.1. Mesh Partitioning. To allow parallel computation, the mesh must bepartitioned across the processors. When the mesh is altered (e.g., vertices are addedor deleted) it may be necessary to repartition the mesh during the computation. In2



Construct a mesh M0 that conforms to the input geometryIf not already partitioned thenPartition M0 across the p processorsEndifi = 0RepeatAssemble a sparse matrix Ki from MiSolve the linear system Kiui = fiEstimate the error on MiIf maximum error estimate on Mi is too large thenBased on the error estimates, re�ne Mi to get Mi+1If partitioning is not satisfactory for Mi+1 thenRepartition Mi+1 across the p processorsEndifEndifi = i+ 1Until maximum error estimate on Mi is satisfactoryFig. 2.1. A general algorithm for typical unstructured mesh applications. Operations discussedin this paper are underlined.

Fig. 2.2. A sequence of meshes generated by the procedure in Figure 2.1.these mesh computations, we seek to partition the mesh such that every processorhas approximately the same number of vertices and elements. Further, we want tominimize the communication between processors; hence, we should try to minimizethe number of edges in the mesh that connect vertices on di�erent processors (we referto these edges as cross edges). In Section 5 we use the percentage of edges that arecross edges as one indicator of the computation-to-communication ratio; the lower thepercentage, the better the ratio. Another indicator is the number of processors with3



which a processor shares a cross edge; this indicates the number of messages that aprocessor is required to send.In our mesh partitioning/storage scheme, each vertex is owned by one processor;however, copies of vertices may exist on other processors to reduce communication.Similarly, each element is owned by one processor with copies on other processors.By storing copies, we signi�cantly reduce or eliminate the cost of communication forsome operations. We give an example of a mesh partitioning in Figure 2.3. We notethat maintaining the integrity of the copies is the responsibility of algorithms thatmodify the mesh, for instance, the mesh re�nement algorithm.
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Fig. 2.3. On the left, we give a geometric partitioning of a mesh among 4 processors. Vertexownership is indicated by the �ll pattern and triangle ownership by number. On the right, we showthe vertices/elements that must be stored on P0, including copies of vertices/elements owned byother processors. Note that every triangle that contains a vertex owned by P0 is stored on P0.We have chosen to �rst partition the vertices using a geometric partitioningscheme described in [8]. This scheme is an extension of the orthogonal recursivebisection [1, 16] and has been shown experimentally to have desirable properties thatscale with the problem size [11]. This partitioning algorithm is itself a parallel algo-rithm. The runtime of the implementation used in this paper increases as the numberof processors increases linearly with the problem size.2.2. Mesh Re�nement. The mesh re�nement algorithm is based on the bisec-tion of triangles (or tetrahedra) [15]. A set of triangles (tetrahedra) is marked forre�nement based on local error estimates. The parallel re�nement algorithm selectsindependent subsets of triangles (tetrahedra) from this marked set that can be bi-sected simultaneously while still maintaining the integrity of the mesh data structures[11]. The computation for this algorithm includes evaluating the local error estimatoron each element and, if necessary, bisecting that element. Given proper load bal-ancing, the computation time is proportional to the number of elements assigned toa processor. Required communication consists of informing neighboring processorsof bisection operations and keeping \copies" of vertices/elements up to date. Thecommunication time is proportional to the number of elements on the boundary of aprocessor's partition. 4



