
Sparse Gaussian Elimination on High PerformanceComputersbyXiaoye S. LiB.S. (Tsinghua University) 1986M.S., M.A. (Penn State University) 1990A dissertation submitted in partial satisfaction of therequirements for the degree ofDoctor of PhilosophyinComputer Sciencein theGRADUATE DIVISIONof theUNIVERSITY of CALIFORNIA at BERKELEYCommittee in charge:James W. Demmel, ChairKatherine A. YelickJohn R. GilbertPhillip Colella 1996



Sparse Gaussian Elimination on High PerformanceComputersCopyright 1996byXiaoye S. Li



1AbstractSparse Gaussian Elimination on High Performance ComputersbyXiaoye S. LiDoctor of Philosophy in Computer ScienceUniversity of California at BerkeleyJames W. Demmel, ChairThis dissertation presents new techniques for solving large sparse unsymmetriclinear systems on high performance computers, using Gaussian elimination with partialpivoting. The e�ciencies of the new algorithms are demonstrated for matrices from various�elds and for a variety of high performance machines.In the �rst part we discuss optimizations of a sequential algorithm to exploit thememory hierarchies that exist in most RISC-based superscalar computers. We begin withthe left-looking supernode-column algorithm by Eisenstat, Gilbert and Liu, which includesEisenstat and Liu's symmetric structural reduction for fast symbolic factorization. Ourkey contribution is to develop both numeric and symbolic schemes to perform supernode-panel updates to achieve better data reuse in cache and 
oating-point registers. A furtherre�nement, a two-dimensional matrix partitioning scheme, enhances performance for largematrices or machines with small caches. We conduct extensive performance evaluations onseveral recent superscalar architectures, such as the IBM RS/6000-590, MIPS R8000 andDEC Alpha 21164, and show that our new algorithm is much faster than its predecessors.The advantage is particularly evident for large problems. In addition, we develop a detailedmodel to systematically choose a set of blocking parameters in the algorithm.The second part focuses on the design, implementation and performance analysisof a shared memory parallel algorithm based on our new serial algorithm. We parallelize thecomputation along the column dimension of the matrix, assigning one block of columns (apanel) to a processor. The parallel algorithm retains the serial algorithm's ability to reusecached data. We develop a dynamic scheduling mechanism to schedule tasks onto availableprocessors. One merit of this approach is the ability to balance work load automatically.The algorithm attempts to schedule independent tasks to di�erent processors. When thisis not possible in the later stage of factorization, a pipeline approach is used to coordinatedependent computations. We demonstrate that the new parallel algorithm is very e�cienton shared memory machines with modest numbers of processors, such as the SGI PowerChallenge, DEC AlphaServer 8400, and Cray C90/J90. We also develop performance modelsto study available concurrency and identify performance bottlenecks.James W. DemmelDissertation Committee Chair
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1Chapter 1IntroductionWe investigate new techniques in direct methods for solving large sparse nonsym-metric linear systems of equations. Such linear systems arise in diverse areas such as sparseeigenvalue computation, solving discrete �nite-element problems, device and circuit sim-ulation, linear programming, chemical engineering, and 
uid dynamics modeling. Thesedemanding and important applications can immediately bene�t by any improvements inlinear equation solvers.The motivation for this research is two-fold. First, existing sparse algorithms andcodes are much slower than their dense counterparts, especially on modern RISC worksta-tions. These machines typically have multiple pipelined functional units, pipelined 
oating-point units, and fast but relatively small cache memory to hide the main memory accesslatency. These workstations provide a cost-e�ective way to achieve high performance andare more widely available than traditional supercomputers. The emergence of these novelarchitectures has motivated the redesign of linear algebra software for dense matrices, suchas the well-known LAPACK library [7]. The earlier algorithms used in LINPACK and EIS-PACK are ine�cient because they often spend more time moving data than doing useful
oating-point operations. One of the chief improvements of many new algorithms in LA-PACK is to use block matrix operations, whose improved data locality permits exploitationof cache and multiple functional units. Signi�cant performance gains have been observedover the unblocked algorithms [7]. The analogous algorithmic improvements are muchharder for sparse matrix algorithms, because of their irregular data structures and memoryaccess patterns. This thesis will address this issue by studying one class of such algorithms,sparse LU factorization. In essence, our new algorithm identi�es and exploits the denseblocks (supernodes) that emerge during the sparse LU factorization.Our second motivation is to exploit parallelism in order to solve the ever largerlinear systems arising in practice. Twenty years ago, the day-to-day linear systems peoplewanted to solve usually had only tens or hundreds of unknowns (see Table 1.6.1 in Du� etal. [36]). In a more recent and widely used Harwell-Boeing collection of sparse matrices [37],the largest nonsymmetric system has about 5000 unknowns. Today, it is not uncommon toencounter systems involving 50,000 unknowns, for example, from three-dimensional simula-tions. Examples of several large matrices will be used in our study (see Table 4.1). Solvingsuch systems is made possible by faster processors and larger and cheaper main memory.



2However, e�cient algorithms are crucial to take advantage of the new architectures. Fur-thermore, parallel processing capabilities enlarge the problem domains under consideration.We will primarily focus on the runtime and storage e�ciency of the new algorithms on largeproblems, in particular, the largest ones that can �t in the main memory.In parallel processing, computational power can be multiplied by connecting tensor hundreds of o�-the-shelf processors. Memory access locality is even more important forhigh performance and scalability than on a sequential machine. For example, on a bus-connected system, frequent access to globally shared memory by di�erent processors willsaturate the shared bus. On a distributed memory machine, processors communicate toeach other by explicitly sending messages. Accessing non-local data by receiving a messageis often orders of magnitude more costly than accessing local memory. It is vital to designour algorithms to be aware of the non-uniform memory access times inherent in all machines.We will show that the concept of locality plays a central role in designing and implementinge�cient algorithms on modern high performance architectures.The remainder of the dissertation is organized as follows. Chapter 2 brie
y re-views the existing factorization techniques used to solve general sparse unsymmetric linearsystems of equations. It discusses and compares primary algorithms used, which are calledleft-looking, right-looking and multifrontal. It also identi�es potential for improvements.Chapter 3 introduces the fundamental concepts used in sparse column methods, includingthe column elimination tree and unsymmetric supernodes. Column methods are the mainfocus of this thesis. In Chapter 4 we study various techniques to improve an existing sequen-tial algorithm, and quantify the performance gains on a variety of machines. In Chapter 5we develop a parallel algorithm for shared memory machines, and demonstrate its e�ciencyon a set of parallel computers. We also develop a theoretical model to predict maximumspeedup attainable by the algorithm. Finally, Chapter 6 summarizes the results from this re-search and discusses the future extensions of this work. Our main contributions are (1) newtechniques to enhance the performance of an existing sequential algorithm for hierarchicalmemory machines; (2) a new parallel algorithm and its performance analysis and modelingfor shared memory machines; and (3) portable software for a variety of high-performancecomputers.



3Chapter 2Sparse Solvers Using DirectFactorizationsIn this chapter, we give a brief overview of the algorithms and software that usedirect factorization, or Gaussian elimination, to solve a large sparse linear system of equa-tions Ax = b. In a direct method, the matrix A is �rst decomposed into the product oflower triangular matrix L and upper triangular matrix U (or LT if A is symmetric positivede�nite). Then the two triangular systems Ly = b and Ux = y are solved to obtain thesolution x. In this solution process, the LU factorization usually dominates the executiontime. Over the years a great deal of research e�ort has been devoted to �nding e�cientways to perform this factorization. Although many di�erent algorithms exist, the genericGaussian elimination algorithm can be written as the following three nested loops:for dofor dofor doaij  aij � (aik � akj)=akk ; (2.1)end for;end for;end for;The loop indices have variable names i, j, and k, but they will have di�erent ranges. Sixpossible permutations of i, j and k are possible in the three nested loops. Dongarra et al. [29]studied the performance impact of each permutation for dense LU factorization algorithmson vector pipeline machines. Although the generic algorithm is very simple, signi�cantcomplications in its actual implementation arise from sparsity, the need for numerical piv-oting and diverse computer architectures. In the update in Equation (2.1), an aij that wasoriginally zero will become nonzero if both aik and akj are nonzero. This new nonzero entryis called �ll. The �lls incur more 
oating-point arithmetic and more storage. Also in Equa-tion (2.1), if the pivot akk at step k is too small, the updated entry may become large inmagnitude. The large element will cause instability when it is added to other smaller entriesof A. It is therefore crucial to �nd a good elimination ordering, corresponding to permuting



4the rows and/or columns of the original A into �A = PAQ, so that when factorizing �A thenumber of �lls introduced is minimal and the element growth is small. Besides preservingsparsity and maintaining numerical stability, the e�ciency of an algorithm also dependsvery much on how the i-j-k loops are organized around Equation (2.1), and on the datastructures used to manipulate sparsity.The problem of solving sparse symmetric positive de�nite systems has been studiedextensively and now is fairly well understood. For such a system, the pivots can be chosendown the diagonal in any order without losing numerical stability. Therefore, the solutionprocess can be divided into four distinct phases:1. Finding a good ordering P so that the lower triangular Cholesky factor L of PAPT =LLT su�ers little �ll;2. Symbolic factorization to determine the nonzero structure of L;3. Numeric factorization to compute L;4. Solution of Ly = b and LTx = y.In the �rst phase, although it is computationally expensive (NP-hard) to �ndan optimal P in terms of minimizing �lls, many heuristics have been used successfully inpractice, such as variants of minimum degree orderings [3, 10, 38, 52] and various dissectionorderings based on graph partitioning [15, 58, 92] or hybrid approaches [13, 18, 76].Two important data structures have been introduced in e�cient implementationsof the Cholesky factorization. One is the elimination tree and another is the supernode. Theelimination tree [100] is de�ned for the Cholesky factor L. Each node in the tree correspondsto one row/column of the matrix. The edges in the tree can be succinctly represented bythe following parent[�] vector:parent[j] = min f i > j j lij 6= 0 g :In graph-theoretic terms, the elimination tree is simply the transitive reduction [2] of thedirected graph G(LT ),1 see Liu [83]. It is the minimal subgraph of G that preserves pathsand provides the smallest possible description of column dependencies in the Choleskyfactor. Liu [83] discusses the use of elimination trees in various aspects of sparse algorithms,including reordering, symbolic and numeric factorizations, and parallel elimination.The supernode structure has long been recognized and employed in enhancing thee�ciency of both the minimum degree ordering [40, 48] and the symbolic factorization [102].A supernode is a set of contiguous columns in the Cholesky factor L that share essentially thesame sparsity structure. More recently, supernodes have also been introduced in numericfactorization and triangular solution, in order to make better use of vector registers orcache memory. Indeed, supernodal [12] and multifrontal [41] elimination allow the use ofdense vector operations for nearly all of the 
oating-point computation, thus reducing thesymbolic overhead in numeric factorization to a smaller fraction. Overall, the Mega
op1The directed graph of a square matrix has n vertices corresponding to n rows/columns. An edge fromi to j indicates a nonzero in row i and column j of the matrix.



5rates of modern sparse Cholesky codes are comparable to those of dense solvers [87, 95] forsome classes of problems, such as those with a great deal of �ll.The triangular solution in phase 4 is also dictated by the elimination structure,where the forward substitution (Ly = b) proceeds from the leaves toward the root of thetree and the back substitution (LTx = y) proceeds from the root toward the leaves. Sincetriangular solution requires many fewer 
oating-point operations than the factorization, thetime it takes constitutes a small fraction of the total time, typically under 5% in a sequentialalgorithm.For general unsymmetric systems, where pivoting is required to stabilize the un-derlying algorithm, progress has been less satisfactory than with Cholesky factorization. Amajor distinction from symmetric positive de�nite systems is that the nonzero structure ofthe factored matrices cannot be determined in advance of the numeric factorization. So bothsymbolic and numeric factorizations must interleave. In addition, some algorithms includea column pivoting strategy to preserve sparsity during the elimination process, mixing theordering, symbolic and numeric phases altogether.Gilbert and Liu [68] introduced elimination dags (directed acyclic graphs), or edagsfor short, to study the structure changes during unsymmetric LU factorization. The edagsare transitive reductions of the graphs G(LT) and G(U). Since L and U usually havedi�erent structures, the edags for L and U are often distinct. Furthermore, one nodemay have more than one parent in the edag, in contrast to the tree structure. The dagscharacterize the triangular factors L and U in the same way that the elimination treecharacterizes the Cholesky factor. They are the minimal subgraphs of G(LT ) and G(U) thatpreserve paths and also provide the smallest possible description of the column dependenciesduring unsymmetric elimination.Recent research on unsymmetric systems has concentrated on two basic approaches:submatrix-based (also called right-looking) methods and column-based (also called left-looking) methods.2 Submatrix methods use k in the outer loop for Equation (2.1). Theytypically use a combination of some form of Markowitz ordering [86] and numerical thresh-old pivoting [36] to choose the pivot element from the uneliminated submatrix. To illustratethis, let us assume that the �rst k� 1 stages of Gaussian elimination have been completed.We may partition A in the blocked formA =  AKK AK ~KA ~KK A ~K ~K ! ;where K = (1 : k � 1), ~K = (k : n), and AKK is nonsingular.3 Then the factored form ofA can be written asA =  LKK 0L ~KK I ! I 00 R ~K ~K ! UKK UK ~K0 I ! :2Row methods are exactly analogous to column methods, and codes of both sorts exist. We will usecolumn terminology in this thesis; those who prefer rows may interchange the terms throughout.3We use Matlab notation for integer ranges and submatrices: r: s or (r: s) is the range of integers (r; r+1; : : : ; s). If I and J are sets of integers, then A(I;J) is the submatrix of A with rows whose indices are fromI and with columns whose indices are from J . A(:; J) abbreviates A(1 : n; J). nnz(A) denotes the numberof nonzeros in A.



6The reduced submatrix R ~K ~K = A ~K ~K � A ~KKA�1KKAK ~K is known as the Schur complementof AKK [71]. For R ~K ~K , let ri denote the number of entries in row i, and let cj denote thenumber of entries in column j. The Markowitz count associated with entry (i; j) is de�nedas (ri� 1)(cj� 1). Now, at stage k of the elimination, the pivot aij is selected from R ~K ~K tominimize the Markowitz count among those candidates satisfying the following numericalthreshold criterion jaij j � � maxl�k jalj j ; (2.2)where � 2 (0; 1] is a threshold parameter. Although the use of threshold parameter � per-mits more element growth than classical partial pivoting, it gives the Markowitz orderingmore 
exibility in selecting pivots to control �ll. Based on this idea, some variations on thecriteria for selecting pivots have been proposed to balance numerical stability and preser-vation of sparsity. The reader may consult Chapter 7 of Du� et al. [36] for a thoroughtreatment of this subject.Multifrontal approaches [6, 21, 32] are essentially variations of the submatrix meth-ods. At each stage of the elimination, the update operations for the Schur complement arenot applied directly to the target columns of the trailing submatrix. Instead, they are ac-cumulated as a sequence of partial update matrices, which are passed through each levelof the elimination tree (or elimination dag in the unsymmetric case) until �nally they areincorporated into the destination columns. Multifrontal methods have proven to be moree�cient than the pure right-looking methods for several reasons. These include the abilityto use dense matrix operations on the frontal matrices, reduced indirect addressing, andlocalization of memory references. However, multifrontal methods require more workingstorage to store the frontal matrices than a pure right-looking algorithm. They also requiremore data movement between the working storage and the target storage for the L and Ufactors. Furthermore, working storage management is particularly hard in a parallel formu-lation, because the stack-based organization used for e�ciency in the sequential algorithmseverely limits the degree of parallelism. More sophisticated parallel schemes were used byAmestoy and Du� [6, 35], which came with nontrivial runtime overhead.Recent submatrix codes include MA48 [33], Amestoy and Du�'s symmetric pat-tern multifrontal code MUPS [5], and Davis and Du�'s unsymmetric multifrontal codeUMFPACK [21, 23].Column methods, by contrast, take j as the outer loop for Equation (2.1) and typ-ically use classical partial pivoting. The pivot is chosen from the current column accordingto numerical considerations alone; the columns may be preordered before factorization topreserve sparsity. Figure 2.1 sketches a generic left-looking column LU factorization. No-tice that the bulk of the numeric computation occurs in column-column updates (\col-colupdate" on line 5), or, to use BLAS terminology [30], in sparse AXPYs.Column methods have the advantage that preordering the columns for sparsity iscompletely separate from the factorization, just as in the symmetric positive de�nite case.However, symbolic factorization cannot be separated from numeric factorization, becausethe nonzero structures of the factors depend on the numerical pivoting choices. Thus,column codes must do some symbolic factorization at each stage; typically this amountsto predicting the structure of each column of the factors immediately before computing



71. for column j = 1 to n do2. f = A(: ; j);3. Symbolic factorization: determine which columns of L will update f ;4. for each updating column r < j in topological order do5. Col-col update: f = f � f(r) �L(: ; r);6. end for;7. Pivot: interchange f(j) and f(k), where jf(k)j = max jf(j:n)j;8. Separate L and U : U(1: j; j) = f(1: j); L(j:n; j) = f(j:n);9. Scale: L(j:n; j) = L(j:n; j)=L(j; j);10. end for;Figure 2.1: Left-looking LU factorization with column-column updates.it (line 3 in Figure 2.1). Pivot search is con�ned within one column, which can be doneinexpensively. One disadvantage of the column methods is that, unlike Markowitz ordering,they do not reorder the columns dynamically, so the �lls may be greater.An early example of such a code is Sherman'sNSPIV [103] (which is actually a rowcode). Gilbert and Peierls [64] showed how to use depth-�rst search and topological orderingto obtain the structure of each factor column. This gives a column code that runs in totaltime proportional to the number of 
oating-point operations, unlike earlier partial pivotingcodes. We shall refer to their code as GP in our performance study in Chapter 4. Eisenstatand Liu [44] designed a pruning technique to reduce the amount of structural informationrequired for the symbolic factorization, which we will describe further in Section 4.3. Theresult was that the time and space for symbolic factorization were typically reduced to asmall fraction of the entire factorization. This improved GP code is referred to as GP-Mod.GP and GP-Mod are used in Matlab 1992 and 1996, respectively.In view of the success of supernodal techniques for symmetric matrices, it is naturalto consider the use of supernodes to enhance the performance of unsymmetric solvers. Onedi�culty is that, unlike the symmetric case, supernodal structure cannot be determined inadvance but rather emerges depending on pivoting choices during the factorization. Eisen-stat, Gilbert and Liu [45] discussed how to detect supernodes dynamically. In Chapter 4we will review their approach and quantify the performance gains.There have been debates about whether submatrix methods are preferable to col-umn methods, or vice versa. Their memory reference patterns are markedly di�erent.Heath, Ng and Peyton [75] gave a thorough survey of many distinctions between left-lookingand right-looking sparse Cholesky factorization algorithms. On uniprocessor machines forin-memory problems, Ng and Peyton [89] and Rothberg [99] conducted extensive experi-ments with sparse Cholesky factorization, and concluded that the supernodal left-lookingalgorithm is somewhat better than the multifrontal approach both in runtime and work-ing storage requirement. Gupta and Kumar [72] developed a two-dimensional multifrontalCholesky algorithm on 1024 nodes of the Cray T3D, and achieved up to 20 G
ops factor-



8ization rate for one problem. Rothberg [97] developed a two-dimensional block orientedright-looking Cholesky algorithm, and achieved up to 1.7 G
ops factorization rate on 128nodes of the Intel Paragon. Rothberg and Schreiber [98] further improved its performanceby better block mapping, and achieved up to 3.2 G
ops factorization rate on 196 nodes ofthe Intel Paragon.No comprehensive comparisons have yet been made for the unsymmetric LU fac-torization algorithms. In this case it is even harder to make fair comparisons because, inaddition to the considerations above, the trade-o� between numerical stability and sparsityplays an important role and depends very much on the input matrices. Although detailedcomparisons are valuable to identify the \best" algorithm (or the best combination), theyare beyond the scope of this thesis, and will remain as part of our future work. See Chapter 6for a list of available sparse codes. The goal of this thesis is to make the column algorithm asfast as possible on a variety of high performance architectures and for a variety of problems.From now on, we will focus exclusively on the left-looking column methods.



9Chapter 3Fundamentals of Sparse ColumnMethodsIn this chapter, we present several important data structures and tools usedthroughout this thesis. We do not intend to review all the basics of sparse matrix com-putations, such as matrix representation, nonzero manipulation, and graph-theoretic ter-minology. For that purpose, George and Liu [51] and Du� et al. [36] serve as excellentsources. We hereby con�ne ourselves only to the most relevant concepts. In Section 3.1,we elaborate on the roles of row interchanges (partial pivoting) and column interchanges tomaintain numerical stability and to preserve sparsity. Section 3.2 introduces unsymmetricsupernodes, which are essential in order to use higher level BLAS [27, 28]. Section 3.3gives the de�nition and properties of the column elimination tree, which is an importanttool to assist in the sparse LU factorization, particularly in a parallel setting. Both unsym-metric supernodes and the column elimination tree are generalizations of their symmetriccounterparts.3.1 Row and column permutationsTo solve a linear system Ax = b ; (3.1)we �rst use Gaussian elimination to transform A into a lower triangular matrix L and anupper triangular matrix U . In this section, we examine the possible row and/or columnpermutations associated with a sparse Gaussian elimination algorithm. In e�ect, we performthe following decomposition PAQT = LU ; (3.2)where P and Q are permutation matrices that reorder the rows and columns of A, respec-tively. In general, P and Q are di�erent. With the factorization (3.2) at hand, the solutionof Equation (3.1) is then the same as the solution x of the transformed systemPAQTQx = Pb : (3.3)



10Equation (3.3) is solved by a forward substitution Ly = Pb for y, a back-substitution Uz = yfor z, and �nally a permutation x = QTz for x. In the next two subsections, we will studythe purpose of applying P and Q.3.1.1 Partial pivotingIt is well known that for the special class of problems where A is symmetric andpositive de�nite, pivots can be chosen down the diagonal in order [71, Chapter 5]. Thefactorization thus obtained can be written as A = LLT , which is known as Cholesky de-composition.For general unsymmetric A, however, it is possible to encounter arbitrarily smallpivots on the diagonal. If we still pivot on the diagonal, large element growth may occur,yielding an unstable algorithm. This problem can be alleviated by pivoting on the elementwith largest magnitude in each column, interchanging rows when needed. This process iscalled partial pivoting. The e�cacy of partial pivoting (as opposed to the more costly com-plete pivoting) to maintain numerical stability is well studied in a large body of literature;for example, see [71, Chapter 4].When partial pivoting is incorporated, Gaussian elimination can be written asMn�1Pn�1Mn�2Pn�2 : : :M1P1A = U ; (3.4)where Pk is an elementary permutation matrix representing the row interchange at step k,Mk corresponds to the k-th Gauss transformation. It is easy to see that we can rewrite Equa-tion (3.4) as PA = LU ; (3.5)where P = Pn�1 : : :P1, L = P (P1L1 : : :Pn�1Ln�1), and Lk =M�1k is a unit lower triangularmatrix with its kth column containing the multipliers at step k.It is fairly straightforward to implement a dense partial pivoting code. For a sparsematrix, however, o�-diagonal pivoting is tremendously di�culty to implement mainly dueto the following reason. The nonzero patterns in L and U depend on the row interchangesand cannot be predetermined precisely based solely on the structure of A. This can be bestillustrated by the following example given by Gilbert [66]. Let the structure of A be0B@ 1� 2� 3 1CA :Depending on the relative magnitudes of the nonzero entries, pivoting could cause thestructure of U to be any of the four outcomes:0B@ 1 2 3 1CA ; 0B@ 1 �2 �3 1CA ; 0B@ 1 �2 3 1CA ; 0B@ 1 �2 �3 1CA :



11In consequence, the symbolic nonzero structure prediction cannot be treated asa separate process completely decoupled from numerical factorization, as is normally donein the sparse Cholesky factorization. For an e�cient sparse partial pivoting code, we mustdesign both e�cient numerical kernels and fast symbolic algorithms. These dual goals carryover to parallel algorithms as well.3.1.2 Ordering for sparsityArranging the equations and variables in an appropriate order so that L and Usu�er low �ll is an important issue, because low �ll implies fewer 
oating-point operationsand low storage requirement.A canonical example is a symmetric arrow matrix shown below0BBB@ 1 � � �� 2� 3� 4 1CCCA =) 0BBB@ 1 �2 �3 �� � � 4 1CCCA ;where the original order on the left results in full L and U but the new order on the rightpreserves all zeros, provided the diagonal entries are numerically acceptable.In the symmetric positive de�nite case, an ordering algorithm works only on thegraph of A and a sequence of elimination graphs [51] thereafter. It does not need to knowthe numerical values of A. In the unsymmetric case, however, the elimination graph ateach step changes with the numerical pivot selection, as we saw in the previous section.The question arises whether it is still possible to choose a �ll-reducing ordering before thefactorization begins. The answer is partially positive. The essence of our approach is basedon a result proved by George and Ng [56]. Let Lc denote the symbolic Cholesky factor ofthe normal equations matrix ATA, in the absence of coincidental numerical cancellation.1They showed that, if L is stored as P1L1 : : :Pn�1Ln�1, the structure of L is contained inthe structure of Lc, and the structure of U is contained in the structure of LTc . This is trueregardless of the numerical partial pivoting (row permutation P in Equation (3.5)). It isthus desirable to choose an ordering Q such that the Cholesky factor of QATAQT su�erslittle �ll. Once a good Q is obtained, it is then applied to the columns of A before LUfactorization. One would expect that factoring the reordered matrix AQT tends to produceless �ll in both L and U compared to factoring the original A.In principle, any ordering heuristic used in the symmetric case can be applied toATA to arrive at Q. The column minimum degree algorithm used in Matlab [62] is the�rst e�cient implementation of the minimum degree algorithm on ATA without explicitlyforming the nonzero structure of ATA. In recent work of Davis et al. [24], better minimumdegree algorithms for ATA are under investigation that will improve both �ll and runtime.To summarize, in our column factorization methods, the row permutation P isused to maintain numerical stability and is obtained in the course of elimination. The1Throughout the thesis, when we refer to the structure of a matrix, such as L and U , we always ignorenumerical cancellation. This applies to both reordering phase and the symbolic algorithms to be discussedin Section 4.3.



12column permutation Q is used to control sparsity and is computed and applied prior to thefactorization. With these two permutations, the actual factorization performed is what wesee in Equation (3.2) in the beginning of this section.3.2 Unsymmetric supernodesThe idea of a supernode is to group together columns with the same nonzero struc-ture, so they can be treated as a dense matrix for storage and computation. Supernodeswere originally used for sparse Cholesky factorization; the �rst published results are byAshcraft, Grimes, Lewis, Peyton, and Simon [12]. In the factorization A = LLT , a super-node is a range (r: s) of columns of L with the same nonzero structure below the diagonal;that is, L(r: s; r: s) is full lower triangular and every row of L(s+ 1:n; r: s) is either full orzero. (In Cholesky, supernodes need not consist of contiguous columns, but we will consideronly contiguous supernodes.)Ng and Peyton [87] analyzed the e�ect of supernodes in Cholesky factorization onmodern uniprocessor machines with memory hierarchies and vector or superscalar hardware.We use Figure 3.1 to illustrate all the bene�ts from supernodes. All the updates fromcolumns of the supernode (r1 : s1) can be summed into a packed dense vector before onesingle sparse update is performed. This reduces indirect addressing, and allows the innerloops to be unrolled. In e�ect, a sequence of column-column updates is replaced by asupernode-column update (loops 5{9). This so-called \sup-col update" can be implementedusing a call to a standard dense BLAS-2 matrix-vector multiplication kernel [27]. Thisidea can be further extended to supernode-supernode updates (\sup-sup update", loops 2{12), which can be implemented using a BLAS-3 dense matrix-matrix kernel [28]. Sup-supupdate can reduce memory tra�c by an order of magnitude, because a supernode in thecache can participate in multiple column updates. Ng and Peyton reported that a sparseCholesky algorithm based on sup-sup updates typically runs 2.5 to 4.5 times as fast asa col-col algorithm. Indeed, supernodes have become a standard tool in sparse Choleskyfactorization [12, 87, 95, 105].To sum up, supernodes as the source of updates (line 4) help because:1. The inner loop (line 6) over rows i has no indirect addressing. (Sparse BLAS-1 isreplaced by dense BLAS-1.)2. The outer loop (line 5) over columns k in the supernode can be unrolled to savememory references. (BLAS-1 is replaced by BLAS-2.)Supernodes as the destination of updates (line 1) help because:3. Elements of the source supernode can be reused in multiple columns j of the destina-tion supernode to reduce cache misses. (BLAS-2 is replaced by BLAS-3.)Supernodes in sparse Cholesky can be determined during symbolic factorization,before the numeric factorization begins. However, in sparse LU , the nonzero structurecannot be predicted before numeric factorization, so we must identify supernodes on the
y. Furthermore, since the factors L and U are no longer transposes of each other, we mustgeneralize the de�nition of a supernode.



