
Preliminary Investigation of RandomSKI-Combinator TreesBruce J. MacLennan�Computer Science DepartmentUniversity of Tennessee, Knoxvillemaclennan@cs.utk.eduOctober 20, 1997AbstractSKI-combinator trees are a simple model of computation, whichare computationally complete (in a Turing sense), but are suggestiveof basic biochemical processes and can be used as a vehicle for un-derstanding processes of biological (and prebiotic) self-organization.After a brief overview of SKI-combinator trees, we describe the re-sults of a series of preliminary experiments exploring the statisticalproperties of populations of random SKI-combinator trees. We showthat in such populations a signi�cant fraction of the trees will ex-hibit complex, non-terminating growth patterns, suggestive of biolog-ical processes. Further, we show that the fraction of S-combinatorsin such trees is an important parameter de�ning a sharp phase tran-sition between (uninteresting) terminating behavior and (interesting)nonterminating growth. (This is related to the \edge of chaos" inves-tigated by Chris Langton.) Finally, we discuss some of the follow-oninvestigations suggested by these exploratory experiments.�Most of the research reported herein was conducted while the author was a Fellowof the Institute for Advanced Studies of the Collegium Budapest, June{July 1997, whosesupport is gratefully acknowledged. This report is in the public domain and may be usedfor any non-pro�t purpose provided that the source is credited.1



1 IntroductionThe immediate motivation for this project was two papers (Szathm�ary 1995,1997) that criticize a certain lambda-calculus model of biochemical organi-zation (Fontana & Buss 1994). It occurred to me that a di�erent and muchsimpler formal system, known as combinatory logic (speci�cally, the SKI cal-culus), would be a simpler and more natural model of biochemical processes.1Therefore I have conducted a series of exploratory computer experiments in-vestigating the properties of \SKI soup," that is, random structures (binarytrees) made from the three atoms S, K and I. This report presents the resultsof these preliminary investigations, which reveal interesting self-organizingbehavior and suggest many follow-on experiments.1.1 Summary of SKI CombinatorsI will begin with a brief, informal description of the SKI calculus.2 TheI combinator, called the elementary identi�cator, is the identity function,which is de�ned by the rewrite rule Ix ) x. This can be seen as a tree-rewrite:
I

x

xThus, the only e�ect of I on the tree is to delete itself; it is e�ectively a \donothing" operation.The K combinator, called the elementary cancellator, makes a constantfunction, which is de�ned by the rewrite rule Kxy ) x, or by the tree-rewrite:1The primary reference for combinatory logic is Curry & al. (1958); Barendregt (1984,esp. chs. 7, 9) also has a comprehensive discussion. Less formal presentations can oftenbe found in books on functional programming (e.g. MacLennan 1990).2The SKI calculus is described briey in MacLennan (1990, pp. 442{445) and in manyother books on functional programming; the de�nitive description is Curry & al. (1958).2



K

y

x

xThus, K discards information (speci�cally, y in Kxy), which could be a wholesubtree; in e�ect it breaks the link to y. K can also be thought of as aprojection operation, since Kxy replaces the pair xy by its �rst componentx. The S combinator, which may be called lifted application (MacLennan1990, p. 442), is di�cult to describe in words, but the operation it performsis simple. The rewrite rule is Sxyz ) xz(yz). Since the convention is thatin the absence of parenthesis, symbols associate to the left, the result of S isequivalent to ((xz)(yz)). In tree form:
S

z

y

x

x yz zThis can be thought of in two ways: either the tree z is duplicated (asdepicted above), or two links are created to the single instance of z:3



S

z

y

x

x y

zIt makes no di�erence as far as combinatory logic is concerned; both inter-pretations give equivalent trees.However, they have di�ering chemical interpretations. Interpreting S asduplicating its third argument presupposes some lower level chemical repli-cation processes (capable of duplicating a binary tree). Such processes areknown, but they are not simple. On the other hand, if we interpret S as cre-ating an additional link to its third argument, and if we interpret the linksas chemical bonds, then we have the chemically unrealistic situation of anunlimited number of bonds to some structure. Deciding which interpretationis most plausible may depend on which speci�c chemical processes the SKIcombinators are intended to model.1.2 Why SKI?There are several reasons for investigating SKI-combinator trees:1. It is a minimal computationally complete (in a Turing sense) set.3 Thatis, expressions formed from S, K and I are able to compute any func-tion computable on a Turing machine or on any �nite digital computer.3 Although SKI is commonly taken as a minimal set of combinators, I is de�nable interms of the other two, I � SKK or SKS, so it would be interesting to investigate SK-treesas models of biochemical organization. 4



(There are, however, other computationally complete sets of combina-tors, and it will be worthwhile to investigate them, since they might bemore biochemically plausible.4)2. The SKI combination has been extensively studied, and even investi-gated as a basis for practical digital computers (e.g. Fasel & Keller,1987; Turner 1979).3. The functions of these three combinators are nearly independent:� I has very little e�ect on the tree, since it replaces itself by itsargument.� K deletes its second argument, and thus can delete an entire sub-tree.� S duplicates its third argument, and thus can duplicate an entiresubtree.There are other sets of combinators having these three functions butare not computationally universal, and it will be worthwhile to see ifthey lead to the same kinds of behavior.51.3 Normal OrderCombinatory logic, like the lambda-calculus, satis�es the Church-Rosser Prop-erty, which means that all orders of applying the rules to a tree give the sameresult, if they give a result at all.6 That is, all terminating computations give4Other computationally complete sets of combinators include: (1) B0, K and W, whereB0xyz ) y(xz) (reverse compositor) and Wxy ) xyy (elementary duplicator); (2) B, K,C�, W�, where Bxyz ) x(yz) (elementary compositor), C�xy ) yx and W�x ) xx. SeeCurry & al. (1958, p. 185) for these sets; WilliamCraig (Curry & al. 1958, sect. 5H) provesimportant theorems on conditions for a set of combinators to be complete; in particular,at least two combinators are required.5Craig (Curry & al. 1958, sect. 5H) discusses combinators in terms of various essentiale�ects necessary to a computationally complete calculus: the duplicative, cancellative,compositive (parenthesis introducing) and permutative e�ects. In these terms we can seethat K has the cancellative e�ect and S has the duplicative and compositive e�ects. Thepermutative e�ect is also provided by S, since Sxyz ) xz(yz) has put a copy of z in frontof y.6See MacLennan (1990, ch. 9) for a discussion of the Church-Rosser property and itsproof. 5