2.3. Matrix Assembly. The global matrix assembly based on the unstructuredmesh is done in two phases.1 The �rst phase is the construction of the nonzero struc-ture of the global matrix. The entire sparse column(s) associated with a vertex isstored on the processor owning that vertex. The column structure associated with avertex is determined solely by the elements that contain that vertex. Because of thevertex and element copies maintained on each processor, no interprocessor communi-cation is required during the construction of the nonzero structure (see Figure 2.3).The second phase is the evaluation of the element submatrices and their incorpo-ration into the global matrix. Like the �rst phase, this requires no interprocessor com-munication. Because all elements on a processor are evaluated, including copies, anelement may be evaluated on more than one processor. An alternative approach wouldbe to evaluate an element submatrix on only one processor and then to communicateportions of the submatrix to the required processors. Our approach trades redundantcomputation for savings in interprocessor communication. We note that the percent-age of redundant computation is larger for higher-order elements than lower-orderelements. Clearly, there exists some combination of computation-to-communicationcost ratio and element type for which this tradeo� is not advantageous. The tradeo�is hardware and application dependent.Note that the computation time for each of these algorithms is proportional tothe number of elements assigned to a processor. The communication time in thealternative algorithm is proportional to the number of elements on the boundary ofa processor's partition. The e�ciency of the algorithm we have used is similar to thealternative algorithm; the number of redundant element evaluations is proportionalto the number of elements on the boundary of a processor.2.4. Matrix Solution. Parallel solution of sparse linear systems of equationshas been widely studied [3, 5, 6, 9, 14]. The iterative method used in this paper isa parallel conjugate gradient method preconditioned by an incomplete factorizationimplemented in the BlockSolve95 software package [10]. The parallel incomplete fac-torization method is based on graph coloring and is described in [7, 9]. BlockSolve95analyzes and takes advantage of the local structure of the mesh; it achieves high ex-ecution rates for problems with multiple unknowns per vertex and for higher orderelements.The parallel performance of an iterative method such as the conjugate gradientmethod preconditioned by incomplete factorization involves two aspects: executione�ciency and total solution time. The execution e�ciency of a single iteration can typ-ically be measured by the number of oating-point operations executed per processorper second. Two computations dominate each iteration: (a) sparse matrix-by-vectormultiplication, and (b) sparse triangular matrix solution. Given a good partitioning,the execution e�ciency of a single iteration remains constant as the problem size isscaled with the number of processors. The number of iterations typically scales withthe square root of the problem size in two dimensions and the cube root of the prob-1In this paper we use matrix solution methods that require the global sti�ness matrix to beassembled. We note that methods do exist that do not require assembly of the global sti�nessmatrix. 5



