
Automatically Tuned Linear Algebra SoftwareR. Clint WhaleyJack J. DongarraComputer Science DepartmentUniversity of TennesseeKnoxville, TN 37996-1301andMathematical Sciences SectionOak Ridge National LaboratoryOak Ridge, TN 378311 AbstractThis paper describes an approach for the automatic generation and optimization of numer-ical software for processors with deep memory hierarchies and pipelined functional units.The production of such software for machines ranging from desktop workstations to embed-ded processors can be a tedious and time consuming process. The work described here canhelp in automating much of this process. We will concentrate our e�orts on the widely usedlinear algebra kernels called the Basic Linear Algebra Subroutines (BLAS). In particular,the work presented here is for general matrix multiply, DGEMM. However much of thetechnology and approach developed here can be applied to the other Level 3 BLAS and thegeneral strategy can have an impact on basic linear algebra operations in general and maybe extended to other important kernel operations.
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2 MotivationToday's microprocessors have peak execution rates ranging from 300 Mop/s to 1.2 Gop/s.However, straightforward implementation in Fortran or C of computations based on simpleloops rarely results in such high performance. To realize such peak rates of execution foreven the simplest of operations has required tedious, hand coded, programming e�orts.Since their inception, the use of defacto standards like the BLAS [5, 4] has been ameans of achieving portability and e�ciency for a wide range of kernel scienti�c computa-tions. While these BLAS are used heavily in linear algebra computations, such as solvingdense systems of equations, they have also found their way into the basic computing in-frastructure of many applications. The BLAS (Basic Linear Algebra Subprograms) arehigh quality \building block" routines for performing basic vector and matrix operations.Level 1 BLAS do vector-vector operations, Level 2 BLAS do matrix-vector operations, andLevel 3 BLAS do matrix-matrix operations. Because the BLAS are e�cient, portable, andwidely available, they are commonly used in the development of high quality linear algebrasoftware, such as LAPACK [1] and ScaLAPACK [2], for example.The BLAS themselves are just a standard or speci�cation of the semantics and syntaxfor the operations. There is a set of reference implementations written in Fortran, but noattempt was made with these reference implementations to promote e�ciency. Many ven-dors provide a \optimized" implementation of the BLAS for a speci�c machine architecture.These optimized BLAS libraries are provided by the computer vendor or by an independentsoftware vendor (ISV).In general, the existing BLAS have proven to be very e�ective in assisting portable,e�cient software for sequential, vector and shared memory high-performance computers.However, hand-optimized BLAS are expensive and tedious to produce for any particulararchitecture, and in general will only be created when there is a large enough market, whichis not the true for all platforms. The process of generating an optimized set of BLAS for anew architecture or a slightly di�erent machine version can be a time consuming process.The programmer must understand the architecture, how the memory hierarchy can beused to provide data in an optimum fashion, how the functional units and registers can bemanipulated to generate the correct operands at the correct time, and how best to use thecompiler optimization. Care must be taken to optimize the operations to account for manyparameters such as blocking factors, loop unrolling depths, software pipelining strategies,loop ordering, register allocations, and instruction scheduling.Many computer vendors have invested considerable resources in producing optimizedBLAS for their architectures. In many cases near optimum performance can be achievedfor some operations. However the coverage and the level of performance achieved has notbeen uniform across all platforms. An example is that up until this point we have not hadan e�cient version of matrix multiply for the Pentium/Linux architecture.Our goal is to develop a methodology for the automatic generation of highly e�cientbasic linear algebra routines for today's microprocessors. The process will work on pro-cessors that have an on-chip cache and a reasonable C compiler. Our approach, calledAutomatically Tuned Linear Algebra Software (ATLAS), has been able to match or exceedthe performance of the vendor supplied version of matrix multiply in almost every case.More complete timings will be given in section 4, where we report on the timings of4



various problem sizes across multiple architectures. As a preview of this more completecoverage, �gure 1 shows the performance of ATLAS versus the vendor-supplied DGEMM(where available) for a 500x500 matrix multiply. See section 4 for further details on theseresults.
500x500 double precision matrix-matrix multiply across various systems
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3 ATLASWe have developed a general methodology for the generation of the Level 3 BLAS anddescribe here how this approach is carried out and some of the preliminary results wehave achieved. At the moment, the operation we are supporting matrix multiply. We candescribe matrix multiply as C  �op(A)op(B) + �C, where op(X) = X or XT . C is anM �N matrix, and A and B are matrices of size M �K and K �N , respectively.In general, the arrays A, B, and C will be too large to �t into cache. Using a block-partitioned algorithm for matrix multiply it is still possible to arrange for the operations tobe performed with data for the most part in cache by dividing the matrix into blocks. Foradditional details see [6].3.1 The ATLAS approachIn our approach, we have isolated the machine-speci�c features of the operation to severalroutines, all of which deal with performing an optimized on-chip (i.e., in L1 cache) matrixmultiply. This section of code is automatically created by a code generator which usestimings to determine the correct blocking and loop unrolling factors to perform an optimizedon-chip multiply. The user may directly supply the code generator with as much detail asdesired (i.e., the user may explicitly indicate the L1 cache size, the blocking factor(s) to try,etc); if such details are not provided, the generator will determine appropriate settings viatimings.The rest of the code does not change across architectures, and handles the looping,blocking, and so on necessary to build the complete matrix-matrix multiply from the on-chip multiply.3.2 Building the general matrix multiply from the on-chip multiplyIn this section we describe the code which remains the same across all platforms: the routinesnecessary to build a general matrix-matrix multiply using a �xed-size on-chip multiply.The following section describes the on-chip multiply and its code generator in detail. Forthis section, it is enough to know that we have an e�cient on-chip matrix matrix multiplyof the form C  ATB + C. This multiply is of �xed size, with all dimensions set to asystem-speci�c value, NB (i.e, M = N = K = NB). Also available are several \cleanup"codes, which handle the cases caused by dimensions which are not multiples of the blockingfactor.When the user calls our GEMM, the �rst decision is whether the problem is large enoughto bene�t from our special techniques. Our algorithm requires copying of the operand ma-trices; if the problem is small enough, this O(N2) cost, along with miscellaneous overheadssuch as function calls and multiple layers of looping, can actually make the \optimized"GEMM slower than the traditional 3 do loops. The size required for the O(N3) coststo dominate these lower order terms varies across machines, and so this switch point isautomatically determined at installation time.For these very small problems, a standard 3-loop multiply with some simple loop un-rolling is called. This code will also be called if the algorithm is unable to allocate enoughspace to do the blocking (see below for further details).6