the same answer. However, some orders may lead to nonterminating compu-tations (which are the more interesting, from a biochemical standpoint). TheChurch-Rosser property is important for biochemical applications of combi-natory logic, since it means that the rewrite rules can be applied in arbitraryorders, as they would be in a reaction vessel.Our simulations use normal order, which basically means that a rulesare applied as high up in the tree as possible; we apply them lower in thetree only when they cannot be applied higher up.7 One can prove thatnormal order is maximally \safe" or \tolerant" in the sense that if any orderterminates, then normal order will terminate. Conversely, if normal orderleads to a nonterminating process when applied to some tree, then everyorder must lead to nontermination when applied to that tree. Therefore,our simulations are conservative, in the sense that whenever they result inunending growth, that unending growth is inevitable, since every order mustproduce it.2 Investigation of Random SKI TreesWe begin with an investigation of the computational behavior of randomSKI trees. The general approach is a follows: We generate a population ofrandom SKI trees of limited size.8 Then the SKI rewrite rules are applied toeach tree. Most trees stop computing after a few steps (when none of therewrite rules can be applied to them). Others, however, go on computing forsome time, and may indeed be nonterminating. (We limit the processes to a�xed number of steps for each tree.)9Since the behavior of the trees can be quite complicated, one way toapproach them is by looking at the size of the trees, that is, the number ofSKI atoms in them. (We measure size under the assumption of no sharing,so that S increases the size of the tree by duplicating its third argument.)7See MacLennan (1990, pp. 322, 514) for a discussion of normal order (also calledapplicative order and lazy evaluation) and its properties.8Typically, we generate trees randomly, with a certain probability p of a node being aleaf, which is equally likely to be S, K or I. Further, there is an absolute limit D on thedepth of the tree. In the experiments described here, p = 0:1 and D = 6, so the maximumsize of a tree is 26 = 64.9Of course, the undecidability of the halting problem implies that we cannot, in general,distinguish nonterminating computations from those that merely continue for very manysteps. 6



0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100

0 < y < 500 inc = 50

0 < x < 100 inc = 20

"p0710-1"

Figure 1: Size History of 100 Random SKI Trees (sizes � 500).For example, the following SKI tree appeared in one population of randomtrees:(I I (S I (I S)) (S I (K S) (I S (I I)))(I I (S K) (K (S I)) (I S I S)))The �rst 30 steps in its computation are shown in Appendix A. After 57steps, there were 1216 atoms in the tree, after 63 steps there were 2308, andafter 200 steps there were 1 506 854.Figure 1 shows the size history of one population of 100 random SKI trees,limited in size to a depth less than 6, and thus to a size less than 26 = 64atoms; computation was limited to 100 steps. As can be seen, most ofthe trees are of monotonically decreasing size, and stop computing within 20steps.10 Some trees, however, show oscillation or more complex variationsin their sizes, with overall trends that are either increasing or decreasing.10The backtraces from the ends of terminating processes are artifactual from the plottingprogram. Fragments of graphs result from graphs that have gone out of the plot range[0; 500]. 7



0

500

1e3

1.5e3

2e3

0 20 40 60 80 100

0 < y < 2e3 inc = 500

0 < x < 100 inc = 20 

"p0710-1"

Figure 2: Size History of 100 Random SKI Trees (sizes � 2000).Within 40 steps some have grown to more than 500 atoms and so theirhistories have moved o� the top of the graph.In Fig. 2 we have \zoomed out" to show sizes up to 2000 atoms. We cannow see that approximately 10% of the trees are growing at various rates.There is always some oscillation, but it is interesting that it is rarely purelyperiodic; if we look closely we always see some variation (often progressive)from cycle to cycle. This suggests that there are some complex processestaking place.In Fig. 3 we have zoomed out again to show trees up to 10 000 in size. Atthis scale it appears that some of the trees are growing exponentially in size(as would be expected from the S combinator). Note the interesting sawtoothpattern superimposed on exponential growth as well as the exponentiallyincreasing step pattern.Finally, in Fig. 4 we zoom out to show trees up to size 60 000, and wecan see a tree of exponentially increasing size, which had reached size 58 522within the 100 steps to which it was restricted (it reached 94 642 on the nextstep). 8



0

2e3

4e3

6e3

8e3

1e4

0 20 40 60 80 100

0 < y < 1e4 inc = 2e3

0 < x < 100 inc = 20 

"p0710-1"

Figure 3: Size History of 100 Random SKI Trees (sizes � 10 000).
9



0

1e4

2e4

3e4

4e4

5e4

6e4

0 20 40 60 80 100

0 < y < 6e4 inc = 1e4

0 < x < 100 inc = 20 

"p0710-1"

