
A New Parallel Matrix Multiplication Algorithmon Distributed-Memory Concurrent Computers
Jaeyoung ChoiSchool of ComputingSoongsil University1-1, Sangdo-Dong, Dongjak-KuSeoul 156-743, KOREA
AbstractWe present a new fast and scalable matrix multiplication algorithm, called DIMMA(Distribution-Independent Matrix Multiplication Algorithm), for block cyclic data distribu-tion on distributed-memory concurrent computers. The algorithm is based on two new ideas;it uses a modi�ed pipelined communication scheme to overlap computation and communi-cation e�ectively, and exploits the LCM block concept to obtain the maximum performanceof the sequential BLAS routine in each processor even when the block size is very small aswell as very large. The algorithm is implemented and compared with SUMMA on the IntelParagon computer.

1. IntroductionA number of algorithms are currently available for multiplying two matrices A and B toyield the product matrix C = A�B on distributed-memory concurrent computers [12, 16].Two classic algorithms are Cannon's algorithm [4] and Fox's algorithm [11]. They are basedon a P � P square processor grid with a block data distribution in which each processorholds a large consecutive block of data.Two e�orts to implement Fox's algorithm on general 2-D grids have been made: Choi,Dongarra and Walker developed `PUMMA' [7] for block cyclic data decompositions, andHuss-Lederman, Jacobson, Tsao and Zhang developed `BiMMeR' [15] for the virtual 2-Dtorus wrap data layout. The di�erences in these data layouts results in di�erent algorithms.These two algorithms have been compared on the Intel Touchstone Delta [14].Recent e�orts to implement numerical algorithms for dense matrices on distributed-memory concurrent computers are based on a block cyclic data distribution [6], in whichan M � N matrix A consists of mb � nb blocks of data, and the blocks are distributed bywrapping around both row and column directions on an arbitrary P �Q processor grid. Thedistribution can reproduce most data distributions used in linear algebra computations. Fordetails, see Section 2.2. We limit the distribution of data matrices to the block cyclic datadistribution.The PUMMA requires a minimum number of communications and computations. Itconsists of only Q � 1 shifts for A, LCM(P;Q) broadcasts for B, and LCM(P;Q) localmultiplications, where LCM(P;Q) is the least common multiple of P and Q. It multipliesthe largest possible matrices of A and B for each computation step, so that performance ofthe routine depends very weakly on the block size of the matrix. However, PUMMA makesit di�cult to overlap computation with communication since it always deals with the largestpossible matrices for both computation and communication, and it requires large memoryspace to store them temporarily, which makes it impractical in real applications.Agrawal, Gustavson and Zubair [1] proposed another matrix multiplication algorithm bye�ciently overlapping computation with communication on the Intel iPSC/860 and Deltasystem. Van de Geijn and Watts [18] independently developed the same algorithm on the In-tel paragon and called it SUMMA. Also independently, PBLAS [5], which is a major buildingblock of ScaLAPACK [3], uses the same scheme in implementing the matrix multiplicationroutine, PDGEMM.In this paper, we present a new fast and scalable matrix multiplication algorithm, calledDIMMA (Distribution-Independent Matrix Multiplication Algorithm) for block cyclic datadistribution on distributed-memory concurrent computers. The algorithm incorporates SUMMAwith two new ideas. It uses `a modi�ed pipelined communication scheme', which makes thealgorithm the most e�cient by overlapping computation and communication e�ectively. Italso exploits `the LCM concept', which maintains the maximum performance of the sequen-tial BLAS routine, DGEMM, in each processor, even when the block size is very small as wellas very large. The details of the LCM concept is explained in Section 2.2.DIMMA and SUMMA are implemented and compared on the Intel Paragon computer.

