Preliminary Investigation of Random
SKI-Combinator Trees

Bruce J. MacLennan*

Computer Science Department
University of Tennessee, Knoxville
maclennan@cs.utk.edu

October 20, 1997

Abstract

SKl-combinator trees are a simple model of computation, which
are computationally complete (in a Turing sense), but are suggestive
of basic biochemical processes and can be used as a vehicle for un-
derstanding processes of biological (and prebiotic) self-organization.
After a brief overview of SKl-combinator trees, we describe the re-
sults of a series of preliminary experiments exploring the statistical
properties of populations of random SKl-combinator trees. We show
that in such populations a significant fraction of the trees will ex-
hibit complex, non-terminating growth patterns, suggestive of biolog-
ical processes. Further, we show that the fraction of S-combinators
in such trees is an important parameter defining a sharp phase tran-
sition between (uninteresting) terminating behavior and (interesting)
nonterminating growth. (This is related to the “edge of chaos” inves-
tigated by Chris Langton.) Finally, we discuss some of the follow-on
investigations suggested by these exploratory experiments.

*Most of the research reported herein was conducted while the author was a Fellow
of the Institute for Advanced Studies of the Collegium Budapest, June-July 1997, whose
support is gratefully acknowledged. This report is in the public domain and may be used
for any non-profit purpose provided that the source is credited.

1 Introduction

The immediate motivation for this project was two papers (Szathmary 1995,
1997) that criticize a certain lambda-calculus model of biochemical organi-
zation (Fontana & Buss 1994). It occurred to me that a different and much
simpler formal system, known as combinatory logic (specifically, the SKI cal-
culus), would be a simpler and more natural model of biochemical processes.*
Therefore 1 have conducted a series of exploratory computer experiments in-
vestigating the properties of “SKI soup,” that is, random structures (binary
trees) made from the three atoms S, K and |. This report presents the results
of these preliminary investigations, which reveal interesting self-organizing
behavior and suggest many follow-on experiments.

1.1 Summary of SKI Combinators

[will begin with a brief, informal description of the SKI calculus.? The
| combinator, called the elementary identificator, is the identity function,
which is defined by the rewrite rule lx = x. This can be seen as a tree-
rewrite:

=

Thus, the only effect of | on the tree is to delete itself; it is effectively a “do
nothing” operation.

The K combinator, called the elementary cancellator, makes a constant
function, which is defined by the rewrite rule Kzy = x, or by the tree-rewrite:

'The primary reference for combinatory logic is Curry & al. (1958); Barendregt (1984,
esp. chs. 7, 9) also has a comprehensive discussion. Less formal presentations can often
be found in books on functional programming (e.g. MacLennan 1990).

2The SKI calculus is described briefly in MacLennan (1990, pp. 442-445) and in many
other books on functional programming; the definitive description is Curry & al. (1958).

Thus, K discards information (specifically, y in Kzy), which could be a whole
subtree; in effect it breaks the link to y. K can also be thought of as a
projection operation, since Kxy replaces the pair xy by its first component
x.

The S combinator, which may be called lifted application (MacLennan
1990, p. 442), is difficult to describe in words, but the operation it performs
is simple. The rewrite rule is Sxyz = xz(yz). Since the convention is that
in the absence of parenthesis, symbols associate to the left, the result of S is
equivalent to ((2z)(yz)). In tree form:

This can be thought of in two ways: either the tree z is duplicated (as
depicted above), or two links are created to the single instance of z:

It makes no difference as far as combinatory logic is concerned; both inter-
pretations give equivalent trees.

However, they have differing chemical interpretations. Interpreting S as
duplicating its third argument presupposes some lower level chemical repli-
cation processes (capable of duplicating a binary tree). Such processes are
known, but they are not simple. On the other hand, if we interpret S as cre-
ating an additional link to its third argument, and if we interpret the links
as chemical bonds, then we have the chemically unrealistic situation of an
unlimited number of bonds to some structure. Deciding which interpretation
is most plausible may depend on which specific chemical processes the SKI
combinators are intended to model.

1.2 Why SKI?

There are several reasons for investigating SKI-combinator trees:

1. Tt is a minimal computationally complete (in a Turing sense) set.® That
is, expressions formed from S, K and | are able to compute any func-
tion computable on a Turing machine or on any finite digital computer.

3 Although SKI is commonly taken as a minimal set of combinators, | is definable in
terms of the other two, | = SKK or SKS, so it would be interesting to investigate SK-trees
as models of biochemical organization.

(There are, however, other computationally complete sets of combina-
tors, and it will be worthwhile to investigate them, since they might be
more biochemically plausible.?)

2. The SKI combination has been extensively studied, and even investi-
gated as a basis for practical digital computers (e.g. Fasel & Keller,
1987; Turner 1979).

3. The functions of these three combinators are nearly independent:

e | has very little effect on the tree, since it replaces itself by its
argument.

o K deletes its second argument, and thus can delete an entire sub-
tree.

e S duplicates its third argument, and thus can duplicate an entire
subtree.

There are other sets of combinators having these three functions but
are not computationally universal, and it will be worthwhile to see if
they lead to the same kinds of behavior.®

1.3 Normal Order

Combinatory logic, like the lambda-calculus, satisfies the Church-Rosser Prop-
erty, which means that all orders of applying the rules to a tree give the same
result, if they give a result at all.® That is, all terminating computations give

4Other computationally complete sets of combinators include: (1) B’, K and W, where
B'ryz = y(xz) (reverse compositor) and Way = zyy (elementary duplicator); (2) B, K,
C., W, where Baryz = #(yz) (elementary compositor), C.xy = yx and W,z = xx. See
Curry & al. (1958, p. 185) for these sets; William Craig (Curry & al. 1958, sect. 5H) proves
important theorems on conditions for a set of combinators to be complete; in particular,
at least two combinators are required.

>Craig (Curry & al. 1958, sect. 5H) discusses combinators in terms of various essential
effects necessary to a computationally complete calculus: the duplicative, cancellative,
compositive (parenthesis introducing) and permutative effects. In these terms we can see
that K has the cancellative effect and S has the duplicative and compositive effects. The
permutative effect is also provided by S, since Szyz = zz(yz) has put a copy of z in front
of y.

6See MacLennan (1990, ch. 9) for a discussion of the Church-Rosser property and its
proof.

the same answer. However, some orders may lead to nonterminating compu-
tations (which are the more interesting, from a biochemical standpoint). The
Church-Rosser property is important for biochemical applications of combi-
natory logic, since it means that the rewrite rules can be applied in arbitrary
orders, as they would be in a reaction vessel.