Figure 4: Size History of 100 Random SKI Trees (sizes � 60 000).
10



We observe qualitatively similar behavior in other random populations.Therefore we can conclude that in a random population of random SKI trees,a reasonable fraction of them will exhibit complex processes leading to ex-ponential growth in size.3 S-augmentation and the � ParameterSince the S combinator is the only productive combinator in the SKI group,i.e., the only one that can cause the tree to increase in size, we expect thenumber of S combinators to be an important factor in achieving complexbehavior (especially growth). S-augmentation is de�ned to be a process inwhich we increase the number of S combinators in an expression. In general,we are concerned with random S-augmentation, in which random (K or I)combinators are converted to S combinators. Similarly to Chris Langton's\edge of chaos" work (e.g. 1990), we de�ne a parameter �, which is thefraction of S combinators in a combinator tree. Thus, in S-augmentationexperiments we run � from 0 up to 1. In the experiments described inthis report we restrict our attention to combinator strings, that is, to left-branching trees, which can be written linearly without parentheses.11One such S-augmentation experiment is shown in Fig. 5. Here we havestarted with a single random KI-string of length 50. It has been subjectedto four di�erent random S-augmentation processes. That is, in each process,K and I combinators are randomly converted to S combinators, but di�erentK and I combinators are converted in each of the four histories. We see thatthe process length increases with � up to a fairly sharp phase transition at� � 0:5. Above the phase transition, the processes are (apparently) non-terminating (that is, they hit the imposed limit of 150 steps). Nevertheless,further S-augmentation can sometimes lead to terminating processes, as wesee in two of the dotted histories (slam50-10c and slam50-10d). This is be-cause the dynamic behavior of the SKI string can depend sensitively on thespeci�c order of the combinators; nevertheless, from a statistical standpoint,it depends on �, the fraction of S combinators.Figure 6 displays the results of another S-augmentation experiment, inthis case starting with a random KI-string of length 100. Qualitatively similar11Although strings (as opposed to trees) are interesting from a biochemical standpoint,arbitrary trees should also be investigated. This preliminary investigation limited itself tostrings as a matter of programming convenience.11



20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

"slam50-10a"
"slam50-10b"
"slam50-10c"
"slam50-10d"

Figure 5: Four random S-augmentation histories starting from the samerandom KI-string of length 50. The graph shows the number of steps totermination (limited to 150) versus �, the fraction of S combinators in thestring.
12



60

70

80

90

100

110

120

130

140

150

0 0.2 0.4 0.6 0.8 1

"slam100-2a"
"slam100-2b"
"slam100-2c"
"slam100-2d"

Figure 6: Four random S-augmentation histories starting from the samerandom KI-string of length 100. The graph shows the number of steps totermination (limited to 150) versus �, the fraction of S combinators in thestring.
13



behavior can be observed, although the phase transition is not so well de�ned,varying in the range 0:2 � � � 0:6. What this suggests is that some stringscan be more sensitive than others to the placement of the S combinators, asopposed to just their numbers.Of course it is not obvious that the � parameter as de�ned (fraction ofS combinators) is the most relevant; it was suggested by Langton's �. Forexample, since the S and K combinators are in competition in a sense (the Kthrowing information away and the S duplicating it), we might suppose thatthe ratio of S to K combinators is a key variable. Alternate parameterizationsof the trees deserve systematic investigation.As a step in this direction, we have investigated the interaction of S witheach of the other combinators in S-augmentation starting from homogeneousstrings of just Ks or just Is. It is easy to prove that a string of K combinatorsof length n will reduce to either one or two Ks in approximately n=2 steps.12It is also easy to prove that a string of I combinators of length n will reduceto a single I combinator in n� 1 steps. Finally, one can prove (not so easily)that a string of S combinators of length n will reduce to an expression of theform SS(SS(SS(� � � (SS(Sm)) � � �)));wherem = 2+(n mod 2), in (n�1)2=4 steps if n is even, and in (n�1)(n�3)=4steps if n is odd; that is, in approximately n2=4 steps. In particular, if n = 25,computation stops in 132 steps.Figure 7 shows four random S-augmentations starting from a string of 25Ks. As expected, when � = 0 the string terminates in 12 steps. The numberof steps to termination increases very gradually until the string is almost allSs, at which point termination time jumps to 132 steps. (Indeed, if therewas more than one K in the string, � < 0:96, it terminated in less than 132steps.) So, in a \competition" between K and S combinators, we see that theK is \stronger." There is no evidence of unlimited growth in SK strings.13Figure 8 shows four random S-augmentations starting from a string of 25Is. As predicted, the steps-to-termination begins at 24, but we see a suddenphase transition to apparently unlimited growth in the region 0:25 < � < 0:5.12Speci�cally, K2m+1 ) K in m steps, and K2m+2 ) KK in m steps, for m � 0.13On the other hand, as mentioned in footnote 3, the S and K combinators are su�cientfor universal computation, since I can be de�ned in terms of S and K. Out of the eightpossible SK-strings of length three, two are equivalent to I (i.e. SKK and SKS), but theymay still be relatively unlikely, since it takes three combinators to get the e�ect of an I,but only one to get the e�ect of an S or K. More analysis will resolve this paradox.14



0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

"klam0808-2a"
"klam0808-2b"
"klam0808-2c"
"klam0808-2d"

Figure 7: Four random S-augmentation histories starting from a string of 25K combinators. Runs were limited to 200 steps.
15



20

40

60

80

100

120

140

160

180

200

0 0.2 0.4 0.6 0.8 1

"ilam0808-2a"
"ilam0808-2b"
"ilam0808-2c"
"ilam0808-2d"

Figure 8: Four random S-augmentation histories starting from a string of 25I combinators. Runs were limited to 200 steps.
16



However, at high � values (greater than 0.92) the steps to termination mustdrop back to the 132 required for 25 Ss.By combining the insights from Figs. 7 and 8 we can begin to understandsome of the behavior we saw in S-augmentations starting from random KIstrings (e.g. Fig. 5). For � = 0, termination takes about 34n steps on theaverage (i.e., 37 steps for n = 50 as in Fig. 5). For strings dominatedby K and I, the computation length increases gradually with �. At somecritical values of � the interaction of S and I combinators results in longcomputations. At very high levels of � there may not be su�cient Is tosustain long computation, and computation will be dominated by the S,leading to termination in a moderate number of steps (� n2=4). However,without more systematic experiments, this explanation is largely speculation.4 ConclusionsSeveral tentative conclusions can be drawn from these exploratory studies.First, the simple combinatorial processes represented by the SKI combinatorscan lead to exponential growth and complex behavior in a signi�cant fractionof populations of random SKI-combinator trees. Second, from a statisticalperspective, the behavior of random SKI strings depends on the relative pro-portion of the combinators. Speci�cally, with an increasing proportion of Scombinators, there seems to be a fairly abrupt phase transition from termi-nating processes to complex growth processes. This phase transition seemsto be related to the \edge of chaos" explored by Chris Langton, and is char-acterized by a related parameter (�).Of course, these experiments leave many questions unanswered, and sug-gest paths for more systematic esperimental investigations. For example:1. What parameter(s) best characterize the statistical behavior of theserandom populations? The \competition" between S and K (one dupli-cating, the other deleting) suggests that the ratio of their concentra-tions should be signi�cant, but our experiments indicate that the ratioof S to I concentration may be more important in characterizing thetransition to exponential growth. It would be worthwhile to do three-dimensional plots exploring all relative concentrations of S, K and I inthe \soup."2. Our S-augmentation experiments have been limited to combinator strings;17