The parallel matrix multiplication requires O(N 3)
ops and O(N 2) communications, i. e., itis computation intensive. For a large matrix, the performance di�erence between SUMMAand DIMMA may be marginal and negligible. But for small matrix of N = 1000 on a 16�16processor grid, the performance di�erence is approximately 10%.2. Design Principles2.1. Level 3 BLASCurrent advanced architecture computers possess hierarchical memories in which access todata in the upper levels of the memory hierarchy (registers, cache, and/or local memory) isfaster than to data in lower levels (shared or o�-processor memory). One technique to exploitthe power of such machines more e�ciently is to develop algorithms that maximize reuseof data held in the upper levels. This can be done by partitioning the matrix or matricesinto blocks and by performing the computation with matrix-matrix operations on the blocks.The Level 3 BLAS [9] perform a number of commonly used matrix-matrix operations, andare available in optimized form on most computing platforms ranging from workstations upto supercomputers.The Level 3 BLAS have been successfully used as the building blocks of a number of ap-plications, including LAPACK [2], a software library that uses block-partitioned algorithmsfor performing dense linear algebra computations on vector and shared memory computers.On shared memory machines, block-partitioned algorithms reduce the number of timesthat data must be fetched from shared memory, while on distributed-memory machines, theyreduce the number of messages required to get the data from other processors. Thus, therehas been much interest in developing versions of the Level 3 BLAS for distributed-memoryconcurrent computers [5, 8, 10].The most important routine in the Level 3 BLAS is DGEMM for performing matrix-matrixmultiplication. The general purpose routine performs the following operation:C(� op(A) � op(B) + � Cwhere op(X) = X;XT or XH. And \�" denotes matrix-matrix multiplication. A, B and Care matrices, and � and � are scalars. This paper focuses on the design and implementationof the non-transposed matrix multiplication routine of C(�A �B+ �C, but the idea canbe easily extended to the transposed multiplication routines of C (�A � BT + �C andC(�AT �B+ �C.2.2. Block Cyclic Data DistributionFor performing the matrix multiplicationC = A�B, we assume thatA, B andC areM�K,K � N , and M � N , respectively. The distributed routine also requires a condition on theblock size to ensure compatibility. That is, if the block size of A is mb � kb, then that ofB and C must be kb � nb and mb � nb, respectively. So the number of blocks of matrices

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

 0 1 2 3 4 5 6 7 8 9 10 11

(a) matrix point-of-view

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

0 1 2
3 4 5

P0

P3

P1

P4

P2

P5

 0
 2
 4
 6
 8
10
 1
 3
 5
 7
 9
11

 0 3 6 9 1 4 7 10 2 5 8 11

(b) processor point-of-viewFigure 1: Block cyclic data distribution. A matrix with 12 � 12 blocks is distributed overa 2 � 3 processor grid. (a) The shaded and unshaded areas represent di�erent grids. (b) Itis easier to see the distribution from the processor point-of-view to implement algorithms.Each processor has 6� 4 blocks.A, B, and C are Mg � Kg, Kg � Ng, and Mg � Ng, respectively, where Mg = dM =mbe,Ng = dN =nbe, and Kg = dK =kbe.The way in which a matrix is distributed over the processors has a major impact onthe load balance and communication characteristics of the concurrent algorithm, hence,largely determines its performance and scalability. The block cyclic distribution providesa simple, general-purpose way of distributing a block-partitioned matrix on distributed-memory concurrent computers.Figure 1(a) shows an example of the block cyclic data distribution, where a matrix with12 � 12 blocks is distributed over a 2 � 3 grid. The numbered squares represent blocks ofelements, and the number indicates the location in the processor grid { all blocks labeledwith the same number are stored in the same processor. The slanted numbers, on the leftand on the top of the matrix, represent indices of a row of blocks and of a column of blocks,respectively. Figure 1(b) re
ects the distribution from a processor point-of-view, where eachprocessor has 6 � 4 blocks.Denoting the least common multiple of P and Q by LCM , we refer to a square of LCM� LCM blocks as an LCM block. Thus, the matrix in Figure 1 may be viewed as a 2 � 2array of LCM blocks. Blocks belong to the same processor if their relative locations arethe same in each LCM block. A parallel algorithm, in which the order of execution can beintermixed such as matrix multiplication and matrix transposition, may be developed forthe �rst LCM block. Then it can be directly applied to the other LCM blocks, which havethe same structure and the same data distribution as the �rst LCM block, that is, when anoperation is executed on the �rst LCM block, the same operation can be done simultaneouslyon other LCM blocks. And the LCM concept is applied to design software libraries for denselinear algebra computations with algorithmic blocking [17, 19].