Our simulations use normal order, which basically means that a rules
are applied as high up in the tree as possible; we apply them lower in the
tree only when they cannot be applied higher up.” One can prove that
normal order is maximally “safe” or “tolerant” in the sense that if any order
terminates, then normal order will terminate. Conversely, if normal order
leads to a nonterminating process when applied to some tree, then every
order must lead to nontermination when applied to that tree. Therefore,
our simulations are conservative, in the sense that whenever they result in
unending growth, that unending growth is inevitable, since every order must
produce it.

2 Investigation of Random SKI Trees

We begin with an investigation of the computational behavior of random
SKI trees. The general approach is a follows: We generate a population of
random SKI trees of limited size.® Then the SKI rewrite rules are applied to
each tree. Most trees stop computing after a few steps (when none of the
rewrite rules can be applied to them). Others, however, go on computing for
some time, and may indeed be nonterminating. (We limit the processes to a
fixed number of steps for each tree.)?

Since the behavior of the trees can be quite complicated, one way to
approach them is by looking at the size of the trees, that is, the number of
SKI atoms in them. (We measure size under the assumption of no sharing,
so that S increases the size of the tree by duplicating its third argument.)

“See MacLennan (1990, pp. 322, 514) for a discussion of normal order (also called
applicative order and lazy evaluation) and its properties.

8Typically, we generate trees randomly, with a certain probability p of a node being a
leaf, which is equally likely to be S, K or I. Further, there is an absolute limit D on the
depth of the tree. In the experiments described here, p = 0.1 and D = 6, so the maximum
size of a tree is 26 = 64.

90f course, the undecidability of the halting problem implies that we cannot, in general,
distinguish nonterminating computations from those that merely continue for very many
steps.

500

" pO710-1"

450

400

350

300

250

200

150

100 —

S0 O < x <|100 inc = 20

O <y <|500 inc = 50

1
80 100

Figure 1: Size History of 100 Random SKI Trees (sizes < 500).

For example, the following SKI tree appeared in one population of random
trees:

(L(STUS)(ST(KS)(S (1))
(11 (S K)(K(S1) (ISIS)))

The first 30 steps in its computation are shown in Appendix A. After 57
steps, there were 1216 atoms in the tree, after 63 steps there were 2308, and
after 200 steps there were 1 506 854.

Figure 1 shows the size history of one population of 100 random SKI trees,
limited in size to a depth less than 6, and thus to a size less than 2° = 64
atoms; computation was limited to 100 steps. As can be seen, most of
the trees are of monotonically decreasing size, and stop computing within 20
steps.!? Some trees, however, show oscillation or more complex variations
in their sizes, with overall trends that are either increasing or decreasing.

10The backtraces from the ends of terminating processes are artifactual from the plotting
program. Fragments of graphs result from graphs that have gone out of the plot range

[0,500].

2e3
"pO710-1"

1.5e3 —

500 -

'/
U
’Jd’{'l
X

S
/“' M ,:"!‘! ""-

Figure 2: Size History of 100 Random SKI Trees (sizes < 2000).

Within 40 steps some have grown to more than 500 atoms and so their
histories have moved off the top of the graph.

In Fig. 2 we have “zoomed out” to show sizes up to 2000 atoms. We can
now see that approximately 10% of the trees are growing at various rates.
There is always some oscillation, but it is interesting that it is rarely purely
periodic; if we look closely we always see some variation (often progressive)
from cycle to cycle. This suggests that there are some complex processes
taking place.

In Fig. 3 we have zoomed out again to show trees up to 10 000 in size. At
this scale it appears that some of the trees are growing exponentially in size
(as would be expected from the S combinator). Note the interesting sawtooth
pattern superimposed on exponential growth as well as the exponentially
increasing step pattern.

Finally, in Fig. 4 we zoom out to show trees up to size 60 000, and we
can see a tree of exponentially increasing size, which had reached size 58 522
within the 100 steps to which it was restricted (it reached 94 642 on the next

step).

lea

" pO710-1"

80

Figure 3: Size History of 100 Random SKI Trees (sizes < 10 000).

Seq

Se4

deqa

3e4

2eq

led

" pO710-1"

Figure 4:

L —
20 (o]

Size History of 100 Random SKI Trees (sizes < 60 000).

10

© X < 100 inc = 20
o<y ceqa =

—

80

100

We observe qualitatively similar behavior in other random populations.
Therefore we can conclude that in a random population of random SKI trees,
a reasonable fraction of them will exhibit complex processes leading to ex-
ponential growth in size.

3 S-augmentation and the A\ Parameter

Since the S combinator is the only productive combinator in the SKI group,
i.e., the only one that can cause the tree to increase in size, we expect the
number of S combinators to be an important factor in achieving complex
behavior (especially growth). S-augmentation is defined to be a process in
which we increase the number of S combinators in an expression. In general,
we are concerned with random S-augmentation, in which random (K or I)
combinators are converted to S combinators. Similarly to Chris Langton’s
“edge of chaos” work (e.g. 1990), we define a parameter A, which is the
fraction of S combinators in a combinator tree. Thus, in S-augmentation
experiments we run A from 0 up to 1. In the experiments described in
this report we restrict our attention to combinator strings, that is, to left-
branching trees, which can be written linearly without parentheses.!!

One such S-augmentation experiment is shown in Fig. 5. Here we have
started with a single random Kl-string of length 50. It has been subjected
to four different random S-augmentation processes. That is, in each process,
K and | combinators are randomly converted to S combinators, but different
K and | combinators are converted in each of the four histories. We see that
the process length increases with A up to a fairly sharp phase transition at
A &~ 0.5. Above the phase transition, the processes are (apparently) non-
terminating (that is, they hit the imposed limit of 150 steps). Nevertheless,
further S-augmentation can sometimes lead to terminating processes, as we
see in two of the dotted histories (slam50-10c and slam50-10d). This is be-
cause the dynamic behavior of the SKI string can depend sensitively on the
specific order of the combinators; nevertheless, from a statistical standpoint,
it depends on A, the fraction of S combinators.

Figure 6 displays the results of another S-augmentation experiment, in
this case starting with a random Kl-string of length 100. Qualitatively similar

1 Although strings (as opposed to trees) are interesting from a biochemical standpoint,
arbitrary trees should also be investigated. This preliminary investigation limited itself to
strings as a matter of programming convenience.