13
1. for each destination supernode (r2 : s2) do2. for j = r2 to s2 do3. f = A(j : n; j);4. for each source supernode (r1 : s1) < (r2 : s2) with L(j; r1 : s1) 6= 0 do5. for k = r1 to s1 do6. for i = j to n with L(i; k) 6= 0 do7. f = f � L(i; k) �L(j; k);8. end for;9. end for;10. end for;11. L(j : n; j) = f ;12. end for;13. Inner factorization for L(r2 : n; r2 : s2);14. end for;

2 s2

r 2

s2

r

L

r s11Figure 3.1: Left-looking Cholesky factorization with supernode-supernode updates.
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T1 T2

Dense

T3 T4Figure 3.2: Four possible types of unsymmetric supernodes.3.2.1 De�nition of a supernodeEisenstat, Gilbert and Liu [45] considered several possible ways to generalize thesymmetric de�nition of supernodes to unsymmetric factorization. Here, we present all theircharacterizations and choose the most appropriate one to use. We de�ne F = L+U � I tobe the �lled matrix containing both L and U , where PAQT = LU . Figure 3.2 is a schematicof de�nitions T1 through T4.T1. Same row and column structures: A supernode is a range (r: s) of columns of L androws of U , such that the diagonal block F (r: s; r: s) is full, and outside that blockall the columns of L in the range have the same structure and all the rows of U inthe range have the same structure. T1 supernodes make it possible to do sup-supupdates, realizing the same three bene�ts enjoyed by Cholesky.T2. Same column structure in L: A supernode is a range (r: s) of columns of L withthe triangular diagonal block full and the same structure below the diagonal block.T2 supernodes allow sup-col updates, realizing the �rst two bene�ts.T3. Same column structure in L, full diagonal block in U : A supernode is a range (r: s)of columns of L and U , such that the diagonal block F (r: s; r: s) is full, and belowthe diagonal block the columns of L have the same structure. T3 supernodes allowsup-col updates, like T2. In addition, if the storage for a supernode is organized as fora two-dimensional array (for BLAS-2 or BLAS-3 calls), T3 supernodes do not wasteany space in the diagonal block of U .T4. Same column structure in L and U : A supernode is a range (r: s) of columns ofL and U where all columns of F (:; r : s) have identical structure. (Since the diagonalis nonzero, the diagonal block must be full.) T4 supernodes allow sup-col updates,and also simplify storage of L and U .T5. Supernodes of ATA: A supernode is a range (r: s) of columns of L corresponding to aCholesky supernode of the symmetric matrix ATA. T5 supernodes are motivated by



15T1 T2 T3 T4median 0.236 0.345 0.326 0.006mean 0.284 0.365 0.342 0.052Table 3.1: Fraction of nonzeros not in �rst column of supernode.George and Ng's observation [59] that (with suitable representations) the structuresof L and U in the unsymmetric factorization PA = LU are contained in the structureof the Cholesky factor of ATA. In unsymmetric LU , these supernodes themselves aresparse, so we would waste time and space operating on them. Thus we do not considerthem further.Supernodes are only useful if they actually occur in practice. The occurrence ofsymmetric supernodes is related to the clique structure of the chordal graph of the Choleskyfactor, which arises because of �ll during the factorization. Unsymmetric supernodes seemharder to characterize, but they also are related to dense submatrices arising from �ll. Eisen-stat et al. [45] measured the supernodes according to each de�nition for 126 unsymmetricmatrices from the Harwell-Boeing sparse matrix test collection [31] under various columnorderings. Table 3.1 tabulates the results from their measurements. It shows, for eachde�nition, the fraction of nonzeros of L that are not in the �rst column of a supernode; thismeasures how much row index storage is saved by using supernodes. Corresponding valuesfor symmetric supernodes for the symmetric Harwell-Boeing structural analysis problemsusually range from about 0.5 to 0.9. Larger numbers are better, indicating larger super-nodes. We reject T4 supernodes as being too rare to make up for the simplicity of theirstorage scheme. T1 supernodes allow BLAS-3 updates, but as we will see in Section 4.2 wecan get most of their cache advantage with the more common T2 or T3 supernodes by usingsup-panel updates. Thus we conclude that either T2 or T3 is the best choice. Our codeuses T2, which gives slightly larger superndoes than T3 at a small extra cost in storage,because we store the triangular matrix in full array, with the upper diagonal entries paddedwith the elements from U .Figure 3.3 shows a sample matrix, and the nonzero structure of its factors with nopivoting. Using de�nition T2, this matrix has four supernodes: f1; 2g, f3g, f4; 5; 6g, andf7; 8; 9; 10g. For example, in columns 4, 5, and 6 the diagonal blocks of L and U are full,and the columns of L all have nonzeros in rows 8 and 9. By de�nition T3, the matrix has�ve supernodes: f1; 2g, f3g, f4; 5; 6g, f7g, and f8; 9; 10g. Column 7 fails to join f8; 9; 10gas a T3 supernode because u78 is zero.3.2.2 Storage of supernodesA standard way to organize storage for a sparse matrix is as a one-dimensionalarray of nonzero values in column major order, plus integer arrays giving row numbers andcolumn starting positions. This is called compressed column storage, and is also the storagescheme used in the Harwell-Boeing collection. Figure 3.4 illustrates the storage for the �rstthree columns of the sample matrix A in Figure 3.3.
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1CCCCCCCCCCCCCCCCAOriginal matrix A Factors F = L+ U � IFigure 3.3: A sample matrix and its LU factors. Diagonal elements a55 and a88 are zero.
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PointersFigure 3.4: Compressed column storage for a sample sparse matrix.
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1CCCCCCCCCCCCCCCCAFigure 3.5: Supernodal structure (by de�nition T2) of the factors of the sample matrix.We use this layout for both L and U , but with a slight modi�cation: we store theentire square diagonal block of each supernode as part of L, including both the strict lowertriangle of values from L and the upper triangle of values from U . We store this square blockas if it were completely full (it is full in T3 supernodes, but its upper triangle may containzeros in T2 supernodes). This allows us to address each supernode as a two-dimensionalarray in calls to BLAS routines. In other words, if columns (r: s) form a supernode, thenall the nonzeros in F (r:n; r: s) are stored as a single dense two-dimensional array. Thisalso lets us save some storage for row indices: only the indices of nonzero rows outside thediagonal block need be stored, and the structures of all columns within a supernode can bedescribed by one set of row indices. This is similar to the e�ect of compressed subscripts inthe symmetric case [102].We represent the part of U outside the supernodal blocks with a compressed col-umn storage: the values are stored by columns, with a companion integer array the samesize to store row indices; another array of n integers indicates the start of each column.Figure 3.5 shows the structure of the factors in the example from Figure 3.3, withsk denoting a nonzero in the k-th supernode and uk denoting a nonzero in the k-th columnof U outside the supernodal block. Figure 3.6 shows the storage layout. (We omit theindexing vectors that point to the beginning of each supernode and the beginning of eachcolumn of U .)3.3 Column elimination treeSince our de�nition requires the columns of a supernode to be contiguous, weshould get larger supernodes if we bring together columns of L with the same nonzerostructure. But the column ordering is �xed, for sparsity, before numeric factorization; whatcan we do?In Cholesky factorization, the so-called fundamental supernodes can be made con-tiguous by permuting the matrix (symmetrically) according to a postorder on its eliminationtree [11]. This is because each fundamental supernode corresponds to a chain of nodes in



181 268 0BBB@ s1 s1s1 s1s1 s1s1 s1 1CCCA 36810 0BBB@s2s2s2s21CCCA 4 5 689 0BBBBB@ s3 s3 s3s3 s3 s3s3 s3 s3s3 s3 s3s3 s3 s3 1CCCCCA 7 8 9 100BBB@ s4 0 s4 s4s4 s4 s4 s4s4 s4 s4 s4s4 s4 s4 s4 1CCCASupernodal blocks (stored in column-major order)u3 u3 u4 u6 u6 u7 u7 u7 u8 u8 u8 u9 u9 u91 2 2 1 2 3 5 6 2 3 6 4 5 6O�-supernodal nonzeros in columns of URowSubscriptsFigure 3.6: Storage layout for factors of the sample matrix, using T2 supernodes.the tree, and in a postordering of the tree, the nodes within every subtree of the eliminationtree will be numbered consecutively. This postorder is an example of what Liu calls anequivalent reordering [80], which does not change the sparsity of the Cholesky factor L, northe amount of arithmetic to compute L. (Liu proved that any topological ordering, whichnumbers the children nodes before their parent node, is an equivalent reordering of thegiven matrix.) The postordered elimination tree can also be used to locate the supernodesbefore the numeric factorization.We proceed similarly for the unsymmetric case. Here the appropriate analog of thesymmetric elimination tree is the column elimination tree, or column etree for short. Thevertices of this tree are the integers 1 through n, representing the columns of A. The columnetree of A is the (symmetric) elimination tree of ATA provided there is no cancellation incomputing ATA. More speci�cally, if Lc denotes the Cholesky factor of ATA, then theparent of vertex j is the row index i of the �rst nonzero entry below the diagonal of columnLc(:; j). The column etree can be computed from A in time almost linear in the number ofnonzeros of A by a variation of an algorithm of Liu [80].The following theorem says that the column etree represents potential dependen-cies among columns in LU factorization, and that for strong Hall matrices (that is, theycannot be permuted to nontrivial block triangular forms), no stronger information is ob-tainable from the nonzero structure of A. Note that column i updates column j in LUfactorization if and only if uij 6= 0.Theorem 1 (Column Elimination Tree) [63] Let A be a square, nonsingular, possiblyunsymmetric matrix, and let PA = LU be any factorization of A with pivoting by rowinterchanges. Let T be the column elimination tree of A.1. If vertex i is an ancestor of vertex j in T , then i � j.2. If lij 6= 0, then vertex i is an ancestor of vertex j in T .



193. If uij 6= 0, then vertex j is an ancestor of vertex i in T .4. Suppose in addition that A is strong Hall. If vertex j is the parent of vertex i in T ,then there is some choice of values for the nonzeros of A that makes uij 6= 0 when thefactorization PA = LU is computed with partial pivoting.Just as a postorder on the symmetric elimination tree brings together symmetricsupernodes, we expect a postorder on the column etree to bring together unsymmetricsupernodes. Thus, before we factor the matrix, we compute its column etree and permutethe matrix columns according to a postorder on the tree. The following theorem, due toGilbert [67], shows that this does not change the factorization in any essential way.Theorem 2 Let A be a matrix with column etree T . Let � be a permutation such thatwhenever �(i) is an ancestor of �(j) in T , we have i � j. Let P be the permutation matrixsuch that � = P � (1:n)T . Let �A = PAPT .1. �A = A(�; �).2. The column etree �T of �A is isomorphic to T ; in particular, relabeling each node i of�T as �(i) yields T .3. Suppose in addition that �A has an LU factorization without pivoting, �A = �L �U . ThenPT �LP and PT �UP are respectively unit lower triangular and upper triangular, soA = (PT �LP )(PT �UP ) is also an LU factorization.Remark: Liu [80] attributes to F. Peters a result similar to part (3) for the symmetricpositive de�nite case, concerning the Cholesky factor and the (usual, symmetric) eliminationtree. For completeness, we give the proof by Gilbert as follows.Proof: Part (1) is immediate from the de�nition of P . Part (2) follows from Corollary 6.2in Liu [80], with the symmetric structure of the column intersection graph of our matrix Ataking the place of Liu's symmetric matrix A. (Liu exhibits the isomorphism explicitly inthe proof of his Theorem 6.1.)Now we prove part (3). We have a�(i)�(j) = �aij for all i and j. Write L = PT �LPand U = PT �UP , so that l�(i)�(j) = �lij and u�(i)�(j) = �uij . Then A = LU ; we need onlyshow that L and U are triangular.Consider a nonzero u�(i)�(j) of U . In the triangular factorization �A = �L �U , ele-ment �uij is equal to u�(i)�(j) and is therefore nonzero. By part (3) of Theorem 1, then, j isan ancestor of i in �T . By the isomorphism between �T and T , this implies that �(j) is anancestor of �(i) in T . Then it follows from part (1) of Theorem 1 that �(j) � �(i). Thusevery nonzero of U is on or above the diagonal, so U is upper triangular. A similar argumentshows that every nonzero of L is on or below the diagonal, so L is lower triangular. Thediagonal elements of L are a permutation of those of �L, so they are all equal to 1. 2Since the triangular factors of A are just permutations of the triangular factors ofPAPT , they have the same number of nonzeros. (nnz(L) = nnz(�L) and nnz(U) = nnz( �U).)Indeed, they require the same arithmetic to compute; the only possible di�erence is the orderof updates. If addition for updates is commutative and associative, this implies that with



20partial pivoting (i; j) is a legal pivot in �A i� (�(i); �(j)) is a legal pivot in A. In 
oating-point arithmetic, the di�erent order of updates could conceivably change the pivot sequence.Thus we have the following corollary.Corollary 1 Let � be a postorder on the column elimination tree of A, let P1 be anypermutation matrix, and let P2 be the permutation matrix with � = P2 �(1:n)T . If P1APT2 =LU is an LU factorization, then so is (PT2 P1)A = (PT2 LP2)(PT2 UP2). In exact arithmetic,the former is an LU factorization with partial pivoting of APT2 if and only if the latter isan LU factorization with partial pivoting of A.This corollary says that an LU code can permute the columns of its input matrixby postorder on the column etree, and then fold the column permutation into the rowpermutation on output. Thus our code has the option of returning either four matrices P1,P2, L, and U (with P1APT2 = LU), or just the three matrices PT2 P1, PT2 LP2, and PT2 UP2,which are a row permutation and two triangular matrices. The advantage of returning allfour matrices is that the columns of each supernode are contiguous in L, which permits theuse of a BLAS-2 supernodal triangular solve for the forward-substitution phase of a linearsystem solver. The supernodes are not contiguous in PT2 LP2.We note that in the symmetric positive de�nite case, the elimination tree haslong been employed as a major task scheduling model to design parallel sparse Choleskyfactorization. At a large-grained level, \parallel pivots" can be chosen from the disjointsubtrees and eliminated simultaneously by di�erent processors. At a �ne-grained level,more than one processor cooperates to eliminate one pivot; this is necessary at later stagesof the elimination. In the unsymmetric case, the column etree can play a similar role.However, there exist some subtle di�erences between the two computational models, whichwe will illustrate in Chapter 5 when we study parallel LU factorization.3.4 Arti�cial supernodesWe have explored various ways of allowing sparsity in a supernode. We experi-mented with both T2 and T3 supernodes, and found that T2 supernodes (those with onlynested column structures in L) are slightly larger than T3 supernodes and give slightlybetter performance. Our code uses T2 at a small extra cost in storage.We observe that, for most matrices, the average size of a supernode is only about 2to 3 columns (though a few supernodes are much larger). A large percentage of supernodesconsist of only a single column, many of which are leaves of the column etree. Therefore wehave devised a scheme to merge groups of columns at the fringe of the etree into arti�cialsupernodes regardless of their row structures. A parameter r controls the granularity ofthe merge. Our merge rule is: node i is merged with its parent node j when the subtreerooted at j has at most r nodes. This may introduce some logical zeros. In practice, thebest values of r are generally between 4 and 8, and yield improvements in running time of5% to 15%. For such values of r, the extra storage needed to store the logical zeros is verysmall for all our test matrices.Arti�cial supernodes are a special case of relaxed supernodes, which were used inthe context of multifrontal methods for symmetric systems [11, 40]. Ashcraft and Grimes



21allow a small number of zeros in the structure of any supernode, thus relaxing the conditionthat the columns must have strictly nested structures. It would be possible to use thisidea in the unsymmetric code as well, though we have not experimented with it. Relaxedsupernodes could be constructed either on the 
y (by relaxing the nonzero count conditiondescribed in Section 4.3.3), or by preprocessing the column etree to identify small subtreesthat we would merge into supernodes.



22Chapter 4Supernode-Panel SparseFactorization with PartialPivotingIn this chapter, we show how to modify the column-column algorithm to usesupernode-column updates and supernode-panel updates. Sections 4.1 and 4.2 describe theorganization of the numerical kernels in the supernodal algorithms. Section 4.3 describesthe symbolic factorization that determines which supernodes update which columns andproduce �lls in the factored matrices, identi�es the boundaries between supernodes, and alsoperforms the symmetric structure reduction. Following the description of the algorithms,we present performance results obtained on several high performance machines, includingIBM RS6000-590, MIPS R8000, and DEC Alpha 21164. Our test matrices were collectedfrom diverse application �elds with varied characteristics. We also analyze at great lengththe performance of the new algorithm.4.1 Supernode-column updatesEisenstat et al. [45] �rst introduced the supernode-column algorithm, as formulatedin Figure 4.1. We refer to this code as SupCol. The only di�erence from the column-columnalgorithm (Figure 2.1) is that all the updates to a column from a single supernode are donetogether. Consider a supernode (r: s) that updates column j. The coe�cients of the updatesare the values from a segment of column j of U , namely U(r: s; j). The nonzero structureof such a segment is particularly simple: all the nonzeros are contiguous, and follow all thezeros (as proved in Corollary 2, to appear in Section 4.3.1). Thus, if k (r � k � s) is theindex of the �rst nonzero row in U(r: s; j), the updates to column j from supernode (r: s)come from columns k through s. Since the supernode is stored as a dense matrix, theseupdates can be performed by a dense lower triangular solve (with the matrix L(k: s; k: s))and a dense matrix-vector multiplication (with the matrix L(s + 1:n; k: s)). As describedin Section 4.3, the symbolic phase determines the value of k, that is, the position of the�rst nonzero in the segment U(r: s; j).The advantages of using supernode-column updates are similar to those in the



23
1. for column j = 1 to n do2. f = A(: ; j);3. Symbolic factorization: determine which supernodes of L will update f ;4. Determine whether j belongs to the same supernode as j � 1;5. for each updating supernode (r: s) < j in topological order do6. Apply supernode-column update to column j:7. f(r: s) = L(r: s; r: s)�1 � f(r: s); /* Now f(r: s) = U(r: s; j) */8. f(s+ 1:n) = f(s + 1:n)� L(s+ 1:n; r: s) � f(r: s);9. end for;10. Pivot: interchange f(j) and f(m), where jf(m)j = max jf(j:n)j;11. Separate L and U : U(1: j; j) = f(1: j); L(j:n; j) = f(j:n);12. Scale: L(j:n; j) = L(j:n; j)=L(j; j);13. Prune symbolic structure based on column j;14. end for;
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24symmetric case [87]. E�cient BLAS-2 matrix-vector kernels can be used for the triangularsolve and matrix-vector multiply. Furthermore, all the updates from the supernodal columnscan be collected in a temporary packed vector before doing a single scatter into a full-lengthworking array of size n, called SPA (for sparse accumulator [62]). This reduces the amountof indirect addressing. The use of the SPA allows random access to the entries of the activecolumn. The scatter operations are buried in lines 7 and 8 in Figure 4.1.4.2 Supernode-panel updatesWe can improve the supernode-column algorithm further on machines with a mem-ory hierarchy by changing the data access pattern. The data we are accessing in the innerloop (lines 5{9 in Figure 4.1) includes the destination column j and all the updating super-nodes (r: s) to the left of column j. Column j is accessed many times, while each supernode(r: s) is used only once. In practice, the number of nonzero elements in column j is muchless than that in the updating supernodes. Therefore, the access pattern given by this loopprovides little opportunity to reuse cached supernodes. In particular, the same supernode(r: s) may be needed to update both columns j and j + 1. But when we factor the (j + 1)-st column (in the next iteration of the outer loop), we will have to fetch supernode (r: s)again from memory, instead of from cache (unless the supernodes are small compared tothe cache).To exploit memory locality, we factor several columns (say w of them) at a time inthe outer loop, so that one updating supernode (r: s) can be used to update as many of thew columns as possible. We refer to these w consecutive columns as a panel, to di�erentiatethem from a supernode; the row structures of these columns may not be correlated in anyfashion, and the boundaries between panels may be di�erent from those between super-nodes. The new method requires rewriting the doubly nested loop as the triple loop shownin Figure 4.2. This is analogous to loop tiling techniques used in optimizing compilers toimprove cache behavior for two-dimensional arrays with regular stride. It is also somewhatanalogous to the supernode-supernode updates that Ng and Peyton [87], and Rothberg andGupta [95] have used in symmetric Cholesky factorization.The structure of each supernode-column update is the same as in the supernode-column algorithm. For each supernode (r: s) to the left of column j, if ukj 6= 0 for somer � k � s, then uij 6= 0 for all k � i � s. Therefore, the nonzero structure of the panel of Uconsists of dense column segments that are row-wise separated by supernodal boundaries,as in Figure 4.2. Thus, it is su�cient for the symbolic factorization algorithm to record onlythe �rst nonzero position of each column segment. As detailed in Section 4.3.4, symbolicfactorization is applied to all the columns in a panel at once, before the numeric-factorizationloop over all the updating supernodes.In a dense factorization, the entire supernode-panel update in lines 3{7 of Fig-ure 4.2 would be implemented as two BLAS-3 calls: a dense triangular solve with wright-hand sides, followed by a dense matrix-matrix multiply. In the sparse case, this isnot possible, because the di�erent supernode-column updates begin at di�erent positions kwithin the supernode, and the submatrix U(r: s; j: j+w� 1) is not dense. Thus the sparsesupernode-panel algorithm still calls the level-2 BLAS. However, we get similar cache ben-
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1. for column j = 1 to n step w do2. Symbolic factor: determine which supernodes will updateany of F (: ; j: j+ w � 1);3. for each updating supernode (r: s) < j in topological order do4. for column jj = j to j + w � 1 do5. Apply supernode-column update to column jj;6. end for;7. end for;8. Inner factorization:Apply the sup-col algorithm on columns and supernode within the panel;9. end for;
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jFigure 4.2: The supernode-panel algorithm, with column-wise blocking. J = 1: j � 1.



26e�ts to the level-3 BLAS, at the cost of doing the loop reorganization ourselves. Thus wecall the kernel of this algorithm a \BLAS-212" method.In the doubly nested loop 3{7, the ideal circumstance is that all w columns inthe panel require updates from supernode (r: s). Then this supernode will be used w timesbefore it is forced out of the cache. There is a trade-o� between insu�cient reuse (if w is toosmall) and cache thrashing (if w is too large). For this scheme to work e�ciently, we needto reduce two kinds of cache misses. One is due to cache capacity; that is, we must keep wsmall enough that all the data accessed in this doubly nested loop �t in cache. Another isdue to cache con
ict between the source supernode and the destination panel, even thoughthe cache is in principle large enough to hold both. This has to do with the memory layoutof the two data structures and the cache block-placement policy. One possibility to avoidthis cache con
ict is to copy the source supernode and the destination panel into bu�ers toperform the update.4.2.1 Outer and inner factorizationAt the end of the supernode-panel update (line 7), columns j through j + w � 1of L and U have received all their updates from columns to the left of j. We call thisthe outer factorization. What remains is to apply updates that come from columns withinthe panel. This amounts to forming the LU factorization of the panel itself (in columns(j: j + w � 1), and rows (j:n)). This inner factorization is performed by the supernode-column algorithm, almost exactly as shown in Figure 4.1. The inner factorization includesa columnwise symbolic factorization just as in the supernode-column algorithm. The innerfactorization also includes the supernode identi�cation, partial pivoting, and symmetricstructure reduction for the entire algorithm.4.2.2 Reducing cache misses by row-wise blockingOur �rst experiments with the supernode-panel algorithm showed speedups ofaround 20{30% for some medium-sized problems. However, the improvement for largematrices was often only a few percent. We now study the reasons and remedies for this.To implement loops 3{7 in Figure 4.2, we �rst expand the nonzeros of the panelcolumns of A into an n by w full working array, that is, the SPA. An n by 1 full array storesthe results of the BLAS operations, and the updates are scattered into the SPA. At the endof panel factorization, the data in the SPA are copied into storage for L and U . Althoughincreasing the panel size w gives more opportunity for data reuse, it also increases the sizeof the active data set that must �t into cache. The supernode-panel update loop accessesthe following data (which we call the working set):� the nonzeros in the updating supernode L(r:n; r: s).� the n by w SPA structure, and an n by 1 full array.By instrumenting the code, we found that the working sets of large matrices are much largerthan the cache size. Hence, cache thrashing limits performance.We experimented with a scheme suggested by Rothberg [96], in which the SPA hasonly as many rows as the number of nonzero rows in the panel (as predicted by symbolic



271. for j = 1 to n step w do2. � � �3. for each updating supernode (r: s) < j in topological order do4. Apply triangular solves to A(r: s; j: j+ w � 1) using L(r: s; r: s);5. for each row block B in L(s+ 1:n; r: s) do6. for jj = j to j + w � 1 do7. Multiply B � U(r: s; jj), and scatter into SPA(: ; jj);8. end for;9. end for;10. end for;11. � � �12 end for;Figure 4.3: The supernode-panel algorithm, with 2-D blocking.factorization), and an extra indirection array of size n is used to address the SPA. Unfor-tunately, the cost incurred by double indirection is signi�cant, and this scheme was not ase�ective as the two-dimensional blocking method we now describe.We implemented a row-wise blocking scheme on top of the column-wise blocking inthe supernode-panel update, see Figure 4.3. The 2-D blocking adds another level of loopingbetween the two loops in lines 3 and 4 of Figure 4.2. This partitions the supernodes (andthe SPA structure) into block rows. Then each block row of the updating supernode is usedfor up to w partial matrix-vector multiplies, which are pushed all the way through into theSPA before the next block row of the supernode is accessed. The active data set accessedin the inner loops is thus much smaller than in the 1-D scheme. The key performance gainscome from loops 5{9, where each row block is reused as much as possible before the next rowblock is brought into the cache. The innermost loop is still a dense-matrix vector multiply,performed by a BLAS-2 kernel.4.2.3 Combining 1-D and 2-D blockingThe 2-D blocking works well when the rectangular supernodal matrix L(r:n; r: s)is large in both dimensions. If all of L(r:n; r: s) can �t into cache, then the row-wise blockinggives no bene�t, but still incurs overhead for setting up loop variables, skipping the emptyloop body, and so on. This overhead can be nearly 10% for some of the sparser problems inour test suite. Thus we have devised a hybrid update algorithm that uses either the 1-D or2-D partitioning scheme, depending on the size of each updating supernode. The decisionis made at run-time, as shown in Figure 4.4. Note that Figure 4.4 is identical to Figure 4.3,if line 5 in Figure 4.3 is implemented appropriately. The overhead is limited to the test atline 4 of Figure 4.4. It turns out that this hybrid scheme works better than either 1-D or2-D codes for many problems. Therefore, this is the algorithm we use in the ultimate code,which we call it SuperLU. In Section 4.6.3 we will discuss in more detail what we mean by\large" in the test on line 4.
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1. for j = 1 to n step w do2. � � �3. for each updating supernode (r: s) < j in topological order do4. if supernode (r: s) is large then /* use 2-D blocking */5. Apply triangular solves to A(r: s; j: j+ w � 1) using L(r: s; r: s);6. for each row block B in L(s+ 1:n; r: s) do7. for jj = j to j + w � 1 do8. Multiply B � U(r: s; jj), and scatter into SPA(: ; jj);9. end for;10. end for;11. else /* use 1-D blocking */12. for jj = j to j + w � 1 do13. Apply triangular solve to A(r: s; jj) using L(r: s; r: s);14. Multiply L(s+ 1:n; r: s) � U(r: s; jj), and scatter into SPA(: ; jj);15. end for;16. end if;17. end for;18. � � �19. end for;Figure 4.4: The supernode-panel algorithm, with both 1-D and 2-D blocking.



294.3 Symbolic factorizationSymbolic factorization is the process that determines the nonzero structure of thetriangular factors L and U from the nonzero structure of the matrix A. This in turndetermines which columns of L update each column j of the factors (namely, those columnsr for which urj 6= 0), and also which columns of L can be combined into supernodes.Without numeric pivoting, e.g., in Cholesky factorization or for diagonally dom-inant matrices, the complete symbolic factorization can be performed before any numericfactorization. Partial pivoting, however, requires that the numeric and symbolic factor-izations be interleaved. The supernode-column algorithm performs symbolic factorizationfor each column just before it is computed, as described in Section 4.3.1. The supernode-panel algorithm performs symbolic factorization for an entire panel at once, as described inSection 4.3.4.4.3.1 Column depth-�rst searchFrom the numeric factorization algorithm, it is clear that the structure of columnF (: ; j) (F = L + U � I) depends on the structure of column A(: ; j) of the original matrixand on the structure of L(: ; J), where J = 1: j � 1. Indeed, F (: ; j) has the same structureas the solution vector for the following triangular system [64]:@@@@@@@@@@L(: ; J) I F (: ; j) = A(: ; j)A straightforward way to compute the structure of F (: ; j) from the structures of L(: ; J)and A(: ; j) is to simulate the numerical computation. A less expensive way is to use thefollowing characterization in terms of paths in the directed graph of L(: ; J).For any matrix M , the notation i M! j means that there is an edge from i to j inthe directed graph of M , that is, mij 6= 0. Edges in the directed graph of M are directedfrom rows to columns. The notation i M=) j means that there is a directed path from ito j in the directed graph of M . Such a path may have length zero; that is, i M=) i holds ifmii 6= 0.Theorem 3 [60] fij is nonzero (equivalently, i F! j) if and only if i L(:;J)=) k A! j for somek � i. This result implies that the symbolic factorization of column j can be obtainedas follows. Consider the nonzeros in A(: ; j) as a subset of the vertices of the directedgraph G = G(L(: ; J)T), which is the reverse of the directed graph of L(: ; J). The nonzeropositions of F (: ; j) are then given by the vertices reachable by paths from this set in G.