A

 0
 2
 4
 6
 8
10
 1
 3
 5
 7
 9
11

 0 3 6 9 1 4 7 10 2 5 8 11

B

 0
 2
 4
 6
 8
10
 1
 3
 5
 7
 9
11

 0 3 6 9 1 4 7 10 2 5 8 11

Figure 2: A snapshot of SUMMA. The darkest blocks are broadcast �rst, and lightest blocksare broadcast later.3. Algorithms3.1. SUMMASUMMA is basically a sequence of rank-kb updates. In SUMMA, A and B are dividedinto several columns and rows of blocks, respectively, whose block sizes are kb. Processorsmultiply the �rst column of blocks of A with the �rst row of blocks of B. Then processorsmultiply the next column of blocks of A and the next row of blocks of B successively.As the snapshot of Figure 2 shows, the �rst column of processors P0 and P3 beginsbroadcasting the �rst column of blocks of A (A(:; 0)) along each row of processors (here weuse MATLAB notation to simply represent a portion of a matrix.) At the same time, the�rst row of processors, P0, P1, and P2 broadcasts the �rst row of blocks of B (B(0; :)) alongeach column of processors. After the local multiplication, the second column of processors,P1 and P4, broadcasts A(:; 1) rowwise, and the second row of processors, P3, P4, and P5,broadcasts B(1; :) columnwise. This procedure continues until the last column of blocks ofA and the last row of blocks of B.Agrawal, Gustavson and Zubair [1], and van de Geijn and Watts [18] obtained highe�ciency on the Intel Delta and Paragon, respectively, by exploiting the pipelined commu-nication scheme, where broadcasting is implemented as passing a column (or row) of blocksaround the logical ring that forms the row (or column).3.2. DIMMAWe show a simple simulation in Figure 3. It is assumed that there are 4 processors, eachhas 2 sets of data to broadcast, and they use blocking send and non-blocking receive. Inthe �gure, the time to send a data set is assumed to be 0.2 seconds, and the time for localcomputation is 0.6 seconds. Then the pipelined broadcasting scheme takes 8.2 seconds as inFigure 3(a) .

Time

Proc 0

Proc 1

Proc 2

Proc 3

0

0

0

0

0

1

1

1

1 2 3

2 3

3

2

2

3

0

0

0

0

1

1

1

1 2 3

2 3

3

2

2

3

: time for a local computation: time to send a message

 0 1 2 3 4 5 6 7 8 9(a) SUMMA
Proc 0

Proc 1

Proc 2

Proc 3

Time

0

0

0

0

1 2

3

2

3

0

1

3

2 3

 0 1 2 3 4 5 6 7 8 9

0

0

0

1

1

1 1

1 1

2

2

2 2

3 3

3 3

2

(b) DIMMAFigure 3: Communication characteristics of SUMMA and DIMMA. It is assumed that block-ing send and non-blocking receive are used.A careful investigation of the pipelined communication shows there is an extra waitingtime between two communication procedures. If the �rst processor broadcasts everythingit contains to other processors before the next processor starts to broadcast its data, it ispossible to eliminate the unnecessary waiting time. The modi�ed communication scheme inFigure 3(b) takes 7.4 seconds. That is, the new communication scheme saves 4 communi-cation times (8:2 � 7:4 = 0:8 = 4 � 0:2). Figures 4 and 5 show a Paragraph visualization[13] of SUMMA and DIMMA on the Intel Paragon computer, respectively. Paragraph is aparallel programming tool that graphically displays the execution of a distributed-memoryprogram. These �gures include spacetime diagrams, which show the communication patternbetween the processes, and utilization Gantt charts, which show when each process is busyor idle. The dark gray color signi�es idle time for a given process, and the light gray colorsignals busy time. DIMMA is more e�cient in communication than SUMMA as shown inthese �gures. The details of analysis of the algorithms is shown in Section 4.With this modi�ed communication scheme, DIMMA is implemented as follows. After the�rst procedure, that is, broadcasting and multiplying A(:; 0) and B(0; :), the �rst column