11

160 T T T T
"slam50-10a" —
"slam50-100" -----
"slam50-10g"
"slam50-10d” -

140

120

100

80

60

40

20 | | | |
0 0.2 0.4 0.6 0.8 1

Figure 5: Four random S-augmentation histories starting from the same
random Kl-string of length 50. The graph shows the number of steps to
termination (limited to 150) versus A, the fraction of S combinators in the
string.

12

150 I Tttt I,,,,‘ T 177/77|777;/I 1
! | R "slam100-2a" ——
T VAR "slam100-2b" -~
140 |+ ! '\”‘ W "slam100-2¢" -----]
| P "slam100-2d" -
|
130 E i
|
|
120 | | .
|
é
110 | -
|
100 i i
90 -
80 -
70 -
60 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 6: Four random S-augmentation histories starting from the same
random Kl-string of length 100. The graph shows the number of steps to
termination (limited to 150) versus A, the fraction of S combinators in the

string.

13

behavior can be observed, although the phase transition is not so well defined,
varying in the range 0.2 < A < 0.6. What this suggests is that some strings
can be more sensitive than others to the placement of the S combinators, as
opposed to just their numbers.

Of course it is not obvious that the A parameter as defined (fraction of
S combinators) is the most relevant; it was suggested by Langton’s A. For
example, since the S and K combinators are in competition in a sense (the K
throwing information away and the S duplicating it), we might suppose that
the ratio of S to K combinators is a key variable. Alternate parameterizations
of the trees deserve systematic investigation.

As a step in this direction, we have investigated the interaction of S with
each of the other combinators in S-augmentation starting from homogeneous
strings of just Ks or just Is. It is easy to prove that a string of K combinators
of length n will reduce to either one or two Ks in approximately n/2 steps.'?
It is also easy to prove that a string of | combinators of length n will reduce
to a single | combinator in n — 1 steps. Finally, one can prove (not so easily)
that a string of S combinators of length n will reduce to an expression of the
form

SS(SS(SS(+--(S5(5™)) - --)));

where m = 24+(n mod 2), in (n—1)*/4 steps if n is even, and in (n—1)(n—3)/4
steps if n is odd; that is, in approximately n?/4 steps. In particular, if n = 25,
computation stops in 132 steps.

Figure 7 shows four random S-augmentations starting from a string of 25
Ks. As expected, when A = 0 the string terminates in 12 steps. The number
of steps to termination increases very gradually until the string is almost all
Ss, at which point termination time jumps to 132 steps. (Indeed, if there
was more than one K in the string, A < 0.96, it terminated in less than 132
steps.) So, in a “competition” between K and S combinators, we see that the
K is “stronger.” There is no evidence of unlimited growth in SK strings.'?

Figure 8 shows four random S-augmentations starting from a string of 25
Is. As predicted, the steps-to-termination begins at 24, but we see a sudden
phase transition to apparently unlimited growth in the region 0.25 < A < 0.5.

128pecifically, K27*! = K in m steps, and K?™*+2 = KK in m steps, for m > 0.

130n the other hand, as mentioned in footnote 3, the S and K combinators are sufficient
for universal computation, since | can be defined in terms of S and K. Out of the eight
possible SK-strings of length three, two are equivalent to | (i.e. SKK and SKS), but they
may still be relatively unlikely, since it takes three combinators to get the effect of an |,
but only one to get the effect of an S or K. More analysis will resolve this paradox.

14

1

140 T T T
"klam0808-2a" ——
"klam0808-2b" --f=;
"klam0808-2¢" --1-- /|
120 L "klam0808-2d" - |
:"
100 |- H
80
60
40 -
20 | R
0 | | | |
0 0.2 0.4 0.6 0.8

Figure 7: Four

K combinators. Runs were limited to 200 steps.

15

random S-augmentation histories starting from a string of 25

200

180

160

140

120

100

80

60

40

20

"ilam0808-2a'’
"ilam0808-2b"

"ilam0808-2¢"\----
"ilam0808-2d" |:

0.6

0.8

1

Figure 8: Four random S-augmentation histories starting from a string of 25
| combinators. Runs were limited to 200 steps.

16

However, at high A values (greater than 0.92) the steps to termination must
drop back to the 132 required for 25 Ss.

By combining the insights from Figs. 7 and 8 we can begin to understand
some of the behavior we saw in S-augmentations starting from random Ki
strings (e.g. Fig. 5). For A = 0, termination takes about %n steps on the
average (i.e., 37 steps for n = 50 as in Fig. 5). For strings dominated
by K and |, the computation length increases gradually with A. At some
critical values of A the interaction of S and | combinators results in long
computations. At very high levels of A there may not be sufficient Is to
sustain long computation, and computation will be dominated by the S,
leading to termination in a moderate number of steps (=~ n?/4). However,
without more systematic experiments, this explanation is largely speculation.

4 Conclusions

Several tentative conclusions can be drawn from these exploratory studies.
First, the simple combinatorial processes represented by the SKI combinators
can lead to exponential growth and complex behavior in a significant fraction
of populations of random SKl-combinator trees. Second, from a statistical
perspective, the behavior of random SKI strings depends on the relative pro-
portion of the combinators. Specifically, with an increasing proportion of S
combinators, there seems to be a fairly abrupt phase transition from termi-
nating processes to complex growth processes. This phase transition seems
to be related to the “edge of chaos” explored by Chris Langton, and is char-
acterized by a related parameter ().

Of course, these experiments leave many questions unanswered, and sug-
gest paths for more systematic esperimental investigations. For example:

1. What parameter(s) best characterize the statistical behavior of these
random populations? The “competition” between S and K (one dupli-
cating, the other deleting) suggests that the ratio of their concentra-
tions should be significant, but our experiments indicate that the ratio
of S to | concentration may be more important in characterizing the
transition to exponential growth. It would be worthwhile to do three-
dimensional plots exploring all relative concentrations of S, K and | in
the “soup.”

2. Our S-augmentation experiments have been limited to combinator strings;

17

it is necessary to see if random combinator trees behave similarly.

3. We also need to explore a greater variety of string lengths (or tree sizes)
to see whether or not phase transition points are independent of these
parameters.

4. Observation of individual growth processes (such as that in App. A),
as well as the pattern of size increases (e.g. Figs. 1 and 2), suggests
that the trees become self-embedding in complex ways. Analogously to
the way that Langton measured cycle-length in his cellular automata,
we would like have some guage of self-embedding depth. This suggests
measures such as fractal dimension and tree-oriented autocorrelations,
but the best measure is far from obvious.