30We use the graph of LT here because of the convention that edges are directed from rowsto columns. Since L is actually stored by columns, our data structure gives precisely theadjacency information for G. Therefore, we can determine the structure of column j of Land U by traversing G from the set of starting nodes given by the structure of A(: ; j).The traversal of G determines the structure of U(: ; j), which in turn determines thecolumns of L that will participate in updates to column j in the numerical factorization.These updates must be applied in an order consistent with a topological ordering of G.We use depth-�rst search to perform the traversal, which makes it possible to generatea topological order (speci�cally, reverse postorder) on the nonzeros of U(: ; j) as they arelocated [64].Another consequence of the path theorem is the following corollary. It says thatif we divide each column of U into segments, one per supernode, then within each segmentthe column of U just consists of a consecutive sequence of nonzeros. Thus we need onlykeep track of the position of the �rst nonzero in each segment.Corollary 2 Let (r: s) be a supernode (of either type T2 or T3) in the factorization PA =LU . Suppose ukj is nonzero for some j with r � k � s. Then uij 6= 0 for all i withk � i � s.Proof: Let k � i � s. Since ukj 6= 0, we have k L(:;J)=) m A�! j for some m � kby Theorem 3. Now lik is in the diagonal block of the supernode, and hence is nonzero.Thus i L(:;J)�! k, so i L(:;J)=) m A�! j, whence uij is nonzero by Theorem 3. 24.3.2 Pruning the symbolic structureTo speed up the depth-�rst search traversals, Eisenstat and Liu [43, 44] and Gilbertand Liu [61] have explored the idea of using a reduced graph in place of G = G(L(: ; J)T).Any graph H can be substituted for G, provided that i H=) j if and only if i G=) j. Thetraversals are more e�cient if H has fewer edges; but any gain in e�ciency must be tradedo� against the cost of computing H .An extreme choice ofH is the elimination dag [61], which is the transitive reductionof G, or the minimal subgraph of G that preserves paths. However, the elimination dag isexpensive to compute. The symmetric reduction [43] is a subgraph that has (in general)fewer edges than G but more edges than the elimination dag, and that is much less expensivethan the latter to compute. The symmetric reduction takes advantage of symmetry in thestructure of the �lled matrix F ; if F is completely symmetric, it is just the symmetricelimination tree. The symmetric reduction of G(L(: ; J)T) is obtained by removing allnonzero lrs for which ltsust 6= 0 for some t < min(r; j). Eisenstat and Liu [44] give ane�cient method to compute the symmetric reduction during symbolic factorization, anddemonstrate experimentally that it signi�cantly reduces the total factorization time whenused in an algorithm that does column-column updates.Our supernodal code uses symmetric reduction to speed up its symbolic factoriza-tion. Take the sample matrix used in Figure 3.3, Figure 4.5 illustrates symmetric reductionin the presence of supernodes. We use S to represent the supernodal structure of L(: ; J)T ,
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1CCCCCCCCCCCCCCCCAFigure 4.6: One step of symbolic factorization in the reduced structure.and R to represent the symmetric reduction of S. It is this R that we use in our code. Notethat the edges of the graph of R are directed from columns of L to rows of L.In the �gure, the small dot \�" indicates an entry in S that was pruned from Rby symmetric reduction. The (8; 2) entry was pruned due to the symmetric nonzero pair(6; 2) and (2; 6). The �gure shows the current state of the reduced structure based on the�rst seven columns of the �lled matrix.It is instructive to follow this example through one more column to see how sym-bolic factorization is carried out in the reduced supernodal structure. Consider the symbolicstep for column 8. Suppose a28 and a38 are nonzero. The other nonzeros in column 8 ofthe factor are generated by paths in the reduced supernodal structure (we just show onepossible path for each nonzero): 8 AT! 2 R! 6;



328 AT! 3 R! 8;8 AT! 2 R! 6 R! 9;8 AT! 3 R! 10;Figure 4.6 shows the reduced supernodal structure before and after column 8. Incolumn 8 of A, the original nonzeros are shown as \�" and the �lled nonzeros are shown as\�". Once the structure of column 8 of U is known, more symmetric reduction is possible.The entry l10;3 is pruned due to the symmetric nonzeros in l83 and u38. Also, l96 is prunedby l86 and u68. Figure 4.6 shows the new structure.The supernodal symbolic factorization relies on the path characterization in The-orem 3 and on the path-preserving property of symmetric reduction. In e�ect, we use themodi�ed path condition i AT! R=) jon the symmetrically-reduced supernodal structure R of L(: ; J)T .Finally we note that only the adjacency list of the last column in each supernodeneeds to be stored. We call this last column the representative of the supernode. In thisexample, the representatives are 2, 3, 6, and 8. Now the depth-�rst search traversal andthe symmetric pruning work on the adjacency lists of the representative columns, that is,the supernodal graph instead of the nodal one.4.3.3 Detecting supernodesSince supernodes consist of contiguous columns of L, we can decide at the end ofeach symbolic factorization step whether the new column j belongs to the same supernodeas column j � 1.For T2 supernodes, the test is straightforward. During symbolic factorization, wetest whether L(: ; j) � L(: ; j � 1) (where the containment applies to the set of nonzeroindices). At the end of the symbolic factorization step, we test whether nnz(L(: ; j)) =nnz(L(: ; j� 1))� 1. Column j joins column j � 1's supernode if and only if both tests arepassed. T3 supernodes also require the diagonal block of U to be full. To check this, itsu�ces to check whether the single element urj is nonzero, where r is the �rst columnindex of the supernode. This follows from Corollary 2: urj 6= 0 implies that uij 6= 0 for allr � i � j. Indeed, we can even omit the test L(: ; j) � L(: ; j � 1) for T3 supernodes. Ifurj 6= 0, then uj�1;j 6= 0, which means that column j � 1 updates column j, which impliesL(: ; j)� L(: ; j� 1). Thus we have proved the following.Theorem 4 Suppose a T3 supernode begins with column r and extends at least throughcolumn j� 1. Column j belongs to this supernode if and only if urj 6= 0 and nnz(L(: ; j)) =nnz(L(: ; j � 1))� 1.For either T2 or T3 supernodes, it is straightforward to implement the relaxedversions discussed in Section 3.3. Also, since the main bene�ts of supernodes come whenthey �t into the cache, we impose a maximum size for a supernode.
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[4,5,6]Figure 4.7: The supernodal directed graph corresponding to L(1: 7; 1: 7)T.4.3.4 Panel depth-�rst searchThe supernode-panel algorithm consists of an outer factorization (applying updatesfrom supernodes to the active panel) and an inner factorization (applying supernode-columnupdates within the active panel). Each has its own symbolic factorization. The outersymbolic factorization happens once per panel, and determines two things: (1) a singlecolumn structure, which is the union of the structures of the panel columns, and (2) whichsupernodes update each column of the panel, and in what order. This is the informationthat the supernode-panel update loop in Figure 4.2 needs.The inner symbolic factorization happens once for each column of the panel, inter-leaved column by column with the inner numeric factorization. In addition to determiningthe nonzero structure of the active column and which supernodes within the panel willupdate the active column, the inner symbolic factorization is also responsible for formingsupernodes (that is, for deciding whether the active column will start a new supernode) andfor symmetric structural pruning. The inner symbolic factorization is, therefore, exactlythe supernode-column symbolic factorization described above.The outer symbolic factorization must determine the structures of columns j toj+w�1, i.e., the structure of the whole panel, and also a topological order for U(1: j; j: j+w � 1) en masse. To this end, we developed an e�cient panel depth-�rst search scheme,which is a slight modi�cation of the column DFS. The panel depth-�rst search algorithmmaintains a single postorder DFS list for all w columns of the panel. Let us call this the POlist, which is initially empty. The algorithm invokes the column depth-search procedure foreach column from j to j+w� 1. In the column DFS, each time the search backtracks froma vertex, that vertex is appended to the PO list. In the panel DFS, however, the vertex isappended to the PO list only if it is not already on the list. This gives a single list thatincludes every position that is nonzero in any panel column, just once; and the entire list isin (reverse) topological order. Thus the order of updates speci�ed by the list is acceptablefor each of the w individual panel columns.We illustrate the idea in Figure 4.7, using the sample matrix from Figure 4.5and 4.6 and a panel of width two. The �rst seven columns have been factored, and the



34current panel consists of columns 8 and 9. In the panel, nonzeros of A are shown as \�" and�ll in F is shown as \�". The depth-�rst search for column 8 starts from vertices 2 and 3.After that search is �nished, the panel postorder list is PO = (6; 2; 3). Now the depth-�rstsearch for column 9 starts from vertices 6 and 7 (not 4, since 6 is the representative vertexfor the supernode containing column 4). This DFS only appends 7 to the PO list, because6 is already on the list. Thus, the �nal list for this panel is PO = (6; 2; 3; 7). The postorderlist of column 8 is (6; 2; 3) and the postorder list of column 9 is (6; 7), which are simply twosublists of the panel PO list. The topological order is the reverse of PO, or (7; 3; 2; 6). Inthe loop of line 3 of Figure 4.2, we follow this topological order to schedule the updatingsupernodes and perform numeric updates to columns of the panel.4.4 Test matricesTo evaluate our algorithms, we have collected matrices from various sources, withtheir characteristics summarized in Table 4.1.Some of the matrices are from the Harwell-Boeing collection [31]. Many of thelarger matrices are from the ftp site maintained by Tim Davis of the University of Florida.Those matrices are as follows. Memplus is a circuit simulation matrix from Steve Hamm ofMotorola. Rdist1 is a reactive distillation problem in chemical process separation calcula-tions, provided by Stephen Zitney at Cray Research, Inc. Shyy161 is derived from a direct,fully-coupled method for solving the Navier-Stokes equations for viscous 
ow calculations,provided by Wei Shyy of the University of Florida. Goodwin is a �nite element matrix ina nonlinear solver for a 
uid mechanics problem, provided by Ralph Goodwin of the Uni-versity of Illinois at Urbana-Champaign. Venkat01, Inaccura and Raefsky3/4 wereprovided by Horst Simon of NASA. Venkat01 comes from an implicit 2-D Euler solver foran unstructured grid in a 
ow simulation. Raefsky3 is from a 
uid structure interactionturbulence problem. Raefsky4 is from a buckling problem for a container model. Bai isfrom solving an unsymmetric eigenvalue problem, provided by Zhaojun Bai of the Univer-sity of Kentucky. Ex11 is from a 3-D steady 
ow calculation in the SPARSKIT collectionmaintained by Yousef Saad at University of Minnesota. Wang3 is from solving a couplednonlinear PDE system in a 3-D (30� 30� 30 uniform mesh) semiconductor device simula-tion, as provided by Song Wang of the University of New South Wales, Sydney. Vavasis3is an unsymmetric augmented matrix for a 2-D PDE with highly varying coe�cients [109].Dense1000 is a dense 1000� 1000 random matrix.The matrices are sorted in increasing order of flops=nnz(F ), the ratio of thenumber of 
oating-point operations to the number of nonzeros nnz(F ) in the factoredmatrix F = U + L � I . The reason for this order will be described in more detail insection 4.6.This thesis does not address the performance of column preordering for sparsity.We simply use the existing ordering algorithms provided by Matlab [62]. For all matrices,except 1, 14 and 21, the columns were permuted by Matlab's minimum degree ordering ofATA, also known as \column minimum degree" ordering. However, this ordering producestremendous amount of �ll for matrices 1, 14 and 21, because it only attempts to minimize theupper bound on the actual �ll (Section 3.1.2), and the upper bounds are too loose in these
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Matrix s Rows Nonzeros Nonzeros/row1 Memplus .983 17758 99147 5.62 Gemat11 .002 4929 33185 6.73 Rdist1 .062 4134 9408 2.34 Orani678 .073 2529 90158 35.65 Mcfe .709 765 24382 31.86 Lnsp3937 .869 3937 25407 6.57 Lns3937 .869 3937 25407 6.58 Sherman5 .780 3312 20793 6.39 Jpwh991 .947 991 6027 6.110 Sherman3 1.000 5005 20033 4.011 Orsreg1 1.000 2205 14133 6.412 Saylr4 1.000 3564 22316 6.313 Shyy161 .769 76480 329762 4.314 Goodwin .642 7320 324772 44.415 Venkat01 1.000 62424 1717792 27.516 Inaccura 1.000 16146 1015156 62.917 Bai .947 23560 460598 19.618 Dense1000 1.000 1000 1000000 100019 Raefsky3 1.000 21200 1488768 70.220 Ex11 1.000 16614 1096948 66.021 Wang3 1.000 26064 177168 6.822 Raefsky4 1.000 19779 1316789 66.623 Vavasis3 .001 41092 1683902 41.0Table 4.1: Characteristics of the test matrices. Structural symmetry s is de�ned to be thefraction of the nonzeros matched by nonzeros in symmetric locations. None of the matricesare numerically symmetric.



36cases. When these three matrices were symmetrically permuted by Matlab's symmetricminimum degree ordering on A+AT , the amount of �ll is much smaller than using columnminimum degree ordering.4.5 Performance on an IBM RS/6000-590In this section we carry out numerical experiments on an IBM RS/6000-590 todemonstrate the e�ciency of our new code, SuperLU. The CPU clock rate of this machineis 66.5 MHz. The processor has two branch units, two �xed-point units, and two 
oating-point units, which can all operate in parallel if there are no dependencies. In particular,each FPU can perform two operations (a multiply and an add or subtract) at every cycle.Thus, the peak 
oating-point performance is 266 M
ops. The data cache is of size 256KB with 256-byte lines, and is 4-way set-associative with LRU replacement policy. Thereis a separate 32 KB instruction cache. The size of the main memory is 768 MB. TheSuperLU algorithm is implemented in C, using double precision arithmetic; we use the AIXxlc compiler with -O3 optimization.In the inner loops of our sparse code, we call the two dense BLAS-2 routinesDTRSV (triangular solve) and DGEMV (matrix-vector multiply) provided in the IBMESSL library [77], whose BLAS-3 matrix-matrix multiply routine (DGEMM) achievesabout 250 M
ops when the dimension of the matrix is larger than 60 [1]. In our sparsealgorithm, we �nd that DGEMV typically accounts for more than 80% of the 
oating-point operations, as depicted in Figure 4.8. This percentage is higher than 95% for manymatrices. Our measurements reveal that for typical dimensions arising from the benchmarkmatrices, DGEMV achieves roughly 235 M
ops if the data are from cache. If the data arefetched from main memory, this rate can drop by factors of 2 to 3.The BLAS speed is clearly an upper bound on the overall factorization rate.However, because symbolic manipulation usually takes a nontrivial amount of time, thisbound could be much higher than the actual sparse code performance. Figure 4.9 showsthe fraction of the total factorization spent in numeric computation. For matrices 1 and2, the program spent less than 35% of its time in the numeric part. Compared to theothers, these two matrices are sparser, have less �ll, and have smaller supernodes, so oursupernodal techniques are less applicable. Matrix 2 is also highly unsymmetric, whichmakes the symmetric structural reduction technique less e�ective. However, it is importantto note that the execution times for these two matrices are small. We also note that neithersymbolic nor numeric time dominates the other, which means the symbolic algorithms aree�cient as well.Table 4.2 presents the absolute performance of the SuperLU code on this system.All 
oating point computations are in double precision. The third column gives the nonzerogrowth factor in F . For larger and denser matrices such as 17 { 21, we achieve between110 and 125 M
ops, which is about half of the machine peak. These matrices take muchlonger to factor, which could be a serious bottleneck in an iterative simulation process. Ourtechniques are successful in reducing the solution times for this type of problem.For a dense 1000 � 1000 matrix, our code achieves 117 M
ops. This compareswith 168 M
ops reported in the LAPACK manual [8] on a matrix of this size. That is
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Matrix nnz(F ) nnz(F )nnz(A) #
ops (106) Seconds M
ops1 Memplus 140388 1.4 1.8 0.57 3.082 Gemat11 93370 2.8 1.5 0.27 5.643 Rdist1 338624 3.6 12.9 0.96 13.474 Orani678 280788 3.1 14.9 1.11 13.485 Mcfe 69053 2.8 4.1 0.24 17.426 Lnsp3937 427600 16.8 38.9 1.50 25.977 Lns3937 449346 17.7 44.8 1.65 27.168 Sherman5 249199 12.0 25.2 0.82 30.789 Jpwh991 140746 23.4 18.0 0.52 34.5710 Sherman3 433376 21.6 60.6 1.37 44.2411 Orsreg1 402478 28.5 59.8 1.21 49.4212 Saylr4 654908 29.3 104.8 2.18 48.0713 Shyy161 7634810 23.2 1571.6 25.42 61.8314 Goodwin 3109585 9.6 665.1 12.55 52.9915 Venkat01 12987004 7.6 3219.9 42.99 74.9016 Inaccura 9941478 9.8 4118.7 67.73 60.8117 Bai 13986992 30.4 6363.7 75.91 83.8318 Dense1000 1000000 1.0 666.2 5.68 117.2819 Raefsky3 17544134 11.8 12118.7 107.60 112.6220 Ex11 26207974 23.8 26814.5 247.05 108.5421 Wang3 13287108 74.9 14557.5 116.58 124.8622 Raefsky4 26678597 20.3 31283.4 263.13 118.8923 Vavasis3 49192880 29.2 89209.3 786.94 113.36Table 4.2: Performance of SuperLU on an IBM RS/6000-590.



39to say, when input matrix is dense, our sparse code achieves roughly 70% e�ciency of astate-of-the-art dense code.4.6 Understanding cache behavior and parametersIn this section, we analyze the behavior of SuperLU in detail. We wish to un-derstand when our algorithm is signi�cantly faster than other algorithms. We would likeperformance-predicting variable(s) that depend on \intrinsic" properties of the problem,such as the sparsity structure, rather than algorithmic details and machine characteristics.We begin by analyzing the speedups of the enhanced codes over the base GP implementa-tion. Figures 4.10, 4.11 and 4.12 depict the speedups and the characteristics of the matrices,with panel size w = 8.4.6.1 How much cache reuse can we expect?As discussed in Section 4.2, the supernode-panel algorithm gets its primary gainsfrom improved data locality, by reusing a cached supernode several times. To understandhow much cache reuse we can hope for, we computed two statistics: ops-per-nz and ops-per-ref . After de�ning these statistics carefully, we discuss which more successfully measuresreuse. Ops-per-nz is simply calculated as #flops=nnz(F ), the total number of 
oatingpoint operations per nonzero in the �lled matrix F . If there were perfect cache behavior,i.e., one cache miss per data item (ignoring the e�ect of cache line size), then ops-per-nzwould exactly measure the amount of work per cache miss. In reality, ops-per-nz is an upperbound on the reuse. Note that ops-per-nz depends only on the fact that we are performingGaussian elimination with partial pivoting, not on algorithmic or machine details. Ops-per-nz is a natural measure of potential data reuse, because it has long been used to distinguishamong the di�erent levels of BLAS, for example, for an n�n matrix-matrix multiplication(BLAS-3) versus matrix-vector multiplication (BLAS-2).In contrast, ops-per-ref provides a lower bound on cache reuse, and does dependon the details of the SuperLU algorithm. Ops-per-ref looks at each supernode-panel updateseparately, and assumes that all the associated data is outside the cache before beginningthe update. This pessimistic assumption limits ops-per-ref to twice the panel size, 2w.Now we de�ne ops-per-ref more carefully. Consider a single update from supernode(r: s) to panel (j: j + w � 1). Depending on the panel's nonzero structure, each entry inthe updating supernode is used to update from 1 to w panel columns. Thus each entry inthe updating supernode participates in between 0 and 2w 
oating point operations duringa supernode-panel update. We assume that the supernode entry is brought into cachefrom main memory exactly once for the entire sup-panel update, if it is used at all. Thus,during a single sup-panel update, each entry accessed in the updating supernode accountsfor between 2 and 2w operations per reference. The ops-per-ref statistic is the averageof this number over all entries in all sup-panel updates. It measures how many times theaverage supernode entry is used each time it is brought into cache from main memory.Ops-per-ref ranges from 2 to 2w, with larger values indicating better cache use. If there is
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BLAS−1Figure 4.10: Speedups of each enhancement over GP code, on an IBM RS/6000-590.little correlation between the row structures of the columns in each panel, ops-per-ref willbe small; if there is perfect correlation, as in a dense matrix, it will be close to 2w.Now we describe how we compute the average ops-per-ref for the entire factoriza-tion. For each updating supernode (r: s) and each panel (j: j + w � 1) (see Figure 4.2),de�ne ksmin = minj�jj<j+w; r�i�sfi j A(i; jj) 6= 0g:Then nnz(L(r:n; ksmin: s)) entries of the supernode are referenced in the sup-panel update.The dense triangular solve in column jj of the update takes (s�ks+1) �(s�ks) 
ops, whereks = minr�i�sfi j A(i; jj) 6= 0g. The matrix-vector multiply uses 2 � (s�ks+1) �nnz(L(s+1:n; s)) 
ops. We count both additions and multiplications. For all panel updates, we sumthe memory reference counts and sum the 
op counts, then divide the second sum by the�rst to arrive at an average ops-per-ref.Now we compare the predictive powers of ops-per-nz (Figure 4.11 (a)) and ops-per-ref (Figure 4.11 (b)) in predicting speedup (Figure 4.10). The superiority of ops-per-nz isevident; it is much more strongly correlated with the speedup of SuperLU than ops-per-ref .This is good news, because ops-per-nz measures the best case reuse, and ops-per-ref theworst case. But neither statistic captures all the variation in the performance. In futurework, we hope to use a hardware monitor to measure the exact cache reuse rate. (This datacould also be obtained from a simulator, but the matrices we are interested in are much toolarge for a simulator to be viable.)
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434.6.2 How large are the supernodes?The supernode size determines the size of the matrix to be passed to matrix-vectormultiply and other BLAS-2 routines in our algorithm. Figure 4.12(a) shows the averagenumber of columns in the supernodes of the matrices, after amalgamating the relaxedsupernodes at the bottom of the column etree (Section 3.4). The average size is usuallyquite small.More important than average size is the distribution of supernode sizes. In sparseGaussian elimination, more �ll tends to occur in the later stages. Usually there is a largepercentage of small supernodes corresponding to the leaves of the column etree, even afteramalgamation. Larger supernodes appear nearer the root. In Figure 4.13 we plot thehistograms of the supernode size for four matrices chosen to exhibit a wide range of behavior.In the �gure, the number at the bottom of each bar is the smallest supernode size in thatbin. The mark \o" at the bottom of a bin indicates zero occurrences; otherwise, a \�" isput at the bottom of a bin. Relaxed supernodes of granularity r = 4 are used. Matrix 1has 16378 supernodes, all but one of which have less than 12 columns; the single largesupernode, with 115 columns, is the dense submatrix at the bottom right corner of F .Matrix 14 has more supernodes distributed over a wider spectrum; it has 13 supernodeswith 54 to 59 columns. This matrix gives greater speedups over the non-supernodal codes.Figure 4.12 also plots three other properties of each matrix: structural symmetry,dimension, and density. None of them have any signi�cant correlation with the performance.The e�ectiveness of symmetric reduction depends on F being structurally symmetric, whichdepends on the choice of pivots. So, structural symmetry of A does not give any usefulinformation.We note that the speedup achieved by the dense 1000� 1000 problem (matrix 18)show the best performance gain over SupCol, because this matrix has large supernodes andexhibits ideal data reuse. It achieves a speedup of 1.43 on the RS/6000-590. The gain forany sparse matrix should be smaller than this on this machine.4.6.3 Blocking parametersIn our hybrid blocking algorithm (Figure 4.4), we need to select appropriate valuesfor the parameters that describe the two-dimensional data blocking: panel width w, max-imum supernode size t, and row block size b, see Figure 4.14. The key considerations arethat the active data we access in the inner loop (the working set) should �t into the cache,and that the matrices presented to the BLAS-2 routine DGEMV should be the sizes andshapes for which that routine is optimized. Here we describe in detail the methodology weused to choose parameters for the IBM RS/6000. The methodology can be employed onother machines as well, with the block sizes adapted to the cache sizes.� DGEMV optimization. As indicated in Figure 4.8, the majority of the 
oating-point operations are in the matrix-vector multiply. The dimensions (m;n) of thematrices in calls to DGEMV vary greatly depending on the supernode dimensions.Very often, the supernode is a tall and skinny matrix, that is, m � n. We measuredthe DGEMV M
ops rate for various m and n, and present a contour plot in the(m;n) plane in Figure 4.15(a). Each contour represents a constant M
ops rate. The



44(a) Matrix 1: 17758 rows, 16378 supernodes
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(b) Matrix 2: 4929 rows, 2002 supernodes
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(c) Matrix 3: 4134 rows, 2099 supernodes
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(d) Matrix 14: 7320 rows, 893 supernodes
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Figure 4.13: Distribution of supernode size for four matrices.
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Figure 4.15: (a) Contour plot of DGEMV performance. (b) Contour plot of working set in 2-Dalgorithm.



46dashed curve representsmn = 32K double 
oats, or a cache capacity of 256 KB. In theoptimum region, we achieve more than 200 M
ops; outside this region, performancedrops either because the matrices exceed the cache capacity, or because the columndimension n is too small.� Working set. By studying the data access pattern in the inner loop of the 2-D al-gorithm, lines (7{9) in Figure 4.4, we �nd that the working set size is the followingfunction of w, t, and b, as shown in Figure 4.14:WS = b� t| {z }row block from supernode + (t+ b)� w| {z }vectors in matrix-vector multiply+ b� w| {z }part of SPA structure :In Figure 4.15(b), we �x two w values, and plot the contour lines for WS = 32K inthe (t; b) plane. If the point (t; b) is below the contour curve, then the working setcan �t in a cache of 32K double 
oats, or 256 KB.Based on this analysis, we use the following rules to set the parameters.First we choose w, the width of the panel in columns. Larger panels mean morereuse of cached data in the outer factorization, but also mean that the inner factorization(by the sup-col algorithm) must be applied to larger matrices. We �nd empirically that thebest choice for w is between 8 and 16. Performance tends to degrade for larger w.Next we choose b, the number of rows per block, and t, the maximum numberof columns in a supernode. Recall that b and t are upper bounds on the row and columndimensions of the call to DGEMV. We choose t = 100 and b � 200, which guaranteesthat the working set �ts in cache (per Figure 4.15(b)), and that we can hope to be near theoptimum region of DGEMV performance (per Figure 4.15(a)).Recall that b is relevant only when we use row-wise blocking, that is, when thetest \if supernode (r: s) is large" succeeds at line 4 of Figure 4.4. This implies that the2-D scheme adds overhead only if the updating supernode is large. In the actual code, thetest for a large supernode isif ncol > 40 and nrow > b then the supernode is large,where nrow is the number of dense rows below the diagonal block of the supernode, ncolis the number of dense columns of the supernode updating the panel, i.e., ncol = s� r+ 1.In practice, this choice usually gives the best performance.The best choice of the parameters w, t, and b depends on the machine architectureand on the BLAS implementation, but it is largely independent of the matrix structure.Thus we do not expect each user of SuperLU to choose values for these parameters. Instead,our library code provides an inquiry function that returns the parameter values, much in thespirit of the LAPACK environment routine ILAENV. The machine-independent defaultswill often give satisfactory performance. The methodology we have described here for theRS/6000 can serve as a guide for users who want to modify the inquiry function to giveoptimal performance for particular computer systems.