lem size in three dimensions. Therefore, even with perfect e�ciency on a per iterationbasis, the linear system solution time will increase as the problem size increases.3. Networks of Workstations. For the experimental results presented in thispaper, we consider two NOWs, which we refer to as NOW1 and NOW2, as the basisfor comparison. For each NOW, we compare two di�erent network technologies.NOW1 is a group of 24 Sun SPARCstation 5 model 70's, each with 96 megabytesof RAM. The workstations are connected by a 10Mbps shared ethernet in addition to a100 Mbps switched ethernet. The switched ethernet topology has two Bay (Synoptics)model 28115 10/100 ethernet switches. A schematic of the switch interconnect isshown in Figure 3.1.
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12 Sparc5 Workstations 12 Sparc5 WorkstationsFig. 3.1. The 100 Mbps ethernet-based NOW1. The switches are connected by four 100 Mbpsethernet lines, and each of the workstations is connected to the switch by a 100 Mbps ethernet line.The second set of workstations, NOW2, is a group of 12 Sun Enterprise 2 Model2170 computers, each with 256 Megabytes of RAM.2 The computers are connectedby a 10 Mbps shared ethernet in addition to a 155 Mbps ATM network. The ATMnetwork uses a 16-port Bay (Synoptics) Model 10114A switch.Further, as a reference point for the communication performance on a high-endparallel machine, we give message-passing timing results from an IBM SP computer.This particular system, located at Argonne National Laboratory, uses SP-1 computenodes and a TB2 (IBM proprietary) switched, interconnection network.To characterize the performance of these �ve con�gurations, we experimentallyexamined two quantities of interest: latency and bandwidth as a function of thenumber of processors and the message length. We wrote a short C program thatsent and received messages between pairs of processors using MPI [13]. We timed100 repetitions of that task for varying message sizes and for varying numbers ofprocessor pairs operating simultaneously. A barrier function was used to synchronizethe processors. While somewhat imprecise, this method gives a rough estimate of theperformance to which an application will have access in each con�guration.In Figures 3.2 through 3.4 we display the message times for each of the �venetworks. Based on these timings, we computed a least squares �t to the averagelatency and average bandwidth for these networks. These values are reported inTable 3.1. As one might expect, the shared 10Mbps media performance degradessigni�cantly as the number of processors increases; the bandwidth of the network is2Although each computer has two processors, we ran only one process per computer because ofsoftware limitations. 6
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Fig. 3.2. The average time (in milliseconds) to send and receive a message between two, twelve,and twenty-four processors on NOW1. The graph on the left shows the results for the 10Mbpsethernet, and the 100Mbps results are shown on the right.
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Fig. 3.3. The time (in milliseconds) to send and receive a message between two, eight, andtwelve processors for the 10Mbps ethernet and the 155Mbps ATM on NOW2.not proportional to the number of processors. However, the switched interconnectionnetworks scale well with p, the number of processors. As we show in following section,the ability of the network bandwidth to scale with p is essential to support the scalableperformance of many of the tasks required in an unstructured mesh framework.The latency in the NOWs is largely a function of processor speed. This fact is anindication that the overhead incurred in sending a message is largely software based.For example, the SPARC Ultra processor in NOW2 is approximately three timesas fast as the SPARC 5 processor in NOW1 for the unstructured mesh operationsdescribed in Section 2. The MPI message-passing software for the SP is more stream-lined than for a NOW (it is built upon the underlying EUI communication layer).This fact is reected in its lower latency, even though the SP-1 processor is generallyslower than the newer SPARC Ultra processor. Hence, one expects better e�ciencyfor smaller problem sizes on the SP than on the other interconnection networks.7
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Fig. 3.4. The time (in milliseconds) to send and receive a message between two, eighteen, andthirty-two processors on the IBM SP. Table 3.1Statistics for latency and bandwidth for the 5 networks.Network Number of Average AverageNetwork Type Processors Latency (msec) Bandwidth (Mbps)NOW1 10Mbs 2 1.12 6.95NOW1 10Mbs 12 0.90 9.70NOW1 10Mbs 24 1.46 9.76NOW1 100Mbs 2 1.27 21.23NOW1 100Mbs 12 1.26 127.49NOW1 100Mbs 24 1.30 258.77NOW2 10Mbs 2 0.40 9.39NOW2 10Mbs 12 0.47 9.32NOW2 ATM 2 0.45 81.34NOW2 ATM 12 0.44 296.97SP TB2 2 0.12 132.14SP TB2 12 0.12 800.34SP TB2 24 0.12 1597.71SP TB2 32 0.12 2114.734. Matching Algorithms to Parallel Architectures. As discussed in x2, thetasks required to implement applications based on unstructured mesh discretizationsare diverse. Parallel algorithms have been developed for these tasks, and their scalableperformance has been demonstrated on high-end machines such as the Intel DELTA[8]. The important question is the determination of the essential network characteris-tics required to support the scalable performance of these algorithms on more modestNOWs.In this section we observe that although these algorithms appear quite di�erent,8