it is necessary to see if random combinator trees behave similarly.3. We also need to explore a greater variety of string lengths (or tree sizes)to see whether or not phase transition points are independent of theseparameters.4. Observation of individual growth processes (such as that in App. A),as well as the pattern of size increases (e.g. Figs. 1 and 2), suggeststhat the trees become self-embedding in complex ways. Analogously tothe way that Langton measured cycle-length in his cellular automata,we would like have some guage of self-embedding depth. This suggestsmeasures such as fractal dimension and tree-oriented autocorrelations,but the best measure is far from obvious.5. Although the SKI combinators are computationally complete, it is notobvious that that is necessary for exponential growth or relevant ina biochemical context. For example the W combinator, like S, canduplicate information, so we might consider the WKI triad, which isnot computationally complete. In fact it doesn't seem very interesting,since the statistically common string WWW leads to a nonterminatingbut nongrowing process (WWW) WWW) � � �). However, other setsof combinators may lead to more interesting behavior.6. It is possible to add \inert" atoms (i.e. atoms for which there are norewrite rules, thus corresponding to purely passive data) to the \soup."It is expected that the concentrations of only the active ingredients willbe signi�cant to the behavior, but this needs to be checked.7. Certainly, one of the biggest issues is the relevance of all this to bio-chemistry, which depends on their being biochemical processes thatcan be reasonably modeled as the SKI or other combinators. (On theother hand, even if these studies have no applications to biological self-organization, they are still interesting from the perspective of complexsystems and emergent computation.)5 AcknowledgementsThe Institute for Advanced Studies of the Collegium Budapest provided anideal environment for this exploratory work. I am grateful to JimHurford and18



Simon Kirby, and especially to E�ors Szathm�ary and Guenter von Kiedrowsky,for helpful discussions.6 Bibliography1. Barendregt, H. P. (1984). The Lambda Calculus: Its Syntax and Se-mantics (revised edition). North-Holland.2. Curry, Haskell B., Feys, R. & Craig, W. (1958). Combinatory Logic,Vol. I. North-Holland.3. Fasel, Joseph H., & Keller, Robert M. (Eds.) (1987). Graph Reduction.Lecture Note in Computer Science 279. Springer-Verlag.4. Fontana, W., & Buss, L. W. (1994). `The arrival of the �ttest': towarda theory of biological organization. Bull. Math. Biol. 56: 1{64.5. Langton, C. G. (1990). Computation at the edge of chaos: phasetransitions and emergent computation. Physica D 49: 12{37; reprintedin Stephanie Forrest (Ed.), Emergent Computation, North-Holland, 12{37.6. MacLennan, Bruce J. (1990). Functional Programming: Practice andTheory. Addison-Wesley.7. Szathm�ary, E�ors (1995). A classi�cation of replicators and lambda-calculus models of biological organization. Proc. Royal. Soc. LondonB 260: 279{286.8. Szathm�ary, E�ors (1997). The �rst two billion years. Nature 387: 662{663.9. Turner, D. A. (1979). A new implementation technique for applicativelanguages. Software | Practice and Experience 9: 31{49.19



A Example Random SKI Tree Exhibiting Ex-ponential GrowthIn this appendix we show the �rst 30 steps in the computation of the tree(I I (S I (I S)) (S I (K S) (I S (I I)))(I I (S K) (K (S I)) (I S I S)))which appeared in a population of 100 random trees.Step 1 =(I I (S I (I S)) (S I (K S) (I S (I I)))(I I (S K) (K (S I)) (I S I S)))Step 2 =(I (S I (I S)) (S I (K S) (I S (I I)))(I I (S K) (K (S I)) (I S I S)))Step 3 =(S I (I S) (S I (K S) (I S (I I)))(I I (S K) (K (S I)) (I S I S)))Step 4 =(I (S I (K S) (I S (I I))) (I S (S I (K S) (I S (I I))))(I I (S K) (K (S I)) (I S I S)))Step 5 =(S I (K S) (I S (I I)) (I S (S I (K S) (I S (I I))))(I I (S K) (K (S I)) (I S I S)))Step 6 =(I (I S (I I)) (K S (I S (I I)))(I S (I (I S (I I)) (K S (I S (I I)))))(I I (S K) (K (S I)) (I S I S)))Step 7 =(I S (I I) (K S (I S (I I))) (I S (I S (I I) (K S (I S (I I)))))(I I (S K) (K (S I)) (I S I S)))Step 8 =(S (I I) (K S (S (I I))) (I S (S (I I) (K S (S (I I)))))(I I (S K) (K (S I)) (I S I S)))Step 9 =(I I (I S (S (I I) (K S (S (I I)))))(K S (S (I I)) (I S (S (I I) (K S (S (I I))))))(I I (S K) (K (S I)) (I S I S)))20



Step 10 =(I (I S (S (I I) (K S (S (I I)))))(K S (S (I I)) (I S (S (I I) (K S (S (I I))))))(I I (S K) (K (S I)) (I S I S)))Step 11 =(I S (S (I I) (K S (S (I I))))(K S (S (I I)) (I S (S (I I) (K S (S (I I))))))(I I (S K) (K (S I)) (I S I S)))Step 12 =(S (S (I I) (K S (S (I I))))(K S (S (I I)) (S (S (I I) (K S (S (I I))))))(I I (S K) (K (S I)) (I S I S)))Step 13 =(S (I I) (K S (S (I I))) (I I (S K) (K (S I)) (I S I S))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(I I (S K) (K (S I)) (I S I S))))Step 14 =(I I (I I (S K) (K (S I)) (I S I S))(K S (S (I I)) (I I (S K) (K (S I)) (I S I S)))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(I I (S K) (K (S I)) (I S I S))))Step 15 =(I (I I (S K) (K (S I)) (I S I S))(K S (S (I I)) (I I (S K) (K (S I)) (I S I S)))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(I I (S K) (K (S I)) (I S I S))))Step 16 =(I I (S K) (K (S I)) (I S I S)(K S (S (I I)) (I I (S K) (K (S I)) (I S I S)))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(I I (S K) (K (S I)) (I S I S))))Step 17 =(I (S K) (K (S I)) (I S I S)(K S (S (I I)) (I (S K) (K (S I)) (I S I S)))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(I (S K) (K (S I)) (I S I S))))Step 18 =(S K (K (S I)) (I S I S) 21