474.7 Register reuseCommercial microprocessor performance has increased dramatically, largely drivenby CMOS fabrication technology improvements. It is now common to see superscalar pro-cessors capable of executing up to four scalar instructions in every cycle. Given multiple
oating-point units operating in parallel, the peak speed is attainable only if all the sourceoperands to the FPUs are in registers upon execution. In such systems, not only is cachereuse important, but su�cient reuse of data in registers becomes vital as well. Registerreuse can reduce the load/store frequency and bandwidth requirement between registersand cache. We will illustrate this by studying in more detail the performance of DGEMVand of the complete factorization on the two di�erent superscalar microprocessors.4.7.1 Performance on the MIPS R8000As seen from Section 4.5, the IBM RS/6000-590 (POWER2 family) has a peak po-tential performance of four 
oating-point operations per cycle. To allow for such a sustainedrate, the IBM POWER2 provides unique quad load/store instructions, which double the ef-fective bandwidth between 
oating-point registers (FPRs) and cache. This quad load/storecapability together with a large factor of inner loop unrolling are the keys for the matrix-vector kernel to achieve nearly peak performance. The code segment in Figure 4.16 forDGEMV (y  y +A � x) explains the reason. Here, the xj 's and yi's denote the FPRs totemporarily hold the respective values from vectors x and y. Loop 4{10 performs multipli-cation of a R-by-C block of matrix A with a C-by-1 subvector of x. The column-wise blocksize C can be chosen to minimize the �nite cache and TLB e�ects. The row-wise block sizeR (or unrolling factor) depends on the number of available FPRs. For example, R = 24is appropriate for the IBM POWER2, because there are 32 
oating-point registers. In themultiply-add instructions of the innermost loop 6{9 (which should be fully unrolled in theactual code), all operands except the two entries from A are already in the FPRs. SinceA(I + i; j) and A(I + i + 1; j) are stored contiguously in memory, only one quad load isneeded to load both entries into the two FPRs, and to feed both FPUs at the peak rate oftwo multiply-adds in every cycle. That is essentially how the DGEMV routine in the IBMESSL library achieves close to peak performance.The quad load/store data path on the IBM POWER2 is a nice feature but isvery expensive to implement from hardware point of view, and not many RISC processorsprovide this capability. We now study another high performance architecture, the MIPSR8000 chip set, to see what the peak DGEMV performance is provided that the sourcematrix A is in cache. The CPU has a clock frequency of 90 MHz. By four-way superscalarimplementation, the processor can dispatch up to four instructions per cycle, including twointeger and two 
oating-point instructions. The two 
oating-point instructions can be apair of multiply-add (MADD) instructions, resulting in a throughput of up to four 
oating-point operations per cycle and 360 M
ops peak rate. However, unlike the IBM POWER2,there is no quad load/store instruction. Each load can supply only one 64-bit double-wordper cycle. Therefore, the DGEMV inner loop of Figure 4.16 is now limited by load/storebandwidth. In the vendor-supplied BLAS library, the DGEMV routine achieves at most210 M
ops, roughly 58% of the machine peak. We are therefore motivated to design a



481. for J = 1 to n, step C, do2. for I = 1 to n, step R, do3. for i = 0 to R� 1 do yi = y(I + i);4. for j = J to J + C � 1 do5. xj = x(j);6. for i = 0 to R� 1, step 2, do7. yi = yi + A(I + i; j) � xj ;8. yi+1 = yi+1 + A(I + i+ 1; j) � xj ;9. endfor;10. endfor;11. endfor;12. endfor; Figure 4.16: A code segment to implement DGEMV.new kernel, which we call DGEMV2, that multiplies a matrix with two vectors altogether(y1  y1 + A � x1; y2  y2 + A � x2). In addition to matrix A, DGEMV2 also takestwo source vectors x1; x2 and two destination vectors y1; y2. The DGEMV2 routine canbe written as in Figure 4.17.Again, we assume that x1j 's and x2j 's are the FPRs holding the elements fromthe two source vectors, y1 and y2 are the two FPRs holding the elements from the twodestination vectors. Then the load requirement in the inner loop 9{11 is only one 64-bit double-word for A(i; j). This one load can supply two MADDs or four 
oating-pointoperations per cycle. Since the R8000 processor has 32 FPRs, the level of unrolling factor Ccan be set to 8. That amounts to 16 FPRs used by the source vectors x1 and x2, 2 FPRs usedby the destination vectors y1 and y2, and 8 FPRs used by the elements from A. With thislevel of unrolling, a block column computation in the loop 6{15 performs 32 
oating-pointoperations, does 8 loads for the A entries, 2 loads and 2 stores for the y entries. In particular,each A(i; j) is reused across four 
oating-point operations. Compared with the 2-
ops-per-load ratio in DGEMV, the DGEMV2 kernel certainly reuses registers better and lessensthe load/store requirement. This kernel uncovers another half of the peak speed which isnot achievable by DGEMV. Figure 4.18 shows our measurement of the performance ofDGEMV2, and the vendor optimized BLAS routines DGEMM and DGEMV. For theC routine implementing DGEMV2, we use the cc compiler with options -O3 -mips4 -64-OPT:alias=restrict in order for the compiler to generate most e�cient code. From the�gure we see that DGEMV2 achieves over 95% of the machine peak for matrices of widerange of dimensions. It sometimes performs better than the vendor-supplied DGEMMroutine. When the matrix size exceeds cache capacity (4 MB), its performance degradessubstantially, but is still better than DGEMV. Overall, DGEMV2 is roughly 70% fasterthan DGEMV when the matrix �ts in the cache.Now we need to alter the LU factorization algorithm in order to call DGEMV2.Recall that the supernode-panel update involves two matrices A and B, with A being (part



491. for J = 1 to n, step C, do2. for j = J to J + C � 1 do3. x1j = x1(j); x2j = x2(j);5. endfor;6. for i = 1 to n do7. y1 = y1(i); y2 = y2(i); /* load */9. for j = J to J + C � 1 do10. y1 = y1 + A(i; j) � x1j ;11. y2 = y2 + A(i; j) � x2j ;12. endfor;13. y1(i) = y1; y2(i) = y2; /* store */15. endfor;16. endfor; Figure 4.17: A code segment to implement DGEMV2.
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Figure 4.19: Supernode-panel update using DGEMV or DGEMV2 kernels.of) a supernode and B being several column segments from U , in skyline form, as shownin Figure 4.19 (a). In general the vectors in matrix B are of di�erent lengths. As illustratedin Figure 4.19 (b), we can call DGEMV2 with the pair of adjacent vectors, x1 and x2, usingthe length of the shorter vector x1. For the other part of the longer vector x2, we still useDGEMV with the corresponding columns in matrix A. A more elaborate scheme might beto pair up the vectors in decreasing order of their lengths, so that vectors of greater lengthsare used in DGEMV2. However, this requires sorting and may be costly to implement.Table 4.3 shows the overall factorization rate on a MIPS R8000 when using thetwo di�erent kernels DGEMV and DGEMV2. The second to last column shows the im-provement over DGEMV. Depending on how much opportunity there is to use DGEMV2,some matrices achieve better speedup. The average performance gain is about 25%.4.7.2 Performance on the DEC Alpha 21164In this subsection, we study another superscalar architecture, the DEC Alpha21164, to see whether the DGEMV2 kernel is helpful to improve the performance. TheCPU has a clock frequency of 300 MHz, and is capable of issuing four instructions per cycle.The processor has one 
oating-point add pipeline and one 
oating-point multiply pipeline,with a throughput of two 
oating-point operations per cycle. The peak 
oating-point rateis therefore 600 M
ops. Inside the chip is an 8 KB direct-mapped Level 1 instruction cache,and an 8 KB direct-mapped write-through Level 1 data cache. Also on the chip there is a96 KB 3-way set-associative write-back Level 2 uni�ed cache. O� the chip there is a 4 MBdirect-mapped Level 3 cache. This organization of multiple levels of (small) caches makesit somewhat more di�cult to achieve good performance than on the machines with simplercache systems. By measurement, the DGEMM routine from DEC's DXML library achievesat most about 350 M
ops, far from the peak.We implemented a DGEMV2 routine using Fortran 77, and compiled it with -O5-fast -tune ev5. Figure 4.20 shows our measurement of the performance of DGEMV2and the vendor optimized DGEMV. Surprisingly, DGEMV2 is not drastically faster thanDGEMV, as we saw on the MIPS R8000. For the matrices that �t into the L2 cache, thegain of DGEMV2 over DGEMV is only about 40 M
ops. One possible explanation isthat our hand-coded DGEMV2 is not adequately optimized for this architecture. Further
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DGEMV DGEMV2 DGEMV2Matrix M
ops M
ops Speedup Seconds1 Memplus 2.40 2.47 1.03 0.712 Gemat11 4.36 5.87 1.35 0.263 Rdist1 12.53 13.17 1.05 0.984 Orani678 12.27 13.01 1.06 1.155 Mcfe 15.92 17.99 1.13 0.236 Lnsp3937 21.90 28.88 1.32 1.357 Lns3937 22.54 30.10 1.34 1.498 Sherman5 27.43 35.55 1.30 0.719 Jpwh991 29.96 37.45 1.25 0.4810 Sherman3 46.98 54.60 1.16 1.1111 Orsreg1 48.63 59.23 1.22 1.0112 Saylr4 49.90 60.22 1.21 1.7413 Shyy161 58.87 66.95 1.34 23.4814 Goodwin 49.82 72.30 1.45 9.2015 Venkat01 77.93 105.71 1.36 30.4616 Inaccura 54.49 86.44 1.59 47.6517 Bai 92.04 107.03 1.16 59.4618 Dense1000 133.77 177.64 1.33 3.7519 Raefsky3 119.64 154.55 1.29 78.4120 Ex11 109.86 129.75 1.18 205.9021 Wang3 136.86 168.99 1.24 86.1422 Raefsky4 116.38 142.88 1.23 218.9523 Vavasis3 114.12 127.01 1.11 702.38Table 4.3: Factorization rate in M
ops and time in seconds with two di�erent kernels on aMIPS R8000.
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Figure 4.20: Measurement of the double-precision DGEMV2 and DGEMV on the DECAlpha 21164.investigation is needed to improve DGEMV2 speed.Table 4.4 presents the overall LU factorization performance on this machine. Asanticipated, the performance gain of using DGEMV2 kernel is rather moderate. For largematrices, the speedups are between 10% and 15%. For most smaller matrices the speedupsare below 10%.4.8 Comparison with previous column LU factorization al-gorithmsIn this section, we compare the performance of SuperLU with three of its prede-cessors, including GP by Gilbert and Peierls [64] (Figure 2.1), GP-Mod by Eisenstat andLiu [44] (Chapter 2, and Section 4.3.2). and SupCol by Eisenstat, Gilbert and Liu [45](Figure 4.1). GP and GP-Mod are written in Fortran; SupCol and SuperLU are writtenin C. (Matlab contains C implementations of GP and GP-Mod [62], which we did not testhere.) We benchmarked the above four codes on six high-end workstations from fourvendors, whose characteristics are tabulated in Table 4.5. The instruction caches, if separatefrom the data cache, are not listed in the table. The blocking parameters for SuperLU arechosen according to the size of data cache, and are reported in each comparison table. Inmost cases, the on-chip L1 caches are fairly small, so we use either L2 cache or the o�-chipcache as reference. MostDGEMM and DGEMVM
op rates were measured using vendor-
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DGEMV DGEMV2 DGEMV2Matrix M
ops M
ops Speedup Seconds1 Memplus 4.39 4.58 1.04 0.382 Gemat11 9.16 10.17 1.11 0.153 Rdist1 22.78 23.47 1.03 0.554 Orani678 20.88 23.63 1.13 0.635 Mcfe 31.04 31.04 1.00 0.136 Lnsp3937 39.65 42.53 1.07 0.927 Lns3937 40.17 43.41 1.08 1.038 Sherman5 47.32 50.48 1.07 0.509 Jpwh991 51.36 53.93 1.05 0.3310 Sherman3 60.60 64.93 1.07 0.9311 Orsreg1 66.47 69.02 1.04 0.8712 Saylr4 60.46 67.61 1.10 1.5513 Shyy161 65.49 70.38 1.07 22.3314 Goodwin 66.85 70.51 1.05 9.4315 Venkat01 85.00 95.53 1.13 33.5716 Inaccura 68.50 75.05 1.09 54.8817 Bai 83.65 95.26 1.14 66.8018 Dense1000 110.72 139.75 1.26 4.7519 Raefsky3 100.60 113.92 1.13 106.4220 Ex11 96.26 110.74 1.15 241.5321 Wang3 105.09 121.48 1.15 119.7722 Raefsky4 97.17 110.18 1.13 283.7723 Vavasis3 93.63 108.11 1.15 825.37Table 4.4: Factorization rate in M
ops and time in seconds with two di�erent kernels on aDEC Alpha 21164.



54Clock On-chip External #Issues Peak DGEMM DGEMVMHz Cache Cache 1 cycle M
ops M
ops M
opsRS/6000-590 66.5 256 KB 6 266 250 235MIPS R8000 90 16 KB 4 MB 4 360 340 210Alpha 21064 200 8 KB 512 KB 2 200 120 60Alpha 21164 300 8 KB-L1 4 MB 4 600 350 13596 KB-L2Sparc 20 60 16 KB 1 MB 3 60 55� {UltraSparc-I 143 16 KB 512 KB 4 286 227� {Table 4.5: Machines used to compare various column LU codes.supplied BLAS libraries. When the vendors do not supply a BLAS library, we report theresults from PHiPAC [16], with an asterisk (�) beside such a number. For some machines,PHiPAC is often faster than the vendor-supplied DGEMM.Because of physical memory limits on the Alpha 21064, the Sparc 20 and theUltraSparc-I, some large problems could not be tested.For the Fortran codes, we use Fortran 77 compilers; for the C codes, we use ANSIC compilers. In all cases, we use highest possible optimization provided by each compiler.Both SupCol and SuperLU call Level 2 BLAS routines. For the RS/6000-590, we use theBLAS routines from IBM's ESSL library. For both Alphas, we use the BLAS routinesfrom DEC's DXML library. There are no vendor supplied BLAS libraries on the Sparcs,so we use our own routines implemented in C.Tables 4.6 through 4.11 present the results of comparisons on the six machines. Inall these tables, the column labeled \GP" gives the raw factorization times in seconds of theGP column-column code. The numbers in each successive column are speedups achievedby the corresponding enhancement over GP. Thus, for example, a speedup of 2 means thatthe running time was half that of GP. The numbers in the last two rows of each table showthe average speedup and its standard deviation. We make the following observations fromthese results.The symmetric structure pruning in GP-Mod is very e�ective in reducing the graphsearch time. This signi�cantly decreases the symbolic factorization time in the GP code. Itachieves speedup in all problems, on all machines. Its average speedup on the RS/6000 is3.64, the highest among all the machines.Supernodes restrict the search to the supernodal graph, and allow the numerickernels to employ dense BLAS-2 operations. The e�ects are not as dramatic as the pruningtechnique. For matrices 1 { 3, the runtimes are actually longer than GP-Mod. This isbecause supernodes are often small in the sparser matrices.Supernode-panel update reduces the cache miss rate and exploit dense substruc-tures in the factor F . For problems without much structure, the gain is often o�set byvarious implementation overheads. However, the advantage of SuperLU over SupCol be-comes signi�cant for larger or denser problems, or on machines with small cache. This is inpart because for small problems or large caches, when SupCol factors consecutive columns,
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Matrix GP (Seconds) GP-Mod SupCol SuperLU1 Memplus 0.40 1.48 1.05 0.682 Gemat11 0.27 1.69 1.29 1.003 Rdist1 1.90 2.75 2.24 1.944 Orani678 13.86 3.55 2.98 3.105 Mcfe 1.55 3.44 3.52 3.526 Lnsp3937 7.11 3.39 3.86 3.547 Lns3937 7.77 3.39 3.85 3.558 Sherman5 3.98 3.43 4.57 4.239 Jpwh991 2.78 3.61 4.21 4.4810 Sherman3 7.43 3.54 5.99 5.2711 Orsreg1 8.73 3.64 5.86 5.9812 Saylr4 17.51 3.67 5.99 6.3013 Shyy161 163.14 3.65 6.46 5.6714 Goodwin 90.63 3.84 6.46 7.1615 Venkat01 355.50 3.86 8.33 8.8716 Inaccura 544.91 4.17 7.24 7.9417 Bai 823.47 4.23 9.58 10.4718 Dense1000 83.48 4.21 10.22 14.5419 Raefsky3 1571.63 4.30 11.54 14.0020 Ex11 3439.41 4.36 11.42 13.8721 Wang3 1841.27 4.34 12.23 15.7522 Raefsky4 3968.16 4.35 11.89 15.3923 Vavasis3 12342.97 4.79 13.11 15.63Mean 3.64 6.67 7.52Std 0.79 3.69 5.04Table 4.6: Speedups achieved by each enhancement over the GP column-column code, ona RS/6000-590. The blocking parameters for SuperLU are w = 8; t = 100 and b = 200.
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Matrix GP (Seconds) GP-Mod SupCol SuperLU1 Memplus 0.42 1.51 1.10 0.592 Gemat11 0.29 1.77 1.61 1.113 Rdist1 2.03 2.58 2.07 2.074 Orani678 2.26 2.61 1.61 1.965 Mcfe 0.60 2.93 2.73 2.616 Lnsp3937 5.13 3.23 4.17 3.807 Lns3937 5.74 3.32 4.22 3.858 Sherman5 3.70 3.38 5.37 5.229 Jpwh991 2.50 3.63 4.81 5.2110 Sherman3 8.73 3.78 8.08 7.8711 Orsreg1 8.18 3.72 7.24 8.1012 Saylr4 14.92 3.67 7.65 8.5813 Shyy161 235.77 3.24 7.11 10.0414 Goodwin 103.66 3.45 8.87 11.2715 Venkat01 524.46 2.95 8.51 17.2216 Inaccura 720.86 2.93 6.36 15.1317 Bai 1095.30 2.95 7.28 18.4218 Dense1000 113.28 3.34 11.99 30.2119 Raefsky3 2263.80 2.88 6.54 28.8720 Ex11 5302.74 2.96 6.44 25.7521 Wang3 2710.19 2.80 6.31 31.4622 Raefsky4 6005.72 2.85 6.29 27.44Mean 3.02 5.74 12.13Std 0.57 2.75 10.48Table 4.7: Speedups achieved by each enhancement over the GP column-column code, ona MIPS R8000. The blocking parameters for SuperLU are w = 16; t = 100 and b = 800.



57Matrix GP (Seconds) GP-Mod SupCol SuperLU1 Memplus 0.42 1.19 .98 .552 Gemat11 0.28 1.31 1.10 .783 Rdist1 1.81 1.65 1.37 1.274 Orani678 18.16 1.80 1.61 1.855 Mcfe 1.63 1.90 2.12 2.096 Lnsp3937 8.27 1.84 2.25 2.357 Lns3937 9.25 1.81 2.24 2.338 Sherman5 4.55 1.81 2.63 2.799 Jpwh991 3.40 1.92 2.46 2.7910 Sherman3 9.63 1.84 3.23 3.5411 Orsreg1 11.35 1.82 3.09 2.6412 Saylr4 24.48 1.78 3.13 4.1913 Shyy161 249.83 1.80 3.43 3.8414 Goodwin 115.40 1.77 2.82 4.1918 Dense1000 117.21 1.83 3.60 6.45Mean 1.74 2.40 2.85Std 0.21 0.84 1.53Table 4.8: Speedups achieved by each enhancement over the GP column-column code, on aDEC Alpha 21064. The blocking parameters for SuperLU are w = 8; t = 100 and b = 400.all (or most) of the source updating supernodes are likely to �t into cache, which meansSupCol already achieves data reuse to some extent. This may be best illustrated by theresults on the DEC Alpha 21164 (Table 4.9). For the six large matrices 18 { 23, SuperLUachieves more than a factor of 2 speedup over SupCol. This machine di�ers from the othersin that it has multilevel caches, with each cache having rather small capacity. This deepcache organization makes it easier for SupCol to experience cache thrashing than it is on alarge 
at cache. On the MIPS R8000, the large matrices achieve more than 4-fold speedup.This is partly due to better cache reuse, and partly due to better register reuse realized byDGEMV2 kernel.With more and more sophisticated techniques introduced, the added complicationsin the code increase the the runtime overhead to some extent. This overhead can show upprominently in small or sparse problems. The two supernodal codes are particularly sensitiveto the characteristic of the problems. This can be seen from the large standard deviationsof their average speedups.In practical applications, matrices are of varying size and sparsity, a natural ques-tion to ask is whether we can provide \black box" software that can choose the best al-gorithm based on characteristics of the matrix. This still remains a challenge in softwareengineering and deserves future investigation. The chief di�culty is that we cannot makethe decision simply by looking at matrix itself. Take matrix 1 as an example. This matrixis large in dimension, and fairly sparse. More importantly, it remains sparse after factor-



58Matrix GP (Seconds) GP-Mod SupCol SuperLU1 Memplus 0.17 1.25 1.01 0.452 Gemat11 0.13 1.54 1.26 0.843 Rdist1 0.80 1.76 1.77 1.454 Orani678 0.92 1.74 1.47 1.455 Mcfe 0.24 1.71 2.01 1.856 Lnsp3937 2.09 1.93 2.61 2.277 Lns3937 2.33 1.94 2.59 2.278 Sherman5 1.50 1.92 3.13 3.009 Jpwh991 1.06 2.14 3.20 3.2010 Sherman3 3.65 2.10 4.06 3.9311 Orsreg1 3.41 2.07 3.87 3.9112 Saylr4 6.73 2.05 4.01 4.3413 Shyy161 102.19 1.81 3.97 4.5814 Goodwin 46.18 1.92 3.84 4.9015 Venkat01 235.01 1.71 4.08 7.0016 Inaccura 333.24 1.72 3.48 6.0717 Bai 497.36 1.68 4.03 7.4518 Dense1000 49.29 1.82 4.82 10.3819 Raefsky3 1065.88 1.68 4.00 10.0220 Ex11 1563.17 1.73 4.12 10.6121 Wang3 1324.79 1.74 3.92 11.0622 Raefsky4 2939.42 1.73 3.96 10.3623 Vavasis3 9477.62 1.83 4.51 11.48Mean 1.80 3.29 5.34Std 0.20 1.10 3.69Table 4.9: Speedups achieved by each enhancement over the GP column-column code, on aDEC Alpha 21164. The blocking parameters for SuperLU are w = 16; t = 50 and b = 100.ization (only 1.4 �ll factor, which is actually good for sparse code). There is no gain fromintroducing supernodes. Unfortunately, we know this only after the factorization.4.9 Working storage requirementIn this section, we analyze the storage e�ciency of the new panel algorithm. Apartfrom the data structures required to store the factored matrices L and U , a certain amountof working storage is also needed to facilitate the factorization process. Because of theinevitable �ll-ins in direct factorization algorithms, memory is almost always at a premium.The resource limitation preventing the solution of large problems is often memory, not CPUhours. Therefore, a low working storage requirement is an important criterion to judge asolver's e�cacy.



59Matrix GP (Seconds) GP-Mod SupCol SuperLU1 Memplus 0.86 1.19 1.25 .752 Gemat11 0.57 1.32 1.71 1.093 Rdist1 3.77 1.64 1.65 1.584 Orani678 29.13 1.86 1.78 1.815 Mcfe 3.18 1.80 2.16 2.326 Lnsp3937 14.68 1.82 2.36 2.337 Lns3937 16.29 1.84 2.47 2.278 Sherman5 8.12 1.82 2.74 2.819 Jpwh991 5.74 1.85 2.39 2.5810 Sherman3 16.04 1.90 3.19 3.0911 Orsreg1 18.81 1.89 3.09 3.2012 Saylr4 38.72 1.95 3.09 3.3213 Shyy161 442.48 2.08 3.47 3.5514 Goodwin 195.06 1.89 3.02 3.9118 Dense1000 195.08 1.96 3.13 4.89Mean 1.78 2.49 2.63Std 0.24 0.68 1.09Table 4.10: Speedups achieved by each enhancement over the GP column-column code, ona Sparc 20. The blocking parameters for SuperLU are w = 8; t = 100 and b = 400.Matrix GP (Seconds) GP-Mod SupCol SuperLU1 Memplus 0.36 1.17 1.08 0.582 Gemat11 0.23 1.27 1.16 0.933 Rdist1 1.53 1.69 1.56 1.464 Orani678 1.86 1.64 1.25 1.335 Mcfe 0.52 1.97 1.85 1.926 Lnsp3937 4.26 1.86 2.16 2.247 Lns3937 4.89 1.94 2.11 2.338 Sherman5 3.15 1.94 2.28 3.039 Jpwh991 2.32 2.18 2.47 3.0910 Sherman3 7.73 2.01 2.84 3.5911 Orsreg1 7.2 1.97 2.69 3.5212 Saylr4 13.88 1.96 2.52 3.8413 Shyy161 188.72 1.91 3.01 3.4314 Goodwin 89.30 1.89 2.62 4.4118 Dense1000 94.77 2.05 3.33 4.25Mean 1.83 2.19 2.66Std 0.28 0.69 1.22Table 4.11: Speedups achieved by each enhancement over the GP column-column code, onan UltraSparc-I. The blocking parameters for SuperLU are w = 8; t = 100 and b = 400.



60In our supernode-panel factorization approach, the working storage is allocatedduring the factorization of a single panel, including both its outer and inner factorizations.The same working storage is then used repeatedly by factorizations across di�erent panels.The working storage consists of two parts, where one part is used by symbolic factorization,and another part is used by numerical factorization. In symbolic factorization, �ve integern-vectors are used in the column and panel depth-�rst search (Sections 4.3.1 and 4.3.4),where n is the order of the matrix. One integer n-vector is used to record the topologicalorder obtained from the depth-�rst traversal. We use an n-by-w integer array to keep trackof the position of the �rst nonzero of each supernodal segment in U , for all the columns in apanel of width w. An n-vector of integers is used as pointers pointing into the adjacency listof L, representing the pruned subgraph of L (Section 4.3.2). During the outer factorization,we use an n-by-w integer array to temporarily record the row indices of the nonzeros �lledin the panel and below the U part. This is obtained by panel depth-�rst search, and is usedimmediately by the inner factorization. Thus, the total integer storage equals n� (7+2 w).In numerical factorization, an n-by-w 
oating-point SPA is used to allow randomaccess to the entries in the active panel. Another 
oating-point temporary array is employedto store the results of BLAS calls. The size of this array is determined by the blockingparameters, and is calculated as (t+b)�w, with t, b and w being illustrated in Figure 4.14.The total 
oating-point storage is n � w + (t + b) � w. Note that all the above workingstorage is reclaimed when the factorization is completed.Table 4.12 reports the statistics on working storage usage. We compare the workingstorage requirement with the LU storage in two di�erent ways. In the third column of thetable, the total working storage divided by the number of bytes used by the factor matrixF = L + U � I is shown. We include both integer and 
oating-point storage for F . Weassume that an integer occupies 4 bytes, and a double precision 
oating-point numberoccupies 8 bytes. In the last column of the table only 
oating-point working storage isconsidered. Here, the 
oating-point working storage divided by the number of nonzeros inF is shown.It can be seen from this table that the working storage requirement for smallerand sparser problems is relatively high, such as matrices 1 and 2. Since their L and Ufactors only occupy small amount of memory, memory is not a bottleneck for this type ofproblem. For large problems where L and U take up more than tens of Megabytes, theworking storage usually represents only a few percent of the LU storage. Thus, being freefrom undue memory usage, the new algorithm is capable of solving the largest problemsthat can �t into core memory.4.10 Supernodal triangular solvesNot only the factorization can bene�t from supernodes; so can the triangularsolution. Since our data structures and storage layouts for L and U are di�erent, thelower and upper triangular solves are implemented di�erently. Here, we assume that theright-hand side vector is full.Figure 4.21 shows the forward substitution procedure to solve a lower triangularsystem. Since L has supernode structures, both the triangular solve at line 3 and the matrix-
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LU storage Fraction of Fraction ofMatrix (MB) LU storage LU 
oats1 Memplus 1.75 1.74 1.452 Gemat11 1.03 .82 .563 Rdist1 3.77 .19 .124 Orani678 3.34 .13 .095 Mcfe 0.73 .19 .126 Lnsp3937 4.59 .15 .097 Lns3937 4.83 .14 .088 Sherman5 2.65 .21 .139 Jpwh991 1.47 .12 .0710 Sherman3 4.38 .19 .1211 Orsreg1 4.04 .09 .0612 Saylr4 6.60 .09 .0513 Shyy161 78.04 .16 .1014 Goodwin 33.96 .03 .0215 Venkat01 129.83 .08 .0516 Inaccura 105.18 .02 .0217 Bai 142.61 .03 .0218 Dense1000 9.85 .01 .0119 Raefsky3 178.79 .02 .0120 Ex11 275.50 .01 .0121 Wang3 133.54 .03 .0222 Raefsky4 267.59 .01 .0123 Vavasis3 510.86 .01 .01Table 4.12: Working storage requirement as compared with the storage needed for L andU . The blocking parameter settings are: w = 8, t = 100, and b = 200.
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1. x = b;2. for each supernode (r : s) in increasing order do3. x(r : s) = L(r : s; r : s)�1 � x(r : s);4. x(s+ 1 : n) = x(s+ 1 : n)� L(s+ 1 : n; r : s) � x(r : s);5. end for;Figure 4.21: Forward substitution to solve for x in Lx = b.1. x = b;2. for each supernode (r : s) in decreasing order do3. x(r : s) = U(r : s; r : s)�1 � x(r : s);4. for j = r to s do5. x(1 : r� 1) = x(1 : r � 1)� x(j) � U(1 : r � 1; j);6. end for;7. end for;Figure 4.22: Back substitution to solve for x in Ux = b.
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Figure 4.23: Fraction of the 
oating-point operations and runtime in the triangular solvesover the LU factorization. Runtime is gathered from a RS/6000-590.vector update at line 4 can call dense BLAS-2 routines. Moreover, if there are multipleright-hand side vectors, we can call the corresponding BLAS-3 routines, respectively.Figure 4.22 shows the back substitution procedure to solve the upper triangularsystem Ux = b. Recall that diagonal blocks in U are stored together with the rectangularsupernodes, so the triangular solve at line 3 can call a BLAS-2 routine. But since di�erentcolumns of U usually have di�erent structures, the update kernel at line 5 can only be aBLAS-1 operation.Finally we note that at line 4 of Figure 4.21 and line 5 of Figure 4.22, we must�rst perform the respective dense operations in temporary arrays, then scatter the resultsinto the destination vector x.Figure 4.23 shows the fraction of the 
oating-point operations and the runtime ofthe solve phase as compared to the sequential LU factorization. Each is solved with onlyone right-hand side vector. Note that the percentage of the 
ops is usually lower than thepercentage of the runtime. This is because each 
oating-point operation in the solve phasetakes longer time than in the factorization.4.11 ConclusionsOur starting point in this chapter was the supernode-column LU factorizationalgorithm developed by Eisenstat et al. [45]. Based on this, we designed both symbolicand numeric algorithms to perform the supernode-panel updates, in order to achieve better
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BLAS−1Figure 4.24: SuperLU speedup over previous codes on an IBM RS/6000-590.data reuse. For the new code, SuperLU, we have conducted careful performance studies onseveral high performance machines. We studied both runtime and working storage e�ciency.Figures 4.24 1 to 4.26 summarize, in graphical form, the improvement of SuperLUover the earlier codes on three cache-based superscalar machines. Each matrix has a \�gureof merit": the ratio of 
oating-point operations to the (minmum possible) number of mem-ory references. This �gure limits the performance one can hope to achieve on a particularmatrix. SuperLU delivers high performance matrices with high �gures of merit. For largeproblems, SuperLU achieves more than 2-fold and 4-fold speedups over SupCol on the DECAlpha 21164 and SGI MIPS R8000, respectively.Figure 4.27 summarizes SuperLU factorization rate in 
ops-per-cycle on the threeplatforms. We give the respective peak 
ops-per-cycle �gure in parentheses after eachmachine name. For large sparse matrices, we see that SuperLU achieves up to 40% of thepeak 
oating-point rate on both RS/6000-590 and MIPS R8000. Given a dense matrixof size 1000-by-1000, SuperLU achieves roughly 70% of the e�ciency of the dense LUfactorization code implemented in LAPACK; this is the consequence of employing bothsymmetric reduction and the e�cient \BLAS-212" numeric kernel. The 30% e�ciency lossis due to the time spent in symbolic factorization and indirect addressing, which cannotbe eliminated in any sparse code. On the Alpha 21164, we achieve no more than 25%of the peak; this is somewhat disappointing. On the other hand, we note that DGEMMachieves only about 58% of the peak (Table 4.5). Table 4.13 gives a summary of the absolutefactorization performance achieved by SuperLU on the three machines. For a problem from1Figure 4.24 is identical to Figure 4.10
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Figure 4.27: SuperLU factorization rate in 
ops/cycle, on the three platforms.a 3-D semiconductor device simulation (matrix 21), the raw M
op rates are 125 on theRS/6000-590, 169 on the MIPS R8000, and 121 on the Alpha 21164.In addition to the LU factorization algorithm described in this chapter, we havedeveloped a suite of supporting routines to solve general sparse linear systems. The completeSuperLU package includes condition number estimation, iterative re�nement of solutions,and componentwise error bounds for the re�ned solutions [9]. These are all based on thedense matrix routines in LAPACK [8]. In addition, SuperLU includes a Matlab mex-�leinterface, so that our factor and solve routines can be called as alternatives to those builtinto Matlab.We reported an earlier version of these results in a technical report [25].
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RS/6000-590 MIPS R8000 Alpha 21164Matrix Seconds M
ops Seconds M
ops Seconds M
ops1 Memplus 0.57 3.08 0.71 2.47 0.38 4.582 Gemat11 0.27 5.64 0.26 5.87 0.15 10.173 Rdist1 0.96 13.47 0.98 13.17 0.55 23.474 Orani678 1.11 13.48 1.15 13.01 0.63 23.635 Mcfe 0.24 17.42 0.23 17.99 0.13 31.046 Lnsp3937 1.50 25.97 1.35 28.88 0.92 42.537 Lns3937 1.65 27.16 1.49 30.10 1.03 43.418 Sherman5 0.82 30.78 0.71 35.55 0.50 50.489 Jpwh991 0.52 34.57 0.48 37.45 0.33 53.9310 Sherman3 1.37 44.24 1.11 54.60 0.93 64.9311 Orsreg1 1.21 49.42 1.01 59.23 0.87 69.0212 Saylr4 2.18 48.07 1.74 60.22 1.55 67.6113 Shyy161 25.42 61.83 23.48 66.95 22.33 70.3814 Goodwin 12.55 52.99 9.20 72.30 9.43 70.5115 Venkat01 42.99 74.90 30.46 105.71 33.57 95.5316 Inaccura 67.73 60.81 47.65 86.44 54.88 75.0517 Bai 75.91 83.83 59.46 107.03 66.80 95.2618 Dense1000 5.68 117.28 3.75 177.64 4.75 139.7519 Raefsky3 107.60 112.62 78.41 154.55 106.42 113.9220 Ex11 247.05 108.54 205.90 129.75 241.53 110.7421 Wang3 116.58 124.86 86.14 168.99 119.77 121.4822 Raefsky4 263.13 118.89 218.95 142.88 283.77 110.1823 Vavasis3 786.94 113.36 702.38 127.01 825.37 108.11Table 4.13: Factorization time in seconds and rate in M
ops on the RS/6000-590, the MIPSR8000 and the Alpha 21164.