Figure 4: Paragraph visualization of SUMMA

Figure 5: Paragraph visualization of DIMMA

of processors, P0 and P3, broadcasts A(:; 6) along each row of processors, and the �rst rowof processors, P0, P1, and P2 sends B(6; :) along each column of processors, as shown inFigure 6. The value 6 appears since the LCM of P = 2 and Q = 3 is 6.For the third and fourth procedures, the �rst column of processors, P0 and P3, broadcastsrowwise A(:; 3) and A(:; 9), and the second row of processors, P3, P4, and P5, broadcastscolumnwise B(3; :) and B(9; :), respectively. After the �rst column of processors, P0 andP3, broadcasts all of their columns of blocks of A along each row of processors, the secondcolumn of processors, P1 and P4, broadcasts their columns of A.The basic computation of SUMMA and DIMMA in each processor is a sequence of rank-kb updates of the matrix. The value of kb should be at least 20 (Let kopt be the optimal blocksize for the computation, then kopt = 20) to optimize performance of the sequential BLASroutine, DGEMM, in the Intel Paragon, which corresponds to about 44 M
ops on a single node.The vectors of blocks to be multiplied should be conglomerated to form larger matrices tooptimize performance if kb is small.DIMMA is modi�ed with the LCM concept. The basic idea of the LCM concept is tohandle simultaneously several thin columns of blocks of A, and the same number of thinrows of blocks of B so that each processor multiplies several thin matrices of A and Bsimultaneously in order to obtain the maximum performance of the machine. Instead ofbroadcasting a single column of A and a single row of B, a column of processors broadcastsseveral (MX = dkopt=kbe) columns of blocks ofA along each row of processors, whose distanceis LCM blocks in the column direction. At the same time, a row of processors broadcasts thesame number of blocks ofB along each column of processors, whose distance is LCM blocks inthe row direction as shown in Figure 7. Then each processor executes its own multiplication.The multiplication operation is changed from `a sequence (= Kg) of rank-kb updates' to `asequence (= dKg =MXe) of rank-(kb �MX) updates' to maximize the performance.
A

 0
 2
 4
 6
 8
10
 1
 3
 5
 7
 9
11

 0 3 6 9 1 4 7 10 2 5 8 11

B

 0
 2
 4
 6
 8
10
 1
 3
 5
 7
 9
11

 0 3 6 9 1 4 7 10 2 5 8 11

Figure 6: Snapshot of a simple version of DIMMA. The darkest blocks are broadcast �rst.For example, if P = 2; Q = 3; kb = 10 and kopt = 20, the processors deal with 2 columnsof blocks of A and 2 rows of blocks of B at a time (MX = dkb=kopte = 2). The �rst columnof processors, P0 and P3, copies two columns of A(:; [0; 6]) (that is, A(:; 0) and A(:; 6)) to TA,

A

 0
 2
 4
 6
 8
10
 1
 3
 5
 7
 9
11

 0 3 6 9 1 4 7 10 2 5 8 11

B

 0
 2
 4
 6
 8
10
 1
 3
 5
 7
 9
11

 0 3 6 9 1 4 7 10 2 5 8 11

Figure 7: A snapshot of DIMMAand broadcasts them along each row of processors. The �rst row of processors, P0, P1 andP2, copies two rows of B([0; 6]; :) (that is, B(0; :) and B(6; :)) to TB and broadcasts themalong each column of processors. Then all processors multiply TA with TB to produce C.Next, the second column of processors, P1 and P4, copies the next two columns of A(:; [1; 7])to TA and broadcasts them again rowwise, and the second row of processors, P3, P4 and P5,copies the next two rows of B([1; 7]; :) to TB and broadcasts them columnwise. The productof TA and TB is added to C in each processor.The value of MX can be determined by the block size, available memory space, andmachine characteristics such as processor performance and communication speed. If it isassumed that kopt = 20, the value of MX should be 4 if the block size is 5, and the value ofMX should be 2 if the block size is 10.If kb is much larger than the optimal value (for example, kb = 100), it may be di�cultto obtain good performance since it is di�cult to overlap the communication with the com-putation. In addition, the multiplication routine requires a large amount of memory to sendand receiveA and B. It is possible to divide kb into smaller pieces. For example, if kb = 100,processors divide a column of blocks of A into �ve thin columns of blocks, and divide a rowof blocks of B into �ve thin rows of blocks. Then they multiply each thin column of blocksof A with the corresponding thin row of blocks of B successively. The two cases, in which kbis smaller and larger than kopt, are combined, and the pseudocode of the DIMMA is shownin Figure 8.4. Analysis of Multiplication AlgorithmsWe analyze the elapsed time of SUMMA and DIMMA based on Figure 3. It is assumedthat kb = kopt throughout the computation. Then, for the multiplicationCM�N (CM�N +AM�K�BK�N , there are Kg = dK=kbe columns of blocks of A and Kg rows of blocks of B.At �rst, it is assumed that there are P linearly connected processors, in which a column