5. Although the SKI combinators are computationally complete, it is not
obvious that that is necessary for exponential growth or relevant in
a biochemical context. For example the W combinator, like S, can
duplicate information, so we might consider the WKI triad, which is
not computationally complete. In fact it doesn’t seem very interesting,
since the statistically common string WWW leads to a nonterminating
but nongrowing process (WWW = WWW =- ...). However, other sets
of combinators may lead to more interesting behavior.

6. It is possible to add “inert” atoms (i.e. atoms for which there are no
rewrite rules, thus corresponding to purely passive data) to the “soup.”
It is expected that the concentrations of only the active ingredients will
be significant to the behavior, but this needs to be checked.

7. Certainly, one of the biggest issues is the relevance of all this to bio-
chemistry, which depends on their being biochemical processes that
can be reasonably modeled as the SKI or other combinators. (On the
other hand, even if these studies have no applications to biological self-
organization, they are still interesting from the perspective of complex
systems and emergent computation.)

5 Acknowledgements

The Institute for Advanced Studies of the Collegium Budapest provided an
ideal environment for this exploratory work. I am grateful to Jim Hurford and

18

Simon Kirby, and especially to Eors Szathmary and Guenter von Kiedrowsky,
for helpful discussions.

6

Bibliography

. Barendregt, H. P. (1984). The Lambda Caleulus: Its Syntax and Se-

mantics (revised edition). North-Holland.

. Curry, Haskell B., Feys, R. & Craig, W. (1958). Combinatory Logic,

Vol. I. North-Holland.

. Fasel, Joseph H., & Keller, Robert M. (Eds.) (1987). Graph Reduction.

Lecture Note in Computer Science 279. Springer-Verlag.

. Fontana, W., & Buss, L. W. (1994). ‘The arrival of the fittest”: toward

a theory of biological organization. Bull. Math. Biol. 56: 1-64.

. Langton, C. G. (1990). Computation at the edge of chaos: phase

transitions and emergent computation. Physica D 49: 12-37; reprinted
in Stephanie Forrest (Ed.), Emergent Computation, North-Holland, 12—
37.

. MacLennan, Bruce J. (1990). Functional Programming: Practice and

Theory. Addison-Wesley.

. Szathmary, Eors (1995). A classification of replicators and lambda-

calculus models of biological organization. Proc. Royal. Soc. London

B 260: 279-286.

. Szathmary, Eors (1997). The first two billion years. Nature 387: 662—

663.

. Turner, D. A. (1979). A new implementation technique for applicative

languages. Software — Practice and Fxrperience 9: 31-49.

19

A Example Random SKI| Tree Exhibiting Ex-
ponential Growth

In this appendix we show the first 30 steps in the computation of the tree

(TE(GSTAS) (STKS) (S (1)
(IT(SK)Y(K(SN) (S1S)))

which appeared in a population of 100 random trees.

Step 1 =

(1

Step 2 =

Step 3 =

Step 4 =

Step b =

Step 6 =

Step 7 =

Step 8 =

Step 9 =

I(SI(IS)) (ST KS) (Is(I1)))

(I1

(81
(I1

I (I
(I1

(81
(I1

I (K
(I1

(Is
(Is
(I1

S (I

(s

(K
(s

S)
(s

(1
(1
(s

D

K) X (1) (Is1ISs))

$)) (81 (K8S) (IS (I1I)))
K) X (1) (Is1ISs))

(8 I (K8) (IS (II)))
K) X (1) (Is1ISs))

S) (Is(ID))) (IsEIES (Is(IIN)N
K) X (1) (Is1ISs))

(Is (D) @sEIEs (Is(IIN)
K) X (1) (Is1ISs))

D) Ks (Is (I1I)))
(Is(ID) XS s (ID)))
K) X (1) (Is1ISs))

(KRS (IsS(II)N)XsIs(II) SIS (DN

(IT (K KEI)IsIs)))

(ID &S EED)) TIs GII) XS dIDN)
(ITGK KEID) (IsISs)))

I(Is (s ((TI) Ks (I
(KS (8(I D)) XsTI) Ks(5(IINN)
(ITGK KEID) (IsISs)))

20

Step 10 =
(I (@s @I KS (S8 (IINN)
KS (@D Is I KsS 6 (II)))))
(IT @K K(EI)(IsIS)))
Step 11 =
(I8 I Xs (58I
KS (@D Is I KsS 6 (II)))))
(IT (K (K(GETI)) (IsIs)))
Step 12 =
(s 8 (I I (Ks (5 (I 1))
(KS (8 (D) EII) KSE(IINN)
(IT @K K(EI)(IsIS)))
Step 13 =
(I KSE(TI)N) (ITEK KEI)(IsSIS))
KS (8D (GBI KS((INN
(IT @K KEI) (IsSIS)))
Step 14 =
(IT(TIICGK KEID)(TIsTISs))
KS (S ID)TIGK KEI)(TSISs)))
KS (8D (GBI KS((INN
(IT @K KEI) (IsSIS)))
Step 15 =
(I(CICGK (K@BI))(TIsT1Is))
KS (S ID)TIGK KEI)(TSISs)))
KS (8D (GBI KS((INN
(IT @K KEI) (IsSIS)))
Step 16 =
(IT@GK (K(BI)) (Is1Is)
KS (S ID)TIGK KEI)(TSISs)))
KS (8D (GBI KS((INN
(IT @K KEI) (IsSIS)))
Step 17 =
(I (SK) (K(1I)) (IsTIs)
(KS (8D (T GK (KGEI)(ISIS)))
KS (8D (GBI KS((INN
(I (8K (K (81I)) (ISTISs)))
Step 18 =
(KX (SI)) (ISTIH?S)