their underlying communications requirements are often similar. Based on this obser-vation, we de�ne an abstract problem class that encapsulates the computation andcommunication required in a representative problem arising in typical �nite-elementapplications: the sparse matrix-vector product. Based on an analysis of the com-munication and computation requirements of this problem class, we can describe thenetwork characteristics required to support the scalable performance of algorithms forthis problem class.The unstructured mesh algorithms considered in this paper are all data parallelalgorithms based on a partitioning of the mesh with n vertices and its associated workonto p processors. We can assume that if a good partitioning algorithm is used on a�nite-element mesh, each partition will have1. np vertices and a proportional number of elements;2. C neighboring partitions, where C is independent of n and p; and3. O((np )(D�1)=D) vertices/elements on the boundary of the partition, where Dis the number of dimensions.These assumptions appear to be empirically valid for a wide range of computationaldomains and di�erent partitioning schemes.4.1. SMVP equivalent algorithms. We de�ne a class of algorithms calledSMVP-equivalent (i.e., sparse matrix-vector product equivalent) if they have com-putation and communication of the same relative order as those required in sparsematrix-by-vector multiplication. Such algorithms have the following properties:1. if the computation time required on a single processor is W , the parallelcomputation time is O(W=p);2. each processor will send O(C) messages, C independent of n and p; and3. there exists a nonzero, monotonic function f(W=p) such that the total datasent by each processor is at least f(W=p), and f(W=p) is o(W=p).Naturally, a sparse matrix-vector product is SMVP equivalent if the partitioningis good. Each processor communicates only with its nearest neighbors; no signi�cantglobal communication occurs. The total work required is O(n) for the matrix arisingfrom a �nite-element matrix obtained from a bounded-degree mesh with n vertices.Further, the computation is load balanced and proportional to np ; the number ofmessages sent by a processor is a constant independent of n and p. The total lengthof the messages sent by one processor is O((np )(D�1)=D), which is monotonic ando(n=p). Examples of other SMVP equivalent algorithms include explicit time-steppingmethods, some iterative methods for solving linear systems, �nite-element sti�nessmatrix assembly, and unstructured mesh enrichment and improvement.We can now speci�cally consider the main tasks required in unstructured matrixcalculations as presented in x2 and determine whether they are SMVP equivalent.The problems are as follows:� Mesh Partitioning { The runtime of the implementation used in this paperis not scalable; the parallel algorithm su�ers an overhead of O(log(p)) rela-tive to the sequential version of the algorithm and is, therefore, not SMVP9



equivalent.� Mesh Re�nement { Given proper load balancing, the computation timeis proportional to the number of elements assigned to a processor. Requiredcommunication consists of informing neighboring processors of bisection op-erations and keeping \copies" of vertices/elements up to date. The commu-nication time is proportional to the number of elements on the boundary ofa processor's partition. A coloring of the element dual graph can be main-tained to ensure that the number of messages sent is bounded by a constantindependent of the number of processors [11]. Thus, this problem is SMVPequivalent.� Matrix Assembly { The matrix assembly algorithm that does not use re-dundant element evaluation is SMVP equivalent as only the boundary nonze-ros need to be communicated in the assembly process. Because it involves nocommunication and has a computational overhead resulting from redundantelement evaluation, the algorithm that we have used is not SMVP equivalent.� Matrix Solution { As discussed in x2, two tasks are required by the precon-ditioned conjugate gradient iteration used for the results in this paper. Thetwo tasks are sparse matrix-by-vector multiplication and sparse triangularmatrix solution. The �rst task is SMVP equivalent by de�nition. The secondis SMVP equivalent when a graph coloring is used to reorder the unknownsfor parallelism [9].4.2. SMVP supporting architectures. Often, the performance of a parallelalgorithm is measured by scaling the problem size linearly with the number of pro-cessors. For SMVP equivalent algorithms with good partitionings, this implies thatthe computation time is independent of p, the total number of messages sent by allprocessors is O(p), and, because O(W=p) is �xed, the total length of messages sent byall processors is O(p). For a parallel architecture to be SMVP supporting, it must, ata minimum, be capable of supporting without degradation message tra�c in which� the total number of messages sent grows linearly with p,� the total length of the messages sent grows linearly with p, and� the number of messages sent and received by a single processor does notexceed a constant value independent of p.Examples of interconnection networks that �t into this class given a suitablemapping of mesh partitions to processors include crossbars, rings, and mesh-connectedarrays. We note that from a pragmatic standpoint, any interconnection network isSMVP supporting if the bisection bandwidth is O(p) and the message-passing latencygrows modestly with p, for example O(log(p)). A �xed bandwidth, bus-based networkwould not be SMVP supporting.4.3. Bandwidth and Latency Dominated Implementations. Suppose theamount of data, in bytes, communicated by each processor by an SMVP equivalentalgorithm is bounded by the function f(W=p). The e�ciency, E , of an SMVP equiv-alent algorithm on an SMVP supporting architecture can be bounded below by the10