C = 0 (C(:; :) = 0)MX = dkopt=kbeDO L1 = 0; Q� 1DO L2 = 0;LCM=Q � 1LX = LCM �MXDO L3 = 0; dKg=LXe � 1DO L4 = 0; dkb=kopte � 1Lm = L1 + L2 �Q+ L3 � LX + [L4] : LCM : (L3 + 1) � LX � 1[Copy A(:; Lm) to TA and broadcast it along each row of processors][Copy B(Lm; :) to TB and broadcast it along each column of processors]C(:; :) = C(:; :) + TA � TBEND DOEND DOEND DOEND DOFigure 8: The pseudocode of DIMMA. The DO loop of L3 is used if kb is smaller than kopt,where the routine handles MX columns of blocks of A and MX rows of blocks of B, whoseblock distance are LCM, simultaneously, Lm is used to select them correctly. The innermostDO loop of L4 is used if kb is larger than kopt, and the bracket in [L4] represents the L4-ththin vector.of blocks of A (= TA) is broadcast along P processors at each step and a row of blocks ofB (= TB) always stays in each processor. It is also assumed that the time for sending acolumn TA to the next processor is tc, and the time for multiplying TA with TB and addingthe product to C is tp. Actually tc = � + (M kb) � � and tp = 2M NP kb �
, where � is acommunication start-up time, � is a data transfer time, and
 is a time for multiplicationor addition.For SUMMA, the time di�erence between successive two pipelined broadcasts of TA is2tc + tp. The total elapsed time of SUMMA with Kg columns of blocks on an 1-dimensionalprocessor grid, t1Dsumma, ist1Dsumma = Kg (2tc + tp)� tc + (P � 2) tc = Kg (2tc + tp) + (P � 3) tc:For DIMMA, the time di�erence between the two pipelined broadcasts is tc + tp if theTAs are broadcast from the same processor. However, the time di�erences is 2tc + tp if theyare in di�erent processors. The total elapsed time of DIMMA, t1Ddimma , ist1Ddimma = Kg (tc + tp) + (P � 1)tc + (P � 2) tc = Kg (tc + tp) + (2P � 3) tc:

On a 2-dimensional P�Q processor grid, the communication time of SUMMA is doubledin order to broadcast TB as well as TA. Assume again that the time for sending a column TAand a row TB to the next processor are tca and tcb, respectively, and the time for multiplyingTA with TB and adding the product toC is tp. Actually tca = �+(MP kb)��, tcb = �+(NQ kb)��,and tp = 2 MP NQ kb �
. So,t2Dsumma = Kg (2tca + 2tcb + tp) + (Q� 3) tca + (P � 3) tcb: (1)For DIMMA, each column of processors broadcasts TA until everything is sent. Mean-while, rows of processors broadcast TB if they have the corresponding TB with the TA. Fora column of processors, which currently broadcasts A, P=GCD rows of processors, whosedistance is GCD, have rows of blocks of B to broadcast along with the TA, where GCD isthe greatest common divisor of P and Q. The extra idle wait, caused by broadcasting twoTBs when they are in di�erent processors, is GCD � tcb. Then the total extra waiting time tobroadcast TBs is Q (P=GCD)GCD � tcb = P Q � tcb.However, if GCD = P , only one row of processors has TB to broadcast corresponding tothe column of processors, and the total extra waiting time is P � tcb. So,t2Ddimma = Kg (tca + tcb + tp) + (2Q � 3)tca + (P +Q� 3)tcb if GCD = P= Kg (tca + tcb + tp) + (2Q � 3)tca + (PQ+ P � 3)tcb otherwise: (2)The time di�erence between SUMMA and DIMMA ist2Dsumma � t2Ddimma = (Kg � Q) tca + (Kg � P) tcb if GCD = P;= (Kg � Q) tca + (Kg � PQ) tcb otherwise: (3)5. Implementation and ResultsWe implemented three algorithms, called them SUMMA0, SUMMA and DIMMA, and com-pared their performance on the 512 node Intel Paragon at the Oak Ridge National Labora-tory, Oak Ridge, U.S.A., and the 256 node Intel Paragon at Samsung Advanced Instituteof Technology, Suwon, Korea. SUMMA0 is the original version of SUMMA, which has thepipelined broadcasting scheme and the �xed block size, kb. The local matrix multiplicationin SUMMA0 is the rank-kb update. SUMMA is a revised version of SUMMA0 with the LCMblock concept for the optimized performance of DGEMM, so that the local matrix multiplicationis a rank-kapprox update, where kapprox is computed in the implementation as follows:kapprox = bkopt = kbc � kb ifkopt � kb;= bkb = dkb=koptec otherwise:First of all, we changed the block size, kb, and observed how the block size a�ects the