Assuming the matrix is large enough, there are presently two algorithms for performingthe general, o�-chip multiply. The two algorithms correspond to di�erent orderings of theloops; i.e., is the outer loop over M (over the rows of A), and thus the second loop is overN (over the columns of B), or is this order reversed. The dimension common to A and B(i.e., the K loop) is currently always the innermost loop.Let us de�ne the input matrix looped over by the outer loop as the outer or outermostmatrix; the other input matrix will therefore be the inner or innermost matrix. Bothalgorithms then try to allocate enough space to store a NB � NB output temporary, Ĉ,1 panel of the outermost matrix, and the entire inner matrix. If this fails, the algorithmsattempt to allocate enough space to hold Ĉ, and 1 panel from both A and B. The minimumworkspace required by these routines is therefore NB2 + (M + K)NB. If this amount ofworkspace cannot be allocated, the previously mentioned small case code is called instead.If there is enough space to copy the entire innermost matrix, we see several bene�ts todoing so:� Each matrix is copied only one time� If all of the workspaces �t into L2 cache, we get complete L2 reuse on the innermostmatrix� Data copying is limited to the outermost loop, protecting the inner loops from un-needed cache thrashingIf enough space for a copy of the entire innermost matrix cannot be allocated, theinnermost matrix will be entirely copied for each panel of the outermost matrix (i.e., if Ais our outermost matrix, we will copy B dM=NBe times). Further, our usable L2 cache isreduced (the copy of a panel of the innermost matrix will take up twice the panel's size inL2 cache; the same is true of the outermost panel copy, but that will only be seen the �rsttime through the secondary loop).Regardless of which looping structure or allocation procedure used, the inner loop isalways along K. Therefore, the operation done in the inner loop by both routines is thesame, and it is shown in �gure 2.C3;2 A3;1A3;2M NC  M KA N K� BB1;2B2;2B3;2Figure 2: One step of matrix-matrix multiplyIn this operation, the following actions are performed in order to calculate the NB�NBblock Ci;j , where i and j are in the range 0 � i < dM=NBe, 0 � j < dN=NBe:1. Zero out NB �NB section of workspace to store AB; call this workspace Ĉi;j .7



work = allocate(M*K + NB*(NB+K))if (allocated(work)) thenPARTIAL_MATRIX = .FALSE.copy A into block major formatelsePARTIAL_MATRIX = .TRUE.work = allocate(NB*(NB+2*K))if (.NOT.allocated(work)) call small_case_codereturnend ifdo j = 1, N, NBBwork = ALPHA*B(:,J:J+NB-1); Bwork in block major formatdo i = 1, M, NBif (PARTIAL_MATRIX) Awork = A(i:i+NB-1,:); Awork in block major formatCwork(1:NB,1:NB) = 0do k = 1, K, NBON_CHIP_MATMUL(Awork, Bwork, Cwork)end doC(i:i+NB-1, j:j+NB-1) = BETA*Cworkend doend do Figure 3: General matrix multiplication with A as innermost matrix2. Call on-chip multiply to multiply block k of the row panel i of A with block k of thecolumn panel j of B, 8k; 0 � k < dK=NBe. The on-chip multiply is performing theoperation C  AB+C, so as expected this results in multiplying the row panel of Awith the column panel of B.3. Perform block operation Ci;j  Ĉi;j + �Ci;j.Building on this inner loop, we have the loop orderings giving us our two algorithms foro�-chip matrix multiplication. Figures 3, 4 give the pseudo-code for these two algorithms.We simplify this code by not showing the cleanup code necessary for cases where dimensionsdo not evenly divide NB. The matrix copies are shown as if coming from the notranpose,notranpose case. If they do not, only the array access on the copy changes.3.2.1 Choosing the correct looping structureWhen the call to the matrix multiply is made, the routine must decide which loop structureto call (i.e., which matrix to put as outermost). If the matrices are of di�erent size, L2 cachereuse can be encouraged by deciding the looping structure based on the following criteria:� If either matrix will �t completely into L2 cache, put it as the innermost matrix (weget L2 cache reuse on entire inner matrix)� If neither matrix �ts completely into L2 cache, put the one with the largest panel that8



work = allocate(N*K + NB*(NB+K))if (allocated(work)) thenPARTIAL_MATRIX = .FALSE.copy B into block major formatelsePARTIAL_MATRIX = .TRUE.work = allocate(NB*(NB+2*K))if (.NOT.allocated(work)) call small_case_codereturnend ifdo i = 1, M, NBAwork = ALPHA*A(i:i+NB-1,:); Awork in block major formatdo j = 1, N, NBif (PARTIAL_MATRIX) Bwork = B(:,J:J+NB-1); Bwork in block major formatCwork(1:NB,1:NB) = 0do k = 1, K, NBON_CHIP_MATMUL(Awork, Bwork, Cwork)end doC(i:i+NB-1, j:j+NB-1) = BETA*Cworkend doend do Figure 4: General matrix multiplication with B as innermost matrixwill �t into L2 cache as the outermost matrix (we get L2 cache reuse on the panel ofthe outer matrix)The present code does no explicit L2 blocking, however (for instance, the size of the L2cache is not known anywhere in the code) , and so these criteria are not presently used forthis selection. Rather, if one matrix must be accessed by row-panels during the copy (forinstance, the matrix A when TRANSA='N'), that matrix will be put where it can be copiedmost e�ciently.This means that if we have enough workspace to copy it up front, it will be accessedcolumn-wise by putting it as the innermost loop and copying the entire matrix; otherwiseit will be placed as the outermost loop, where the cost of copying the row-panel is a lowerorder term. If both matrices have the same access patterns, B will be made the outermostmatrix, so that C is accessed by columns.3.2.2 L2 Cache blockingAs previously mentioned, the present algorithms perform no explicit L2 cache blocking,but we achieve substantial implicit caching in certain cases. If the innermost matrix �tscompletely into L2 cache, the present algorithm will get maximal cache reuse. If there isroom in the cache only for one panel from each matrix (and for the copy of the innermostpanel, if we don't have the space to copy all of the innermost matrix up front), we will againget extremely good cache reuse, by reusing the outermost matrix panel against all panels9



of the innermost matrix. There are two other obvious opportunities for cache reuse, whichthe code presently does not take advantage of.The �rst is the case where the L2 cache is not big enough to hold an entire panel ofboth A and B. In this case, the K loop must be intermixed with the outer loops in order toachieve L2 cache reuse. In this algorithm, X blocks of one of the panels is retained in theL2 cache, and the appropriate sections of the other input matrix are brought in to performthe multiplication. This requires either X NB�NB panels of Ĉ to be retained in L2 cache,or multiple writes to C. Either option tends to degrade performance. We have run someexperiments to test to the feasibility of this idea, and have yet to see any performance gain.More interesting is the case where multiple matrix panels will �t into L2 cache, but theentire innermost matrix will not. In this case the looping mechanism must become slightlymore complex. This algorithm copies X panels of the outermost matrix into L2 cache, andthen reuses them by applying them to the panels of the innermost matrix. If X becomesas small as 1 or as large as the number of panels in the outermost matrix, we are in apreviously discussed case. Within this restriction, cache reuse grows with X .This idea was promising enough that it was implemented. Of the 14 platforms surveyedin the timing section, only the DEC AlphaStation 600 showed appreciable performancegains; this platform showed maximal speedup of 1:08; obviously many problem sizes showedno speedup at all . No other platform gained speedup greater than 1:02. It was decidedthat this modest gain did not at this point justify the added code complexity of supportingexplicit L2 blocking.There are other reasons to consider explicit L2 references (for instance, deciding whichmatrix should be innermost), and if for one of these reasons we support the explicit calcu-lation of L2 size, this algorithm should be easy to add.3.3 Generation of the on-chip multiplyAs previously mentioned, the on-chip matrix-matrix multiply is the only code which mustchange depending on the platform. Since we copy the input matrices into blocked form,only one case is required, which we have chosen as C  ATB + C. This case was chosen(as opposed to, for instance C  AB + C), because it generates the largest (ops)/(cachemisses) ratio possible when the loops are written with no unrolling. Machines with hardwareallowing a smaller ratio can be addressed using loop unrolling on the M and N loops (thiscould also be addressed by permuting the order of the K loop, but we do not at presentuse this technique).In a multiply designed for L1 cache reuse, one brings one of the input matrices completelyinto the L1 cache, and reuses that matrix in looping over the rows or columns of the otherinput matrix. The present code brings in the matrix A, and loops over the columns ofB; this was an arbitrary choice, and there is no theoretical reason it would be superior tobringing in B and looping over the rows of A.There is a common misconception that cache reuse is optimized when both input matri-ces, or all three matrices, �t into L1 cache. In fact, the only win in �tting all three matricesinto L1 cache is that it is possible, assuming the cache is not write-through, to save the costof pushing previously used sections of C back to the L2 cache. Ignoring this cost, maximalcache reuse for our case is achieved when all of A �ts into cache, with room for at least two10