68Chapter 5A Parallel Supernode-PanelAlgorithmIn this chapter we study an e�cient parallel algorithm based on our left-lookingblocking algorithm discussed in Chapter 4. The primary objective of this chapter is toachieve good e�ciency on shared memory systems with a modest number of processors.Examples of such commercially popular machines include Sun SPARCcenter 2000 [107],SGI Power Challenge [104], DEC AlphaServer 8400 [46], and Cray C90/J90 [110, 111]. Inaddition to demonstrating the e�ciency of our parallel algorithm on these machines, wealso study the (theoretical) upper bound on performance of this algorithm.Several methods have been proposed to perform sparse Cholesky factorization [49,73, 90] and sparse LU factorization [6, 57, 65] on shared memory machines. A commonpractice is to organize the program as a self-scheduling loop, interacting with a global poolof tasks that are ready to be executed. Each processor repeatedly takes a task from the pool,executes it, and puts new ready task(s) in the pool. This pool-of-tasks approach has themerit of balancing work load automatically even for tasks with large variance in granularity.There is no notion of ownership of tasks or submatrices by processors { the assignmentof tasks to processors is completely dynamic, depending on the execution speed of theindividual processors. Our scheduling algorithm employs this model as well. Our parallelalgorithm resembles the supernode-panel sparse Cholesky factorization studied in [73] inthe way we de�ne the basic tasks and the computational primitives. The way we handle thecoordination of the dependent tasks is reminiscent of the approach used by Gilbert [65] inhis column-wise sparse LU factorization. However, our algorithm represents a non-trivialextension to the earlier work in that we have incorporated several new mechanisms, suchas unsymmetric supernodes and symmetric structure reduction.We begin this chapter by looking at the architectural features and the programmingenvironments of several shared memory machines which we use in our study. We focuson the features that are most relevant to the design and performance of our algorithm.In Section 5.2 we describe our basic strategies in parallelization, such as where we shall �ndparallelism in the problem, and how we shall de�ne the individual tasks. Section 5.3 sketchesthe high-level parallel scheduling algorithm. Section 5.4 describes speci�c implementationdetails and shows the design choices we have made in di�erent components of the algorithm,



69such as handling the dependent tasks, and memory management. In Section 5.5 we showthe parallel performance (or speedup) achieved by the test matrices on various platforms.Both time and space e�ciency will be illustrated. Finally, in Section 5.8 we establish aPRAM model to predict theoretical upper bound on speedups attainable by the underlyingalgorithm.5.1 Shared memory machinesMany of the shared memory machines belong to the category of symmetric mul-tiprocessing systems (SMP). By symmetric multiprocessing we mean that all processors inthe system have the same computational power, and that they all have the same accesslatency to any location in the globally shared main memory. The processor-memory-I/Ointerconnect is often implemented using a shared bus, or some high speed switch. Mainmemory is usually con�gured in multiple logical units. There is no penalty for accessing amemory unit which is physically distant from the processor because all units are equidis-tant in an architectural sense. The provision of quick memory access is ensured by o�eringextensive interleaving. Individual DRAMs are incapable of providing data on a continuousbasis. After each access, the chip must spend time recovering before permitting the nextaccess. In interleaved memory schemes, the memory is subdivided into several independentmemory banks and the addresses distributed across these banks. Memory performance isincreased by arranging for one bank to supply data while other banks are recovering. Somultiple memory components can operate in parallel.The shared memory model often o�ers �ne-grain, low latency access to remotedata, which is a nice feature for our application. The major sources of overhead in sharedmemory programs are bus and memory contention due to sharing data. On modern cache-based SMP systems, variants of invalidation-based cache coherence protocols are often im-plemented in hardware. An update to a local copy of the shared block requires that everyother copy must be either updated or invalidated. This may generate a lot of bus tra�c.To maintain data integrity in globally shared data structures, it is necessary to serialize theconcurrent accesses by di�erent processors to a critical section, such as a segment of codethat modi�es a shared data structure. This mutually exclusive access is guaranteed by usinglocks on mutual exclusion variables (mutex variables). There are two types of performanceproblems associated with the mutual exclusion: (1) contention for a mutex variable becausethe critical region is too large; (2) overhead of lock acquisition even if no other processor isholding the lock. It is important to minimize the use of critical sections to obtain the bestperformance.5.1.1 The Sun SPARCcenter 2000Each processor in the Sun SPARCcenter 2000 [107] is a SuperSPARC micropro-cessor rated at 50 MHz. The processor is capable of executing up to three independentinstructions per clock cycle. The on-chip cache consists of a 5-way set associative, 16 KBdata cache, and a 5-way set associative, 20 KB instruction cache; both caches are physi-cally addressed and operate in write-through mode. There is an external uni�ed data and



70instruction cache associated with each processor, of size 1 MB, that is physically-addressedand direct-mapped. The external cache always operates in write-back mode. This inte-grated processor module can be easily upgraded with newer generation microprocessors tocapture the most recent advances in processor technology. The parallel machine used in ourstudy has 4 processors.Dual high-speed packet-switched buses, called XDBuses, are used as interconnect.The packet-switched design permits split phase transactions of bus requests and their cor-responding replies, and so enjoys higher bus utilization than circuit-switching. The dualbuses provide 500 MB/sec e�ective data transfer bandwidth.To access multiple processors, we use a user-level multithread library implementedin the Solaris 2.x operating system [106]. In this model, the lightweight user-level threadswithin a single UNIX process are multiplexed on top of kernel-supported threads. Synchro-nization and context switching of the user-level threads are accomplished rapidly, withoutentering the OS kernel.5.1.2 The SGI Power ChallengeA 64-bit MIPS R8000 microprocessor and MIPS R8010 
oating-point chip are usedfor each processor of the Power Challenge [104]. The chip set delivers peak performanceof 360 MIPS and 360 double-precision M
ops with a clock frequency of 90 MHz. Thisprocessor was used in Chapter 4, see Table 4.5. Each processor contains a 16 KB direct-mapped level-one data cache in the integer unit (IU). This small on-chip cache allows fastaccess for integer loads and stores and helps the IU to accomplish fast integer and addresscalculations. A large 4 MB four-way set associative o�-chip cache, called the data streamingcache, serves as a second-level cache for integer data and instructions, and as a �rst-levelcache for 
oating-point data. Floating-point loads and stores bypass the on-chip cache andcommunicate with the large o�-chip cache directly. The data streaming cache is pipelinedto allow for continuous access by the 
oating-point functional units. Total cache bandwidthis 1.2 GB/sec, or two 64-bit double words per cycle. The cache line size is 512 bytes (64double words). The parallel machine has 16 processors, and we use 12 processors in ourexperiments.The memory subsystem consists of several memory modules. Each module isfurther divided into several banks. Memory is interleaved on cache line boundaries. Thesystem used in our study has 2 GB of main memory, and is 4-way interleaved.The multiprocessor system uses the POWERpath-2 interconnect. This bus struc-ture provides cache-coherent communication between processors, main memory, and I/O.The address (40-bit) and data (256-bit) buses are separate. Read transactions are split:independent address and data transactions can occur simultaneously, creating a pipelinee�ect. A sustained transfer rate is 1.2 GB/sec, or two 64-bit double words per cycle.The MIPS Power C compiler enables multiprocessing directives to ease parallelprogramming development. The system provides hardware support for fast synchronizationoperations, such as fork and join, semaphores and locks. These allow for e�cient �ne-grainparallel processing.



715.1.3 The DEC AlphaServer 8400The DEC AlphaServer 8400 is based on the 64-bit Alpha 21164 microprocessorand the AlphaServer 8000-series platform architecture [46]. The clock frequency of theprocessor is 300 MHz with peak 
oating-point rate 600 M
ops. Each microprocessor hasits own independent caches, including an 8 KB instruction cache, an 8 KB data cache, a96 KB write-back second-level cache, and a 4 MB tertiary cache. This processor was usedin Chapter 4, see Table 4.5. The parallel system used in our study has 8 processors.Main memory is divided into multiple modules and supports between 2-way and8-way interleaving. The system used in our study has a 4 GB of main memory.The interconnect features separate address and data buses. With the emphasis onthe low memory latency and the advantages of simple bused system, a wide (256-bit) andhigh frequency bus is used for the data path. The address bus supports a 40-bit addressspace. The system bus operates at 75 MHz which when applied to the 256-bit data path,produces a peak bandwidth of 2.4 GBytes/sec. However, a sustainable bandwidth is 1.6GBytes/sec.In the parallel program development, we use the pthread interface provided byDECthreads, Digital's multithreading run-time library [26]. The pthread interface imple-ments a version of the POSIX 1003.1c API draft standard for multithreaded program-ming [91]; thus, the code will be easily portable to future systems. Similar to the Solaristhreads model, multiple threads execute concurrently within (and share) a single addressspace. On the DEC, the multithreaded program is capable of utilizing multiple processorsif the operating system supports kernel threads.5.1.4 The Cray C90/J90The Cray C90 [110] and J90 [111] are Cray Research's two series of vector super-computers. The J90 series is the latest entry-level supercomputing system that is designedto address low price and high performance. Both systems have multiple processors, inwhich each processor is a vector machine. On each processor, high performance is achievedthrough vectorization { a version of the Single Instruction Multiple Data (SIMD) parallelprocessing technique. Unlike scalar processing, which requires a separate instruction cyclefor each operation, vector processing requires only one instruction to carry out the sameoperation on an entire list of operands. The maximum number of processors for the C90and J90 are 16 and 32, respectively.In each processor of C90 and J90, the scalar chip is responsible for scalar processingand control for both the scalar and vector processors (VU chip). The scalar chip contains
oating-point functional units, 32-word instruction bu�ers, and scalar and address registers.The VU chip contains the vector registers and vector (segmented) functional units. Thevector registers are the operational registers for the vector operations. The vector registerscan be loaded from memory, from the functional units, from other vector registers, or evenfrom scalar registers. The segmented functional units divide an operation into distinctsuboperations, each requiring one clock period to complete.Central memory is highly interleaved. It is organized into eight sections for the 4CPUs on a module. Each section is made up of eight subsections, which are further broken



72Bus Read Memory ProgrammingMachine Processor CPUs Bandwidth Latency Size ModelSun SuperSPARC 4 500 MB/s 1200 ns 196 MB Solaris threadSGI MIPS R8000 16 1.2 GB/s 252 ns 2 GB Parallel CDEC Alpha 21164 8 1.6 GB/s 260 ns 4 GB pthreadCray C90 8 245.8 GB/s 96 ns 640 MB microtaskingCray J90 16 51.2 GB/s 330 ns 640 MB microtaskingTable 5.1: Characteristics of the parallel machines used in our study.down into separate banks. There are altogether 1024 memory banks. Each word has 8bytes, or 64 bits, of data. All integer values occupy a full 64-bit word. All 
oating-pointvalues use Cray single-precision (64-bit) representation and 64-bit arithmetic hardware.The clock speed of the C90 is 240 MHz. Each processor can produce four 
oating-point results per cycle, two adds and two multiplies, resulting in 960 M
ops peak on vectorcode. The clock speed of the J90 is 100 MHz. The processor can produce two 
oating-point results per cycle, an add and a multiply, resulting in 200 M
ops peak on vector code.The peak scalar code performance is 100 MIPS. The vector register length is 64 words.Each scalar chip contains an 1 KB of 2-way, set-associative cache.On both C90 and J90, the Cray C compiler provides a user-directed tasking (alsocalled microtasking) capability to use multiple processors. In our C program, we insert thetaskloop directive for the top level scheduling loop. The taskloop construct allows di�erentiterations of a loop to be executed on di�erent processors. Synchronization primitives aresupported on both machines.Table 5.1 summarizes the con�gurations and several key parameters of the �veparallel systems. In the column \Bus Bandwidth" we report the e�ective or sustainablebandwidth. In \Read Latency" we report the minimum amount of time it takes a processorto fetch a piece of data from memory into a register in response to a load instruction.5.2 Parallel strategiesTwo crucial issues must be addressed in designing a parallel algorithm. One isto exploit as much concurrency as the problem presents to us. Another is to maintain asu�cient level of per-processor e�ciency by choosing an appropriate granularity of task asa single scheduling unit. Care must be taken to strike a good balance between sustainedamount of concurrency and per-processor performance. Before describing the detailed algo-rithm, we �rst address the above two issues in the context of our supernode-panel algorithm.5.2.1 ParallelismIn dense linear algebra software, such as LAPACK [7], parallelism can simplyrely on the parallel BLAS routines. So the sequential and shared memory parallel code



73are identical, except that the BLAS implementations di�er. However, for sparse matrixfactorizations, parallelism in the dense matrix kernels is quite limited, because the densesubmatrices are typically small.We can exploit two sources of parallelism in the sparse LU factorization. Thecoarse level parallelism comes from the sparsity of the matrix, and is exposed to us bythe column elimination tree of A (see Section 3.3). Recall that each node in the elimina-tion tree corresponds to one column in the matrix, so we will use \node" and \column"interchangeably.In symmetric sparse Cholesky factorization, the elimination tree describes accuratecolumn dependencies. A column will update its parent column and a subset of its ancestorcolumns along the path leading to the root. However, columns from two di�erent subtreesnever modify each other during the elimination process. This implies that the factorizationof the independent subtrees can proceed concurrently. Almost all parallel sparse Choleskyfactorization algorithms take advantage of this type of parallelism, referred to as tree ortask parallelism.In unsymmetric LU factorization with partial pivoting, we also wish to determinecolumn dependencies prior to the factorization. It has been shown in a series of studies[50, 54, 63, 65] that the column elimination tree gives the information about all potentialdependencies. We herein simply state the most relevant results. The interested reader canconsult Gilbert and Ng [63] for a complete and rigorous treatment of this topic. Recall thatcolumn i of L and/or U modi�es column j if and only if uij 6= 0. Part 3 of Theorem 1implies that the columns in di�erent subtrees do not update one another. Furthermore,the columns in independent subtrees can be computed without referring to any commonmemory, because the columns they depend on have completely disjoint row indices (Theorem3.2 in [65]).In general we cannot predict the nonzero structure of U precisely before the fac-torization, because the pivoting choice and hence the exact nonzero structure depend onnumerical values. The column elimination tree can overestimate the true column depen-dencies. A typical example is A = 0BBB@ 1 � � �2 3 4 1CCCA ;in which ATA is symbolically full, so the column elimination tree is a single chain. Butregardless of the numeric values in the entries, matrix A has a trivial LU decomposition,and no column will update any other column. Despite the possible overestimate, part 4 ofTheorem 1 says that if A is strong Hall, this dependency is the strongest information ob-tainable from the structure of A alone. (The example matrix is not strong Hall.) Thereforewe will live with some pessimism in scheduling independent tasks. (In Section 5.2.2 we willbe concrete about task de�nition.)For a matrix that is not strong Hall, we might be able to improve the quality of theestimate by permuting the matrix to a block upper triangular form (called the Dulmage-Mendelsohn decomposition) [94], in which each diagonal block is strong Hall. Then, we onlyneed to factorize the diagonal blocks.



74Having studied the parallelism arising from di�erent subtrees, we now turn ourattention to the dependent columns, that is, the columns having ancestor-descendant rela-tions. When the elimination process proceeds to a stage where there are more processorsthan independent subtrees, we need to make sure all processors e�ectively work on depen-dent columns. Thus the second level of parallelism comes from pipelining the computationsof the dependent columns.Consider a simple situation with only two processors. Processor 1 gets a task Task1 containing column j, processor 2 gets another task Task 2 containing column k, and nodej is a descendant of node k in the elimination tree. The (potential) dependency says onlythat Task 2 cannot �nish its execution before Task 1 �nishes. However, processor 2 can startTask 2 right away with the computations not involving column j; this includes performingthe symbolic structure prediction and accumulating the numeric updates using the �nishedcolumns that are descendants in the tree. After processor 2 has �nished the other partof the computation, it has to wait for Task 1 to �nish. (If Task 1 is already �nished atthis moment, processor 2 does not waste any time waiting.) Then processor 2 will predictthe new �lls and perform numeric updates that may result from the �nished columns inTask 1. In this way, both processors do useful work concurrently while still preserving theprecedence constraint. Note that we assume the updates can be done in any order. Thiscould give di�erent numerical result and is therefore not a straightforward parallelizationof the sequential algorithm.The pipelining scheme above can be generalized to an arbitrary number of pro-cessors. When a processor obtains a panel, it uses appropriate data structures to keeptrack of the currently un�nished descendants of this panel. The processor �rst performsupdates from the computed descendants, waits for the others to �nish, and �nally performsany updates that may come from the just-�nished descendants. Although this pipeliningmechanism is complicated to implement, it is essential to achieve higher concurrency. Thisis because, in most problems, a large percentage of the computation occurs at a few toplevels of the etree, where there are fewer branches than processors. An extreme example isa dense matrix, the elimination tree of which is a single chain. Here, all parallelism mustcome from pipelining.5.2.2 Panel tasksAs studied in Chapter 4, the introduction of supernodes and panels makes thecomputational kernels highly e�cient. Recall that a panel di�ers from a supernode in thatwe do not require the row structures of its constituent columns to be the same (althoughthe more similar, the better opportunity for data reuse). We may view supernodes asblocks intrinsic to the problem, whereas panels arise from algorithmic blocking. The sizeof each panel can be set before factorization, but supernode boundaries must be identi�eddynamically. To retain the serial algorithm's ability to reuse data in cache and registers,we treat the factorization of one panel as a unit task to be scheduled; it computes thepart of U and the part of L for all columns within this panel. More speci�cally, a paneltask comprises two distinct subtasks. The �rst corresponds to the outer factorization, whichaccumulates the updates from the descendant supernodes. The second subtask is to performthe panel's inner factorization, which factors one column at a time, including supernode
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(a) (b) (c)Figure 5.1: Panel de�nition. (a) relaxed supernodes at the bottom of the elimination tree;(b) consecutive columns from part of one branch of the elimination tree; (c) consecutivecolumns from more than one branch of the elimination tree.detection, partial pivoting, and symmetric pruning. For this simple algorithm, we do notexploit potential parallelism within a panel factorization.A panel consists simply of a set of consecutive columns in the matrix. Since theparallel algorithm uses the column elimination tree as the main scheduling tool, it is worthstudying the relationship between the panels and the structure of the column eliminationtree. We assume that the columns of the matrix are ordered according to a postorder onthe elimination tree. Recall that the sequential algorithm takes the panel size w as an inputparameter. It tries to factorize w consecutive columns at a time. There might exist panelsof size smaller than w. This happens whenever two columns j and j+1 come from di�erentsubtrees. Then there is no bene�t from grouping j and j + 1 into one panel, because theirrespective sets of updating supernodes are disjoint. In this case, column j + 1 will start adi�erent panel. Pictorially, panels can be classi�ed into three types, depending on wherethey are located in the elimination tree, as illustrated in Figure 5.1.In the parallel algorithm, panels of type (a) and (b) are easy to handle. To dealwith type (c) panels, the pipelining scheme requires complex data structures to keep trackof the busy descendant panels, because each panel may contain columns from di�erentbranches of the tree. We need to identify all the frontier busy columns hanging o� thedi�erent subtrees. We realize that the cost of this book-keeping and the cost associatedwith the complicated control logic would be enormous.To simplify this matter, we have rede�ned the panels so that type (c) panels donot occur. We will let a panel stop before a node (column) that has more than one branchin the elimination tree. Every branching node necessarily starts a new panel. Under thisrestriction, the busy descendant panels, except type (a) panels, always form one path inthe elimination tree. If a processor needs to wait for, and later perform, the updates fromthe busy panels, it can simply walk up the path in the etree starting from the most distantbusy descendant(s). By this new de�nition of panels, there will be more panels of smallersizes. The question arises whether this will hurt performance. We studied the distributionof 
oating-point operations on di�erent panel sizes for all of our test matrices, and observedthat usually more than 95% of the 
oating-point operations are performed in the panelsof largest size, and these panels tend to occur at a few topmost levels of the eliminationtree. Thus, panels of small sizes normally do not represent much computation. On unipro-



76Slave worker()1. newp = NULL;2. while ( there are more panels ) do3. oldp = newp;4. Scheduler( oldp; newp; Q );5. if ( newp is a relaxed supernode ) then6. relaxed supernode factor( newp );7. else8. panel symbolic factor( newp );9. { determine which supernodes will update panel newp;10. { skip all BUSY panels/supernodes;11. panel numeric factor( newp );12. { accumulate updates from the DONE supernodes, updating newp;13. { wait for the BUSY supernodes to become DONE, then predictnew �lls and accumulate more updates to newp;14. inner factorization( newp ); /* independent from other processors */15. { perform supernode-column update within the panel;16. { perform row pivoting;17. { detect supernode boundary;18. { perform symmetric structure pruning;19. end if;20. end while;Figure 5.2: The parallel scheduling loop to be executed on each processor.cessors, we see almost identical performance using the earlier and the new de�nitions ofpanels. Therefore, we believe that this restriction on panels simplies the parallel schedulingalgorithm with no performance compromise on individual processors.5.3 The asynchronous scheduling algorithmHaving described the parallelism and basic computational tasks, we are now in aposition to describe the parallel factorization algorithm. This section presents the organiza-tion of the scheduling algorithm, with more implementation details to appear in Section 5.4.Our scheduling approach used some techniques from the parallel algorithm developed byGilbert [65], which was based on the sequential GP algorithm. Figure 5.2 sketches the toplevel scheduling loop. Each processor executes this loop until its termination criterion ismet, that is, all panels have been factorized.The parallel algorithm maintains a central priority queue of tasks (panels), denotedby Q, that are ready to be executed by any free processor. The content of this task queuecan be accessible and altered by any processor. At any moment during the elimination, apanel is tagged with a certain state, such as READY, BUSY, or DONE. Every processor



77repeatedly asks the scheduler (at line 4) for a panel task in the queue. The Scheduler()routine implements a priority-based scheduling policy described below. The input argumentoldp denotes the panel that was just �nished by this processor. The output argument newpis a newly selected panel to be factorized by this processor. The selection preference is asfollows:(1) The scheduler �rst checks whether all the children of oldp's parent panel, say parent,are DONE. If so, parent now becomes a new leaf and is immediately assigned to newpon the same processor.(2) If parent still has un�nished children, the scheduler next attempts to take from Q apanel which can be computed without pipelining, that is, an initial leaf panel.(3) If no more leaf panels exist, the scheduler will take a panel that has some BUSYdescendant panels currently being worked by other processors. Then the new panelmust be computed by this processor in a pipelined fashion.One may argue that (1) and (2) should be reversed in priority. Choosing to eliminate theimmediately available parent �rst is primarily concerned with locality of reference. Sincea just-�nished panel is likely to update its parent or other ancestors in the etree, it isadvantageous to schedule its parent and other ancestors on the same processor.To implement the above priority scheme, the task queue Q is initialized withthe leaf panels, that is, the relaxed supernodes, which are marked as READY. Later on,Scheduler() may add more panels at the tail of Q. This happens when all the children ofnewp's parent, parent, are BUSY; parent is then enqueued into Q and is marked as eligiblefor pipelining. By rule (1), some panel in the middle of the queue may be taken when allits children are DONE. This may happen even before all the initial leaf panels are �nished.All the intermediate leaf panels are taken in this way. By rule (2) and (3), Scheduler()removes tasks from the head of Q.It is worth noting that the executions of di�erent processors are completely asyn-chronous. There is no global barrier; the only synchronization occurs at line 13 in Figure 5.2,where a processor stalls when it waits for some BUSY updating supernode to �nish. Assoon as this BUSY supernode is �nished, all the processors waiting on this supernode areawakened to proceed. This type of synchronization is commonly referred to as event noti-�cation. Since the newly �nished supernode may produce new �lls to the waiting panels,the symbolic mechanism is required to discover and accommodate these new �lls.We use the SPMD (Single Program Multiple Data) parallel programming style, inwhich a single program text is executed by all processors. At the program level, multipleconcurrent (logical) threads are created for the scheduling loop Slave worker(). Schedulingthese threads on available physical processors is done by the operating system or runtimelibrary. Thread migration between processors is usually invisible to us.5.4 Implementation detailsIn this section we present assorted implementation details. The details in thissection are not required for understanding later sections of this thesis.