21

KS (S (ID) SKEIGI) (ISTIS)))
KSs (S (IID) B GEI) KS S IIN))
(SK (K (sI)) (ISTIS))))
Step 19 =
(K(ISsISs) (K (BI)((IsIS®s))
(KS (S (II) (K(IsSsIS) KICGI)(CIsI:SN
KSs (S (IID) B GEI) KS S IIN))
(K(ISIS) I(GBSI)((IsIN)
Step 20 =
(ISISES EIID)EISIS (K(I)IsIss
KSs (S (IID) B GEI) KS S IIN))
(K(ISIS) (K((I)sIsi)
Step 21 =
(SIS (S (S(II)) (K((BIs)(KIGBI)GISS
KSs (S (IID) B GEI) KS S IIN))
(K (18 (K(BI)((IS))))N)
Step 22 =
(I Ks (8(II)) KGBIS) (K(GI)(ISs))))
(S (Ks (s(II) (KGBIS) (K(GI)(Is)))))
KSs (S (IID) B GEI) KS S IIN))
(K (18 (K(BI)((IS))))N)
Step 23 =
(KS (S (I1)) BR(STS) (K(SI) (SIS
(S (Ks (s(II) (KGBIS) (K(GI)(Is)))))
KSs (S (IID) B GEI) KS S IIN))
(K (18 (K(BI)((IS))))N)
Step 24 =
(S (K (SIsS) (K (TI)(GBIS)))
(s & (138 (K(I)(B1IS8))))
KSs (S (IID) B GEI) KS S IIN))
(K (18 (K(BI)((IS))))N)
Step 25 =
(K (SIsSs) (K(1I)(s1I&s)
KSs (S (IID) B GEI) KS S IIN))
(K (18 (K(I)(IS))
(s & (13 (K(1I) (IS
(Ks (8 (I1) 8 TI) XS (ID)))
(K (13 (K(1I)(31I8)))))

22

Step 26 =
(SIS
KS B ((II) G II) Ks (s (IDN)
K (IS8 (K(I)GIsNN
(S EGIS) (K(GSI) (IS
KsSs (B ((ITID) EII) s G aTnnNN
(K (ST1I8) (K(SI)GIsNNN
Step 27 =
(IS ITI)GEII) s GaTnNN
K (IS8 (K(I)GIsNN
B ESGBITID) BEII) s GaTDHNN
K (8I88) (K(SI)(STI=S)
S EGIS) (KGI)GISN)
KsSs (B ((ITID) EII) s G aTnnNN
K (IS8 KGEI)GIsSNHN
Step 28 =
KS @B (@XI) (G II) (Ks (s (ID)N)
(K (8Is)(EKC(GBTI) (SIS
B ESGBITID) BEII) s GaTDHNN
K (8I88) (K(SI)(STI=S)
S EGIS) (KGI)GISN)
KsSs (B ((ITID) EII) s G aTnnNN
K (IS8 KGEI)GIsSNHN
Step 29 =
S B ITI) S EITIDN)) KGISs) (KEI)GISsS)))
S E G EII) s G TN
K (8I88) (K(SI)(STI=S)
S EGIS) (KGI)GISN)
S EII) s G TN
K (IS8 KGEI)GIsSNHN
Step 30 =
(8 (8 (I 1) (Ks (s (IINN
S E G EII) s G TN
K (8I88) (K(SI)(STI=S)
(K (SIS (K(SI) (SIS
S aTI Ks ¢ IInNN)
(K (ST1I8) (K(SI)GIsHNN
S EGIS) (KGI)GISN)

23

(8 (G IID KS I
(K (IS8 KEI) IS

24

B LispP Definitions for SKI Reduction

This is the basic LiSP program for doing SKI computations, generating SKI
trees, etc.

; SKI Size 11

; Routines for studying the reduction of

; random SKI combinator trees by keeping track of their size.
This version does not share subtrees.

Bruce MacLennan

; Collegium Budapest

; July 1997

; (limit—run tree limit)

; Complete normal—order reduction of an untagged combinator tree,
; which is not allowed to continue past limit passes.

; A global variable, no—reduction, is set to t if the

; reduction completed normally, and to nil if it hit the limit.

; Prints beginning and final trees in

; parenthesis— free form.

; Optionally (plot—size) writes plot file containing tree

; size (atom count) after each step.

; The annotated tree is left in a variable called "root.”

; Note that the tree is modified by the reduction.

; A copy of the original, unmodified annotated tree is left 20
; in orig—tree.

(defun limit—run (tree limit)
(setq orig—tree (copy—tree tree))
(setq root (cons (size—annotate tree) nil))
(print (list ’beginning (flatten (car root))))
(if pr (print (list ’beginning ’tree (car root))))
(continue—running 1 limit))
(defun continue—running (n limit) 50
(setq no—reduction t)
(rplaca root (reduce—tree (car root)))
(setq passes n)
(if pr (print (list ’pass n ’= (flatten (car root)))))

25

(cond

(plot—size
(print n plot—file)
(princ " " plot—file)

(princ (size (car root)) plot—file)
)) 10
(cond ((and (not no—reduction) (<= n limit))
(continue—running (1+ n) limit))
(t
(

if pr (print (list
(if no—reduction ’completed ’terminated)
(flatten (car root)))))

root))

(reduce—tree atree) 50
Attempts to perform one normal—order reduction on the annotated tree
and returns the (possibly modified) annotated tree.

If a reduction is performed, then the global

variable no—reduction is set to nil.

(It is assumed to have been previously set to t.)

(defun reduce—tree (tree)
(if dpr (print (list ’reducing tree)))
(let ((rtree (try—reduction tree)))
(cond 60
((and no—reduction (listp (untag rtree)) (untag rtree))
(if dpr (print (list ’going ’left (tagcar rtree))))
(rplaca (untag rtree) (reduce—tree (tagcar rtree)))
(rplaca rtree
(+ (size (tagcar rtree)) (size (tagedr rtree))))
(cond
((and no—reduction (tagedr rtree))
(if dpr (print (list ’going ’right (tagcdr rtree))))
(rplacd (untag rtree) (reduce—tree (tagedr rtree)))
(rplaca rtree 70
(+ (size (tagcar rtree)) (size (tagedr rtree)))))

)

26

)

(if (and dpr (not no—reduction))
(print (list ’reduced rtree)))
rtree)

(try—reduction atree)

Attempts to apply a single reduction to the root 80
of the annotated tree.

If successful, no—reduction is set to nil.

In either case the (possibly modified) annotated tree is returned.