columns of B and 1 cache line of C. Only one column of B is actually accessed at a time inthis scenario; having enough storage for two columns assures that the old column will bethe least recently used data when the cache overows, thus making certain that all of A iskept in place (this obviously assumes the cache replacement policy is least recently used).While cache reuse can account for a great amount of the overall performance win, it isobviously not the only factor. For the on-chip matrix multiplication, other relevant factorsare:� Instruction cache overow� Floating point instruction ordering� loop overhead� Exposure of possible parallelism� The number of outstanding cache misses the hardware can handle before execution isblocked3.3.1 Instruction cache reuseInstructions are cached, and it is therefore important to �t our on-chip multiply's instruc-tions into the L1 cache. This means that we will not be able to completely unroll all threeloops, for instance.3.3.2 Floating point instruction orderingWhen we discuss oating point instruction ordering in this paper, it will usually be inreference to latency hiding.Most modern architectures possess pipelined oating point units. This means that theresults of an operation will not be available for use until X cycles later, where X is thenumber of stages in the oating point pipe (typically 3 or 5). Remember that our on-chip matrix multiply is of the form C  ATB + C; individual statements would thennaturally be some variant of C[X] += A[Y] * B[Z]. If the architecture does not possessa fused multiply/add unit, this can cause a unnecessary execution stall. The operationregister = A[Y] * B[Z] is issued to the oating point unit, and the add cannot starteduntil the result of this computation is available, X cycles later, and thus the oating pointpipe is not utilized.The solution is to remove this dependence by separating the multiply and add, andissuing unrelated instructions between them. This reordering of operations can be done inhardware (out-of-order execution) or by the compiler, but this will sometimes generate codethat is not quite as e�cient as doing it explicitly. More importantly, not all platforms havethis capability (for example, gcc on a Pentium), and in this case the performance win canbe large. 11



3.3.3 Reducing loop overheadThe primary method of reducing loop overhead is through loop unrolling. If it is desirableto reduce loop overhead without changing the order of instructions, one must unroll theloop over the dimension common to A and B (i.e., unroll the K loop). Unrolling along theother dimensions (the M and N loops) changes the order of instructions, and the resultingmemory access patterns.3.3.4 Exposing parallelismMany modern architectures have multiple oating point units. There are two barriers toachieving perfect parallel speedup with oating point in such a case. The �rst is a hardwarelimitation, and therefore out of our hands: All of the oating point units will need to accessmemory, and thus for perfect parallel speedup, the memory fetch will usually also need tooperate in parallel.The second prerequisite is that the compiler recognize opportunities for parallelization,and this is amenable to software control. The �x for this is the classical one employed insuch cases, namely unrolling the M and/or N loops.3.3.5 Finding the correct number of cache missesAny operand that is not already in a register must be fetched from memory. If that operandis not in the L1 cache, it must be fetched from further up the memory hierarchy, possiblyresulting in large delays in execution. The number of cache misses which can be issued simul-taneously without blocking execution varies between architectures. To minimize memorycosts, the maximal number of cache misses should be issued each cycle, until all memory isin cache or used. In theory, one can permute the matrix multiply to ensure that this is true.In practice, this �ne a level of control would be di�cult to ensure (there would be problemswith over running the instruction cache, and the generation of such precision instructionsequence, for instance). So the method we use to control the cache-hit ratio is the moreclassical one of M and N loop unrolling.3.3.6 Putting it all togetherIt is obvious that with this many interacting e�ects, it would be di�cult, if not impossibleto predict a priori the best blocking factor, loop unrolling etc. Our approach is to providea code generator coupled with a timer routine which takes in some initial information, andthen tries di�erent strategies for loop unrolling and latency hiding and chooses the casewhich demonstrated the best performance.The timers are structured so that operations have a large granularity, leading to fairlyrepeatable results even on non-dedicated machines. The user may enter the size of theL1 cache, or have the program attempt to calculate it. This in turn allows the routine tochoose a range of blocking factors to examine. The user may specify the maximum numberof registers to use (or use the default of 6), and thus dictate the maximum amount of Mand/or N loop unrolling to perform. 12



Because it has not caused cache overow anywhere, the present code always completelyunrolls the K loop. This drastically reduces the number of cases the search routine musttest.The search then tries a number of possible blocking factors with a set amount ofM andN loop unrolling (at the present, none), from which an initial blocking factor is chosen.Using this blocking factor, a range of latency hiding factors (presently, 1 through 6) istested. If any of the latency factors produce speedup over the case with no latency hiding,the latency factor showing the maximal performance will be tested for every timing.With an initial blocking factor and an idea of what latency factor to employ, the searchroutine loops over all M and N loop unrollings possible with the given number of registers.Once an optimal unrolling has been found, we again try all blocking factors, and alllatency factors, and choose the best.All results are stored in �les, so that subsequent searches will not repeat the sameexperiments, allowing searches to build on previously obtained data. This also means thatif a search is interrupted (for instance due to a machine failure), previously run cases willnot need to be re-timed. A typical install takes from 1 to 2 hours for each precision.3.3.7 Cleanup codeAfter all of the above operations are done, we have a square on-chip multiply of �xeddimension NB. Since the input matrices may not be a multiple of NB, there is an obviousneed for a way to handle the remainder.It is possible to write the cleanup code in one routine, with 3 loops of arbitrary dimension.Practice shows that on some platforms, this results in unacceptably large performance dropsfor matrices with dimensions which are not multiples of NB. Generating the code for allpossible cleanup cases is not di�cult, but is not a usable solution in practice. This wouldresult in NB3 routines, which would take an unacceptable amount of compilation time, andmake the user's executable too large.The key is to note that a majority of the time spent in cleanup code will be the casewhere only 1 dimension is not equal to NB. Therefore we generate roughly 4NB routinesfor cleanup: 3NB routines for the cases where a given dimension is less than NB. Theremaining routines accept arbitrary M and N , but K is known so that we can unroll theinner loop (critical for reducing loop overhead). Thus the NB routines generated for thegeneral case correspond to the di�ering values K is allowed. These routines where morethan one dimension is less than NB will still not be as e�cient as the other routines, butthe time spent in them should be negligible.3.4 Why Can't the Compiler Do This?It would be ideal if the compiler where capable of performing the optimization neededautomatically. However, compiler technology is far from mature enough to perform theseoptimizations automatically. This is true even for the BLAS on widely marketed machineswhich can justify the great expense of compiler development. Adequate compilers for lesswidely marketed machines are almost certain not to be developed.13