785.4.1 Linear pipeliningIn the most general pipeline approach, a panel, say p, can begin execution assoon as all its children are either DONE or BUSY. To implement this scheme, we mustrecord all the busy descendants, possibly from many di�erent branches down the etree.This bookkeeping can be very expensive. Instead, we have implemented a simpler pipelinemechanism, in which a panel p is allowed to start pipeline execution only if it has exactlyone busy child. Under this rule, the busy panels must always form a single path in theetree. We therefore call this linear pipelining. Let d be the �rst (lowest numbered) panelin this busy chain. That is, all the children of d are �nished but d is still busy. Then theprocessor working on p simply walks up the etree from d, waits for all the columns betweend and p to �nish, and accumulates new updates from those columns along the path. Theonly bookkeeping required by each processor is to record d, the most distant busy panel inthis linear chain.5.4.2 Symmetric pruningSymmetric pruning [43, 44] was discussed in Section 4.3.2 for the sequential al-gorithm. The idea is to use a graph H with fewer edges than G(LT ) to represent thestructure of L. Traversing H gives the same reachable set as does traversing G, but is lessexpensive. As shown in Section 4.5, this technique is very e�ective in reducing the symbolicfactorization time. Therefore, we want to retain this technique in the parallel algorithm.In the sequential algorithm, in addition to the adjacency structure for G, there isanother adjacency structure to represent the reduced graph H . For each supernode, sincethe row indices are the same among the columns, we only store the row indices of the �rstcolumn for G and the row indices of the last column for H . (If we use only one adjacencylist for each supernode, since pivoting may have reordered the rows so that the pruned andunpruned rows are intermingled in the original row order, it is then necessary to reorder allof L and A to account for it.) Figure 5.3 illustrates the storage layout for the adjacencylists of G and H of a sample matrix (also see Figures 3.3 and 3.5). Array Lsub[*] storesthe row subscripts. G ptr[*] points to the beginning of each supernode in array Lsub[*].H ptr[*] points to the pruned location of each supernode in array Lsub[*]. Using G ptrand H ptr together can locate the adjacency list for each supernode in H . This matrix hasfour supernodes: f1,2g, f3g, f4,5,6g, and f7,8,9,10g. The adjacency lists for G and H areinterleaved by supernodes in the global memory Lsub[*]. For a singleton supernode, suchas f3g, only one adjacency list is used for both G and H . The storage for the adjacencystructure of H is reclaimed at the end of the factorization.The pruning procedure works on the adjacency lists for H . Each adjacency list ofa supernode (actually only the last column in the supernode) is pruned at the position ofthe �rst symmetric nonzero pair in the factored matrix F , as indicated by the small \�" inthe �gure. Both column DFS (Section 4.3.1) and panel DFS (Section 4.3.4) traverse theadjacency structure of H , as given by H ptr[*] in Figure 5.3.In the parallel algorithm, contention occurs when one processor is performing DFSusing H 's adjacency list of column j (a READ operation), while another processor is pruningthe structure of column j, since pruning will reorder the row indices in the list (a MODIFY
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80operation). There are two possible solutions to avoid this contention. The �rst solution isto associate one mutex lock with each adjacency list of H . A processor acquires the lockbefore it prunes the list and releases the lock thereafter. Similarly, a processor uses the lockwhen performing DFS on the list. Although the critical section for pruning can be veryshort, the critical section for DFS may be very long, because the list must be locked untilthe entire depth-�rst search starting from all nodes in the list is completed. During thisperiod, all the other processors attempting to prune the list or to traverse the list will beblocked. Therefore this approach may incur too much overhead, and the bene�t of pruningmay be completely o�set by the cost of locking.We now describe a better algorithm that is free from locking. We will use bothgraphs H and G to facilitate the depth-�rst search. Recall that each adjacency list ispruned only once throughout the factorization. We will associate with each list a status bitindicating whether it is pruned or not. Once a list is pruned, all the subsequent traversalson the list involve only READ operations, and hence do not require locking. If the searchprocedure reaches a list ofH that is not yet been pruned, we will direct the search procedureto traverse the list of the corresponding column in G. So when the search algorithm reachescolumn j, it does the following:if column j is pruned thencontinue search from nodes in the H-list of column j;else continue search from nodes in the G-list of column j;endifIn order for this scheme to work, we need to maintain two copies of an identical list foreach singleton supernode. This incurs a little more working storage requirement than thesequential algorithm.Since H is generally a subgraph of G, the depth-�rst search algorithms in theparallel code may traverse more edges than those in the sequential code. This is because inthe parallel algorithm, a supernode may be pruned later than in the sequential algorithm.However, because of the e�ectiveness of symmetric reduction, very often the search stilluses the pruned list in H . So it is likely that the time spent in the slight extra search inthe G-lists is much less than that when using the locking mechanism. Figure 5.4 shows therelative size of the reduced supernodal graph H , and Figure 5.5 shows the fraction of thenumber of searches that use the H-lists. The numbers in both �gures are collected on asingle processor Alpha 21164.5.4.3 Supernode storage using nonzero column counts in QR factorizationRecall that we have used two blocking structures in our algorithm, which arepanels and supernodes. A panel di�ers from a supernode in that we do not require the rowstructures of its constituent columns to be the same (although the more similar the betterthe chance of data reuse). We may view supernodes as blocks intrinsic to the problem,whereas panels arise from algorithmic blocking.The reader may refer to Section 3.2 for our de�nition of T2 supernodes and thestorage scheme used to store supernodes in memory. It is important to store the columns
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Figure 5.5: Percent of the depth-�rst searchon adjacency lists in H.of a supernode consecutively in memory, so that we can call BLAS routines directly in-place without paying the cost of copying the columns into contiguous memory. Althoughthis contiguity is easy to achieve in a sequential code, it poses problems in the parallelalgorithm.Consider the scenario of parallel execution depicted in Figure 5.6. According tothe order of the �nishing times speci�ed in the �gure, panel f3,4g will be stored in memory�rst, followed by panel f1,2g, and then followed by panel f5,6g. The supernode f3,4,5,6g isthus separated by the panel f1,2g in memory. The major di�culty comes from the fact thatthe supernodal structure emerges dynamically as the factorization proceeds, so we cannotstatically calculate the amount of storage required by each supernode. Another di�culty isthat panels and supernodes can overlap in many di�erent ways.One immediate solution is not to allow any supernode to cross the boundary of apanel. In other words, the leading column of a panel is always treated as the beginning of anew supernode. Thus a panel can possibly be subdivided into more than one supernode, butnot vice versa. In such circumstances, the columns of a supernode can be easily guaranteedto be contiguous in memory because they are part of a panel and assigned to a singleprocessor by the scheduler. Each processor simply stores a (partial) ongoing supernode inits local temporary store, and copies the whole supernode into the global data structure assoon as it is �nished.This restricted de�nition of supernodes would mean that the maximum size ofsupernodes would be bounded by the panel size. As discussed in Chapter 4, for bestperformance, we would like to have large supernodes but relatively small panels. Thesecon
icting demands make it hard to �nd one good size for both supernodes and panels.We conducted an experiment with this scheme for the sequential algorithm. Figure 5.7shows the uniprocessor performance loss with varying panel size (i.e., the maximum size ofsupernodes). For large matrices, say matrices 12 { 21, the smaller panels and supernodesresult in more performance loss. For example, when panel size is w = 16, the slowdown can
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Parallel execution:

Processor  P1  finishes panel  {3, 4}  first;

Processor  P2  finishes panel  {1, 2}  second;

Processor  P3  finishes panel  {5, 6}  last.

SupernodeFigure 5.6: A snapshot of parallel execution.be as large as 20% to 68%. Even for large panel sizes, such as w = 48, the slowdown is stillbetween 5% and 20%. However, in the parallel algorithm, such large panels give rise to toolarge a task granularity and severely limit the level of concurrency in the parallel algorithm.We therefore feel that this simple solution is not satisfactory. Instead, we seek a solutionthat does not impose any restriction on the relation between panels and supernodes, andthat allows us to vary the size of panels and supernodes independently in order to bettertrade o� concurrency and single-processor e�ciency.Our second proposed solution is to allocate space that is an upper bound on theactual storage needed by each supernode in the L factor, irrespective of the numericalpivoting choice. Then there will always be space to store supernode columns as they arecomputed. Note that after Gaussian elimination with partial pivoting, we can write A =P1L1P2L2 � � �Pn�1Ln�1U . We de�ne L as the unit lower triangular matrix whose i-thcolumn is the i-th column of Li, such that L � I = Pi(Li � I).1 Let Lc be the result offorming ATA symbolically and then performing symbolic Cholesky factorization. (i.e., inthe absence of conincidental numerical cancellation.) We shall make use of the followingstructure containment properties in our storage scheme. Here we only quote the resultswithout proof.Theorem 5 [54] Let A be a nonsingular matrix with nonzero diagonal. If Lc is the symbolicCholesky factor described above, and L and U are the triangular factors of A representedas above, then Struct(L+ U) � Struct(Lc + LTc ).Theorem 6 [50, 55] Consider the QR factorization A = QR using Householder transfor-mations. Let H be the symbolic Householder matrix consisting of the sequence of House-1This L is di�erent from the L̂ in PA = L̂U . Both L and L̂ contain the same nonzero values, but indi�erent positions. In this section, L is used as a data structure for storing L̂.
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Figure 5.7: The sequential runtime penalty for requiring that a leading column of a panelalso starts a new supernode. The times are measured on the RS/6000-590.holder vectors as used to represent the factored form of Q. If A is a nonsingular matrixwith nonzero diagonal, and L and U are the triangular factors of A represented as above,then Struct(L) � Struct(H), and Struct(U) � Struct(R).Theorem 7 [20] Suppose A has full (column) rank. If Lc is the symbolic factor describedabove, then Struct(RT ) � Struct(Lc). Furthermore, if A is strong Hall, then at most anarbitrarily small perturbation in the nonzero values of A is needed to achieve Struct(RT) =Struct(Lc).In what follows, we describe how these upper bounds can facilitate our storagemanagement for the L supernodes. First, we need a notion of fundamental supernode,which was introduced by Ashcraft and Grimes [11] for symmetric matrices. In a fundamentalsupernode, every column except the last is an only child in the elimination tree. Liu et al. [84]gave several reasons why fundamental supernodes are appropriate, one of which is thatthe set of fundamental supernodes are the same regardless of the particular postordering.For consistency, we now also impose this restriction on the supernodes in L,2 Lc and H ,respectively. For convenience, let SL denote the fundamental supernodes in the L factor,SLc denote the fundamental supernodes in the symbolic Cholesky factor Lc, and SH denotethe fundamental supernodes in the symbolic Householder matrix H . In the following, weshall omit the word \fundamental" when it is clear.2The sequential SuperLU does not have this restriction on supernodes.
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Supernode  in  Lc

r s

Supernode  in  LFigure 5.8: Bound the L supernode storage using the supernodes in Lc.Our code breaks the L supernode at the boundary of an Lc (or H) supernode,forcing the L supernode to be contained in the Lc (or H) supernode. In fact, if we usefundamental L supernodes and ignore numerical cancellation (which we must do anywayfor symmetric pruning), we can show that an L supernode is always contained in an Lc (orH) supernode [69]. Our objective is to allocate storage based on number of nonzeros ineither SLc or SH , so that this storage is su�ciently large to hold SL. Figure 5.8 illustratesthe idea of using SLc as a bound. Two supernodes in SL from di�erent branches of theelimination tree will go to their corresponding memory locations of the enclosing supernodesin SLc . For those SL supernodes occurred in the same SLc supernode, even if their panelsare assigned to di�erent processors, the scheduling algorithm guarantees that the panels(and hence the supernodes) are �nished in the order of increasing column numbers. So thecolumns of each SL supernode are contiguous in the storage of the SLc supernode.To determine the storage for SLc , what we need is an e�cient algorithm to com-pute the column counts nnz(Lc�j) for Lc. We also need to identify the �rst vertex of eachsupernode in SLc . Then the number of nonzeros in each supernode is simply the prod-uct of the column count of the �rst vertex and the number of columns in the supernode.To compute nnz(Lc�j ) and SLc , we can apply the supernodal count algorithm for sparseCholesky factor [70] to ATA. However, forming the structure of ATA may be expensiveand ATA may be much denser than A. To achieve the needed level of e�ciency, Gilbert,Ng and Peyton [69] suggested ways to modify their Cholesky-column-count algorithm [70]to work with the structure of A without explicitly forming ATA. The running time of thisalgorithm is O(m �(m;n)), where m = nnz(A) and �(m;n) is the slowly-growing inverseof Ackermann's function coming from disjoint set union operations.For H , we need the following crucial result by George, Liu and Ng ([50], Theorem2.1): Each row set Struct(Hi�) consists of all the vertices on a path in the column eliminationtree from fi to the smaller of i or the root of the elimination subtree containing fi, wherefi is the column subscript of the �rst nonzero in row i of A. Thus the column countsnnz(H�j) can be obtained using a simple variant of Cholesky-column-count algorithm, withtime complexity O(nnz(A)). It can be easily incorporated into the column count algorithmfor Lc. Furthermore, the �rst vertices of the fundamental supernodes in H are characterized



85by the following theorem, which we established through discussions with Ng [88].Theorem 8 Vertex j is the �rst vertex in a fundamental supernode of H if and only ifvertex j has two or more children in the column elimination tree T , or j is the columnsubscript of the �rst nonzero in some row of A.Proof: It is clear by de�nition that if vertex j has two or more children in T it must bethe �rst node of a fundamental supernode. Therefore we only need to prove the second casein which vertex j has exactly one child j � 1.\if" part: Let aij be the �rst nonzero in row i of A. Then we must have hi;j�1 = 0,for otherwise, there exists a path in T associated with Struct(H�i) from some k (� j � 1)to i, and aik 6= 0. This leads to the contradiction that aik = 0; for all k < j. It followsthat Struct(H�j) �=Struct(H�;j�1); thus j must start a new supernode.\only if" part: Assume that node j is the �rst node of its fundamental supernode,implying that Struct(H�j) 6= Struct(H�;j�1)�fj� 1g. Then there exists a row i such thathi;j�1 = 0 and hij 6= 0. If there is an aik 6= 0 with k � j � 1, then hi;j�1 cannot be zero,because j � 1 is on the path from k to i in T . This leads to a contradiction. Therefore wemust have aik 6= 0 for all k � j � 1, that is, aij is the �rst nonzero in row i of A. 2Finding the �rst nonzeros in each row (hence SH) takes time O(nnz(A)). Insummary, the combined QR-column-count algorithm takes Struct(A) and the postorderedT as inputs, and computes nnz(Lc�j ), SLc , nnz(H�j) and SH . The complexity of thealgorithm is almost linear in nnz(A). In practice, it is as fast as computing the columnelimination tree T . Table 5.2 reports the respective runtimes of the etree algorithm andthe QR-column-count algorithm. In both the etree and QR-column-count algorithms, thedisjoint set union operations are implemented using path halving and no union by rank.(see Gilbert et al. [70] for details.)One remaining issue yet to be addressed is what we should do if the static storagegiven by an upper bound structure is far too generous than actually needed. We developeda dynamic approach to better capture the structural changes of the LU factors duringGaussian elimination. It overcomes the ine�ciency of the purely static analysis based solelyon Struct(A). In this scheme, we still use either the supernode partition SLc or SH as foundin their respective upper bound structure. For brevity, we will use B to represent either Lcor H , and use the notation Sbnd to denote either SLc or SH , because the method works thesame way using either SLc or SH . Unlike the static scheme, which uses the column countsnnz(Lc�j ) or nnz(H�j), we dynamically compute the column count for the �rst column ofeach supernode as follows. When a processor obtains a panel that includes the �rst columnof some supernode B(:; r : s) in Sbnd, the processor invokes a search procedure on thedirected graph G(L(:; 1 : r � 1)T ), using the nonzeros in A(:; r : s), to determine the unionof the row structures in the submatrix (r : n; r : s). We use the notation D(r : n; r : s) todenote this structure. It is true thatStruct((L+ U)(r : n; r : s)) � Struct(D(r : n; r : s)) � Struct(B(r : n; r : s)) : (5.1)The search procedure is analogous to (yet simpler than) the panel DFS described in Sec-tion 4.3.4; now we only want to determine the count for the column D(r : n; r), withoutthe nonzero structure or the topological order of the updates. Then we use the product
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Matrix Tetree Tcnt Tcnt=Tetree1 Memplus 0.070 0.101 1.42 Gemat11 0.023 0.029 1.33 Rdist1 0.059 0.056 0.94 Orani678 0.015 0.015 1.05 Mcfe 0.014 0.018 1.36 Lnsp3937 0.018 0.025 1.47 Lns3937 0.017 0.025 1.48 Sherman5 0.014 0.021 1.59 Jpwh991 0.004 0.006 1.410 Sherman3 0.057 0.078 1.411 Orsreg1 0.010 0.013 1.412 Saylr4 0.015 0.022 1.413 Shyy161 0.241 0.371 1.514 Goodwin 1.081 1.003 0.915 Venkat01 0.202 0.176 0.916 Inaccura 0.629 0.547 0.917 Bai 0.300 0.380 1.318 Dense1000 0.610 0.430 0.719 Raefsky3 0.945 0.735 0.820 Ex11 0.680 0.640 0.921 Wang3 0.124 0.169 1.422 Raefsky4 0.832 0.702 0.923 Vavasis3 1.055 1.262 1.2Table 5.2: Running time in seconds of the etree (Tetree) and QR-column-count (Tcnt) algo-rithms on an IBM RS/6000-590.



87Static DynamicMatrix nnz(SL)nnz(SLc ) nnz(SL)nnz(SH ) nnz(SL)nnz(SLc ) nnz(SL)nnz(SH )1 Memplus < :01 .04 .23 .682 Gemat11 .52 .85 .87 .903 Rdist1 .48 .72 .64 .734 Orani678 .11 .56 .48 .905 Mcfe .41 .73 .61 .896 Lnsp3937 .41 .84 .75 .927 Lns3937 .42 .86 .77 .948 Sherman5 .50 .92 .82 .969 Jpwh991 .52 .88 .81 .9410 Sherman3 .57 .89 .91 .9111 Orsreg1 .57 .90 .91 .9212 Saylr4 .53 .89 .89 .9213 Shyy161 .54 .91 .91 .9214 Goodwin .35 .95 .86 .9815 Venkat01 .07 .11 .69 .7416 Inaccura .47 .96 .97 .9917 Bai .53 .95 .96 .9718 Dense1000 1.00 1.00 1.00 1.0019 Raefsky3 .57 .99 .98 .9920 Ex11 .56 .99 .99 1.0021 Wang3 .09 .14 .86 .8922 Raefsky4 .57 .99 .99 .9923 Vavasis3 .64 .95 .98 .98Table 5.3: Supernode storage utilization by various upper bounds. The notations nnz(SL),nnz(SLc) and nnz(SH) denote the number of nonzeros in the supernodes of L, Lc and H ,respectively.of nnz(D(r : n; r)) and s � r + 1 to allocate storage for the L supernodes within columnsr and s. Since nnz(L(r : n; r)) � nnz(D(r : n; r)) � nnz(B(r : n; r)), the dynamic storagebound so obtained is usually tighter than the static bound.The storage utilizations for the supernodes in SL are tabulated in Table 5.3. Theutilization is calculated as the ratio of the actual number of nonzeros in the supernodesof the L factor to the number of nonzeros in the supernodes of an upper bound structure.When collecting this data, the maximum supernode size t was set to 64. The results in thetable lead to the following observations.In both static and dynamic schemes, the bounds using H are tighter than thoseusing Lc. The di�erence is especially large in the static schemes. Note that this observationis consistent with what George and Ng observed for a set of smaller test problems in [55].For most matrices, the storage utilizations using the static bound by H are quite high; they



88are often greater than 70% and are over 85% for 14 out of the 21 problems.In the static scheme using H , the storage utilizations for matrices 1, 14 and 21are only 4%, 11% and 14% respectively. The dynamic schemes certainly overcome the lowutilizations. When using H in the dynamic scheme, the utilizations now become 68%, 74%and 89% for those three problems. These percentage utilizations are quite satisfactory. Forother problems, the dynamic approaches also result in higher utilizations.The runtime overhead associated with the dynamic schemes is usually between2% and 15% on the RS/6000-590. From these experiments, we conclude that the staticscheme using H often gives a tight enough storage bound for SL. For some problems, suchas matrices 15 and 21, the dynamic scheme must be employed to achieve better storageutilization. Then the program will su�er from a certain amount of slowdown. Our codetries the static scheme �rst and switches to the dynamic scheme only if the static schemepredicts too much space.5.5 Parallel performanceIn this section we demonstrate e�ciency of our algorithm on real machines. We�rst look at some distinct features of the Crays and their impact on our algorithm.The Cray architecture is quite di�erent from the other cache-based systems whichwe studied in Chapter 4. First, it has much larger bandwidth between memory and CPU(Table 5.1), and the memory organization is 
at. This implies that cache reuse is notan issue. As shown in Figures 5.9 and 5.10, performance of SGEMV and SGEMM donot di�er signi�cantly. Once the matrix dimension exceeds the vector register length (128and 64 words, respectively), performance remains roughly the same. In fact, with variedpanel size w for SuperLU, we found that w = 1 gives the best performance. Secondly, ascalar code on this machine runs signi�cantly slower than a vectorized code. In our code,the depth-�rst search algorithm is not vectorizable, and takes large percentage of the totalfactorization time.Figure 5.11 shows the percentage of the total runtime spent in the depth-�rstsearch on single processors of the three parallel machines. On the Cray J90, because of theslow depth-�rst search, the M
op rate is rather low. For dense matrix 18, about 40% of thetotal time is spent in the depth-�rst search alone, despite the fact that the symmetricallyreduced graph is simply the graph of a tridiagonal matrix. SuperLU achieves only 65out of 200 peak M
ops, while LAPACK achieves 165 M
ops. For large sparse problems,SuperLU achieves at most 89 M
ops. Figure 5.11 suggests that Alpha 21164 has the bestinteger performance, relative to 
oating-point performance. (or the worst 
oating-pointperformance relative to integer performance.)5.5.1 SpeedupTables 5.4 through 5.8 report the speedups of the parallel algorithm on the �veplatforms, with number of threads varied. Because of memory limits we could not test allproblems on the SPARCcenter 2000. The speedup is measured against the best sequentialruntime achieved by SuperLU on a single processor of each parallel machine.
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Figure 5.12: Overhead of the parallel code on a single processor, compared to SuperLU.The column labeled \P = 1" illustrates the overhead in the parallel code whencompared with the sequential code, using the same blocking parameters. This is also de-picted in Figure 5.12. The structure of the parallel code, when run on a single processor,does not di�er much from sequential SuperLU, except that a global task queue and variouslocks are involved. The extra work in the parallel code is purely integer arithmetic. Fig-ure 5.12 also suggests that the Alpha 21164 has the best integer performance. Matrices 15and 21 experience more overhead in the parallel code than the other large matrices. This isbecause we must use the dynamic memory allocation scheme developed in Section 5.4.3. Thestatic upper bounds on supernodes storage are too loose for these two problems (Table 5.3).The last two columns in each table show the factorization time and Mega
op rate,respectively, corresponding to the largest number of processors used. In order to achievehigher degree of concurrency, the panel size (w) and maximum size of a supernode (maxsup)for \P > 1" are set smaller than those used for \P = 1".5.5.2 Working storage requirementAs in the sequential algorithm, parallel factorization requires a certain amount ofworking storage, and perhaps much more. In the shared memory parallel model, multiplethreads share heap storage, static storage, and code, all residing in main memory. Eachthread, upon execution, is allocated a private stack and has its own register set. Ourprogram does not use many stack variables, so the stack size for each thread need not bevery large. All working storage is allocated via malloc() from the heap. The workingstorage consists of two parts, where one part is shared among all threads, and another part



91Matrix P = 1 P = 2 P = 4 Seconds M
ops1 Memplus 0.44 0.82 0.74 2.35 12 Gemat11 0.77 1.25 1.51 0.47 33 Rdist1 0.86 1.92 1.82 1.71 84 Orani678 0.71 1.24 2.08 1.98 85 Mcfe 0.79 1.38 2.00 0.45 96 Lnsp3937 0.96 1.85 2.03 2.26 187 Lns3937 0.92 1.73 3.09 2.41 198 Sherman5 0.83 1.70 2.81 1.26 209 Jpwh991 0.77 1.56 2.77 0.84 2210 Sherman3 0.90 1.74 2.92 2.77 2211 Orsreg1 0.89 1.75 3.17 2.27 2712 Saylr4 0.88 1.76 3.10 4.17 2513 Shyy161 0.90 1.82 3.25 59.55 2615 Goodwin 0.92 1.86 3.61 20.50 3318 Dense1000 0.97 1.96 3.64 16.39 41Mean 0.83 1.62 2.64Std 0.13 0.32 0.83Table 5.4: Speedup, factorization time and M
op rate on a 4-CPU SPARCcenter 2000.is local to each thread. The shared working storage is mainly used to facilitate the centralscheduling activity and memory management. It includes:� one integer array of size p used as the task queue, where p is the total number ofpanels;� one bit vector of size n to mark whether a column is busy;� four integer arrays of size n to record the status of each panel;� one integer array of size n to record a column's most distant busy column down theetree during pipelining;� three integer arrays of size n to implement storage layout for supernodes (Section 5.4.3).The local working storage used by each thread is very similar to that used by sequentialSuperLU, that is, all that is necessary to factorize one single panel. It includes:� eight integer arrays of size n to perform the panel and column depth-�rst search;� one n-by-w integer array to keep track of the position of the �rst nonzero of eachsupernodal segment in U ;� one n-by-w integer array to temporarily store the row subscripts of the nonzeros �lledin the panel;
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Matrix P = 1 P = 4 P = 8 P = 12 Seconds M
ops1 Memplus 0.72 1.73 1.73 1.69 0.42 42 Gemat11 0.89 1.86 2.36 3.71 0.07 223 Rdist1 0.89 1.66 1.56 2.23 0.44 324 Orani678 0.68 1.72 2.40 2.56 0.45 335 Mcfe 0.68 1.92 2.09 3.29 0.07 596 Lnsp3937 0.97 3.00 3.65 3.86 0.35 1227 Lns3937 0.98 2.98 3.92 3.73 0.40 1178 Sherman5 0.86 2.29 3.09 3.09 0.23 1119 Jpwh991 0.83 2.40 3.43 5.33 0.09 20510 Sherman3 0.87 2.36 2.78 2.78 0.40 15711 Orsreg1 0.88 2.67 2.73 2.97 0.34 18012 Saylr4 0.90 2.81 3.48 4.58 0.38 28413 Shyy161 0.86 2.71 3.54 5.06 4.64 33214 Goodwin 0.89 3.45 5.17 5.90 1.56 43315 Venkat01 0.65 1.72 2.00 1.98 15.37 20916 Inaccura 0.85 2.77 4.14 5.00 9.53 43817 Bai 0.91 2.98 5.10 6.70 8.87 72218 Dense1000 0.85 2.64 3.32 4.17 0.90 74019 Raefsky3 0.92 3.07 5.62 6.91 11.35 107020 Ex11 0.94 3.23 5.96 7.64 26.95 104621 Wang3 0.85 2.20 3.39 4.03 21.37 68122 Raefsky4 0.94 3.05 5.17 6.52 33.57 93623 Vavasis3 0.91 3.58 6.06 6.69 105.06 862Mean 0.86 2.56 3.59 4.37Std 0.09 0.59 1.36 1.73Table 5.5: Speedup, factorization time and M
op rate on a 12-CPU SGI Power Challenge.
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Matrix P = 1 P = 2 P = 4 P = 6 P = 8 Seconds M
ops1 Memplus 0.46 0.79 0.79 0.78 0.64 0.59 32 Gemat11 0.83 1.63 1.88 1.88 1.88 0.08 203 Rdist1 0.90 1.98 2.10 1.77 1.77 0.31 404 Orani678 0.83 1.29 2.00 2.33 2.42 0.26 575 Mcfe 0.72 1.80 3.00 2.17 2.17 0.06 666 Lnsp3937 0.93 1.94 3.19 3.68 3.68 0.25 1597 Lns3937 0.95 1.83 3.08 3.81 4.12 0.25 1878 Sherman5 0.91 1.89 2.89 2.94 2.94 0.17 1519 Jpwh991 0.92 1.89 3.00 3.30 3.00 0.11 17810 Sherman3 0.88 1.83 2.72 2.74 2.74 0.34 18011 Orsreg1 0.93 1.88 2.93 3.35 3.35 0.26 23112 Saylr4 0.91 1.98 3.20 3.78 4.08 0.38 27613 Shyy161 0.95 1.93 3.23 4.21 4.79 4.66 33414 Goodwin 0.99 1.98 3.68 5.39 6.33 1.49 45315 Venkat01 0.89 1.92 2.95 3.04 3.16 10.62 30316 Inaccura 0.99 1.83 3.08 4.15 5.02 10.94 38017 Bai 0.95 1.98 3.72 5.03 5.77 11.58 55318 Dense1000 0.98 1.86 3.35 4.32 4.80 0.99 67519 Raefsky3 0.98 1.98 3.81 3.16 3.61 28.65 42220 Ex11 0.99 1.98 3.76 5.56 7.06 34.23 78121 Wang3 0.93 1.98 3.69 4.75 5.61 21.36 68222 Raefsky4 0.98 1.98 3.81 5.44 6.63 42.79 73423 Vavasis3 0.96 1.97 3.69 5.28 6.64 124.24 724Mean 0.92 1.74 2.89 3.59 4.01Std 0.13 0.28 0.81 1.31 1.77Table 5.6: Speedup, factorization time and M
op rate on an 8-CPU DEC AlphaServer 8400.
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Matrix P = 1 P = 2 P = 4 P = 6 P = 8 Seconds M
ops1 Memplus 0.66 0.75 0.74 0.72 0.71 1.24 22 Gemat11 0.76 1.36 2.27 3.09 3.40 0.10 153 Rdist1 0.71 1.98 2.41 2.41 2.31 0.48 344 Orani678 0.72 1.24 2.22 2.91 3.20 0.41 375 Mcfe 0.69 1.25 1.82 2.00 2.00 0.10 436 Lnsp3937 0.78 1.51 2.77 2.84 4.41 0.27 1517 Lns3937 0.78 1.51 2.95 3.97 4.23 0.30 1568 Sherman5 0.77 1.49 2.90 3.59 4.07 0.15 1709 Jpwh991 0.78 1.52 2.50 3.18 2.92 0.12 16410 Sherman3 0.79 1.48 2.53 2.97 2.97 0.29 21411 Orsreg1 0.80 1.53 2.69 3.25 3.55 0.22 27812 Saylr4 0.83 1.58 3.05 3.85 3.97 0.33 31813 Shyy161 0.80 1.50 2.87 3.87 4.86 3.29 47714 Goodwin 0.84 1.65 3.31 4.83 6.59 0.99 68215 Venkat01 0.70 1.28 1.65 1.73 1.74 14.04 22916 Inaccura 0.86 1.70 3.19 4.38 5.21 5.18 80717 Bai 0.84 1.63 3.22 4.56 4.89 6.24 103518 Dense1000 0.95 1.86 2.95 3.30 3.55 0.71 94319 Raefsky3 0.91 1.74 3.45 4.77 5.83 6.17 197720 Ex11 0.90 1.65 3.21 5.02 6.53 10.37 258321 Wang3 0.78 1.48 1.82 2.31 2.32 14.62 99622 Raefsky4 0.92 1.80 3.43 4.60 5.46 13.13 2399Mean 0.80 1.53 2.63 3.42 3.85Std 0.08 0.27 0.67 1.11 1.55Table 5.7: Speedup, factorization time and M
op rate on an 8-CPU Cray C90.