(defun try—reduction (L)
(cond
((atom (untag L)) L)
(null L) L)
Process I combinator: Ir => x
and (eq (untag (tagcar L)) °I) (tagedr L)) 90
setq no—reduction nil)

Process K combinator: Kxy => «
((and
(listp (untag (tagcar L)))
(eq (untag (tagcar (tagcar L))) *K))
(setq no—reduction nil)
(if dpr (print (list 'K ’found L ’=> (tagcdr (tagcar L))))) 100
(tagedr (tagecar L))
)
; Process S combinator: Sxzyz => wz(yz)
((and
(listp (untag (tagcar L)))
(listp (untag (tagcar (tagcar L))))
(eq (untag (tagcar (tagcar (tagcar L)))) ’S))
(setq no—reduction nil)
(if dpr (print (list ’S ’found L)))
(let+ ((M (untag (tagcar L))) 110

27

N (untag (car M)))

z (tagedr L))

a (+ (size (cdr M)) (size z)))
b (+ (size (edr N)) (size z)))

(rplaca (untag L) (cons b (cons (cdr N) z)))
(rplacd (untag L) (cons a (cons (cdr M) (copy—tree z))))
grplaca L (+ ab))

(if dpr (print (list '=> L))) 120
L)

(t L)

)

; (flatten atree)

Converts an annotated combinator tree into a list that
has redundant (left associating) parentheses eliminated.
This is a convenient way to print combinator trees.

(flatten (bintree S)) is the same as S, except that
redundant parentheses will have been eliminated. 130

(defun flatten (tree)
(if (atom (untag tree))
(untag tree)
(reverse (flat tree))))

(defun flat (tree)
(if (atom (untag tree))
(list (untag tree))
(cons (dflat (tagedr tree)) (flat (tagcar tree))))) 140

(defun dflat (tree)
(if (atom (untag tree))
(untag tree)
(reverse (flat tree))))

; (bintree string)
Converts a string representing a combinator

28

; formula, such as (S K K (K (S K) K) S),
; into the corresponding binary tree. 150

; Note that (bintree (flatten T)) =

(defun bintree (string)
(if (atom string)
string
(bintree—list string)))

(defun bintree—list (string)
(if (null (cdr string))
(bintree (car string)) 160
(bintree—op string)))

(defun bintree—op (string)
(cons (bintree (butlast string))
(bintree (car (last string)))))

; Auziliary function for generating random trees or strings.

(defun combnum (n)
(cond ((eq n 0) ’I) 170
((eq n 1) °K)
((eq n 2) °3)
)

; (ranstring n)

; Generate a random, parenthesis—free combinator
; string (in tree form) of length n.

; This is a left branching tree, which can be written
; without parentheses.

(defun ranstring (n)
(if (eq n 2)
(cons (combnum (random 3)) (combnum (random 3)))
(cons (ranstring (1— n)) (combnum (random 3)))))

; (rantree p md)

29

Generate a random combinator tree with

application probability p (values such as 0.9 work well)

and maximum depth md. The application probability is

the probability a node will be interior, rather than a leaf. 190
Such a tree will have at most 2 md nodes.

(defun rantree (p md)
(if (or (> (* (random 1000) 0.001) p) (zerop md))
(combnum (random 3))
(cons (rantree p (1— md)) (rantree p (1— md)))))

(initran n)

Initializes random number generator by calling

it n times. When executed in a fresh LISP environment, 200
this allows repeatable results.

(defun initran (n) (dotimes (k (14 n)) (random 1)) ’done)

Print control variables:

Setting pr causes printing of the tree after each reduction.
Setting dpr causes additional, extensive debugging information
to be printed.

Setting plot—size causes tree size to be written to plot—file
after each step. 210

(setq pr nil)
(setq dpr nil)
(setq plot—size nil)

(limit—multirun seed n md pf limit)

Multiple run facility, with a limit on number of steps.

Generates n trees randomly (seeded by sd), given mazimum depth md.
(The nonleaf probability is fired at 0.9.)

While running displays (R A P) on console, where R is run number,
A is tree atom count and and P is number of passes.

Writes atom—count | passes summary to a file called

; Pl

FExample: (limit—multirun 37 100 5 “plot” 100)

30

(defun limit—multirun (seed n md pf limit)
(setq plot—file (open pf :direction :output))
(initran seed)

(dotimes (k n)
(lets ((rt (rantree 0.9 md)) 230
(len (atoms (flatten rt))))
(limit—run rt limit)
(print (list k len (1— passes)))
(print len plot—file)
(princ " " plot—file)
(princ (1— passes) plot—file)
)

(close plot—file)
’done

) 240

(size—multirun seed n md pf limit)

Multiple run facility with plotting of running

tree size (atom count) and limit on number of steps.

It keeps track of the sizes during reduction by using
size—annotated trees.

Generates n trees randomly (seeded by sd), given mazimum
depth md. (The nonleaf probability is fixed at 0.9.)

After each run, prints tree number, number of passes

and final tree size to console. 250
Writes step number and tree size to plot file;

data from each tree is separated by a blank line.

(defun size—multirun (seed n md pf limit)
(setq plot—file (open pf :direction :output))
(setq plot—size t)
(princ "#params " plot—file)
(prinl (list seed n md pf limit) plot—file)
(initran seed)
(dotimes (k n) 260
(let ((rt (rantree 0.9 md)))

(limit—run rt limit)

31

(print (list ’tree k
"had (1— passes) ’passes
'size (size (car root))))
)
(terpri plot—file)
)
(close plot—file)
’done

)

; (atoms tree)
; Counts the number of atoms in a tree.

(defun atoms (tree)
(cond
((null tree) 0)
((atom tree) 1)
St (+ (atoms (car tree)) (atoms (cdr tree))))

)

; (size—annotate tree)
; Adds size annotations to each node of a binary tree.

(defun size—annotate (tree)
(if (atom tree)
(cons 1 tree)
(let ((left (size—annotate (car tree)))
(right (size—annotate (cdr tree)))

)
(cons (+ (size left) (size right))

(cons left right))
)
; (untag atree)
5 Removes size—tag from an annotated tree.

(defun untag (L) (edr L))

32

270

280

290

300

; (tagcar atree)
; (tagedr atree)
; Performs car or cdr on an annotated binary tree.

(defun tagcar (L) (cadr L))
(defun tagedr (L) (cddr L))

; (size atree)
; Return size—tag of an annotated tree.

(defun size (L) (car L))

33

310

C Lisp Definitions for SKI Reduction with Size
Computation

Since the SKI trees can grow exponentially in size, it becomes too expensive
to compute their sizes by simply scanning the tree and counting at each step.
Therefore, a modification of the program was developed that keeps track of
the tree’s size during computation. Each node is now represented by a LISP
“dotted pair” (S . N), where N is the bare node [i.e. an SKI leaf or a
dotted pair (X . Y) representing the function application (XY)], and S
is the size of this node. Of course, the size computations produced by this
program where checked against those produced by the original program.

; SKI Size 11

; Routines for studying the reduction of

; random SKI combinator trees by keeping track of their size.
This version does not share subtrees.