(K S (S (I I)) (S K (K (S I)) (I S I S)))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(S K (K (S I)) (I S I S))))Step 19 =(K (I S I S) (K (S I) (I S I S))(K S (S (I I)) (K (I S I S) (K (S I) (I S I S))))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (I S I S) (K (S I) (I S I S)))))Step 20 =(I S I S (K S (S (I I)) (K (I S I S) (K (S I) (I S I S))))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (I S I S) (K (S I) (I S I S)))))Step 21 =(S I S (K S (S (I I)) (K (S I S) (K (S I) (S I S))))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S)))))Step 22 =(I (K S (S (I I)) (K (S I S) (K (S I) (S I S))))(S (K S (S (I I)) (K (S I S) (K (S I) (S I S)))))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S)))))Step 23 =(K S (S (I I)) (K (S I S) (K (S I) (S I S)))(S (K S (S (I I)) (K (S I S) (K (S I) (S I S)))))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S)))))Step 24 =(S (K (S I S) (K (S I) (S I S)))(S (S (K (S I S) (K (S I) (S I S)))))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S)))))Step 25 =(K (S I S) (K (S I) (S I S))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S))))(S (S (K (S I S) (K (S I) (S I S))))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S))))))22



Step 26 =(S I S(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S))))(S (S (K (S I S) (K (S I) (S I S)))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S)))))))Step 27 =(I (K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S))))(S (K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S)))))(S (S (K (S I S) (K (S I) (S I S))))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S))))))Step 28 =(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S)))(S (K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S)))))(S (S (K (S I S) (K (S I) (S I S))))(K S (S (I I)) (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S))))))Step 29 =(S (S (S (I I) (K S (S (I I))))) (K (S I S) (K (S I) (S I S)))(S (S (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S)))))(S (S (K (S I S) (K (S I) (S I S))))(S (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S))))))Step 30 =(S (S (I I) (K S (S (I I))))(S (S (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S)))))(K (S I S) (K (S I) (S I S))(S (S (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S))))))(S (S (K (S I S) (K (S I) (S I S))))23



(S (S (S (I I) (K S (S (I I)))))(K (S I S) (K (S I) (S I S))))))

24



B Lisp De�nitions for SKI ReductionThis is the basic Lisp program for doing SKI computations, generating SKItrees, etc.; SKI Size II; Routines for studying the reduction of; random SKI combinator trees by keeping track of their size.; This version does not share subtrees.; Bruce MacLennan; Collegium Budapest; July 1997; (limit�run tree limit); Complete normal�order reduction of an untagged combinator tree,10; which is not allowed to continue past limit passes.; A global variable, no�reduction, is set to t if the; reduction completed normally, and to nil if it hit the limit.; Prints beginning and �nal trees in; parenthesis�free form.; Optionally (plot�size) writes plot �le containing tree; size (atom count) after each step.; The annotated tree is left in a variable called "root."; Note that the tree is modi�ed by the reduction.; A copy of the original, unmodi�ed annotated tree is left 20; in orig�tree.(defun limit�run (tree limit)(setq orig�tree (copy�tree tree))(setq root (cons (size�annotate tree) nil))(print (list 'beginning (atten (car root))))(if pr (print (list 'beginning 'tree (car root))))(continue�running 1 limit))(defun continue�running (n limit) 30(setq no�reduction t)(rplaca root (reduce�tree (car root)))(setq passes n)(if pr (print (list 'pass n '= (atten (car root)))))25



(cond(plot�size(print n plot��le)(princ " " plot��le)(princ (size (car root)) plot��le))) 40(cond ((and (not no�reduction) (<= n limit))(continue�running (1+ n) limit))(t(if pr (print (list(if no�reduction 'completed 'terminated)(atten (car root)))))root))); (reduce�tree atree) 50; Attempts to perform one normal�order reduction on the annotated tree; and returns the (possibly modi�ed) annotated tree.; If a reduction is performed, then the global; variable no�reduction is set to nil.; (It is assumed to have been previously set to t.)(defun reduce�tree (tree)(if dpr (print (list 'reducing tree)))(let ((rtree (try�reduction tree)))(cond 60((and no�reduction (listp (untag rtree)) (untag rtree))(if dpr (print (list 'going 'left (tagcar rtree))))(rplaca (untag rtree) (reduce�tree (tagcar rtree)))(rplaca rtree(+ (size (tagcar rtree)) (size (tagcdr rtree))))(cond((and no�reduction (tagcdr rtree))(if dpr (print (list 'going 'right (tagcdr rtree))))(rplacd (untag rtree) (reduce�tree (tagcdr rtree)))(rplaca rtree 70(+ (size (tagcar rtree)) (size (tagcdr rtree))))))) 26



)(if (and dpr (not no�reduction))(print (list 'reduced rtree)))rtree)); (try�reduction atree); Attempts to apply a single reduction to the root 80; of the annotated tree.; If successful, no�reduction is set to nil.; In either case the (possibly modi�ed) annotated tree is returned.(defun try�reduction (L)(cond((atom (untag L)) L)((null L) L); Process I combinator: Ix => x((and (eq (untag (tagcar L)) 'I) (tagcdr L)) 90(setq no�reduction nil)(if dpr (print (list 'I 'found L '=> (tagcdr L))))(tagcdr L)); Process K combinator: Kxy => x((and(listp (untag (tagcar L)))(eq (untag (tagcar (tagcar L))) 'K))(setq no�reduction nil)(if dpr (print (list 'K 'found L '=> (tagcdr (tagcar L))))) 100(tagcdr (tagcar L))); Process S combinator: Sxyz => xz(yz)((and(listp (untag (tagcar L)))(listp (untag (tagcar (tagcar L))))(eq (untag (tagcar (tagcar (tagcar L)))) 'S))(setq no�reduction nil)(if dpr (print (list 'S 'found L)))(let� ((M (untag (tagcar L))) 11027