95
Matrix P = 1 P = 4 P = 8 P = 12 P = 16 Seconds M
ops1 Memplus 0.65 0.94 0.98 0.97 0.76 3.67 12 Gemat11 0.71 2.44 4.38 5.25 5.83 0.18 83 Rdist1 0.71 2.86 2.88 2.71 2.39 1.53 104 Orani678 0.71 2.07 3.11 3.82 3.85 1.13 135 Mcfe 0.77 2.21 2.70 2.70 2.52 0.29 156 Lnsp3937 0.75 2.87 4.91 6.21 6.39 0.66 627 Lns3937 0.79 2.75 4.63 5.41 5.41 0.83 588 Sherman5 0.80 2.91 4.64 5.07 5.32 0.41 639 Jpwh991 0.78 2.72 3.57 3.68 3.38 0.37 4910 Sherman3 0.80 2.63 3.49 3.42 3.31 0.96 6611 Orsreg1 0.83 2.83 3.88 4.22 4.16 0.70 8912 Saylr4 0.81 2.91 4.26 4.82 4.82 0.99 10813 Shyy161 0.83 2.92 5.30 6.94 7.47 8.06 19614 Goodwin 0.88 3.32 6.66 10.02 12.81 1.94 35415 Venkat01 0.68 1.84 1.96 1.98 1.90 47.34 6816 Inaccura 0.90 3.26 5.55 6.64 7.39 15.09 27717 Bai 0.87 3.22 5.98 7.55 8.49 15.05 43118 Dense1000 0.93 2.84 3.79 3.92 3.91 2.61 25619 Raefsky3 0.93 3.38 6.20 7.69 8.43 19.03 64120 Ex11 0.95 3.56 6.53 9.47 10.17 32.48 83121 Wang3 0.77 2.53 3.21 3.14 3.06 50.42 28822 Raefsky4 0.98 3.54 5.87 7.36 8.12 43.54 723Mean 0.81 2.75 4.29 5.13 5.45Std 0.09 0.60 1.51 2.38 2.97Table 5.8: Speedup, factorization time and M
op rate on a 16-CPU Cray J90.



96� one n-by-w real array used as the SPA.� one scratch space of size (t + b) � w to help BLAS calls. See Figure 4.14 for thede�nition of t, b and w.This amount of local storage should be multiplied by P , where P is the number of threadscreated. Thus the working storage grows a�nely with respect to P , and this algorithm,albeit e�cient, is hard to scale up from a memory point of view.To put this in perspective, Table 5.9 compares the working storage requirementwith the actual LU storage. The last two columns report the amount of working storageas a fraction of the total LU storage in Megabytes, for 1 and 8 threads, respectively. It isclear that for P = 8, the working storage requirement can be comparable to the LU storagefor small problems. For large problems, working storage is typically 10% to 20% of the LUstorage. Matrix 13 is exceptionally bad: it is a matrix of medium size for which the requiredworking storage is more than LU storage. Since we would not use multiple processors onthe small problems anyway, so the overall working storage requirement is quite small.5.6 Overheads in parallelizationIn this section we quantify all the overheads associated with our parallel algorithm.The overhead mainly comes from four sources: the reduced per-processor e�ciency due tosmaller granularity of unit tasks, accessing critical sections via locks, orchestrating thedependent tasks via event noti�cation, and load imbalance. The purpose of this section isto understand how much time is spent in each part of the parallel algorithm and explainthe speedups we saw in Section 5.5.1.5.6.1 Decreased per-processor performance due to smaller blockingThe �rst overhead is due to the necessity to reduce the blocking parameters in orderto achieve more concurrency. Recall that two blocking parameters a�ect performance: panelsize (w) and maximum size of a supernode (maxsup). For better per-processor performance,we prefer larger values. On the other hand, the large granularity of unit tasks limits thedegree of concurrency.On the Cray J90, this trade-o� is not so important, because a small w (w = 1) isgood for the sequential algorithm. We therefore also use w = 1 in the parallel algorithm.When varying the value of maxsup, we �nd that performance is quite robust in the rangebetween 16 and 64.On the Power Challenge and AlphaServer 8400, we observe more dramatic di�er-ences with varied blockings. Figure 5.13 and 5.14 illustrate this loss of e�ciency for severallarge problems on single processors of the two machines, Power Challenge and AlphaServer8400, respectively. In this experiment, the parallel code is run on single processors with twodi�erent settings of w and maxsup. Figure 5.13 shows, on a single processor Power Chal-lenge, the ratio of the runtime with the best blocking for 1 CPU (w = 24; maxsup = 64)to the runtime with the best blocking for 12 CPUs (w = 12; maxsup = 48). Figure 5.14shows the analogous ratio for the 8-CPU AlphaServer 8400. On the Power Challenge, the
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LU storage Fraction of LU storageMatrix (MB) P = 1 P = 81 Memplus 16.27 .23 1.512 Gemat11 1.15 .89 5.923 Rdist1 3.70 .23 1.544 Orani678 4.77 .11 .735 Mcfe 0.88 .18 1.266 Lnsp3937 4.93 .16 1.107 Lns3937 7.04 .12 .778 Sherman5 2.75 .25 1.669 Jpwh991 1.58 .13 .8810 Sherman3 4.68 .22 1.4711 Orsreg1 4.23 .11 .7212 Saylr4 6.98 .10 .7013 Shyy161 80.01 .19 1.3114 Goodwin 34.25 .04 .3015 Venkat01 566.09 .02 .1516 Inaccura 106.06 .03 .2117 Bai 145.02 .03 .2218 Dense1000 9.90 .02 .1419 Raefsky3 183.65 .02 .1620 Ex11 277.59 .01 .0821 Wang3 459.14 .01 .0722 Raefsky4 271.28 .02 .1023 Vavasis3 521.75 .02 .11Table 5.9: Working storage requirement as compared with the storage needed for L and U .The blocking parameter settings are: w = 8, t = 100, and b = 200.
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Figure 5.13: Performance of sequential codewith blockings tuned for parallel code on 1-CPUPower Challenge. 13 14 15 16 17 18 19 20 21 22 23
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Figure 5.14: Performance of sequential codewith blockings tuned for parallel code on 1-CPUAlphaServer 8400.blocking used for best parallel performance achieves only 81% uniprocessor e�ciency formatrices 17 and 19. The corresponding lowest number on the AlphaServer 8400 is 86% formatrix 22.5.6.2 Accessing critical sectionsThe following program segment and shared data structures must be protectedunder mutual exclusion: (1) The Scheduler() routine can only be entered by one processorat a time, because it modi�es the contents of the global task queue. (2) Every time aprocessor needs to copy part of L and/or U from its local working arrays into the globalstore, it has to call the allocator to get space. (By now, the size of each column or supernodeis already known.) This amounts to one call per column of U for row subscripts (Usub)and values (Uval), and one call per supernode of L for row subscripts (Lsub). The storagemanagement for the L supernodes, SL, is discussed in Section 5.4.3. There, the staticscheme does not need locking, because the storage is pre-allocated according to an upperbound estimate. The dynamic scheme, on the other hand, still requires locking. Each callto the allocator involves acquiring and relinquishing a lock, although the duration in thecritical section is very short. (3) The increment of supernode number (nsuper) should alsobe protected, because di�erent processors may detect di�erent supernodes simultaneously.In Table 5.10, we roughly count the number of times the program acquires andrelinquishes various locks. Note that the total number of lockings performed are independentof number of processors.A mutex variable should be declared for each critical section. Since we want toallow more than one processor to enter di�erent critical sections simultaneously, we use �venamed mutex variables to guard each of the above critical regions.To see how much cost is associated with lockings, in Table 5.11, we measured the



99Critical section Countscall Scheduler() number of panels (approx.)�allocate Lsub number of supernodesallocate Usub/Uval number of columnsallocate SL number of supernodesincrement nsuper number of supernodesTable 5.10: Number of lockings performed.* Here we assume that Scheduler() returns a new panel upon each call.Machine P = 1 P = 4 P=8SPARCcenter 2000 1.63 (82) 4.34 (217) 4.36 (218)Power Challenge 1.13 (102) 1.98 (179) 2.02 (182)AlphaServer 8400 0.98 (294) 2.26 (678) 2.71 (814)Cray C90 1.34 (323) 1.09 (261) 1.40 (336)Cray J90 2.67 (267) 4.17 (417) 4.42 (442)Table 5.11: Time in microseconds (cycles) to perform a single lock and unlock.time it takes to acquire and relinquish a lock on several platforms, with di�erent numbersof threads P . The �gure in the parenthesis is the number of clock cycles. In this smallbenchmark code, the critical section is simply one statement, to increment a counter. Thelocking and unlocking are placed around this statement. The measurement is done in atight loop with many iterations. When there is more than one thread, this corresponds toworst-case contention, because all the threads do nothing besides competing for the lock.Note that the cost for P > 1 is usually more than twice that of P = 1, because in the lattercase there is no queuing contention to obtain the lock. When there is more than one thread,the time increases slightly, but not linearly in the number of threads.The uniprocessor slowdown observed in Figure 5.12 is partly due to the overheadincurred by using these locks, when there are no other processors competing for the locks.By multiplying the time for a single lock/unlock in Table 5.11 by the number of the lockingsperformed in Table 5.10, we can estimate the locking overhead. As a concrete example, letus consider a medium size matrix 13, on a single processor Cray J90. Since the sequentialcode performance is 26 M
ops, each lock/unlock is equivalent to roughly 69 
oating-pointoperations. When the factorization is performed with panel size w = 1, the total number oflock acquisitions is 237004, which, when multiplied by 2.67 microseconds, results in about0.64 seconds. This is less than 3% of the entire factorization time (24.85 seconds). Weobserve that this percentage is typical for all matrices. The locking overhead also varieswith machines. For example, it is higher on the Cray J90 than on the Power Challenge andthe AlphaServer 8400.This estimate ignores time spent waiting for a processor that is in the criticalsection, because Table 5.11 had a trivial critical section. In our parallel LU code, mostcritical sections are trivial, except for calling Scheduler() (see Table 5.10).



1005.6.3 Coordinating dependent tasksThe third source of overhead is due to insu�cient parallelism in the pipelinedexecutions of the dependent panels. Dependent panels are those that have an ancestor-descendant relation in the column etree. When a processor factoring a panel needs anupdate from a BUSY descendant panel, this processor simply spins, and waits for thatpanel to �nish, as shown at line 13 in the scheduling loop of Figure 5.2. During the spinwait the processor does nothing useful. The total amount of spin wait time observed issigni�cant in some cases, especially with a larger number of processors. For example, formatrix 16, on the 12-CPU Power Challenge, about 40% of the parallel runtime is spentspinning. The corresponding number for the dense matrix is about 58%. The dense matrixis the worst one, because the factorization of all panels must be carried out in pipelinedfashion. Figure 5.15 depicts the locking overhead from Section 5.6.2 and spinning due todependencies on the 8-CPU Cray J90. The locking overhead also includes the possiblecontention from the 8 processors. In this �gure, we also plot the ine�ciency of the parallelalgorithm. Here, e�ciency = speedupP , and ine�ciency = 1� e�ciency. For most matrices,the spinning overhead due to dependencies is much higher than the overhead from lockacquisition. Clearly, the loss of parallel e�ciency is at least as large as the percent of timespent in spin wait. The ine�ciency curve captures very well the overhead curve for spinwait. In particular, for larger and denser problems, the spin wait is responsible for mostof the ine�ciency. For the dense matrix 18, the spin wait contributes more than 90% ofthe ine�ciency. (Even in the presence of these overheads, the parallel e�ciency of the sixlargest problems still exceed 70%.)5.6.4 Load imbalanceWe use a balance factor B to measure the load balance. Let fi denote the num-bers of 
oating-point operations performed on processor i, and P denote the numbers ofprocessors. We de�ne B as B = Pi(fi)P maxi(fi) : (5.2)In words, B equals the average work load divided by the maximum work load. It is readilyseen that 0 < B � 1, and higher B indicates better load balance. This �gure is shown inTables 5.12 and 5.13.If load imbalance is the sole overhead in a parallel program, the parallel executiontime is simply the execution time of the slowest processor whose work load is highest.5.6.5 Combining all overheadsIn this subsection we evaluate the e�ect of the combined overheads on the parallele�ciency. In summary, the overheads include(1) reduced uniprocessor performance due to smaller blocking(2) accessing critical sections(3) idle time (from spin wait in the panel pipeline and in the top-level scheduling loop)
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Figure 5.15: Parallel overhead in percent on an 8-CPU Cray J90.(4) load imbalanceOverhead (1) only a�ects uniprocessor performance. Overhead (2) decreases both unipro-cessor performance of the parallel code and parallel performance. Compared with the serialexecution, the parallel execution experiences more contention for locks. But Table 5.11and Figure 5.15 indicate that runtime does not increase signi�cantly in the presence ofcontention. Therefore, we may assume that (2) only adds overhead to the uniprocessor ex-ecution. Overheads (3) and (4) exist only in the parallel computation and their magnitudesare correlated. Load imbalance may be due to poor assignment of tasks to processors, orinsu�cient parallelism. In either case, the processor with less work to do will sit idle. Inaddition, a processor may be idle due to dependencies between tasks, even when the totalwork performed by all processors is balanced. We introduce the following notation to denotevarious times:� Ts is the best serial time obtained from SuperLU� T1 is the execution time of the parallel code on one processor� TP is the parallel execution time on P processors� TI is the total idle time of all processorsAll the times above are measured independently. In particular, for TI , there are two situa-tions a processor may sit idle: one is due to spin wait in the pipeline, and another is when



102a processor calls Scheduler() (line 4 in Figure 5.2) and fails to get a panel from the sched-uler. We found that, for the test matrices and the numbers of processors being considered,failure from the scheduler rarely occurs. So most of the idle time is due to pipeline waiting.The following relation holds for the parallel runtime:P TP � T1 + TI : (5.3)We can compute the observed e�ciency (Eactual) and the estimated e�ciency (Eest) asfollows: Eactual = TsP TP : (5.4)Eest = TsT1 + TI : (5.5)We also introduce two parameters �1 and �p to quantify the uniprocessor and paralleloverheads, respectively. �1 and �p are calculated based on Ts, T1, TP , and TI as follows:�1 = T1 � TsT1 = 1� TsT1 : (5.6)�p = TI=PTP : (5.7)Both �1 and �p are in the range [0; 1); �1 shows the overhead that degrades the uniprocessorperformance, while �p shows the overhead in the parallel execution. The smaller are �1 and�2, the more e�cient is the parallel algorithm. In Tables 5.12 and 5.13, we report Eactual,Eest, �1, �p, and B for the two parallel machines.Cray J90As mentioned in Section 5.6.1, the uniprocessor performance on the J90 does notdegrade much with smaller maxsup, that is, overhead (1) does not exist. Therefore, 1��1can be taken as the numbers from the column labeled \P = 1" in Table 5.8. We gathered thestatistics for �p and B on 16 processors, as shown in Table 5.12. In the last two columnsof Table 5.12, we compare the estimated e�ciency by (5.5) with the actually observede�ciency Eactual by (5.4).The estimated and observed e�ciencies are very close. Their di�erences are mostlywithin 4%, except for matrix 20 which has a 7% di�erence. For most problems, the pipelinespin waiting, as re
ected by �p, is the primary cause of ine�ciency. This is particularlyevident for matrices 15, 18 and 21, for which 74%, 67% and 71% of the total runtime is spentin spin wait, respectively. Most problems have achieved good load balance, with exceptionof matrix 13.Power ChallengeOn a cache-based machine, the uniprocessor performance loss of the parallel code isa combination of performing lockings and less e�cient cache utilization. Therefore, 1� �1equals the product of the numbers from column labeled \P = 1" in Table 5.5 and the
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Matrix �1 �p B Eest Eactual13 Shyy161 .17 .23 .66 .51 .4714 Goodwin .12 .10 .97 .77 .8015 Venkat01 .32 .74 .99 .11 .1216 Inaccura .10 .46 .97 .45 .4617 Bai .13 .34 .93 .54 .5318 Dense1000 .07 .67 .99 .25 .2519 Raefsky3 .07 .37 .96 .55 .5320 Ex11 .05 .23 .98 .71 .6421 Wang3 .23 .71 .99 .17 .1922 Raefsky4 .02 .43 .97 .53 .51Table 5.12: Overheads and e�ciencies on a 16-CPU Cray J90.Matrix �1 �p B Eest Eactual13 Shyy161 .27 .20 .70 .39 .4214 Goodwin .18 .25 .87 .49 .4915 Venkat01 .38 .56 .91 .20 .1716 Inaccura .21 .40 .88 .42 .4217 Bai .26 .20 .93 .55 .5618 Dense1000 .18 .58 .92 .30 .3519 Raefsky3 .25 .16 .95 .60 .5820 Ex11 .18 .09 .98 .73 .6421 Wang3 .19 .52 .93 .36 .3422 Raefsky4 .23 .15 .95 .62 .5423 Vavasis3 .14 .17 .97 .68 .56Table 5.13: Overheads and e�ciencies on a 12-CPU Power Challenge.



104numbers from Figure 5.13. Table 5.13 reports the statistics of �1, �p and B, together withthe estimated and the observed e�ciencies, Eest and Eactual, respectively. Again, Eest andEactual match reasonably well, except for matrix 23, for which the gap is 12%.Compared with J90, we observe that �1 is much larger, because the cache playsan important role on the Power Challenge. In fact, for matrices 13, 17, 19, 20 and 22,uniprocessor performance loss is more severe than the parallel overhead. For matrices 15,18 and 21, the parallel spin waiting is the major bottleneck. Again, load balance is usuallyvery good, except for matrix 13.5.7 Possible improvementsWe have considered two ways to circumvent the ine�ciency caused by dependen-cies. One is to uncover more independent panels and hence decrease the number of pipelinedpanels. Another is to use a more sophisticated dynamic scheduling algorithm that stealscycles from the idle processors to do useful work.5.7.1 Independent domainsThe concept of domains has been widely used in sparse Cholesky factorizations,especially on distributed memory machines [14, 72, 93, 97]. A domain refers to a rootedsubtree of the elimination tree such that all nodes in this subtree are mapped onto the sameprocessor to factorize. In sparse LU factorization, we may de�ne domains similarly, butwe use the column etree. The factorization within each domain does not require pipeliningor cooperation among processors. Therefore, the bene�t of using domains is two-fold: (1)it decreases the number of pipelined panels; (2) it improves locality. Since the etree is inpostorder, a domain consists of consecutive columns in the matrix. Note that our relaxedsupernodes (Section 3.4) at the bottom of the etree are in fact domains, but they are toosmall to warrant the above listed bene�ts.The next question is how we shall �nd the domains. We �rst examine what peoplehave done in sparse Cholesky factorizations. For a well balanced etree, often coming froma nested dissection ordering, the subtree-to-subcube mapping [53] is quite e�ective. In thismethod, the processors are recursively divided into two groups at each branching node ofthe tree, until the log P level is reached. At this level there are exactly P disjoint subtrees,or domains, each being assigned to one processor.A generalization of this method, called proportional mapping, was proposed byPothen and Sun [93], which is intended to work for any unbalanced tree. First, we computethe amount of arithmetic associated with each node when factorizing the correspondingcolumn, and the amount of arithmetic associated with each subtree. Secondly, we traverseetree in a top-down fashion, starting with P processors at the root. When a branchingnode with k children is reached, the processors are divided among k children, each witha number of processors proportional to the relative amount of work required by the childsubtree. This process terminates when a single processor is assigned to a single subtree.There is a problem with proportional mapping, that is, the proportion of thenumber of processors determined from the work distribution of the children may not be an



105integral number. It is necessary to round it to an integer. This rounding may cause seriousload imbalance. Geist and Ng [47] proposed a tasking scheduling method that can alleviatethis problem. They relaxed the condition of �nding exactly P subtrees. Instead, theiralgorithm may �nd more than P subtrees, so there will be more 
exibility to assign themto the P processors with reasonable load balance. Their algorithm involves a breadth �rstsearch of the etree, cutting o� the branches and applying a heuristic bin-packing algorithmto assign the set of branches to the P bins. This procedure is applied recursively until thework load across all processors meets a certain tolerance. Intuitively, if the load balancerequirement is high, the algorithm will �nd more subtrees, each with smaller work load.We use Geist and Ng's approach due to its generality and 
exibility. To adapttheir algorithm to our LU context, we experimented with the following scheme:(1) Since we cannot pre-determine the exact amount of arithmetic, we use the columnetree and the nonzero column counts of the Householder matrix H (Section 5.4.3) toarrive at an estimated amount of work for each column. This gives an upper boundthe actual work.(2) We ignore the static schedule of domains to processors; instead, we add the domainsinto the task queue Q. Processors get domains from Q as factorization proceeds, andhopefully load balance is automatically maintained.In the �rst step we �nd the domains based statically only on estimated work. Inthe second step we dynamically schedule them onto processors. Therefore, the static loadbalance requirement is not so critical.We experimented this method on the 12-CPU Power Challenge and the 16-CPUCray J90. Unfortunately, there is no strong evidence that this pre-scheduling is very prof-itable. For some problems, we see improvement; while for some others, we see degradation.Neither the improvement nor the degradation is more than 5%. There may be several rea-sons that this method is not e�ective. First, LU factorization has a larger proportion ofthe work at the top of the etree than does Cholesky. So there is not enough of the totalwork in the domains at the bottom. Second, the gross estimate of 
oating-point operationsmay not be su�ciently accurate. Third, our original scheduling policy has already capturedenough locality by favoring the immediate parent in the etree (Section 5.3). We believethat this type of static pre-schedule will be much more useful for our future algorithm ondistributed memory machines, where a pure dynamic scheduling will be far too expensiveto implement.5.7.2 No-spin-wait schedulingInstead of spin waiting for a BUSY panel, the processor can put the current panelback in the queue, mark the panel as \partially-done", and �nd another panel to work on.To implement this scheme, we may use two separate queues, say Q1 and Q2, where Q1 isthe same task queue in Figure 5.2 and Q2 holds the partially-done panels. The schedulerswitches between the two queues to assign panels to an available processor. It might beadvantageous to give Q2 a higher priority, because all partially-done panels are likely to beon the critical path of the computation.