Bruce MacLennan

; Collegium Budapest

; July 1997

; (limit—run tree limit)

; Complete normal—order reduction of an untagged combinator tree,
; which is not allowed to continue past limit passes.

; A global variable, no—reduction, is set to t if the

; reduction completed normally, and to nil if it hit the limit.

; Prints beginning and final trees in

; parenthesis— free form.

; Optionally (plot—size) writes plot file containing tree

; size (atom count) after each step.

; The annotated tree is left in a variable called "root.”

; Note that the tree is modified by the reduction.

; A copy of the original, unmodified annotated tree is left 20
; in orig—tree.

(defun limit—run (tree limit)
(setq orig—tree (copy—tree tree))
(setq root (cons (size—annotate tree) nil))
(print (list ’beginning (flatten (car root))))

34

(if pr (print (list ’beginning ’tree (car root))))
(continue—running 1 limit))

(defun continue—running (n limit) 50
(setq no—reduction t)
(rplaca root (reduce—tree (car root)))
(setq passes n)

(if pr (print (list ’pass n ’= (flatten (car root)))))

(

cond

(plot—size

(print n plot—file)
(princ " " plot—file)

(princ (size (car root)) plot—file)
) ;
(cond ((and (not no—reduction) (<= n limit))
(continue—running (1+ n) limit))
(t
(if pr (print (list
(if no—reduction ’completed ’terminated)
(flatten (car root)))))
root))

(reduce—tree atree) 50
Attempts to perform one normal—order reduction on the annotated tree
and returns the (possibly modified) annotated tree.

If a reduction is performed, then the global

variable no—reduction is set to nil.

(It is assumed to have been previously set to t.)

(defun reduce—tree (tree)
(if dpr (print (list ’reducing tree)))
(let ((rtree (try—reduction tree)))
(cond 60
((and no—reduction (listp (untag rtree)) (untag rtree))
(if dpr (print (list ’going ’left (tagcar rtree))))
(rplaca (untag rtree) (reduce—tree (tagcar rtree)))
(rplaca rtree

35

((+ (size (tagcar rtree)) (size (tagedr rtree))))
cond
((and no—reduction (tagedr rtree))
(if dpr (print (list ’going ’right (tagcdr rtree))))
(rplacd (untag rtree) (reduce—tree (tagedr rtree)))
(rplaca rtree 70
(+ (size (tagcar rtree)) (size (tagedr rtree)))))

)
)

(if (and dpr (not no—reduction))
(print (list ’reduced rtree)))
rtree)

(try—reduction atree)

Attempts to apply a single reduction to the root 80
of the annotated tree.

If successful, no—reduction is set to nil.

In either case the (possibly modified) annotated tree is returned.

(defun try—reduction (L)
(cond
((atom (untag L)) L)
(null L) L)
Process I combinator: Ir => x
and (eq (untag (tagcar L)) °I) (tagedr L)) 90
setq no—reduction nil)

(
(
(if dpr (print (list °1 *found L ’=> (tagedr L))))
(
)

Process K combinator: Kxy => «

((and

(listp (untag (tagcar L)))

(eq (untag (tagcar (tagcar L))) *K))

(setq no—reduction nil)

(if dpr (print (list 'K ’found L ’=> (tagcdr (tagcar L))))) 100
(tagedr (tagecar L))
)

36

; Process S combinator: Sxzyz => wz(yz)
((and
(listp (untag (tagcar L)))
(listp (untag (tagcar (tagcar L))))
(eq (untag (tagcar (tagcar (tagcar L)))) ’S))
(setq no—reduction nil)
(if dpr (print (list ’S ’found L)))
(let+ ((M (untag (tagcar L))) 110
(N (untag (car M)))
(z (tagedr L))
(a (4 (size (cdr M)) (size z)))
Sb (+ (size (edr N)) (size z)))
(rplaca (untag L) (cons b (cons (cdr N) z)))
(rplacd (untag L) (cons a (cons (cdr M) (copy—tree z))))
Srplaca L (+ ab))

(if dpr (print (list '=> L))) 120

L)

(t L)

)
(flatten atree)
Converts an annotated combinator tree into a list that
has redundant (left associating) parentheses eliminated.
This is a convenient way to print combinator trees.

(flatten (bintree S)) is the same as S, except that
redundant parentheses will have been eliminated. 130

(defun flatten (tree)
(if (atom (untag tree))
(untag tree)
(reverse (flat tree))))

(defun flat (tree)
(if (atom (untag tree))
(list (untag tree))
(cons (dflat (tagedr tree)) (flat (tagcar tree))))) 140

37

(defun dflat (tree)
(if (atom (untag tree))
(untag tree)
(reverse (flat tree))))

; (bintree string)

; Converts a string representing a combinator

; formula, such as (S K K (K (S K) K) S),

; into the corresponding binary tree. 150
; Note that (bintree (flatten T)) =

(defun bintree (string)
(if (atom string)
string
(bintree—list string)))

(defun bintree—list (string)
(if (null (cdr string))
(bintree (car string)) 160
(bintree—op string)))

(defun bintree—op (string)
(cons (bintree (butlast string))
(bintree (car (last string)))))

; Auziliary function for generating random trees or strings.

(defun combnum (n)
(cond ((eq n 0) ’I) 170
(ea n 1) K)
((eq n 2) *3)
)

; (ranstring n)

; Generate a random, parenthesis—free combinator

; string (in tree form) of length n.

; This is a left branching tree, which can be written

38

; without parentheses.
(defun ranstring (n)
(if (eq n 2)
(cons (combnum (random 3)) (combnum (random 3)))
(cons (ranstring (1— n)) (combnum (random 3)))))

; (rantree p md)

; Generate a random combinator tree with

; application probability p (values such as 0.9 work well)

; and maximum depth md. The application probability is

; the probability a node will be interior, rather than a leaf. 190
; Such a tree will have at most 2 md nodes.

(defun rantree (p md)
(if (or (> (* (random 1000) 0.001) p) (zerop md))
(combnum (random 3))
(cons (rantree p (1— md)) (rantree p (1— md)))))

; (initran n)

; Initializes random number generator by calling

; it n times. When executed in a fresh LISP environment, 200
; this allows repeatable results.

(defun initran (n) (dotimes (k (14 n)) (random 1)) ’done)

Print control variables:

; Setting pr causes printing of the tree after each reduction.

; Setting dpr causes additional, extensive debugging information

; to be printed.