3.5 Requirements for Good PerformanceThe approach we have taken has two requirements necessary for achieving good perfor-mance:1. There is a cache from which the oating point unit can fetch operands cheaply (i.e.,a Level-1 cache)2. The platform possesses an adequate C compiler.If either of these requirements is not met, poor performance may result. There are threesystems where we attempted an ATLAS installation, and had unacceptable performance.The platforms, and the reason for the performance loss is summarized below:� Cray T3E: inadequate C compiler� Intel i860: inadequate C compiler� SGI R8000: No L1 cache accessible by oating point unitThe following sections describe how we drew these conclusions, and give some perfor-mance numbers so that the user can see the magnitude of the performance loss.3.5.1 E�ects of poor compilersIt might seem that the compiler would play little role in achieving performance, when thecode generator does so much of the work usually reserved for compilers (eg., loop unrolling,latency hiding, etc.). The compiler must still be capable of doing a good job of registermanagement and overall oating point unit control, however. Also, for the code other thanthe on-chip multiply, the compiler must do the brunt of optimization (this is a low-ordercost, however).We have several examples the role a compiler can play in determining performance.Perhaps the most direct evidence comes from our experiments on the SGI/CRAY T3E.The nodes of the T3E we had access to are DEC Alpha 21164 RISC processors, running at450MHz. The DEC AlphaStation 600 (AS600) discussed in this report has the same chip,running at 266MHz. Cray, however, supplies their own compiler rather than using DEC's,and here we see a large di�erence in performance. Despite having the same chip (with thesame L1 caches) running at roughly 1.7 times the clock rate, our timing numbers for theT3E are quite a bit slower than for the AS600. Table 1 shows the ATLAS timing numbersfor the two platforms. Matrix OrderPLATFORM 100 200 300 400 500 600 700 800 900 1000AS600 170.8 252.1 264.7 280.2 262.7 256.4 259.8 258.1 257.0 257.3T3E 171.6 183.1 186.6 189.7 189.3 192.6 193.1 194.4 194.1 193.9Table 1: ATLAS performance comparison on AS600 and T3E14



On the Intel i860, we were unable to get better than 12Mop for the on-chip multiplyitself, much less for the general case. We had access to only one compiler for this platform, sowe cannot state for certain that the compiler is at fault. However, the i860 has an L1 cache,and has no obvious architectural peculiarities that would explain this poor performance.The system supplied matrix multiply exceeds 40Mop, so we know there is plenty of roomin the achievable peak. Further, the case that got the best performance was with no Mor N loop unrolling, something that happens on no other platform. This anomalous resultmay be due to the compiler's inability to handle the increased register use inherit in outerloop unrolling.One option when faced with a poor C compiler is to try another language. In the futurewe hope to provide the option to generate the on-chip multiply in F77. For some of thelegacy platforms, this might o�er a speed improvement over coding in C.3.5.2 Performance loss from the lack of an on-chip cacheIf a system does not possess an on-chip cache, the blocking we perform will not help per-formance. The copy into the block format becomes a pure overhead. The only machine wehad access to where this is the case is the SGI R8000 processor, which possesses an on-chipcache which is not accessible by the oating point unit. The oating point unit has accessonly to the o�-chip cache (level 2). Our performance on this architecture is extremely poor.Table 2 shows the performance of ATLAS versus the vendor supplied BLAS.It should also be noted that the vendor-supplied BLAS usually achieve a much greaterperformance than this (performance in the upper 200's instead of lower), but apparentlythe leading dimension we used in our timings was poor, and performance was degraded.This merely shows that ATLAS cannot compete on this platform even with the system'spoor cases. It should be noted, however, that the Fortran77 BLAS available on netlib runat roughly 3.6Mop for all problem sizes for the same timing.Matrix OrderSYSTEM LIB 100 200 300 400 500 600 700 800 900 1000R8000 SYS 243.9 289.6 207.0 210.4 213.5 213.5 214.1 213.5 213.6 214.5R8000 ATL 111.8 138.1 146.1 145.9 148.4 149.1 147.3 145.9 146.4 145.4Table 2: DGEMM performance in MFLOPS for the SGI R8000 processor3.6 Other BLASAt this point we consider how the general method outlined in this section can be extendedto other BLAS.With the exception of the triangular solve, all level 3 BLAS can naturally be expressedin terms of the previously mentioned on-chip matrix multiply. This means that no moresystem-speci�c code must be generated to support these routines, which implies our instal-lation time should not increase when these additional BLAS are supported. To supportthese routines should require only the development of the o�-chip codes. In the meantime,15



a gemm-based or \poor-man's BLAS" [7] may be utilized in order to generate a wider setof Level 3 BLAS.The triangular solve can be written in terms of matrix multiply as well, and furtherresearch will be needed to see if this is a win compared with directly generating an on-chip solve. It seems likely that optimal performance would demand a mixture of these twoapproaches.The level 1 and 2 BLAS require a di�erent approach. In level 3, the luxury of O(N3)operations allows us to perform data copies, and thereby concentrate most optimization,and thus system-speci�c code, in a few routines. When the order of operations to be doneis the same as your data, this is not feasible.For these routines, it will likely be necessary to generate code for each operation. Thus,for instance, a separate code would be generated for the transpose cases of GEMV. Thiswill lead to an explosion of routines to be generated and timed, implying extremely longinstallation times.One promising idea is to create more general scheme which tries mainly to optimize thememory fetch, which would be generally usable within a level, and perform the completegeneration/timing sequence for only a few select routines of special interest (eg. GEMV).4 ResultsIn this section we present single and double precision timings across various platforms.These timings are di�erent than many BLAS timings in that we ush cache before eachcall, and set the leading dimensions of the arrays to greater than the number of rowsof the matrix (all timings in this section set the leading dimension to the maximal sizetimed, 1000). This means our performance numbers, even when timing the same routine(for instance the vendor-supplied DGEMM) are lower than those reported in other papers.However, these numbers are in general a much better estimate of the performance a userwill see in his application. We devote a brief section to this topic.Next, we show timings for square matrix multiply on all systems. To demonstrate thatthe performance shown in these timings translates to actual applications, we then give LUtimings for various systems. On platforms that support it, we show that these routinesrespond well to threading.Table 3 shows the con�gurations of the various platforms which we have installed andtimed the package on.Appendix A has several tables providing further details. Table 12 shows the systemBLAS that were used for the timings. We should note that we did not have access to HP'smost optimal BLAS, and so had to compare against their vector library (which describesitself as optimized for the 9000 series) instead. Tables 13 and 14 show the compiler versionand ags used in compiling the on-chip matrix multiply.16