P �Q Matrix Size Block Size SUMMA0 SUMMA DIMMA1 � 1 1:135 2:678 2:7355 � 5 2:488 2:730 2:7358 � 8 2000 � 2000 20� 20 2:505 2:504 2:55350� 50 2:633 2:698 2:733100 � 100 1:444 1:945 1:9481 � 1 1:296 2:801 2:8425 � 5 2:614 2:801 2:8428 � 8 4000 � 4000 20� 20 2:801 2:801 2:84250� 50 2:674 2:822 2:844100 � 100 2:556 2:833 2:8421 � 1 1:842 3:660 3:7315 � 5 3:280 3:836 3:91712 � 8 4000 � 4000 20� 20 3:928 3:931 4:00650� 50 3:536 3:887 3:897100 � 100 2:833 3:430 3:435Table 1: Dependence of performance on block size (Unit: G
ops)performance of the algorithms. Table 1 shows the performance of A = B = C = 2000�2000and 4000�4000 on 8�8 and 16�8 processor grids with block sizes kb = 1; 5; 20; 50, and 100.At �rst SUMMA0 and SUMMA are compared. With the extreme case of kb = 1, SUMMAwith the modi�ed blocking scheme performed at least 100% better than SUMMA0. Whenkb = 5, SUMMA shows 7 - 10% enhanced performance. If the block size is much largerthan the optimal block size, that is, kb = 50, or 100, SUMMA0 becomes ine�cient againand it has a di�culty in overlapping the communications with the computations. SUMMAoutperformed SUMMA0 about 5 � 10% when A = B = C = 4000 � 4000 and kb = 50 or100 on 8� 8 and 12 � 8 processor grids.Note that on an 8 � 8 processor grid with 2000 � 2000 matrices, the performance ofkb = 20 or 100 is much slower than that of other cases. When kb = 100, the processors inthe top half have 300 rows of matrices, while those in the bottom half have just 200 rows.This leads to load imbalance among processors, and the processors in the top half require50% more local computation.Now SUMMA and DIMMA are compared. Figures 9 and 10 show the performance ofSUMMA and DIMMA on 16 � 16 and 16 � 12 processor grids, respectively, with the �xedblock size, kb = kopt = 20. DIMMA always performs better than SUMMA on the 16 � 16processor grid. These matrix multiplication algorithms require O(N 3)
ops and O(N 2)communications, that is, the algorithms are computation intensive. For a small matrix ofN = 1000, the performance di�erence between the two algorithms is about 10%. But fora large matrix, these algorithms require much more computation, so that the performancedi�erence caused by the di�erent communication schemes becomes negligible. For N = 8000,the performance di�erence is only about 2 � 3%. On the 16 � 12 processor grid, SUMMA

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2

4

6

8

10

12

DIMMA

SUMMA

Matrix Size, M

G
fl

op
s

Figure 9: Performance of SUMMA and DIMMA on a 16�16 processor grid. (kopt = kb = 20).