; Setting plot—size causes tree size to be written to plot—file

; after each step. 210

(setq pr nil)
(setq dpr nil)
(setq plot—size nil)

; (limit—multirun seed n md pf limit)

39

Multiple run facility, with a limit on number of steps.

Generates n trees randomly (seeded by sd), given mazimum depth md.
(The nonleaf probability is fired at 0.9.)

While running displays (R A P) on console, where R is run number,
A is tree atom count and and P is number of passes.

Writes atom—count | passes summary to a file called

pf.
FExample: (limit—multirun 37 100 5 “plot” 100)

(defun limit—multirun (seed n md pf limit)
(setq plot—file (open pf :direction :output))

(initran seed)
(dotimes (k n)

(lets ((rt (rantree 0.9 md)) 230
(len (atoms (flatten rt))))
(limit—run rt limit)
(print (list k len (1— passes)))
(print len plot—file)
(princ " " plot—file)
(princ (1— passes) plot—file)
)

(close plot—file)

’done

)

240

(size—multirun seed n md pf limit)

Multiple run facility with plotting of running

tree size (atom count) and limit on number of steps.

It keeps track of the sizes during reduction by using
size—annotated trees.

Generates n trees randomly (seeded by sd), given mazimum
depth md. (The nonleaf probability is fixed at 0.9.)

After each run, prints tree number, number of passes

and final tree size to console. 250
Writes step number and tree size to plot file;

data from each tree is separated by a blank line.

(defun size—multirun (seed n md pf limit)

40

Y

Y

setq plot—file (open pf :direction :output))
setq plot—size t)
princ "#params " plot—file)
prinl (list seed n md pf limit) plot—file)
initran seed)
dotimes (k n)
(let ((rt (rantree 0.9 md)))
(limit—run rt limit)
(print (list ’tree k
"had (1— passes) ’passes
'size (size (car root))))

(
(
(
(
(
(

)

(terpri plot—file)

)

(close plot—file)
’done

)

(atoms tree)
Counts the number of atoms in a tree.

(defun atoms (tree)

Y

Y

(cond

((null tree) 0)

((atom tree) 1)

St (+ (atoms (car tree)) (atoms (cdr tree))))

(size—annotate tree)

Adds size annotations to each node of a binary tree.

(defun size—annotate (tree)

(if (atom tree)
(cons 1 tree)
(let ((left (size—annotate (car tree)))
(right (size—annotate (cdr tree)))

)
(cons (+ (size left) (size right))

41

260

270

280

290

(cons left right))

)

; (untag atree)
5 Removes size—tag from an annotated tree.

(defun untag (L) (edr L))

; (tagcar atree)
; (tagedr atree)
; Performs car or cdr on an annotated binary tree.

(defun tagcar (L) (cadr L))
(defun tagedr (L) (cddr L))

; (size atree)
; Return size—tag of an annotated tree.

(defun size (L) (car L))

42

D Lisp Definitions for S-Augmentation

These are the additional LiSP definitions used for the S-augmentation exper-
iments.

; String— Lambda

Routines for running S—augmentation experiments

on random SKI—combinator trees.

Requires prior loading of SKI—soup2 or SKI—size2

; for interpreting combinator trees.

Bruce MacLennan

; Collegium Budapest

; July 1997

(one—string—lambda string limit filename) 10
; Runs S—augmentation on a given string

; and writes plot data to filename.

; Fxample: (one—string—lambda (ran—KI—string 50) 150 "plot”)

(defun one—string—lambda (string limit filename)
(open—plot filename)
(string—lambda string limit)
(close plot—file))

; (string—lambda string limit) 20
Runs a given string of K’s and/or I's through

; random S—augmentation from 0 to 100%.

The global variable rstring contains the string

being processed (all S’s when string—lambda completes).

The global variable sites has the indices

of non—KI combinators (it’s null when

; string—lambda completes).

(defun string—lambda (string limit)
(setq rstring string) 20
(let ((n (length string)))
(setq sites (interval 0 n))
(dotimes (k n)
(one—string k n limit)

43

(let ((s (random (— n k))))

(setq rstring (replace—site (elt sites s) rstring))
(setq sites (delete—site s sites))

)

(one—string n n limit)

) 40

(one—string k n limit)

Processes the string in rstring, k of whose

n elements are S. At most limit steps are
allowed.

Write one line to plot file showing percentage
of S’s and number of steps.

(defun one—string (k n limit)
(limit—run (bintree rstring) limit) 50
(print (list k
(if no—reduction ’stopped ’terminated)
‘after (1— passes) ’steps))
(let
((size (if plot—size (atoms root) 0)))
(if plot—size (print (list ’final ’size size)))
(plot (/ (* 1.0 k) n)
(1— passes)
size)

(delete—site k string)
Deletes item k (indexed from 0) from string.

Y

Y

(defun delete—site (k s)
(if (zerop k)
(cdr s)
(cons (car s) (delete—site (1— k) (edr s)))

)

(replace—site k string)
Replaces site k (indexed from 0) of string with S.

70

44

(defun replace—site (k s)
(if (zerop k)
(cons ’S (cdr s))
(cons (car s) (replace—site (1— k) (edr s)))

)

; (interval s n)
; Creates a string of n consecutive integers starting with s.
(defun interval (s n)
(if (zerop n)
nil
(cons s (interval (14 s) (1— n)))

)

; (ran— KI—string n)
; Generates a random string of K’s and [’s of length n.
(defun ran—KIl—string (n)
(if (zerop n)
nil
(cons (if (zerop (random 2)) ’I ’K)
(ran—Kl—string (1— n)))
)

; (comstring ¢ n)
; Generates a combinator string of length n
; composed entirely of ¢’s.

(defun comstring (¢ n)
(if (zerop n)
nil
(cons ¢ (comstring ¢ (1— n)))))

; (open—plot filename)
s Opens a plot files called filename.

45

80

90

100

110

(defun open—plot (filename)
(setq plot—file (open filename :direction :output))
Yopened)

(plot lambda steps size)
Writes one line of plot file containing
a lambda value and (optionally) a decremented step count
and/or a final tree size. Plot content is determined
by global variables plot—steps and plot—size.
120
(defun plot (lamb passes size)
(print lamb plot—file)

(cond
(plot—steps
(princ " " plot—file)
(princ (1— passes) plot—file)))
(cond
(plot—size
(princ " " plot—file)
(princ size plot—file))) 120

)

(setq plot—steps t)
(setq plot—size nil)

46