Abbr. Full Clock L1 Data L1 Instr L2 CacheName Name (MHz) Cache(KB) Cache (KB) (KB/MB)AS255 DEC AlphaStation 255 300 16 16 1MBAS600 DEC AlphaStation 600 5/266 266 8 8 96KB & 4MBHP9K/735 HP 9000/735/125 125 256 256 NONEHP9K/715 HP 9000/715/50 50 64 Unknown NONEPOWER2 IBM Power2 (thin node) 120 128 32 NONEPOWERPC IBM PowerPC 604 (high node) 112 16 16 1MBP5 Pentium 166 8 8 256KBP5MMX Pentium with MMX 150 16 16 256KBPPRO Pentium Pro 200 8 8 512KBPII266 Pentium II 266 16 16 512KBPII300 Pentium II 300 16 16 512KBR4600 SGI R4600 IP22 100 16 16 NONER5000 SGI R5000 IP32 180 32 32 512KBR10Kip28 SGI R10000 IP28 195 32 32 1MBR10Kip27 SGI R10000 IP27 195 32 32 4MBMS70 Sun MicroSPARC II 70 70 8 16 NONEUS140 Sun Ultra1 Model 140 143 16 16 512KBUS2170 Sun Ultra2 Model 2170 167 16 16 512KBUS2200 Sun Ultra2 Model 2200 200 16 16 1MBTable 3: System Summary
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4.1 Results with varying timing methodsThere are numerous ways to perform timings. Perhaps the most common method is togenerate the matrices A B and C, and then call the appropriate matmul routine. Dependingon the matrix and cache sizes, this can make a large di�erence in the timings. For medium-sized matrices, a signi�cant portion of the matrices will remain in L2 cache from the matrixgeneration, and thus the memory costs of main memory will not be as prevalent in thetimings. For very small matrices, a signi�cant portion of the matrices may remain in L1cache, and thus the timings will be truly misleading.Some timers will perform the same operation X times in a row, and report the besttiming obtained. This will result in even more optimistic numbers. Obviously, if all matrices�t into some level of the cache, the timings will enjoy cache reuse just as above. However, ifonly one matrix will �t into cache, there may still be signi�cant cache reuse. For instance,if the o�-chip multiply has A in the inner loop, and A �ts entirely into some level of cache,the performance reported will not reect the cost of bringing A into that level of cache.Finally, many timers set LDA = M ; in other words, they make all of their matricescontiguous memory. This rules out problems where an ill-chosen leading dimension causesonly part of the cache to be used, for instance. It also insures maximal cache reuse. Unfor-tunately, in actual applications, it is rarely the case that DGEMM is called with the leadingdimension equal to the size of matrix (usually, DGEMM is called on submatrices of somelarger array).In all of the timings presented in this paper, a section of memory corresponding to thesize of the L2 cache is written to and read from after the matrix generation, so that thematrices must be fetched from main memory by the matmul. We set the leading dimensionto the maximal size being timed.It is readily observed that the method we are using gives a lower bound on performance,while the more commonly used method gives an upper bound. Why then do we not alsojust report the upper bound? The reason is that this upper bound will be achieved onlyin very particular applications (ones that repeatedly use the same memory space, withoutcorrupting the cache between invocations), where the problem size is small or the L2 cacheis very large. In short, most users will never see it, and these timings are therefore notindicative of true performance.Use of appropriate timings is much more important when one is basing software decisionsupon it, as our package does. In this case, timing the matmul where things are in cachecauses non-optimal code to be produced.To give the reader a feeling for the kinds of di�erences the method of timing can cause,we provide a few examples below. In these tables, method 1 is with LDA = 1000, andcache ushing before and after the call. Method 2 is setting LDA = M , and running theproblem 5 times, and choosing the best result. Note that we use the system BLAS for thesetimings, so that it is clear this is not speci�c to our implementation.First, for the machines with large L2 caches, table 4 shows the standard sizes we timein the rest of the paper. As one would expect, as the matrices get larger, caching e�ectsplay less and less of a role.Table 5 shows the same thing for smaller sizes, where the problem is more severe. ThePentium II timings use ATLAS, since we did not have access to the vender BLAS un-18



der Linux. TIMING Matrix OrderSYSTEM METHOD 100 200 300 400 500 600 700 800 900 1000AS600 1 227.7 264.4 278.0 282.0 288.8 291.8 291.3 290.3 286.0 291.7AS600 2 341.5 309.3 323.6 302.2 304.9 291.0 296.4 291.5 286.2 295.1R10Kip27 1 307.7 307.2 316.2 311.6 296.8 317.9 319.5 316.0 313.0 316.8R10Kip27 2 317.2 331.5 325.6 317.1 320.3 319.8 324.8 318.6 320.0 318.8Table 4: Cache ushing with large matricesTIMING Matrix OrderSYSTEM METHOD 50 60 70 80 90 100AS600 1 128.1 147.5 140.6 209.8 186.7 227.7AS600 2 256.1 442.6 351.4 349.7 298.8 341.5PII300 1 87.1 103.1 116.4 123.8 134.0 143.0PII300 2 164.1 173.6 179.3 182.2 184.0 186.7R10Kip28 1 151.4 176.0 205.5 223.0 232.8 224.7R10Kip28 2 299.4 300.4 298.8 301.0 300.8 304.4US2200 1 126.7 141.6 137.9 150.3 150.7 153.1US2200 2 152.7 166.9 158.4 162.2 158.0 159.4Table 5: Cache ushing with small matrices
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4.2 Square matrix multiplyTable 6 shows the theoretical and observed peaks for matrix multiplication. By observedpeak, we mean the best repeatable timing produced on the platform, for any problem size.Where the observed peak di�ers from the best timings reported in tables 7 and 8, thedi�erence is usually due to using a multiple of the blocking factor.Abbr. Clock Theoretical DGEMM (MFLOPS) SGEMM (MFLOPS)Name Rate (MHz) Peak VENDOR ATLAS VENDOR ATLASAS255 300 Unknown 141.5 175.5 199.6 232.9AS600 266 532 299.7 282.0 381.8 328.6HP9K/715 50 100 20.0 49.3 23.2 60.3HP9K/735 125 250 59.3 119.6 61.5 146.9POWER2 120 480 337.5 444.3 374.0 450.0POWERPC 112 224 70.1 100.0 106.9 131.6P5 166 166 { 75.5 { 91.9P5MMX 150 150 { 74.5 { 87.3PPRO 200 200 { 145.4 { 164.2PII266 266 266 { 170.2 { 215.8PII300 300 300 { 193.7 { 239.1R4600 100 33.3 18.9 21.0 21.7 22.9R5000 180 360 78.8 111.2 119.9 219.3R10Kip28 195 390 238.7 258.3 307.8 304.4R10Kip27 195 390 328.5 306.2 353.2 322.3MS70 70 23.33 23.2 22.0 25.0 23.5US140 143 286 109.8 164.5 130.3 193.0US2170 167 334 131.6 188.1 151.9 227.6US2200 200 400 157.6 221.7 186.1 297.8Table 6: Theoretical and observed peak MFLOPSTable 7 (8) shows the times for the vendor-supplied dgemm (sgemm) and ATLAS dgemm(sgemm) across all platforms, with problems sizes ranging from 100 to 1000. In these tables,the LIB column indicates which library the timings are for:� SYS: system or vendor-supplied GEMM� ATL: ATLAS GEMM
20