106When a partially-done panel is swapped o� a processor and put in Q2, the partialfactorization result of this panel must be kept in order for the panel to resume factorizationcorrectly. This includes all the nonzero subscripts and the numeric values in the SPA.Because of the large amount of state information that must be swapped in and out of aprocessor, the bookkeeping may be prohibitively expensive in practice.When a processor stops working on a partially-done panel, the type of the panelthe processor picks up will a�ect the overall performance. There are two scenarios:� If the processor obtains a panel not dependent on the partially-done panel, say froma disjoint subtree, the scheme will certainly pay o�. This could well happen in thebeginning of the computation.� If the processor obtains a panel which is an ancestor of the partially-done panel, thepartially-done panel clearly lies on the critical path and becomes the bottleneck. Thismay happen in a later stage of the computation when the etree becomes narrow.In this case, having a cascading of partially-done panels implies many swappings ofstates, and may severely hurt performance.We have yet to implement this method. In Chapter 6 we propose other ways toimprove the e�ciency of the parallel algorithm, which we think may be more e�ective.5.8 A PRAM model to predict optimal speedupGiven a matrix with a �xed column ordering, we want to establish a performancemodel to estimate the maximum speedup attainable by the underlying algorithm, and indeeddetermine the limitations of algorithms based on a one-dimensional matrix partition. Tothis end, we will estimate a lower bound on the parallel runtime. We shall �rst formalizeour notion of parallel completion time and describe how to compute it. We will then showthe results of applying this model to our test matrices.5.8.1 MethodIn a parallel algorithm the total amount of work is divided among multiple pro-cessors. Because of various precedence constraints, some part of the work must be �nishedbefore some other part of the work can start. Thus, the completion time of the parallelalgorithm is constrained by the amount of work that must be �nished serially in time,i.e., the critical path. Our objective is to predict the shortest possible parallel completiontime. In our model we make the following simplifying assumptions: (1) The work onlyincludes 
oating-point operations, and each 
oating-point operation takes one unit of time.(2) There are an in�nite number of processors. Whenever a task is ready, there will bea free processor to execute this task immediately. (3) Accessing memory and communi-cation are free in this hypothetical machine. (4) We ignore various overheads associatedwith the actual implementation of the scheduling algorithm and the synchronizations. Thismodel gives an optimistic estimate; therefore, we can use it to prove lower bounds on theperformance of an algorithm on a real machine.
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Tmod(p, dk)Figure 5.17: Tasks associated with panel p.The LU factorization algorithm presented in Section 5.3 can be modeled by a datastructure called a directed acyclic graph (DAG). Each node in the DAG corresponds tothe computation of a panel. An edge directed from node s to node p corresponds to anupdate of panel p by supernode s. The edges also represent precedence relations betweenthe updating supernodes and the destination panels. Figure 5.16 illustrates such a DAGfor a sample matrix.5.8.2 ModelIn presenting our model, we employ the following notation:� Tmod(p; d) := the task of updating panel p by a descendant supernode d� Tdiv(p) := the task of performing the inner factorization of panel p� tmod(p; d) := time taken by task Tmod(p; d)� tdiv(p) := time taken by task Tdiv(p)� EST (p) := earliest possible starting time of Tdiv(p)� EFT (p) := earliest possible �nishing time of Tdiv(p)All times are expressed in units of 
oating-point operations. It is clear that forany panel p the following relation holds: EFT (p) = EST (p) + tdiv(p).According to our scheduling algorithm, each panel task Tpanel(p) is assigned to asingle processor P . Tpanel(p) consists of the following two types of subtasks:Tpanel(p) := fTmod(p; d) j d 2 Dg [ fTdiv(p)g ;where D is the set of descendant supernodes that update the destination panel p. Figure 5.17shows the part of the DAG associated with a particular panel p.Both Tmod and Tdiv are indivisible tasks, and are carried out sequentially on aprocessor. Clearly, Tdiv cannot start until all the Tmod's have been �nished. By lookingat the precedence relations of these two types of tasks, we can determine the runtime of



109Tpanel(p) on processor P . We will try to schedule these tasks as early as possible, in orderto derive the minimum parallel execution time.We �rst look at the tasks associated with one particular panel p, as shown in Fig-ure 5.17. Suppose there are k descendant supernodes to update panel p, and that all thetimes fEFT (d); d2 Dg have been computed. We schedule the tasks fTmod(p; d); d2 Dg toprocessor P in the order of Tmod(p; 1); : : : ; Tmod(p; k), such that:EFT (1) � EFT (2) � : : : � EFT (k) :Here, EFT (i) is the �nishing time of the last column of supernode i, because a supernode icannot update any ancestor panel before its last column is completed. For convenience, wecall this scheduling policy Sched-A. Then we can compute EST (p) and EFT (p) as follows.1. Run the following recurrence to get the completion time of the Tmod's:t = 0;for i = 1 to kt = max f t; EFT (i) g+ tmod(i);endfor;2. Set EST (p) = t and EFT (p) = t+ tdiv(p) .In the following we will give an informal argument about the optimality of theparallel runtime resulting from Sched-A.Theorem 9 For panel p, scheduling the Tmod's by Sched-A gives the shortest completiontime.Proof: Processor P requires at least Pki=1 tmod(p; i) units of time to �nish all the up-dates to panel p. Now suppose another scheduling strategy Sched-B starts with a taskTmod(p; i); i 6= 1. Due to the precedence constraint, Tmod(p; i) cannot start until aftertime EFT (i) (� EFT (1)). That means processor P will be idle during the period ofLAG := EFT (i)�EFT (1). Thus the amount of time to �nish all the Tmod s will be atleast LAG+Pki=1 tmod(p; i).On the other hand, in Sched-A, at least some Tmod(p; j); j < i have been scheduledin the time period LAG. Hence the amount of work left after time EFT (i) is less than thework left when using Sched-B. Sched-A will give shorter �nishing time than Sched-B. 2We are now ready to simulate parallel computation for the whole factorization. Tobegin with, theEST s of the leaf panels in the elimination tree are initialized to zero. Varioustimes (tmod and tdiv in 
oating-point operations) can be computed successively from thebottom of the elimination tree to the top. By applying the argument above inductively toall the panels in the DAG, with leaf panels as the basis, we can show that EFT (root panel)gives the minimum execution time. The (predicted) optimal speedup can then be computedby Predicted speedup = Total 
opsEFT (root panel) :



110There are several points worth noting in this model. First, because of numericalpivoting, we do not know the computational DAG in advance of the factorization; rather, theDAG is built incrementally as the factorization proceeds. Also, the 
oating-point operationsassociated with all the tasks are calculated on the 
y. So this model gives an a posterioriestimate. Secondly, for each panel computation, the scheduling method of Sched-A requiressorting the EFT 's of all the descendant supernodes that will update this panel. The costassociated with this sorting is prohibitively high, and so this method cannot be used toschedule panel updates in practice. However, we content ourselves with bounding thetheoretically attainable speedup.5.8.3 Results from the modelIn this subsection, we present the optimal speedups predicted by the model for allof our test problems. The degree of parallelism (and hence speedup) is strongly dependenton the granularity of the sequential tasks. In our algorithm, there are two parameters tocontrol task granularity: The panel size w determines the amount of work in a Tdiv task,and both w and the maximum supernode size maxsup determine the amount of work in aTmod task. Any large supernode of size exceeding maxsup (such as in a dense matrix) isdivided into smaller ones so that they �t in cache.Table 5.14 reports the predicted speedups when varying w and maxsup. For a�xed value of maxsup, the simulated speedups decrease with increasing w. For sequentialSuperLU we �nd empirically that the best choice for w is between 8 and 16, depending onmatrices and architectures. In the parallel setting, a smaller w, say between 4 and 8, maygive the best overall performance. This embodies an interesting trade-o� between availableconcurrency and per-processor e�ciency.We now compare the results when �xing w but varying maxsup. In relativelysparser matrices, such as matrices 1 { 10, the actual sizes of supernodes may be muchsmaller than maxsup. The performance of such matrices are not so sensitive to maxsup.However, for larger and denser matrices, larger value of maxsup results in poorer speedup.Finally we note that the speedups for small matrices are very low, even with smallvalues of w and maxsup. Fortunately, for large matrices such as 13 { 21, the predictedspeedups are greater than 20 when w = 8 and maxsup = 32. These matrices perform morethan one billion 
oating-point operations in the factorization. It is these matrices thatrequire parallel processing power. The current 1-D algorithm is well suited for most of thecommercially popular SMP machines, because the number of processors on these systemsis usually below 20.The height of the column etree can also be used as a crude prediction of the parallelperformance. The height of a node i is de�ned asheight(i) = ( 0; if i is a leaf node1 +maxf height(j) j j 2 child(i)g otherwiseThe height of the etree is the height of the root, which represents the longest (critical)path in the etree. The computation of all the nodes along this path must be performed insuccession. Therefore, the length of the critical path is a constraining factor for performance.



111maxsup = 32 maxsup = 64Matrix w = 4 w = 8 w = 16 w = 4 w = 8 w = 16 height=n1 Memplus 4.8 3.6 2.8 2.9 2.5 2.1 0.952 Gemat11 7.3 5.3 4.1 6.4 4.9 3.6 0.063 Rdist1 4.6 3.2 2.1 4.6 3.2 2.1 0.994 Orani678 42.2 28.4 16.6 42.2 28.4 16.6 0.645 Mcfe 6.6 4.3 2.6 6.6 4.3 2.6 0.676 Lnsp3937 23.2 15.4 9.7 23.2 15.4 9.7 0.257 Lns3937 24.1 15.8 9.6 22.9 15.3 9.6 0.278 Sherman5 15.8 11.4 7.5 14.0 10.7 7.2 0.209 Jpwh991 13.4 9.7 6.4 11.3 8.3 6.0 0.4610 Sherman3 12.7 9.7 7.0 8.2 6.9 5.5 0.2011 Orsreg1 14.4 11.0 7.5 9.2 7.8 5.9 0.3412 Saylr4 19.8 16.1 11.0 13.1 11.4 8.6 0.2913 Shyy161 47.9 36.2 24.1 28.1 23.8 18.1 0.0414 Goodwin 97.4 71.3 43.6 83.4 63.4 40.1 0.1915 Venkat01 22.0 20.2 17.0 14.3 14.2 13.1 0.7316 Inaccura 62.6 43.5 26.0 44.5 33.6 22.2 0.4517 Bai 70.9 55.3 37.2 41.4 35.7 27.4 0.2018 Dense1000 33.1 23.7 18.4 18.2 14.9 12.7 1.0019 Raefsky3 140.2 110.6 80.8 80.4 69.6 56.5 0.2120 Ex11 106.7 83.5 58.2 61.6 53.2 41.7 0.3521 Wang3 57.6 43.4 29.4 34.3 28.9 22.1 0.9422 Raefsky4 99.1 77.1 52.0 56.3 48.5 37.3 0.3323 Vavasis3 176.5 133.9 90.7 106.2 89.5 68.2 0.18Table 5.14: Optimal speedup predicted by the model, and the column etree height.The last column of Table 5.14 shows the height of the etree over total numbers of nodes nin the etree. The larger is height=n, the larger the fraction of panels will be factorized inpipelined manner, resulting in poor parallelism and more synchronizations. For example,height=n for matrices 1, 3, 15 and 21 are rather large. This is consistent with the relativelylower predicted speedups. However, we must note that the etree height alone is not anaccurate measure of parallelism. For example, both dense matrix (18) and a tridiagonalmatrix have height=n = 1:00, but the former possesses much more concurrency than thelater. The fundamental problem is due to over-prediction of the nonzeros when usingATA as the analysis tool. The consequences of the over-prediction are: (1) The columnetree is tall, and contains substantial false dependencies. (2) The dynamic storage scheme(Section 5.4.3) is needed to store supernodes, because the static storage bound is too loose(Table 5.3). Using the dynamic scheme increases the sequential runtime. For example, formatrix 15, the runtime increases by about 15%. In the parallel algorithm, this overhead
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Figure 5.18: Speedups on 8 processors of the Power Challenge, the AlphaServer 8400 andthe Cray J90.also occurs on the critical path, and increases the length of it. So the combined e�ect givespoor performance on the real machines. On the 8-CPU Power Challenge and AlphaServer8400, matrix 15 achieves only 2-fold and 3-fold speedups, respectively.5.9 ConclusionsWe have designed and implemented a parallel algorithm for modest size sharedmemory multiprocessors. The e�ciency of the algorithm has been demonstrated on severalparallel machines. Figure 5.18 shows the speedups on 8 processors of the three parallelmachines. Figures 5.19 through 5.22 recall the factorization rate in Mega
ops for six largematrices, with increasing number of processors. We believe these large problems are theprimary candidates to be solved on parallel machines. In fact, the largest one in our testsuite takes a little more than 0.5 GBytes memory, far less than most parallel machines haveo�ered. Our algorithm is expected to work well for even larger problems.For a realistic problem arising from a 3-D 
ow calculation (matrix 20), on thePower Challenge, the Cray C90 and J90, our parallel algorithm achieves 25% peak 
oating-point performance. On the AlphaServer 8400, it achieves 17% of the peak for the sameproblem. The respective M
op rates are 1002, 2583, 831 and 781. These are the fastestresults for the unsymmetric LU factorization on these powerful high-performance machines.Previous results showed much lower factorization rate because the machines used wererelatively slow and the computational kernel in the earlier parallel algorithms was based onLevel 1 BLAS. The closest work is the parallel symmetric pattern multifrontal factorization



113by Amestoy and Du� [5], also on shared memory machines. However, that approach mayresult in too many nonzeros and so is ine�cient for unsymmetric pattern sparse matrices.Another contribution is providing detailed performance analysis and modeling forthe underlying algorithm. In particular, we identi�ed the three main factors limiting parallelperformance: (1) contention for accessing critical sections, (2) processors sitting idle dueto pipeline waiting, and (3) the need to sacri�ce some per-processor e�ciency in order togain more concurrency. Which factor plays more signi�cant role depends on the relativeperformance of integer and 
oating-point arithmetic in the underlying architecture.We have developed a theoretical model to analyze our parallel algorithm and pre-dict the optimally attainable speedup. When comparing the theoretical prediction (Ta-ble 5.14) with the actual speedups (Figure 5.18), we �nd that there exists a discrepancybetween the two. This is because our hypothetical machine and the optimal scheduling usedin the model do not capture all the details of a real machine with real scheduling. Neverthe-less, we do see a similar shape of curves in the predicted and actual speedups. That is, forthe matrices predicted lower speedups, such as 11, 15, 18 and 21, the actual speedups arealso lower. The model is a useful tool to help identify the inherently sequential problemswith bad column orderings. The model also suggests that the panel-wise parallel algorithm,although e�cient on small scale SMPs, cannot e�ectively utilize more than 50 processors.Our future research is to develop a more scalable algorithm for massively parallel machines.



114
1 4 8 12

0

200

400

600

800

1000

1200

Processors

M
fl
o

p
s

shyy161
goodwin
inaccura
bai
ex11
raefsky4

Figure 5.19: M
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Figure 5.20: M
op rate on a DEC Al-phaServer 8400.
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Figure 5.21: M
op rate on a Cray C90. 1 4 8 16
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Figure 5.22: M
op rate on a Cray J90.



115Chapter 6Conclusions and Future Directions6.1 Summary of contributionsThe main goal of this dissertation is to design, implement and analyze new tech-niques for sparse LU factorization of large unsymmetric matrices, and to show that theproposed methods achieve high performance on a wide range of modern architectures. Inaddition to algorithm design, a large part of the research lies in performance analysis andmodeling, taking into account the characteristics of algorithms, computer architectures andinput matrices.Many high performance computers, the so-called superscalar architectures, havemultiple pipelined functional units. Fast but relatively small cache memory is essentialto support this functional parallelism. To e�ectively utilize this level of parallelism, thealgorithm must be structured in such a way that a piece of data in registers and cacheis reused su�ciently often. To this end, we designed the supernode-panel factorizationalgorithm in Chapter 4. Although panel factorization, as opposed to column factorization,was adopted in dense LU factorization several years ago, it is much more complicatedto implement for sparse matrices. Our supernode-panel algorithm is evaluated on severalcache-based superscalar machines, including IBM RS/6000-590, MIPS R8000 and DECAlpha 21164.The amount of performance gain over older algorithms is very much dependenton the matrix characteristics. We show that, among all matrix properties, ops-per-nz, hasthe strongest predictive power for performance gain. Ops-per-nz is the average number of
oating point operations per nonzero in the �lled matrix F , which is an upper bound onthe maximum cache reuse. When the matrices have a large ops-per-nz, the speedups of oursupernode-panel algorithm over an earlier supernode-column algorithm are more than four-fold on the MIPS R8000 and more than two-fold on the Alpha 21164. The raw factorizationrates are up to 169 M
ops and 121 M
ops, respectively (see Table 4.13).Based on our e�cient supernode-panel algorithm, we developed a parallel algo-rithm on shared memory machines. The major di�culties are dealing with data depen-dencies and memory management. We designed a low overhead scheduler to dynamicallyschedule panel tasks on free processors. A pipeline mechanism is incorporated into thescheduler to coordinate dependent tasks. We used the nonzero structure of the House-



116holder matrix from the QR factorization as an upper bound on the supernode storage forthe LU factorization, in order to preallocate enough storage to store supernodes contigu-ously in memory and so to exploit locality. When this upper bound is too loose, we usea dynamic storage scheme to mitigate storage ine�ciency, at the expense of some runtimeoverhead. Overall, our parallel algorithm is practical and easily portable across di�erentplatforms.Understanding and predicting performance for the parallel algorithm is much moredi�cult than for the serial algorithm mainly because there are so many interacting factorsdepending on the algorithm, the machine and the matrices. Among these factors are thecost of locking, the relative speeds of integer and 
oating-point arithmetic, the memoryorganization, and the matrix characteristics. Depending on the relative speeds of the abovesystem components, we observe di�erent speedups on di�erent parallel computers, even forthe same input matrix (Figure 5.18). We have been able to quantify the major overheads ofthe algorithm on di�erent machines. One interesting trade-o� in the parallel algorithm is touse tasks of smaller granularity (and so with less potential cache reuse) in order to achievemore concurrency. On cache-based machines, such as Power Challenge and AlphaServer8400, this may cause nontrivial performance degradation on individual processors. Thistrade-o� is not relevant on the Cray C90 and J90 because these machines do not havecaches and have much better memory performance. We also developed a theoretical modelto predict optimal speedup, irrespective of the architectural details.For matrices exhibiting su�cient parallelism, the parallel algorithm achieves upto 7-fold speedup on a 12-CPU Power Challenge, 7-fold speedup on an 8-CPU AlphaServer8400, 6-fold speedup on an 8-CPU Cray C90, and 12-fold speedup on a 16-CPU Cray J90.All speedups are obtained when comparing with the best sequential runtime.6.2 Future research directions6.2.1 Sequential algorithmFurther improvements in the sequential algorithm are possible. These improve-ments are more likely to come from better symbolic algorithms than from the numericalpart. Improvement in the symbolic part is especially important for the machines withrelatively slower integer performance, such as the Cray C90 and J90.It may be worthwhile to switch to a dense LU code at a late stage of the factor-ization. The dense code does not spend time on symbolic structure prediction and pruning,thus streamlining the numeric computation. It can also use BLAS-3 naturally. Eliminatingsymbolic computation is especially important for vector machines like Crays, because thesymbolic part is hard to vectorize and runs relatively slowly. We believe that, for largematrices, the �nal dense submatrix will be big enough to make the switch bene�cial. Forexample, for a 2-D k � k square grid problem ordered by nested dissection, the dimensionof the �nal dense submatrix is 32k � 32k; for a 3-D k � k � k cubic grid, it is 32k2 � 32k2, ifpivots come from the diagonal. The Harwell code MA48 [33, 39] employs such a switch todense code, which has a signi�cant bene�cial e�ect on performance.Where is a good point to switch to dense LU? Since our algorithm is left-looking,we do not know exactly when the trailing submatrix becomes dense or nearly so. We



117considered using the nonzero upper bound approach discussed in Section 5.4.3. Again, wecan use two matrices: the Householder matrix H (in factored form) of the QR factorizationand the Cholesky factor Lc ofATA. We know that L is contained in bothH and Lc, and thatH generally gives a tighter bound. Let l denote the �rst column of the last supernode of Hor of Lc. It is reasonable to assume that the reduced submatrix F (l : n; l : n), correspondingto the last supernode in either H or Lc is fairly dense. Thus, we may use a dense code wheneliminating the variables from l to n. To support our argument, we gathered some statisticsabout the last supernode, in Figure 6.1 (for H) and Figure 6.2 (for Lc). In both �gures, weplot the \density" of the last supernode, de�ned as nnz(F (l:n;l:n))(n�l+1)2 , the percentage of the total
oating-point operations performed when eliminating the last n � l + 1 variables (\Flops%"), and the percentage of the variables to be eliminated by a dense code (\(n� l+1)=n").If we use last supernode in H as switching criterion, F (l : n; l : n) is usually more than80% full, except for small matrices in which the \dense" part is rather small. On the otherhand, if we use Lc, we will need to do more 
oating-point operations for more zeros. Eventhough these 
oating-point operations are cheaper in a dense code, it is not clear how theoverall runtime is a�ected. For the large matrices 19 { 23, which is where SuperLU showsclear advantage, about the last 10% of the rows and columns during elimination are nearlydense. So those problems will probably bene�t more from switching to dense LU .Signi�cant improvements may come from better column preordering heuristics thatsu�er less �ll. These include column nested dissection, or a hybrid of column minimumdegree and column nested dissection orderings.6.2.2 Parallel algorithmFinding a better elimination treeAccording to our theoretical model (Section 5.8), for the input matrices we con-sidered, the current algorithm is not likely to scale up to larger parallel machines with overa hundred processors. There are two di�erent solutions to overcome this obstacle.One reason for poor (optimal) speedups of some problems is due to the long (in-herently sequential) critical path in the column etree, which is determined by a particularcolumn preordering. An optimal ordering with respect to storage or arithmetic may notbe necessarily optimal for parallel complexity. Since we use the column etree to drive theparallelism, it is desirable to have a short and wide etree. It is commonly accepted thatminimum degree ordering, either on ATA or A + AT , tends to produce tall and narrowetrees. In the context of sparse Cholesky factorization, Liu [82] developed a reorderingscheme to reduce the height of the etree (relabeling nodes in G(A) as well). He used a two-step modular approach to ordering a matrix. He �rst applied a �ll-reducing heuristic (suchas minimum degree ordering) to the original matrix A, resulting in a permuted matrix �A.In the second step, he applied a sequence of his etree rotation operations [81] to restructurethe etree so that its height is reduced to nearly the minimum. The permutation P foundin the second step has the important property that the reordered matrix P �APT su�ersthe same �ll and requires the same number of arithmetic operations for its factorization asdoes �A. An ordering with this property is called an equivalent reordering in the literature.Therefore, the parallel completion time will be reduced when factoring P �APT , provided
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Figure 6.1: Statistics of the last supernode in H .
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Figure 6.2: Statistics of the last supernode in Lc.



119there are enough processors.This idea may be extended to deal with the unsymmetric case, where the columnetree is restructured, and the columns of A are permuted accordingly. However, withoutknowledge of the numerical values, it is impossible to determine whether a permutationwill preserve �lls and arithmetic operations for the LU factorization, so the term equivalentreordering is not well de�ned. At best, the same semantics of equivalent reordering maybe used but applied to the Cholesky factor Lc of ATA. This only says that the upperbounds of the �lls and arithmetic on L and U are the same (Theorem 5 in Section 5.4.3),with no guarantees for L and U themselves. George and Ng [57] employed this techniquein their parallel sparse Gaussian elimination algorithm. Their implementation makes useof the static data structure �L and �U obtained from a symbolic row merge algorithm. (Instructure, �L and �U are identical toH and R respectively, by Theorem 6 in Section 5.4.3, andare upper bounds on L and U .) As they pointed out, if the structure of the column etreeis changed, the number of nonzeros in �U is preserved if A is irreducible, but the number ofnonzeros in �L may not be preserved. They did not report whether restructuring the etreeimproved the e�ciency of their parallel algorithm.If A is reducible, the upper bound may be very loose. After the reordering, theactual number of nonzeros in L and U and the 
oating-point operations may become moreor fewer than before. However, the parallel runtime may possibly be decreased even thoughthe algorithm performs more operations, simply because more concurrency is exposed. Thisis a promising area deserving further investigation. It is worth noting that our performancemodel established in Section 5.8 can be a useful tool to assess whether restructuring theetree (or some other reordering heuristic) will be e�ective in parallel runtime reduction.This is in fact one of our motivations for building the theoretical model in the �rst place.We may also use the etree de�ned by �U [57] instead of the column etree, whichwould present more concurrency than does the column etree. But we should note that itis more expensive to compute the etree of �U (O(nnz(�L) + nnz( �U))) than to compute thecolumn etree (almost linear in nnz(A)).Using 2-D decomposition instead of 1-D decompositionAnother remedy, which we believe will be more e�ective than simply restructuringthe etree, is to parallelize the computation along both row and column dimensions of thematrix. Schreiber [101] modeled the lower bounds on parallel completion time of a left-looking column-oriented sparse Cholesky factorization, and concluded that a two-dimensionalmapping is needed to achieve better scalability. Since then, several researchers [72, 97] havedeveloped and demonstrated e�cient and scalable 2-D distributed algorithms for sparseCholesky. To summarize their results, there are two essential ingredients: (1) computa-tional kernels are based on BLAS 3 in order to achieve high per-processor performance;(2) the matrix is partitioned in a 2-D fashion and mapped onto processors in a 2-D grid.In this mapping, the machine is organized as P � Q processor grid. A block row of thematrix is mapped to the same row of the processor grid, and a block column of the matrixis mapped to the same column of the processor grid. Compared with the 1-D mapping,asymptotically, both the length of the critical path and the interprocessor communication



120volume are reduced for a grid model problem [97].Unlike sparse Cholesky, the following issues must be addressed in the LU factor-ization: (1) supernodes (blocks) emerge dynamically, but we need to determine the blockboundaries and distribute matrix prior to factorization; (2) we need to parallelize the under-lying symbolic algorithm to accommodate dynamic structural change; (3) processors mustcooperate to perform numerical pivoting at each step.We propose the following strategies to address the above issues.� block partition. We will use the supernode boundaries in the Householder matrix H(Section 5.4.3) to partition matrix A into blocks of columns. If a block is too large, wefurther divide it into smaller blocks. Then, we can apply the same block partitioningto the rows of matrix A.� block mapping. The global 2-D block cyclic mapping successfully used in densealgorithms [19] may cause serious load imbalance. Instead, we propose a two-phasemapping method as follows. First, we will use the column etree and arithmetic es-timate based on the Householder matrix H to �nd independent domains and assignthem to individual processors. We discussed this method in Section 5.7.1. Secondly,at the higher level of the etree outside domains, we will use a Cartesian productmapping heuristic proposed by Rothberg and Schreiber [98]. Here, we can estimatethe work associated with each block using the two upper bound matrices H and Lc(Section 5.4.3). One important observation is that the mapping functions for rowsand columns can be de�ned independently. Compared with the customary 2-D blockcyclic mapping, there are two advantages associated with the independent row andcolumn mappings: (1) there is more 
exibility to statically balance the work load; (2)it can avoid heavily loading the diagonal processors in the processor grid, since thediagonal blocks tend to have more work than the o�-diagonal blocks and they are nowmapped to not only the diagonal processors but also the o�-diagonal ones.� symbolic algorithm. Although the current symbolic algorithm is very e�cient inthe sequential and 1-D parallel codes, it may become a performance bottleneck inthe 2-D algorithm, because depth-�rst search does not exploit locality and is hard toparallelize. We are investigating alternative algorithms to perform structure predictionthat use more localized information.It should be noted that the 2-D algorithm proposed here is mainly to address scala-bility and is targeted at massively parallel machines, including distributed memory machinesand clusters of SMPs. We do not expect it to replace the 1-D algorithm developed in Chap-ter 5 for small-scale SMPs, because the 2-D algorithm requires more synchronizations andrequires more complicated data structures, and will be less e�cient for small-scale SMPs.6.2.3 Parallel triangular solvesParallel sparse triangular solves usually attract less attention than factorization,simply because they usually perform many fewer 
oating-point operations and require muchless time in sequential code (Figure 4.23). However, once the runtime of LU factorization



121is signi�cantly reduced by parallelization, triangular solves represent a larger fraction ofthe total runtime. It therefore becomes more important to parallelize this phase as well,especially if there are multiple right-hand sides in the equations.The parallel strategy is very similar to the parallel factorization algorithm. Again,we can employ the column etree to guide the parallelization, with forward substitutionproceeding from the bottom of the etree upward, and back substitution proceeding in top-down fashion.6.3 Available softwareAs stated earlier, the performance of a sparse code depends not only on the algo-rithm and architecture, but also on matrix properties, such as dimension, density, structuralsymmetry, etc. Some comparisons indicate that no single code or algorithm performs best forall classes of problems and for all machines. For example, we demonstrated that supernodaltechniques (SuperLU) based on dense matrix kernels are very e�cient for large problems,on both serial and parallel machines with superscalar or vector hardware. But for small orextremely sparse matrices, the earlier and simpler codes based on BLAS-1 kernels may beas e�cient as or more e�cient than SuperLU.In this section we give an overview of the sparse codes developed recently. Ourpurpose is not to give a complete survey or comparison of all the sparse LU codes; rather,we emphasize functionality and availability of the codes. We hope that this section mayserve as a brief guide for users to choose the appropriate code according to their problemsnature and solution environments. So we only include the codes that are either publicallyavailable, or likely to be available from the authors.Table 6.1 tabulates these codes. Here we simply highlight the key algorithmicfeatures of each code. For more details and performance issues, we refer readers to theoriginal references and a recent survey by Du� [34]. Besides sparse LU factorizations, Du�also summarized many other advances in sparse numerical linear algebra, including ordering,linear least-squares, and preconditioning. The new book by Bj�orck [17] contains a completelist of algorithms and software for sparse least-squares problems.The last colum in the table shows the availability of each code. All the serial codesare publically available, and are portable to a majority of uniprocessor platforms. Sharedmemory codes have achieved reasonable success in portability. Even if a code is developedon one system, it is usually not a quite di�cult task to move it onto another parallelmachine. For distributed memory machines, most codes are still at the research stage, andnot so publically accessible. Each code usually works only on one parallel machine. So fordistributed memory machines, much work remains to develop reliable, portable, and highperformance sparse direct solvers. (This is in contrast to dense matrix problems, for whichthe ScaLAPACK library is available [19].)In the future, it will be worthwhile to conduct direct comparisons and evaluationsof some of these codes on the same machines and for the same input matrices.



122Matrix Numerical StatusType Name Algorithm Kernel /SourceSerial Algorithmsunsym. SuperLU LL, partial BLAS-2.5 Pub/UCBunsym. UMFPACK [21, 22] MF, Markowitz BLAS-3 Pub/netlibMA38 (same as UMFPACK) Com/HSLunsym. MA48 [39] Anal: RL, Markowitz Com/HSLFact: LL, partial BLAS-1, SDunsym. SPARSE [79] RL, Markowitz Scalar Pub/netlibsym-pattern)( MA41 [4]MA42 [42] MF, thresholdFrontal (eqn+element) BLAS-3BLAS-3 Com/HSLCom/HSLsym. ( MA27 [40]MA47 [38] MF, LDLT BLAS-1BLAS-3 Com/HSLCom/HSLs.p.d. Ng & Peyton [89] LL BLAS-3 Pub/AuthorShared Memory Algorithmsunsym. SuperLU LL, partial BLAS-2.5 Pub/UCBunsym. PARASPAR [112, 113] RL, Markowitz BLAS-1, SD Res/Authorsym- MUPS [6] MF, threshold BLAS-3 Res/Authorpatternunsym. George & Ng [57] RL, partial BLAS-1 Res/Authors.p.d. Gupta, Rothberg, LL BLAS-3 Com/SGINg & Peyton [73] Pub/Authors.p.d. SPLASH [78] RL, 2-D block BLAS-3 Pub/StanfordDistributed Memory Algorithmsunsym. van der Stappen [108] RL, Markowitz Scalar Res/Authorsym- Lucas et al. [85] MF, no pivoting BLAS-1 Res/Authorpatterns.p.d. Rothberg et al. [98] RL, 2-D block BLAS-3 Res/Authors.p.d. Gupta [72] MF, 2-D block BLAS-3 Res/Authors.p.d. CAPSS [74] MF, full parallel BLAS-1 Pub/netlib(require coordinates)Table 6.1: Software to solve sparse linear systems using direct methods.Abbreviations used in the table:unsym. { fully unsymmetric matricessym-pattern { unsymmetric matrices with symmetric nonzero patternssym. { symmetric but possibly inde�nite matricess.p.d { symmetric positive de�nite matricesMF, LL and RL { multifrontal, left-looking and right-looking, respectivelySD { switches to a dense code on a su�ciently dense trailing submatrixPub { publically available and the authors may be willing to supply the codeRes { published in literature but may not be available from the authorsCom { commercialHSL { Harwell Subroutine Library(http://www.rl.ac.uk/departments/ccd/numerical/hsl/hsl.html)netlib { http://www.netlib.org; netlib@www.netlib.orgUCB { http://www.cs.berkeley.edu/�xiaoye/superlu.htmlStanford { http://www-
ash.stanford.edu/apps/SPLASH/
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