ratio of optimal computation time to a bound on the total execution time asE � Wp�C + �f(Wp ) + Wp ;(4.1)where � is the message startup cost, and � is the incremental cost to send a byte ofdata.Based on this expression, we o�er the following three informal propositions.Proposition 4.1. The e�ciency of a SMVP equivalent algorithm on a SMVPsupporting parallel architecture is constant with respect to p for constant W=p.Proposition 4.2. The e�ect of message startup cost on e�ciency can be hiddenfor su�ciently large W=p.Proposition 4.3. The e�ciency is limited by the bandwidth of the interconnec-tion network. Further, this e�ect is more pronounced in three dimensions than it isin two dimensions.
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For values of W=p less than this critical value, we say that the problem is latencydominated.

0 1 2 3 4 5 6
0

100

200

300

400

500

600

700

800

900

1000

log10(n/p)

ATM Network/Ultras

IBM SP

Dashed: 3D Problem

Solid: 2D Problem

α/
β

Fig. 4.2. Approximate values of n=p when the e�ciency the speci�c algorithm, sparse matrix-vector product, goes from being latency dominated to being bandwidth dominated as a function of thenetwork parameters �=�. Two horizontal lines show the approximate values for �=� for the IBMSP system and the NOW2 system as discussed in the text. The dashed curve shows the results for acanonical three-dimensional problem, and the solid line shows the results in two dimensions. Valuesof n=p to the right of the curves are bandwidth dominated; to the left of the curves, the problemsare latency dominated.We illustrate this property in Figure 4.1, where we schematically plot the parallele�ciency as a function of W=p. Two regions, latency dominated and bandwidthdominated, are divided by a critical value at which the e�ciency of the algorithm isprimarily determined by the bandwidth of the architecture as opposed to the latency.In Figure 4.2 we illustrate that SMVP equivalent algorithms on NOWs can easilybe bandwidth dominated as opposed to latency dominated. If we consider an algo-rithm for the speci�c sparse matrix vector product problem, we get the approximation(np )� � (�� ) DD�1 :(4.3)Assuming that we are sending eight-byte, double-precision values, we get the curvesfor problems from two and three dimensions shown in Figure 4.2. Using the datafrom Table 3.1, we get the approximate �=� values shown as horizontal lines in the�gure. Thus, for modest numbers of unknowns per processor relative to the amountof memory available on most NOWs, one can expect to be bandwidth dominated. Forexample, for a three-dimensional problem with more than approximately 5,000 un-knowns per processor on the NOW2/ATM system (the con�guration with the largest12