Matrix OrderSYSTEM LIB 100 200 300 400 500 600 700 800 900 1000AS255 ATL 157.6 159.2 150.8 167.9 165.5 168.0 169.8 169.8 171.5 170.4AS255 SYS 120.5 135.5 141.1 138.8 141.1 140.0 141.7 140.4 139.4 140.8AS600 ATL 170.8 252.2 267.3 282.0 264.6 256.9 259.1 262.5 259.9 259.8AS600 SYS 227.7 264.4 286.7 288.9 294.4 290.6 292.5 290.7 285.9 290.1HP9K/735 ATL 100.0 114.3 114.9 112.3 116.8 115.5 116.7 117.8 119.6 119.3HP9K/735 SYS 50.0 59.3 54.0 43.4 42.6 41.8 41.1 41.5 40.7 41.2HP9K/715 ATL 40.0 44.4 47.0 46.7 47.6 49.3 47.8 48.7 48.9 48.7HP9K/715 SYS 20.0 13.6 16.0 9.2 9.4 8.8 9.2 9.2 | |POWER2 ATL | | 415.4 441.4 423.7 432.0 436.8 428.5 428.8 421.9POWER2 SYS | | 337.5 304.8 320.5 289.9 300.9 295.1 313.5 294.1POWERPC ATL 100.0 94.1 98.2 97.7 92.9 93.7 93.5 89.7 89.8 89.4POWERPC SYS 66.7 66.7 70.1 69.6 70.0 67.7 67.7 68.3 68.1 66.9P5 ATL 65.7 68.7 73.4 75.5 75.2 72.1 73.1 | | |P5MMX ATL 66.0 68.7 70.7 72.6 73.4 74.0 74.2 74.5 | |PPRO ATL 116.8 135.6 136.5 140.8 143.1 142.9 144.4 143.1 142.2 142.1PII266 ATL 123.8 159.6 160.0 163.6 168.1 170.2 168.9 170.2 169.0 167.6PII300 ATL 141.5 176.8 182.5 187.5 192.8 193.5 192.8 192.2 191.1 190.9R4600 ATL 19.2 20.1 20.5 20.6 20.6 20.7 20.8 20.8 20.8 20.9R4600 SYS 17.7 18.4 18.6 18.7 18.8 18.9 18.9 18.9 18.9 19.0R5000 ATL 97.3 107.2 107.4 106.7 108.7 109.2 108.7 107.9 109.4 108.9R5000 SYS 71.8 78.3 76.0 78.8 77.9 77.7 76.3 76.7 75.3 76.4R10Kip28 ATL 203.8 253.6 256.6 243.9 238.6 242.9 242.2 247.0 246.6 247.7R10Kip28 SYS 216.7 218.7 238.4 216.6 223.2 235.0 210.0 230.4 220.3 226.6R10Kip27 ATL 232.8 274.5 292.3 293.4 306.2 304.4 303.6 298.5 296.7 296.7R10Kip27 SYS 265.4 308.8 319.9 314.1 319.4 327.9 328.3 328.5 328.1 322.1MS70 ATL 20.0 21.1 21.5 21.6 21.8 21.9 22.0 21.9 22.0 22.0MS70 SYS 21.9 22.8 22.9 23.1 23.1 23.1 23.1 23.2 22.9 22.5US140 ATL 128.6 157.2 159.7 160.7 162.5 164.1 161.7 159.8 162.8 161.7US140 SYS 103.8 109.8 109.1 106.4 108.7 108.1 108.0 103.1 106.3 105.4US2170 ATL 147.5 179.9 188.1 185.4 179.8 178.4 182.7 184.9 186.4 183.3US2170 SYS 120.1 126.3 125.4 124.4 123.0 122.3 123.2 122.9 120.2 119.6US2200 ATL 178.1 210.6 205.5 212.2 214.5 216.7 216.4 216.6 221.7 212.1US2200 SYS 147.1 157.6 156.6 157.9 155.9 152.0 152.1 154.3 151.2 150.0Table 7: System and ATLAS DGEMM comparison across platforms21



Matrix OrderSYSTEM LIB 100 200 300 400 500 600 700 800 900 1000AS255 ATL 170.8 221.5 228.6 229.7 222.2 226.9 225.4 227.1 226.4 228.8AS255 SYS 186.3 192.9 194.8 193.7 197.6 197.2 197.0 197.9 196.1 198.7AS600 ATL 227.7 298.1 304.0 316.8 316.2 318.4 312.2 315.4 312.1 318.6AS600 SYS 292.7 348.8 352.4 359.3 373.9 371.3 377.5 379.5 372.8 379.4HP9K/715 ATL 50.0 37.1 55.7 58.2 59.0 59.6 59.6 60.3 60.0 60.2HP9K/715 SYS 14.3 23.2 18.6 10.7 11.7 11.5 11.2 10.5 10.3 10.1HP9K/735 ATL | 145.5 142.1 143.8 144.5 145.9 143.2 146.9 145.7 146.4HP9K/735 SYS 50.0 61.5 56.2 46.5 45.7 45.3 45.2 43.5 43.1 42.8POWER2 ATL | | 450.0 412.9 431.0 419.4 420.9 424.9 430.1 426.5POWER2 SYS | | 360.0 365.7 367.6 357.0 363.0 363.1 360.0 363.6POWERPC ATL 101.2 124.0 130.2 131.0 131.6 131.6 131.4 129.7 129.4 131.0POWERPC SYS 94.4 102.5 105.3 99.2 106.5 103.5 106.9 97.2 101.7 106.2P5MMX ATL 77.1 80.9 83.2 84.7 85.7 86.4 86.3 86.6 86.5 85.9PPRO ATL 137.8 154.7 157.3 159.4 159.8 161.2 160.5 161.7 163.0 162.5PII266 ATL 153.8 200.1 209.0 210.6 213.8 212.8 214.3 215.4 214.9 215.8PII300 ATL 167.0 215.1 227.8 231.1 234.4 230.6 237.0 237.6 237.0 238.1R5000 ATL 176.7 207.8 215.8 215.9 209.0 215.5 213.0 215.8 212.4 214.2R5000 SYS 105.3 114.9 119.3 115.7 116.6 118.1 116.3 116.7 118.1 117.1R10Kip28 ATL 220.2 286.5 301.2 288.4 290.7 288.4 286.8 289.9 288.7 290.2R10Kip28 SGI 269.9 285.5 300.5 279.0 298.3 302.2 300.9 298.9 300.3 300.7R10Kip27 ATL 284.7 308.9 317.8 323.4 321.6 326.0 326.8 326.7 325.8 323.7R10Kip27 SYS 321.5 339.4 345.4 347.8 340.4 343.7 340.7 348.5 349.3 349.2MS70 ATL 21.4 22.9 23.0 23.3 23.3 23.5 23.5 23.6 23.6 23.6MS70 SYS 23.8 24.6 24.8 25.0 24.9 25.0 24.9 25.0 24.9 25.0US140 ATL 156.7 171.6 184.6 190.1 191.0 190.6 192.7 193.0 191.8 192.7US140 SYS 126.1 128.6 132.0 130.1 130.9 130.0 130.7 131.0 128.9 128.8US2170 ATL 189.3 218.3 227.6 224.3 223.3 223.6 223.2 226.9 225.9 226.2US2170 SYS 139.6 150.5 151.9 150.6 150.8 150.2 149.7 148.2 147.8 147.7US2200 ATL 233.2 273.8 280.4 278.4 280.9 285.1 282.7 283.9 287.6 285.1US2200 SYS 171.9 182.5 187.2 187.7 185.4 183.4 182.7 180.9 178.2 178.8Table 8: System and ATLAS SGEMM comparison across platforms
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4.3 LU timingsIn order to demonstrate that these routines provide good performance in practice, we timedLAPACK's LU factorization linking to both the vendor supplied DGEMM, and the oneproduced by ATLAS. The other BLAS used by LU were the fastest available, usually theones supplied by the vendor.The blocking factor for the factorization to use was determined by timing all blockingfactors between 1 and 64, and choosing the one that performed best for the LU factorizationof a matrix of order 500. As with previous timings, caches were ushed before the start ofthe algorithm.Table 9 shows the LU performance on several platforms. The LIB column is overloadedto convey both the DGEMM used (A for ATLAS, S for system), and the blocking factorchosen (for instance, A(40) in this column indicates a run using ATLAS's DGEMM, usinga blocking factor of 40). Matrix OrderSYSTEM LIB 100 200 300 400 500 600 700 800 900 1000AS255 A(44) 49.2 70.0 85.0 94.9 98.6 102.4 105.0 108.2 110.0 111.0AS255 S(32) 60.6 83.4 97.1 101.7 101.9 103.7 104.4 105.5 105.4 105.2AS600 A(56) 89.4 126.7 145.9 157.5 167.7 175.0 181.1 178.1 182.0 180.8AS600 S(32) 108.8 156.1 186.7 198.7 217.8 217.0 231.3 217.2 213.6 204.8POWERPC A(20) 45.5 52.3 57.1 54.0 53.8 55.2 54.6 55.6 55.2 57.4POWERPC S(22) 47.8 51.3 50.0 49.6 51.8 52.2 52.2 51.4 53.6 53.7POWER2 A(60) 170.1 230.6 225.0 213.3 203.3 211.8 211.7 218.8 228.2 233.9POWER2 S(31) 203.3 224.6 236.8 224.6 213.7 200.0 198.8 191.8 200.0 202.0R10Kip28 A(64) 110.0 146.0 171.1 166.8 160.7 163.2 159.3 156.3 159.8 160.1R10Kip28 S(56) 129.4 167.7 190.4 185.7 165.7 167.6 162.3 151.4 166.8 163.4R10Kip27 A(40) 146.7 181.0 206.1 214.2 226.0 226.4 232.2 227.4 226.9 221.7R10Kip27 S(38) 156.4 199.4 226.5 236.9 248.6 250.8 256.2 252.7 249.7 243.5PII A(35) 65.3 92.1 102.5 105.1 109.1 112.7 116.4 119.2 122.1 124.3US2200 A(36) 103.6 132.5 140.8 147.9 147.5 151.4 155.6 157.9 161.0 160.3US2200 S(32) 107.4 126.6 133.3 134.2 127.2 130.9 133.6 132.5 132.8 125.7Table 9: Double precision LU timings on various platformsThe reader may notice that the LU times are not in general as good as the GEMMtimings. The �rst reason is that we have made sure to include the platforms where eitherthe vendor was faster, or our win was marginal, so we can see any adverse e�ects in detail.In the similar vein, it can be noted that the LU timings for the platform R10Kip28 areworse for ATLAS than using the vendor DGEMM, even though ATLAS was faster for largematrix multiplication. This is due to the fact that LU does not perform DGEMM on theentire matrix, but rather uses a rank-K update. To get a matrix multiply of size equalto the square matrix multiply of order 200 (the �rst case where ATLAS beat the vendersupplied BLAS), one must run a 625 size LU. Even then, subsequent DGEMM calls will beon smaller matrices. This is why we see these discrepancies in DGEMM and LU timings.In order to demonstrate that matrix size is the primary reason for this di�erence, we23