(N (untag (car M)))(z (tagcdr L))(a (+ (size (cdr M)) (size z)))(b (+ (size (cdr N)) (size z))))(rplaca (untag L) (cons b (cons (cdr N) z)))(rplacd (untag L) (cons a (cons (cdr M) (copy�tree z))))(rplaca L (+ a b)))(if dpr (print (list '=> L))) 120L)(t L))); (atten atree); Converts an annotated combinator tree into a list that; has redundant (left associating) parentheses eliminated.; This is a convenient way to print combinator trees.; (atten (bintree S)) is the same as S, except that; redundant parentheses will have been eliminated. 130(defun atten (tree)(if (atom (untag tree))(untag tree)(reverse (at tree))))(defun at (tree)(if (atom (untag tree))(list (untag tree))(cons (dat (tagcdr tree)) (at (tagcar tree))))) 140(defun dat (tree)(if (atom (untag tree))(untag tree)(reverse (at tree)))); (bintree string); Converts a string representing a combinator28



; formula, such as (S K K (K (S K) K) S),; into the corresponding binary tree. 150; Note that (bintree (atten T)) = T.(defun bintree (string)(if (atom string)string(bintree�list string)))(defun bintree�list (string)(if (null (cdr string))(bintree (car string)) 160(bintree�op string)))(defun bintree�op (string)(cons (bintree (butlast string))(bintree (car (last string))))); Auxiliary function for generating random trees or strings.(defun combnum (n)(cond ((eq n 0) 'I) 170((eq n 1) 'K)((eq n 2) 'S))); (ranstring n); Generate a random, parenthesis�free combinator; string (in tree form) of length n.; This is a left branching tree, which can be written; without parentheses. 180(defun ranstring (n)(if (eq n 2)(cons (combnum (random 3)) (combnum (random 3)))(cons (ranstring (1� n)) (combnum (random 3))))); (rantree p md) 29



; Generate a random combinator tree with; application probability p (values such as 0.9 work well); and maximum depth md. The application probability is; the probability a node will be interior, rather than a leaf. 190; Such a tree will have at most 2^md nodes.(defun rantree (p md)(if (or (> (� (random 1000) 0.001) p) (zerop md))(combnum (random 3))(cons (rantree p (1� md)) (rantree p (1� md))))); (initran n); Initializes random number generator by calling; it n times. When executed in a fresh LISP environment, 200; this allows repeatable results.(defun initran (n) (dotimes (k (1+ n)) (random 1)) 'done); Print control variables:; Setting pr causes printing of the tree after each reduction.; Setting dpr causes additional, extensive debugging information; to be printed.; Setting plot�size causes tree size to be written to plot��le; after each step. 210(setq pr nil)(setq dpr nil)(setq plot�size nil); (limit�multirun seed n md pf limit); Multiple run facility, with a limit on number of steps.; Generates n trees randomly (seeded by sd), given maximum depth md.; (The nonleaf probability is �xed at 0.9.); While running displays (R A P) on console, where R is run number,220; A is tree atom count and and P is number of passes.; Writes atom�count = passes summary to a �le called; pf.; Example: (limit�multirun 37 100 5 "plot" 100)30



(defun limit�multirun (seed n md pf limit)(setq plot��le (open pf :direction :output))(initran seed)(dotimes (k n)(let� ((rt (rantree 0.9 md)) 230(len (atoms (atten rt))))(limit�run rt limit)(print (list k len (1� passes)))(print len plot��le)(princ " " plot��le)(princ (1� passes) plot��le)))(close plot��le)'done) 240; (size�multirun seed n md pf limit); Multiple run facility with plotting of running; tree size (atom count) and limit on number of steps.; It keeps track of the sizes during reduction by using; size�annotated trees.; Generates n trees randomly (seeded by sd), given maximum; depth md. (The nonleaf probability is �xed at 0.9.); After each run, prints tree number, number of passes; and �nal tree size to console. 250; Writes step number and tree size to plot �le;; data from each tree is separated by a blank line.(defun size�multirun (seed n md pf limit)(setq plot��le (open pf :direction :output))(setq plot�size t)(princ "#params " plot��le)(prin1 (list seed n md pf limit) plot��le)(initran seed)(dotimes (k n) 260(let ((rt (rantree 0.9 md)))(limit�run rt limit)31



(print (list 'tree k'had (1� passes) 'passes'size (size (car root)))))(terpri plot��le))(close plot��le)'done 270); (atoms tree); Counts the number of atoms in a tree.(defun atoms (tree)(cond((null tree) 0)((atom tree) 1)(t (+ (atoms (car tree)) (atoms (cdr tree)))) 280)); (size�annotate tree); Adds size annotations to each node of a binary tree.(defun size�annotate (tree)(if (atom tree)(cons 1 tree)(let ((left (size�annotate (car tree)))(right (size�annotate (cdr tree))) 290)(cons (+ (size left) (size right))(cons left right))))); (untag atree); Removes size�tag from an annotated tree.(defun untag (L) (cdr L)) 30032



; (tagcar atree); (tagcdr atree); Performs car or cdr on an annotated binary tree.(defun tagcar (L) (cadr L))(defun tagcdr (L) (cddr L)); (size atree); Return size�tag of an annotated tree. 310(defun size (L) (car L))