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2

4

6

8

10

DIMMA

SUMMA

Matrix Size, M

G
fl

op
s

Figure 10: Performance of SUMMA and DIMMA on a 16 � 12 processor grid.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2

4

6

8

10

12

DIMMA

SUMMA

Matrix Size, M

G
fl

op
s

Figure 11: Predicted Performance of SUMMA and DIMMA on a 16 � 16 processor grid.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2

4

6

8

10

DIMMA

SUMMA

Matrix Size, M

G
fl

op
s

Figure 12: Predicted Performance of SUMMA and DIMMA on a 16 � 12 processor grid.

performs slightly better than DIMMA for small size of matrices, such as N = 1000 and 2000.If P = 16 and Q = 12, GCD = 4 (6= P). For the problem of M = N = K = 2000 andkopt = kb = 20, Kg = K=kb = 100. From Eq. 3,t2Dsumma � t2Ddimma = (100 � 12) tca + (100 � 16 � 12) tcb = 88tca � 92tcb:From the result, it is expected that the SUMMA is faster than DIMMA for the problem iftca = tcb.We predicted the performance on the Intel Paragon using Eqs 1 and 2. Figures 11 and12 show the predicted performance of SUMMA and DIMMA corresponding to Figures 9 and10, respectively. We used � = 94:75�sec, � = 0:02218 (45 Mbytes/sec),
 = 22:88nsec (43.7M
ops per node) for the predicted performance. (Those values are observed in practice.)In Eq. 2, the idle wait, (2Q � 3)tca + (PQ + P � 3)tcb when GCD 6= P , can be reducedby a slight modi�cation of the communication scheme. For example, when P = 4; Q = 8(that is, GCD = Q) if a column of processors sends all columns of blocks of B instead of arow of processors send all rows of blocks of A as in Figure 8, the waiting time is reduced to(P +Q � 3)tca + (2P � 3)tcb.The following example has another communication characteristic. After the �rst columnand the �rst row of processors send their ownA and the correspondingB, respectively, then,for the next step, the second column and the second row of processors send their A and B,respectively. The communication resembles that of SUMMA, but the processors send allcorresponding blocks of A and B. The waiting time is (LCM+Q�3)tca+(LCM+P �3)tcb.This modi�cation is faster if 2 � GCD <MIN(P;Q).The performance per node of SUMMA and DIMMA is shown in Figures 13 and 14,respectively, when memory usage per node is held constant. Both algorithms show goodperformance and scalability, but DIMMA is always better. If each processor has a localproblem size of more than 200 � 200, the DIMMA always reaches 40 M
ops per processor,but the SUMMA obtained about 38 M
ops per processor.Currently the modi�ed blocking scheme in DIMMA uses the rank-kapprox update. How-ever it is possible to modify the DIMMA with the exact rank-kopt update by dividing thevirtually connected LCM blocks in each processor. The modi�cation complicates the algo-rithm implementation, and since the performance of DGEMM is not sensitive to the value ofkopt (if it is larger than 20), there would be no improvement in performance.6. ConclusionsWe present a new parallel matrix multiplication algorithm, called DIMMA, for block cyclicdata distribution on distributed-memory concurrent computers. DIMMA is the most e�-cient and scalable matrix multiplication algorithm. DIMMA uses the modi�ed pipelinedbroadcasting scheme to overlap computation and communication e�ectively, and exploitsthe LCM block concept to obtain the maximum performance of the sequential BLAS routineregardless of the block size. DIMMA always shows the same high performance even when

0 4 8 12 16
0

10

20

30

40

50

Sqrt of number of nodes

M
fl

op
s

Figure 13: Performance per node of SUMMA where memory use per node is held constant.The �ve curves represent 100 � 100, 200 � 200, 300 � 300, 400 � 400, and 500 � 500 localmatrices per node from the bottom.