show performance for very large LU factorizations on two select platforms in table 10Matrix OrderSYSTEM LIB 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000POWER2 A(60) 239.2 246.7 252.1 256.6 261.6 261.6 270.2 276.1 276.3 278.5POWER2 S(31) 204.5 205.9 212.2 208.4 215.1 215.0 213.7 217.3 217.2 221.2R10Kip28 A(64) 161.2 161.1 162.8 163.2 163.9 162.4 165.9 163.5 167.0 166.9R10Kip28 S(56) 165.0 161.7 161.7 159.9 164.4 142.9 155.8 157.8 155.7 147.9Table 10: Asymptotic double precision LU performance4.4 Threaded GEMM timingsSeveral of the platforms we have surveyed have multiple processors accessible throughthreading. We have implemented a simple parallel matrix multiply using pthreads. Ta-ble 11 shows the threaded timings for these platforms. Of these architectures, only SUNprovided a vendor-supplied threaded multiply, so we cannot report system numbers forother platforms. Further, the POWERPC unrepeatably produced incorrect results; thisproblem has not been tracked down further.In the table, the column LIB has been overloaded to provide the number of processorsavailable. A(2) indicates ATLAS run on two processors; S(8) indicates the system or vendorsupplied DGEMM run on eight processors. Matrix OrderSYSTEM LIB 100 200 300 400 500 600 700 800 900 1000POWERPC A(8) 140.1 247.9 307.1 340.6 320.6 343.7 381.9 381.9 414.6 423.9PPRO A(2) 147.2 190.3 210.4 231.8 240.1 239.3 239.6 245.4 246.8 210.9PII300 A(2) 165.4 292.3 313.7 319.3 350.4 346.6 349.1 351.4 341.6 348.2US2200 A(2) 235.4 412.2 421.0 413.6 435.3 404.1 431.5 434.1 415.9 445.4US2200 S(2) 264.9 306.6 305.9 320.4 303.8 305.7 302.7 298.3 296.4 297.2Table 11: Threaded DGEMM timings across various platforms
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5 Comparison to Other WorkThere are other e�orts to produce optimal codes through code generation. The closestparallel to ATLAS is seen in the PHiPAC [3] e�ort. PHiPAC also deals with using a codegenerator for BLAS work. Since PhiPAC predates ATLAS by several years, it is natural toask what the di�erences between the packages are, and perhaps why the ATLAS projectwas begun.ATLAS was started because we needed an optimized DGEMM for Pentium's runningLinux. The authors of PhiPAC reported disappointing performance for PHiPAC on theLinux/Intel platform (this is no longer the case). When we examined the issue of creatingan e�cient DGEMM for this platform, it was readily apparent that it would require only alittle more e�ort to make the work portable.If this answers the question of why ATLAS was begun in the �rst place, it does not tellhow it is di�erent from PHiPAC. The main di�erence is in the complexity of the approach.ATLAS puts all system-speci�c code in one square on-chip multiply. It then uses the o�-chip code to coerce all problems to this format. ATLAS further counts on a level 1 cachebeing accessible by the oating point unit, in order to be able to make the simplifying stepof writing the on-chip multiply. This means we need generate/time only one routine foreach new platform. This has resulted in a code generator that �nishes in a relatively shorttime (generally, 1-2 hours), even though the operations being timed are arti�cially inatedin order to ensure repeatability.PHiPAC, on the other hand, chose the more comprehensive approach of directly op-timizing each individual operation. This means di�erent code will be generated for eachtranspose combination, for instance. This results in a lengthy installation process (usually,a matter of days), as multiple cases for every routine must be generated and timed.Neither of these approaches are \better" than the other. The approach used by PHiPACwill probably yield better performance for very small problems (since they may avoid anyunnecessary data copies), or on machines with no L1 cache. The same methods of codegeneration used in the level 3 BLAS should work pretty much unchanged for level 1 and 2.However, the cost of this increased generality is seen in the longer installation time, and inperformance which may be more sensitive to various factors such as poorly chosen leadingdimensions (ATLAS is somewhat shielded from such factors by its data copy), etc.The best way to determine which of these packages a user should use is to time themwith the speci�c application. If the user wishes to compare raw performance as reportedin the publications, it should be mentioned that the PHiPAC timing method is not thesame as used in this paper. Current PHiPAC timings as reported in [3] use timing method2 discussed in section 4.1. This means that their performance numbers do not in generalinclude the costs of bringing operands into cache. Section 4.1 can give the reader an ideaof the e�ects of this.6 Downloading ATLASThe alpha release of ATLAS can be found at www.netlib.org/utk/projects/atlas. In-stallation instructions are provided in the supplied README �le.25