33



C LispDe�nitions for SKIReduction with SizeComputationSince the SKI trees can grow exponentially in size, it becomes too expensiveto compute their sizes by simply scanning the tree and counting at each step.Therefore, a modi�cation of the program was developed that keeps track ofthe tree's size during computation. Each node is now represented by a Lisp\dotted pair" (S . N), where N is the bare node [i.e. an SKI leaf or adotted pair (X . Y ) representing the function application (XY )], and Sis the size of this node. Of course, the size computations produced by thisprogram where checked against those produced by the original program.; SKI Size II; Routines for studying the reduction of; random SKI combinator trees by keeping track of their size.; This version does not share subtrees.; Bruce MacLennan; Collegium Budapest; July 1997; (limit�run tree limit); Complete normal�order reduction of an untagged combinator tree,10; which is not allowed to continue past limit passes.; A global variable, no�reduction, is set to t if the; reduction completed normally, and to nil if it hit the limit.; Prints beginning and �nal trees in; parenthesis�free form.; Optionally (plot�size) writes plot �le containing tree; size (atom count) after each step.; The annotated tree is left in a variable called "root."; Note that the tree is modi�ed by the reduction.; A copy of the original, unmodi�ed annotated tree is left 20; in orig�tree.(defun limit�run (tree limit)(setq orig�tree (copy�tree tree))(setq root (cons (size�annotate tree) nil))(print (list 'beginning (atten (car root))))34



(if pr (print (list 'beginning 'tree (car root))))(continue�running 1 limit))(defun continue�running (n limit) 30(setq no�reduction t)(rplaca root (reduce�tree (car root)))(setq passes n)(if pr (print (list 'pass n '= (atten (car root)))))(cond(plot�size(print n plot��le)(princ " " plot��le)(princ (size (car root)) plot��le))) 40(cond ((and (not no�reduction) (<= n limit))(continue�running (1+ n) limit))(t(if pr (print (list(if no�reduction 'completed 'terminated)(atten (car root)))))root))); (reduce�tree atree) 50; Attempts to perform one normal�order reduction on the annotated tree; and returns the (possibly modi�ed) annotated tree.; If a reduction is performed, then the global; variable no�reduction is set to nil.; (It is assumed to have been previously set to t.)(defun reduce�tree (tree)(if dpr (print (list 'reducing tree)))(let ((rtree (try�reduction tree)))(cond 60((and no�reduction (listp (untag rtree)) (untag rtree))(if dpr (print (list 'going 'left (tagcar rtree))))(rplaca (untag rtree) (reduce�tree (tagcar rtree)))(rplaca rtree 35



(+ (size (tagcar rtree)) (size (tagcdr rtree))))(cond((and no�reduction (tagcdr rtree))(if dpr (print (list 'going 'right (tagcdr rtree))))(rplacd (untag rtree) (reduce�tree (tagcdr rtree)))(rplaca rtree 70(+ (size (tagcar rtree)) (size (tagcdr rtree))))))))(if (and dpr (not no�reduction))(print (list 'reduced rtree)))rtree)); (try�reduction atree); Attempts to apply a single reduction to the root 80; of the annotated tree.; If successful, no�reduction is set to nil.; In either case the (possibly modi�ed) annotated tree is returned.(defun try�reduction (L)(cond((atom (untag L)) L)((null L) L); Process I combinator: Ix => x((and (eq (untag (tagcar L)) 'I) (tagcdr L)) 90(setq no�reduction nil)(if dpr (print (list 'I 'found L '=> (tagcdr L))))(tagcdr L)); Process K combinator: Kxy => x((and(listp (untag (tagcar L)))(eq (untag (tagcar (tagcar L))) 'K))(setq no�reduction nil)(if dpr (print (list 'K 'found L '=> (tagcdr (tagcar L))))) 100(tagcdr (tagcar L))) 36



; Process S combinator: Sxyz => xz(yz)((and(listp (untag (tagcar L)))(listp (untag (tagcar (tagcar L))))(eq (untag (tagcar (tagcar (tagcar L)))) 'S))(setq no�reduction nil)(if dpr (print (list 'S 'found L)))(let� ((M (untag (tagcar L))) 110(N (untag (car M)))(z (tagcdr L))(a (+ (size (cdr M)) (size z)))(b (+ (size (cdr N)) (size z))))(rplaca (untag L) (cons b (cons (cdr N) z)))(rplacd (untag L) (cons a (cons (cdr M) (copy�tree z))))(rplaca L (+ a b)))(if dpr (print (list '=> L))) 120L)(t L))); (atten atree); Converts an annotated combinator tree into a list that; has redundant (left associating) parentheses eliminated.; This is a convenient way to print combinator trees.; (atten (bintree S)) is the same as S, except that; redundant parentheses will have been eliminated. 130(defun atten (tree)(if (atom (untag tree))(untag tree)(reverse (at tree))))(defun at (tree)(if (atom (untag tree))(list (untag tree))(cons (dat (tagcdr tree)) (at (tagcar tree))))) 14037



(defun dat (tree)(if (atom (untag tree))(untag tree)(reverse (at tree)))); (bintree string); Converts a string representing a combinator; formula, such as (S K K (K (S K) K) S),; into the corresponding binary tree. 150; Note that (bintree (atten T)) = T.(defun bintree (string)(if (atom string)string(bintree�list string)))(defun bintree�list (string)(if (null (cdr string))(bintree (car string)) 160(bintree�op string)))(defun bintree�op (string)(cons (bintree (butlast string))(bintree (car (last string))))); Auxiliary function for generating random trees or strings.(defun combnum (n)(cond ((eq n 0) 'I) 170((eq n 1) 'K)((eq n 2) 'S))); (ranstring n); Generate a random, parenthesis�free combinator; string (in tree form) of length n.; This is a left branching tree, which can be written38



; without parentheses. 180(defun ranstring (n)(if (eq n 2)(cons (combnum (random 3)) (combnum (random 3)))(cons (ranstring (1� n)) (combnum (random 3))))); (rantree p md); Generate a random combinator tree with; application probability p (values such as 0.9 work well); and maximum depth md. The application probability is; the probability a node will be interior, rather than a leaf. 190; Such a tree will have at most 2^md nodes.(defun rantree (p md)(if (or (> (� (random 1000) 0.001) p) (zerop md))(combnum (random 3))(cons (rantree p (1� md)) (rantree p (1� md))))); (initran n); Initializes random number generator by calling; it n times. When executed in a fresh LISP environment, 200; this allows repeatable results.(defun initran (n) (dotimes (k (1+ n)) (random 1)) 'done); Print control variables:; Setting pr causes printing of the tree after each reduction.; Setting dpr causes additional, extensive debugging information; to be printed.; Setting plot�size causes tree size to be written to plot��le; after each step. 210(setq pr nil)(setq dpr nil)(setq plot�size nil); (limit�multirun seed n md pf limit)39