ratio �=�) the problem will be bandwidth dominated. Such a problem size is notlarge relative to the amount of memory available to the processor.5. Computational Results. We present experimental results to demonstratethe e�ect of several variables on the performance of the unstructured mesh compu-tations described in Section 2. The variables are problem type, problem size, networktype, and number of processors. Each of these variables a�ects the ratio of com-putation to communication, which in turn determines the e�ciency of the parallelalgorithms.We will look at four basic problems in this study: linear elasticity in two dimen-sions (LE2), linear elasticity in three dimensions (LE3), Poisson's equation in twodimensions (PE2), and Poisson's equation in three dimensions (PE3). For each ofthese problem types, the basic �nite element is a triangle (tetrahedron) with eitherlinear or quadratic basis functions (denoted by adding either an \L" or a \Q" to theproblem type). In each problem we begin with a coarse initial grid on a relativelysimple geometry and, using the basic algorithm in Figure 2.1, selectively re�ne themesh until the local error estimate is satisfactory on every element. By manipulatingthe error tolerance, the size of the �nal mesh can be changed. For a more detaileddescription of the problems and the solution approach see [11]. A brief description ofeach of the problems is given in Table 5.1.On each con�guration we used an identical set of application programs. Eachprogram is written primarily in C and uses the Message Passing Interface (MPI)standard for interprocessor communication [13].Table 5.1Information on the smallest instance of each of the problem types.Element No. of No. of No. ofName Problem Type Dim. Type Vertices Elements UnknownsLE2L Linear Elasticity 2 linear 3794 7346 7588LE2Q Linear Elasticity 2 quadratic 14804 7288 29608LE3L Linear Elasticity 3 linear 4360 22106 13080LE3Q Linear Elasticity 3 quadratic 3925 2541 11775PE2L Poisson's Eq. 2 linear 2690 5245 2690PE2Q Poisson's Eq. 2 quadratic 5267 2582 5267PE3L Poisson's Eq. 3 linear 1845 9759 1845PE3Q Poisson's Eq. 3 quadratic 13057 9337 13057In the rest of this section we describe the e�ects of these variables on the compu-tational e�ciency of the algorithms, including the total problem solution time in thenext subsection.5.1. Total Execution Time. In this section we look at the total solution timefor the LE2L problem and focus on the problem size and network type variables.Figures 5.1 and 5.2 illustrate the e�ect of higher network bandwidth that scales withp on total solution time. It is evident that the restricted bandwidth of the 10 Mbpsnetworks is not su�cient to allow scalable execution of SMVP-equivalent algorithms.13