7 Future WorkCurrently the code generator in ATLAS works only for matrix-multiplication, which is thebasic operation underlying other BLAS. We will extend this generator to other Level 1, 2and 3 BLAS. For the other Level 3 BLAS, we will consider using the GEMM-based Level3 BLAS [7], which implement all the other Level 3 BLAS (solving triangular systems formany right hand sides, etc.) in terms of matrix-multiplication. The next most importantoperation is matrix-vector multiplication. We will develop a version of ATLAS that canproduce a full set of BLAS, run it on a variety of architectures of interest, and make itpublicly available for others to perform their own optimizations on architectures, problemshapes, sizes and alignments of their choice.We are planning to study other architectures of interest, including development of costmodels, prototyping hand-written BLAS, and developing algorithmic generators appropriateto these architectures. Future RISC processors with vector instructions will require looplengths that match the optimal vector lengths. SMPs will require load balancing whileavoiding \false sharing" of cache lines by di�erent processors. Di�erent ways of threadmanagement will also have to be considered.We are planning to develop and re�ne algorithms that exploit sparse BLAS. Sparsematrix-vector multiplication is a essential kernel in most iterative algorithms for large matrixproblems. Optimizing its performance requires a number of both architecture and matrixdependent transformations [8]. We will study how to extend ATLAS to optimize sparse-matrix vector multiplication, where the optimizations may depend on the sparsity structure.8 ConclusionsWe have demonstrated the ability to produce highly optimized matrix multiply for a widerange of architectures based on a code generator that probes and searches the system foran optimum set of parameters. This avoids the tedious task of generating by hand routinesoptimized for a speci�c architecture. We believe these ideas can be expanded to cover notonly the Level 3 BLAS, but Level 2 BLAS as well. In addition there is scope for additionaloperations beyond the BLAS, such as sparse matrix vector multiplication, and FFTs.
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A BLAS and compiler detailsThis section exists to provide further details regarding the compilers and BLAS used in ourtimings. Table 12 shows the system BLAS that were used for the timings. Tables 13 and14 show the compiler version and ags used in compiling the on-chip matrix multiply.System link versionAS255 -ldxml DXML V3.3aAS600 -ldxml DXML V3.2POWER2 -lesslp2 essl 2.2.2.2POWERPC -lessl essl 2.2.2.2HP9K/715 -lvec Revision 73.4HP9K/735 -lvec Revision 73.14R4600 -lblas Standard Execution Environment (Fortran 77, 4.0.2)R5000 -lblas Standard Execution Environment (Fortran 77, 7.1)R10Kip27 -lblas Standard Execution Environment (Fortran 77, 7.1)R10Kip28 -lblas Standard Execution Environment (Fortran 77, 6.2)MS70 -xlic lib=sunperf Sun Performance Library 1.2US140 -xlic lib=sunperf Sun Performance Library 1.2US2170 -xlic lib=sunperf Sun Performance Library 1.2US2200 -xlic lib=sunperf Sun Performance Library 1.2Table 12: BLAS library and version
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System Compiler versionAS255 cc Digital UNIX Compiler Driver 3.11DEC C V5.2-033 on Digital UNIX V4.0 (Rev. 564)AS600 cc Digital UNIX Compiler Driver 3.11DEC C V5.2-033 on Digital UNIX V4.0 (Rev. 564)POWER2 xlC.C V3.1.4.0POWERPC xlC.c V3.1.4.0HP9K/715 HP92453-01 A.09.75 HP C Compiler (CXREF A.09.75)HP9K/735P5 gcc version 2.7.2.1P5MMX gcc version 2.7.2.1PPRO gcc version 2.7.2.2.f.2PII266 gcc version 2.7.2.1.f.1PII300 gcc version 2.7.2.1R4600 Base Compiler Development Environment, 5.3R5000 Base Compiler Development Environment, 7.0R10Kip27 Compiler Development Environment, 7.1R10Kip28 Base Compiler Development Environment, 7.0MS70 cc: WorkShop Compilers 4.2 30 Oct 1996 C 4.2US140 cc: WorkShop Compilers 4.2 30 Oct 1996 C 4.2US2170 cc: WorkShop Compilers 4.2 30 Oct 1996 C 4.2US2200 cc: WorkShop Compilers 4.2 30 Oct 1996 C 4.2Table 13: Compiler and version
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System Compiler & agsAS255 cc -arch host -tune host -std -assume aligned_objects -O5AS600 cc -arch host -tune host -std -assume aligned_objects -O5POWER2 xlc -qarch=pwr2 -qtune=pwr2 -qmaxmem=-1 -qfloat=hssngl-qansialias -qfold -OPOWERPC xlc -qarch=ppc -qtune=604 -qmaxmem=-1 -qfloat=hssngl-qansialias -qfold -OHP9K/735 -Aa +O2HP9K/715 -Aa +O2P5 gcc -fomit-frame-pointer -OP5MMX gcc -fomit-frame-pointer -OPPRO gcc -fomit-frame-pointer -OPII266 gcc -fomit-frame-pointer -OPII300 gcc -fomit-frame-pointer -OR4600 cc -O2 -mips2 -Olimit 15000R5000 cc -n32 -mips4 -r5000 -OPT:Olimit=15000 -TARG:platform=ip32_5k-TARG:processor=r5000 -LOPT:alias=typed -LNO:blocking=OFF -O2R10Kip27 cc -64 -mips4 -r10000 -OPT:Olimit=15000 -TARG:platform=ip27-LOPT:alias=typed -LNO:blocking=OFF -O2R10Kip28 cc -64 -mips4 -r10000 -OPT:Olimit=15000 -TARG:platform=ip28-LOPT:alias=typed -LNO:blocking=OFF -O2MS70 cc -xchip=micro2 -xarch=v8 -dalign -fsingle -fsimple=1 -xsafe=memUS140 cc -dalign -fsingle -xtarget=ultra1/140 -xO5 -fsimple=1 -xsafe=memUS2170 cc -dalign -fsingle -xtarget=ultra2/2170 -xO5 -fsimple=1 -xsafe=memUS2200 cc -native -dalign -fsingle -xO5 -fsimple=1 -xsafe=memTable 14: Compiler ags
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DGEMM SGEMMSystem NB MU NU LAT NB MU NU LATAS255 44 4 2 0 56 8 1 0AS600 28 4 2 3 40 4 2 4POWER2 60 2 6 0 64 10 2 0POWERPC 20 4 5 0 56 4 4 0HP9K/715 60 2 2 3 56 2 2 0HP9K/735 60 2 2 0 56 2 2 0P5 24 4 1 3P5MMX 36 2 2 3 56 4 1 3PPRO 28 1 2 4 44 1 7 0PII266 40 1 2 0 56 2 2 0PII300 36 2 2 0 56 7 1 0R4600 28 2 2 3 40 4 1 3R5000 36 2 2 4 40 2 2 4R10Kip27 40 2 2 6 40 2 2 6R10Kip28 40 2 2 3 40 2 2 6MS70 28 2 2 0 40 2 2 1US140 36 2 3 6 40 3 2 6US2170 36 2 3 5 40 2 3 5US2200 36 2 3 6 60 2 3 6Table 15: On-chip multiply details across systemsB On-chip multiply detailsTable 15 below shows details of the loop unrollings a blocking factors for the on-chip multiplyon various systems. NB is the blocking factor, MU is the unrolling along the M loop, NUthe unrolling along the N loop, and LAT is the latency factor.
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