; Multiple run facility, with a limit on number of steps.; Generates n trees randomly (seeded by sd), given maximum depth md.; (The nonleaf probability is �xed at 0.9.); While running displays (R A P) on console, where R is run number,220; A is tree atom count and and P is number of passes.; Writes atom�count = passes summary to a �le called; pf.; Example: (limit�multirun 37 100 5 "plot" 100)(defun limit�multirun (seed n md pf limit)(setq plot��le (open pf :direction :output))(initran seed)(dotimes (k n)(let� ((rt (rantree 0.9 md)) 230(len (atoms (atten rt))))(limit�run rt limit)(print (list k len (1� passes)))(print len plot��le)(princ " " plot��le)(princ (1� passes) plot��le)))(close plot��le)'done) 240; (size�multirun seed n md pf limit); Multiple run facility with plotting of running; tree size (atom count) and limit on number of steps.; It keeps track of the sizes during reduction by using; size�annotated trees.; Generates n trees randomly (seeded by sd), given maximum; depth md. (The nonleaf probability is �xed at 0.9.); After each run, prints tree number, number of passes; and �nal tree size to console. 250; Writes step number and tree size to plot �le;; data from each tree is separated by a blank line.(defun size�multirun (seed n md pf limit)40



(setq plot��le (open pf :direction :output))(setq plot�size t)(princ "#params " plot��le)(prin1 (list seed n md pf limit) plot��le)(initran seed)(dotimes (k n) 260(let ((rt (rantree 0.9 md)))(limit�run rt limit)(print (list 'tree k'had (1� passes) 'passes'size (size (car root)))))(terpri plot��le))(close plot��le)'done 270); (atoms tree); Counts the number of atoms in a tree.(defun atoms (tree)(cond((null tree) 0)((atom tree) 1)(t (+ (atoms (car tree)) (atoms (cdr tree)))) 280)); (size�annotate tree); Adds size annotations to each node of a binary tree.(defun size�annotate (tree)(if (atom tree)(cons 1 tree)(let ((left (size�annotate (car tree)))(right (size�annotate (cdr tree))) 290)(cons (+ (size left) (size right))41



(cons left right))))); (untag atree); Removes size�tag from an annotated tree.(defun untag (L) (cdr L)) 300; (tagcar atree); (tagcdr atree); Performs car or cdr on an annotated binary tree.(defun tagcar (L) (cadr L))(defun tagcdr (L) (cddr L)); (size atree); Return size�tag of an annotated tree. 310(defun size (L) (car L))

42



D Lisp De�nitions for S-AugmentationThese are the additional Lisp de�nitions used for the S-augmentation exper-iments.; String�Lambda; Routines for running S�augmentation experiments; on random SKI�combinator trees.; Requires prior loading of SKI�soup2 or SKI�size2; for interpreting combinator trees.; Bruce MacLennan; Collegium Budapest; July 1997; (one�string�lambda string limit �lename) 10; Runs S�augmentation on a given string; and writes plot data to �lename.; Example: (one�string�lambda (ran�KI�string 50) 150 "plot")(defun one�string�lambda (string limit �lename)(open�plot �lename)(string�lambda string limit)(close plot��le)); (string�lambda string limit) 20; Runs a given string of K's and=or I's through; random S�augmentation from 0 to 100%.; The global variable rstring contains the string; being processed (all S's when string�lambda completes).; The global variable sites has the indices; of non�KI combinators (it's null when; string�lambda completes).(defun string�lambda (string limit)(setq rstring string) 30(let ((n (length string)))(setq sites (interval 0 n))(dotimes (k n)(one�string k n limit)43



(let ((s (random (� n k))))(setq rstring (replace�site (elt sites s) rstring))(setq sites (delete�site s sites))))(one�string n n limit))) 40; (one�string k n limit); Processes the string in rstring, k of whose; n elements are S. At most limit steps are; allowed.; Write one line to plot �le showing percentage; of S's and number of steps.(defun one�string (k n limit)(limit�run (bintree rstring) limit) 50(print (list k (if no�reduction 'stopped 'terminated)'after (1� passes) 'steps))(let((size (if plot�size (atoms root) 0)))(if plot�size (print (list '�nal 'size size)))(plot (= (� 1.0 k) n)(1� passes)size))) 60; (delete�site k string); Deletes item k (indexed from 0) from string.(defun delete�site (k s)(if (zerop k)(cdr s)(cons (car s) (delete�site (1� k) (cdr s))))) 70; (replace�site k string); Replaces site k (indexed from 0) of string with S.44



(defun replace�site (k s)(if (zerop k)(cons 'S (cdr s))(cons (car s) (replace�site (1� k) (cdr s))))); (interval s n) 80; Creates a string of n consecutive integers starting with s.(defun interval (s n)(if (zerop n)nil(cons s (interval (1+ s) (1� n))))); (ran�KI�string n); Generates a random string of K's and I's of length n. 90(defun ran�KI�string (n)(if (zerop n)nil(cons (if (zerop (random 2)) 'I 'K)(ran�KI�string (1� n))))); (comstring c n); Generates a combinator string of length n 100; composed entirely of c's.(defun comstring (c n)(if (zerop n)nil(cons c (comstring c (1� n))))); (open�plot �lename); Opens a plot �les called �lename. 11045



(defun open�plot (�lename)(setq plot��le (open �lename :direction :output))'opened); (plot lambda steps size); Writes one line of plot �le containing; a lambda value and (optionally) a decremented step count; and=or a �nal tree size. Plot content is determined; by global variables plot�steps and plot�size. 120(defun plot (lamb passes size)(print lamb plot��le)(cond(plot�steps(princ " " plot��le)(princ (1� passes) plot��le)))(cond(plot�size(princ " " plot��le)(princ size plot��le))) 130)(setq plot�steps t)(setq plot�size nil)
46