We note that the performance for all of the con�gurations is closer to the idealwhen the problem size is larger. This is due to the better ratio of computation tocommunication for the larger problem sizes. To illustrate this, we plot the percentageof cross edges as well as the maximum number of neighbors of a processor in Figure 5.3.The percentage is much smaller for the large problems and for small numbers ofprocessors. Note that a property of the partitioning algorithm is that the number ofneighbors for a partition is not a function of the problem size; it is a characteristicof the problem. Typically, the number of neighbors rises until approximately 16processors, after which it remains constant [11].
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Fig. 5.1. The total execution time for the LE2L problem as a function of the number ofprocessors for three problem sizes; the left graph is for NOW2 with ATM, and the right graph is forNOW2 with 10Mbps ethernet. The actual results are given by the lines; points o� the lines reectthe ideal results with no communication cost and perfect load balance.
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Fig. 5.2. The total execution time for LE2L as a function of the number of processors for threeproblem sizes; the left graph is for NOW1 with 100 Mbps ethernet, and the right graph is for NOW1with 10Mbps ethernet. The actual results are given by the lines; points o� the lines reect the idealresults with no communication cost and perfect load balance.14
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Fig. 5.3. For the LE2L problems, the maximum percentage of cross edges and the maximumdegree of the quotient graph as a function of the number of processors for di�erent problem sizes.5.2. Partitioning. In Section 2 we noted that the performance of the parallelimplementation of the partitioning algorithm was not expected to scale well withthe number of processors. In e�ect, the implementation does twice as much workto partition a problem of size 2X into 2p pieces as it does to partition a problem ofsize X into p pieces. In Figure 5.4, as expected, we see that the number of verticespartitioned by the p processors per second is essentially constant for the ATM networkafter 4 processors. However, we note that the penalty for the slower 10 Mbps networkis not nearly as severe as it was for the total solution times. Further, we note thatin Figure 5.5, the partitioning rate in three dimensions is lower than that for twodimensions; however, this di�erence is not as large as for the re�nement computationbecause the runtime of this partitioning algorithm is dependent not on the percentageof cross edges but rather on the number of vertices, processors, and dimensions.
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Fig. 5.4. A comparison of the partitioning rate as a function of the number of processors fordi�erent sizes of the LE2L problems; the left graph is for a NOW2 with 155 Mbps ATM, and theright graph is NOW2 with 10Mbps ethernet. 15
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Fig. 5.5. The partitioning rate as a function of the number of processors for the PE3L problemon NOW2 with 155 Mbps ATM.5.3. Re�nement. We now examine the parallel e�ciency of the re�nement com-putation as a function of problem size and of the problem type, speci�cally the dimen-sion of the problem. We measure the parallel e�ciency of re�nement as the maximumnumber of vertices added per second per processor [11]. This measure should be nearlyconstant as the problem size and/or the number of processors increases if the cross-edge percentage (and the maximum number of partition neighbors) remains constant.As noted before, of course, the cross-edge percentage increases as the number of pro-cessors increases if the problem size is �xed. However, the cross-edge percentage willstabilize after a few processors if the problem size increases linearly with the numberof processors.In Figure 5.6 we compare the re�nement rate for a �xed problem size and a prob-lem size that scales with the number of processors. Note that the re�nement ratestabilizes after four processors for the scaled problem size. In Figures 5.7 and 5.8 there�nement rate is much higher for the two-dimensional case. This is caused by twofactors: (a) bisection in three dimensions is more complex, and (b) the cross-edge per-centage in three dimensions is much higher.3 In Figure 5.9 we compare the percentageof cross edges for the two-dimensional and three-dimensional problems; as expected,the percentage of cross edges grows much more rapidly for the three-dimensional prob-lem. As noted in Section 4, a three-dimensional problem must be much larger than atwo-dimensional problem to achieve the same cross-edge percentage.5.4. Matrix Assembly. Unlike the other tasks, the matrix assembly is inde-pendent of the network type because no communication is involved. However, asnoted in Section 2, this lack of communication is traded o� against the redundantevaluation of some element submatrices. In this subsection we will measure the num-3For all four problem types, the problem size is increased successively by approximately a factorof two when scaled. As a consequence, for the 12- and 24-processor cases, the number of verticesper processor will be 1.5 times larger than for the 8- and 16-processor cases, respectively, for �gureswith scaled problem sizes. 16
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Fig. 5.6. The maximum rate of re�nement per processor as a function of the number ofprocessors for di�erent problem sizes; the left graph is for a �xed problem size, and the right graphis for a problem size that scales with the number of processors. These results are for NOW2 with155 Mbps ATM on the PE3L problems.