0 4 8 12 16
0

10

20

30

40

50

Sqrt of number of nodes

M
fl

op
s

Figure 14: Performance per node of DIMMA.

the block size kb is very small as well as very large if the matrices are evenly distributedamong processors.AcknowledgementThe author appreciates the anonymous reviewers for their helpful comments to improve thequality of the paper The author appreciates Dr. Jack Dongarra at Univ. of Tennessee atKnoxville and Oak Ride National Laboratory for providing computing facilities to performthis work. And he appreciates the anonymous reviewers for their helpful comments toimprove the quality of the paper. This research was performed in part using the IntelParagon computers both at the Oak Ridge National Laboratory, Oak Ridge, U.S.A. and atSamsung Advanced Institute of Technology, Suwon, Korea. And it was supported by theKorean Ministry of Information and Communication under contract 96087-IT1-I2.7. References[1] R. C. Agarwal, F. G. Gustavson, and M. Zubair. A High-Performance Matrix-Multiplication Algorithm on a Distributed-Memory Parallel Computer Using Over-lapped Communication. IBM Journal of Research and Development, 38(6):673{681,1994.[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,S. Hammarling, A. McKenney, and D. Sorensen. LAPACK: A Portable Linear AlgebraLibrary for High-Performance Computers. In Proceedings of Supercomputing '90, pages1{10. IEEE Press, 1990.[3] L. Blackford, J. Choi, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley. ScaLA-PACK: A Portable Linear Algebra Library for Distributed Memory Computers- Design Issues and Performance. In Proceedings of Supercomputing '96, 1996.(http://www.supercomp.org/sc96/proceedings/).[4] L. E. Cannon. A Cellular Computer to Implement the Kalman Filter Algorithm. 1969.Ph.D. Thesis, Montana State University.[5] J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C. Whaley.A Proposal for a Set of Parallel Basic Linear Algebra Subprograms. LAPACKWorkingNote 100, Technical Report CS-95-292, University of Tennessee, 1995.[6] J. Choi, J. J. Dongarra, R. Pozo, D. C. Sorensen, and D. W. Walker. CRPC Researchinto Linear Algebra Software for High Performance Computers. International Journalof Supercomputing Applications, 8(2):99{118, Summer 1994.

[7] J. Choi, J. J. Dongarra, and D. W. Walker. PUMMA: Parallel Universal Matrix Mul-tiplication Algorithms on Distributed Memory Concurrent Computers. Concurrency:Practice and Experience, 6:543{570, 1994.[8] J. Choi, J. J. Dongarra, and D. W. Walker. PB-BLAS: A Set of Parallel Block BasicLinear Algebra Subprograms. Concurrency: Practice and Experience, 8:517{535, 1996.[9] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Du�. A Set of Level 3 Basic LinearAlgebra Subprograms. ACM Transactions on Mathematical Software, 18(1):1{17, 1990.[10] R. D. Falgout, A. Skjellum, S. G. Smith, and C. H. Still. The Multicomputer ToolboxApproach to Concurrent BLAS and LACS. In Proceedings of the 1992 Scalable HighPerformance Computing Conference, pages 121{128. IEEE Press, 1992.[11] G. C. Fox, S. W. Otto, and A. J. G. Hey. Matrix Algorithms on a Hypercube I: MatrixMultiplication. Parallel Computing, 4:17{31, 1987.[12] G. H. Golub and C. V. Van Loan. Matrix Computations. The Johns Hopkins UniversityPress, Baltimore, MD, 1989. Second Edition.[13] M. T. Heath and J. A. Etheridge. Visualizing the Performance of Parallel Programs.IEEE Software, 8(5):29{39, September 1991.[14] S. Huss-Lederman, E. M. Jacobson, and A. Tsao. Comparison of Scalable ParallelMultiplication Libraries. In The Scalable Parallel Libraries Conference, (Starksville,MS), pages 142{149. IEEE Computer Society Press, October 6-8, 1993.[15] S. Huss-Lederman, E. M. Jacobson, A. Tsao, and G. Zhang. Matrix Multiplication onthe Intel Touchstone Delta. Concurrency: Practice and Experience, 6:571{594, 1994.[16] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing.The Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1994.[17] A. Petitet. Algorithmic RedistributionMethods for Block Cyclic Decompositions. 1996.Ph.D. Thesis, University of Tennessee, Knoxville.[18] R. van de Geijn and J. Watts. SUMMA Scalable Universal Matrix Multiplication Al-gorithm. LAPACK Working Note 99, Technical Report CS-95-286, University of Ten-nessee, 1995.[19] R. A. van de Geijn. Using PLAPACK. The MIT Press, Cambridge, 1997.