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Fig. 5.7. The maximum rate of re�nement per processor as a function of the number ofprocessors for di�erent problem sizes; the left graph is for a �xed problem size, and the right graphis for a problem size that scales with the number of processors. These results are for NOW2 with155 Mbps ATM on the LE2L problems.ber of nonredundant submatrix evaluations per second per processor. In Figures 5.10and 5.11 we see that the assembly rate per processor remains essentially constant asthe problem size is scaled. The slight decrease in assembly rate as the number of pro-cessors increases for the smaller problems is due to the larger proportion of redundantevaluations for these problems. Note the expected slower rate for the same problemswith quadratic elements in Figure 5.11.The elements for the PE2L problem are much simpler to evaluate; this fact isreected in the assembly rates in Figure 5.12.5.5. Matrix Solution. The most time-consuming computation for these prob-lems is the solution of the sparse linear systems. These computations are generally17
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Fig. 5.8. The maximum rate of re�nement per processor as a function of the number ofprocessors for di�erent problem sizes; the left graph is for a �xed problem size and the right graphis for a problem size that scales with the number of processors. These results are for NOW1 with100 Mbps ethernet on the LE2L problems.
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Fig. 5.9. A comparison of the maximum percentage of cross edges as a function of the numberof processors for the LE2L and PE3L problems. Note that the three-dimensional problem has a fargreater percentage of cross edges.more tightly coupled than the other computations and hence place greater demandson the network.The e�ciency of the iterative method used in these computations increases withthe order of the element and the number of unknowns per vertex. Therefore, weexpect that the linear elasticity problem with quadratic elements will have a highere�ciency than the Poisson problem with linear elements. In Figure 5.13 we note thatfor a �xed problem size, the solution time decreases substantially as the number ofprocessors increases on the ATM network; however, performance is poor on the 10Mbps network. We see a similar situation for the quadratic elements in Figure 5.14.As a measure of parallel e�ciency, we can look at the number of oating-pointoperations per second executed by the iterative method. In Section 2 we stated that18
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Fig. 5.10. A comparison of the matrix assembly rate as a function of the number of processorsfor di�erent sizes of the LE2L problems; the left graph is for NOW1 with 100 Mbps ethernet, andthe right graph is for NOW1 with 10 Mbps ethernet.
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Fig. 5.11. A comparison of the matrix assembly rate as a function of the number of processorsfor di�erent sizes of the LE2Q problems; the left graph is for NOW1 with 100 Mbps ethernet, andthe right graph is for NOW1 with 10 Mbps ethernet.the e�ciency of the method should remain nearly constant if the problem size is scaledlinearly with p; note that we expect some degradation in these problems because thecross-edge percentage typically increases until p = 16. We give the rates for scaledversions of the LE2 problem on NOW2 for both the linear and quadratic problems inFigure 5.15. In Figure 5.16, we give the rates on the LE3 problem on NOW2; theserates are largely governed by the percentage of cross edges given in Figure 5.17.4 Notethat these rates do not include the time either to reorder the matrix or to factor it;however, the sum of these times is typically less than 5% of the solution time.4The rate for the scaled LE3L on NOW2 for 12 processors is adversely a�ected by the need touse virtual memory for this problem. 19
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Fig. 5.13. A comparison of the matrix solution time as a function of the number of processorsfor di�erent sizes of the LE2L problems; the left graph is for NOW2 with 155 Mbps ATM, and theright graph is for NOW2 with 10 Mbps ethernet.6. Concluding Remarks. We have shown that parallel unstructured meshcomputations can perform e�ectively on a network of workstations using o�-the-shelfcomponents. We characterized the performance of these computations and describedthe type of interconnection network necessary for their scalable performance. Theprimary determinants of e�cient performance were found to be the problem size perprocessor and type of interconnection network used. Speci�cally, we found that e�-cient execution was dependent on� individual workstations having substantial available RAM to allow large prob-lem sizes, and� an interconnection network whose capacity scaled with p, for example, aswitched 100 Mbps ethernet network and a 155 Mbps ATM network.20
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Fig. 5.14. A comparison of the matrix solution time as a function of the number of processorsfor di�erent sizes of the LE2Q problems; the left graph is for NOW2 with 155 Mbps ATM, and theright graph is for NOW2 with 10 Mbps ethernet.
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Fig. 5.15. A comparison of the matrix computation rates as a function of the number ofprocessors for a scaled version of the LE2L problem on the left and the LE2Q problem on the right.The majority of the algorithms and software implementations in the paper be-haved in a scalable and e�ective fashion on the NOWs examined. The algorithmswere tolerant of the high latencies found in NOWs when the local problem size waslarge enough. However, the algorithms required high total bandwidth and, therefore,were intolerant of the restricted total bandwidth found in the 10Mbps ethernet. Ofthe parallel algorithms employed, only the performance of the partitioning algorithmwas found to be wanting. The authors are investigating a novel implementation ofthis algorithm to increase its scalability.New technologies for NOWs, such as active messages [12] and the SHRIMP project[2], o�er the promise of increasing the e�ective bandwidth available to applications.Advances in operating systems for NOWs such as Condor [4] will improve the perfor-mance of applications during times when some workstations on the network are beingused intensively. 21
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